1
|
Tuieng RJ, Disney C, Cartmell SH, Kirwan CC, Eckersley A, Newham E, Gupta HS, Hoyland JA, Lee PD, Sherratt MJ. Impact of therapeutic X-ray exposure on collagen I and associated proteins. Acta Biomater 2025; 197:294-311. [PMID: 40058620 DOI: 10.1016/j.actbio.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 02/11/2025] [Accepted: 03/03/2025] [Indexed: 03/23/2025]
Abstract
Biological tissues are exposed to X-rays in medical applications (such as diagnosis and radiotherapy) and in research studies (for example microcomputed X-ray tomography: microCT). Radiotherapy may deliver doses up to 50Gy to both tumour and healthy tissues, resulting in undesirable clinical side effects which can compromise quality of life. Whilst cellular responses to X-rays are relatively well-characterised, X-ray-induced structural damage to the extracellular matrix (ECM) is poorly understood. This study tests the hypotheses that ECM proteins and ECM-rich tissues (purified collagen I and rat tail tendons respectively) are structurally compromised by exposure to X-ray doses used in breast radiotherapy. Protein gel electrophoresis demonstrated that breast radiotherapy equivalent doses can induce fragmentation of the constituent α chains in solubilised purified collagen I. However, assembly into fibrils, either in vitro or in vivo, prevented X-ray-induced fragmentation but not structural changes (as characterised by LC-MS/MS and peptide location fingerprinting: PLF). In subsequent experiments exposure to higher (synchrotron) X-ray doses induced substantial fragmentation of solubilised and fibrillar (chicken tendon) collagen I. LC-MS/MS and PLF analysis of synchrotron-irradiated tendon identified structure-associated changes in collagens I, VI, XII, proteoglycans including aggrecan, decorin, and fibromodulin, and the elastic fibre component fibulin-1. Thus, exposure to radiotherapy X-rays can affect the structure of key tissue ECM components, although additional studies will be required to understand dose dependent effects. STATEMENT OF SIGNIFICANCE: Biological systems are routinely exposed to X-rays during medical treatments (radiotherapy) and in imaging studies (microCT). Whilst the impact of ionising radiation on cells is well characterised, the interactions between X-rays and the extracellular matrix are not. Here, we show that relatively low dose breast radiotherapy X-rays are sufficient to affect the structure of collagen I in both its solubilised and fibrillar forms. Although the impact of intermediate X-ray doses on extracellular proteins was not determined, the high dose exposures which are achievable using a synchrotron source had an even greater effect on the structure of collagen I molecules and, in tendon, on the structures of many accessory extracellular matrix proteins, The unwanted side effects of radiotherapy may therefore be due to not only cellular damage but also damage to the surrounding matrix.
Collapse
Affiliation(s)
- Ren Jie Tuieng
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester M13 9PT, UK; Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 118415
| | - Catherine Disney
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK; Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Sarah H Cartmell
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering and The Henry Royce Institute, Royce Hub Building, The University of Manchester, M13 9PL, Manchester, UK
| | - Cliona C Kirwan
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oglesby Cancer Research Building, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4BX, UK; The Nightingale Breast Cancer Unit, Wythenshawe Hospital, Manchester University NHS Foundation Trust, M23 9LT, Manchester, UK
| | - Alexander Eckersley
- Manchester Cell-Matrix Centre, Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester M13 9PT, UK
| | - Elis Newham
- School of Engineering and Materials Science & Institute of Bioengineering, Queen Mary University of London, London E1 4NS, UK; Section Palaeontology, Institute of Geosciences, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Himadri S Gupta
- School of Engineering and Materials Science & Institute of Bioengineering, Queen Mary University of London, London E1 4NS, UK
| | - Judith A Hoyland
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester M13 9PT, UK
| | - Peter D Lee
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - Michael J Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester M13 9PT, UK.
| |
Collapse
|
2
|
Alibeigi Beni E, Shahidi A, Ebadian B. Mechanical properties of mandibular and maxillary bone collagen fibrils based on nonlocal elasticity theory. BIOPHYSICAL REPORTS 2025; 5:100210. [PMID: 40252842 DOI: 10.1016/j.bpr.2025.100210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/02/2025] [Accepted: 04/15/2025] [Indexed: 04/21/2025]
Abstract
In this paper, the mechanical properties of collagen fibrils in the cortical bone and cortical-trabecular bone interface of the human mandible and maxilla have been investigated. Force-indentation curves on wet collagen fibrils are taken by applying the atomic force microscopy nanoindentation technique, and the elastic modulus is measured. The distribution of stress and strain is determined by considering an elastic medium when it is deformed by a rigid cone. Afterward, by applying the nonlocal elasticity theory and the indentation parameters, the nonlocal parameter of the collagen fibrils is calculated at the nanoscale. Finally, the elastic modulus and nonlocal modulus of the collagen fibrils are compared. According to the results, the highest and lowest values of the elastic modulus of the collagen fibrils are determined in the maxillary cortical-trabecular bone interface (4.16 ± 0.18 MPa) and mandibular cortical bone (2.03 ± 0.14 MPa), respectively. In general, in collagen fibrils, this parameter is higher in the maxillary bone than in the mandibular one. In the upper and lower jaws, the elastic modulus of collagen fibrils in the cortical-trabecular bone interface is higher than that of the cortical bone. In mandibular and maxillary bone collagen fibrils, the range of nonlocal parameter and scaling parameter e0 are computed as (0.430 ± 0.013-0.483 ± 0.011 nm) and (0.269 ± 0.006-0.302 ± 0.006), respectively. Also, the highest value of this parameter is recorded in the maxillary cortical-trabecular bone interface. The difference between the nanoscale modulus of collagen fibrils and the elastic modulus at large length scales is significant.
Collapse
Affiliation(s)
- Elaheh Alibeigi Beni
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Department of Prosthodontics, Dental Implants Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran; Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran.
| | - Alireza Shahidi
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Department of Prosthodontics, Dental Implants Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran; Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Behnaz Ebadian
- Department of Prosthodontics, Dental Implants Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Rufin M, Nalbach M, Rakuš M, Fuchs M, Poik M, Schitter G, Thurner PJ, Andriotis OG. Methylglyoxal alters collagen fibril nanostiffness and surface potential. Acta Biomater 2024; 189:208-216. [PMID: 39218277 DOI: 10.1016/j.actbio.2024.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Collagen fibrils are fundamental to the mechanical strength and function of biological tissues. However, they are susceptible to changes from non-enzymatic glycation, resulting in the formation of advanced glycation end-products (AGEs) that are not reversible. AGEs accumulate with aging and disease and can adversely impact tissue mechanics and cell-ECM interactions. AGE-crosslinks have been related, on the one hand, to dysregulation of collagen fibril stiffness and damage and, on the other hand, to altered collagen net surface charge as well as impaired cell recognition sites. While prior studies using Kelvin probe force microscopy (KPFM) have shown the effect glycation has on collagen fibril surface potential (i.e., net charge), the combined effect on individual and isolated collagen fibril mechanics, hydration, and surface potential has not been documented. Here, we explore how methylglyoxal (MGO) treatment affects the mechanics and surface potential of individual and isolated collagen fibrils by utilizing atomic force microscopy (AFM) nanoindentation and KPFM. Our results reveal that MGO treatment significantly increases nanostiffness, alters surface potential, and modifies hydration characteristics at the collagen fibril level. These findings underscore the critical impact of AGEs on collagen fibril physicochemical properties, offering insights into pathophysiological mechanical and biochemical alterations with implications for cell mechanotransduction during aging and in diabetes. STATEMENT OF SIGNIFICANCE: Collagen fibrils are susceptible to glycation, the irreversible reaction of amino acids with sugars. Glycation affects the mechanical properties and surface chemistry of collagen fibrils with adverse alterations in biological tissue mechanics and cell-ECM interactions. Current research on glycation, at the level of individual collagen fibrils, is sparse and has focused either on collagen fibril mechanics, with contradicting evidence, or surface potential. Here, we utilized a multimodal approach combining Kelvin probe force (KPFM) and atomic force microscopy (AFM) to examine how methylglyoxal glycation induces structural, mechanical, and surface potential changes on the same individual and isolated collagen fibrils. This approach helps inform structure-function relationships at the level of individual collagen fibrils.
Collapse
Affiliation(s)
- Manuel Rufin
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Gumpendorfer Strasse 7, A-1060 Vienna, Austria
| | - Mathis Nalbach
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Gumpendorfer Strasse 7, A-1060 Vienna, Austria
| | - Maja Rakuš
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Gumpendorfer Strasse 7, A-1060 Vienna, Austria
| | - Magdalena Fuchs
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Gumpendorfer Strasse 7, A-1060 Vienna, Austria
| | - Mathias Poik
- Automation and Control Institute (ACIN), TU Wien, Gusshausstrasse 27-29, A-1040 Vienna, Austria
| | - Georg Schitter
- Automation and Control Institute (ACIN), TU Wien, Gusshausstrasse 27-29, A-1040 Vienna, Austria
| | - Philipp J Thurner
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Gumpendorfer Strasse 7, A-1060 Vienna, Austria
| | - Orestis G Andriotis
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Gumpendorfer Strasse 7, A-1060 Vienna, Austria.
| |
Collapse
|
4
|
Micheletti C, Shah FA. Bone hierarchical organization through the lens of materials science: Present opportunities and future challenges. Bone Rep 2024; 22:101783. [PMID: 39100913 PMCID: PMC11295937 DOI: 10.1016/j.bonr.2024.101783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 08/06/2024] Open
Abstract
Multiscale characterization is essential to better understand the hierarchical architecture of bone and an array of analytical methods contributes to exploring the various structural and compositional aspects. Incorporating X-ray tomography, X-ray scattering, vibrational spectroscopy, and atom probe tomography alongside electron microscopy provides a comprehensive approach, offering insights into the diverse levels of organization within bone. X-ray scattering techniques reveal information about collagen-mineral spatial relationships, while X-ray tomography captures 3D structural details, especially at the microscale. Electron microscopy, such as scanning and transmission electron microscopy, extends resolution to the nanoscale, showcasing intricate features such as collagen fibril organization. Additionally, atom probe tomography achieves sub-nanoscale resolution and high chemical sensitivity, enabling detailed examination of bone composition. Despite various technical challenges, a correlative approach allows for a comprehensive understanding of bone material properties. Real-time investigations through in situ and in operando approaches shed light on the dynamic processes in bone. Recently developed techniques such as liquid, in situ transmission electron microscopy provide insights into calcium phosphate formation and collagen mineralization. Mechanical models developed in the effort to link structure, composition, and function currently remain oversimplified but can be improved. In conclusion, correlative analytical platforms provide a holistic perspective of bone extracellular matrix and are essential for unraveling the intricate interplay between structure and composition within bone.
Collapse
Affiliation(s)
- Chiara Micheletti
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Furqan A. Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Zupanič Pajnič I, Kovačič N. DNA preservation in compact and trabecular bone. Forensic Sci Int Genet 2024; 71:103067. [PMID: 38833778 DOI: 10.1016/j.fsigen.2024.103067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
Significant variation exists in the molecular structure of compact and trabecular bone. In compact bone full dissolution of the bone powder is required to efficiently release the DNA from hydroxyapatite. In trabecular bone where soft tissues are preserved, we assume that full dissolution of the bone powder is not required to release the DNA from collagen. To investigate this issue, research was performed on 45 Second World War diaphysis (compact bone)-epiphysis (trabecular bone) femur pairs, each processed with a full dissolution (FD) and partial dissolution (PD) extraction method. DNA quality and quantity were assessed using qPCR PowerQuant analyses, and autosomal STRs were typed to confirm the authenticity of isolated DNA. Our results support different mechanisms of DNA preservation in compact and trabecular bone because FD method was more efficient than PD method only in compact bone, and no difference in DNA yield was observed in trabecular bone, showing no need for full dissolution of the bone powder when trabecular bone tissue is processed. In addition, a significant difference in DNA yield was observed between compact and trabecular bone when PD was applied, with more DNA extracted from trabecular bone than compact bone. High suitability of trabecular bone processed with PD method is also supported by the similar quantities of DNA isolated by FD method when applied to both compact and trabecular bone. Additionally similar quantities of DNA were isolated when compact bone was extracted with FD method and trabecular bone was extracted with PD method. Processing trabecular bone with PD method in routine identification of skeletonized human remains shortens the extraction procedure and simplifies the grinding process.
Collapse
Affiliation(s)
- Irena Zupanič Pajnič
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, Ljubljana 1000, Slovenia.
| | - Nika Kovačič
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, Ljubljana 1000, Slovenia
| |
Collapse
|
6
|
Arvelo DM, Garcia-Sacristan C, Chacón E, Tarazona P, Garcia R. Interfacial water on collagen nanoribbons by 3D AFM. J Chem Phys 2024; 160:164714. [PMID: 38656444 DOI: 10.1063/5.0205611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
Collagen is the most abundant structural protein in mammals. Type I collagen in its fibril form has a characteristic pattern structure that alternates two regions called gap and overlap. The structure and properties of collagens are highly dependent on the water and mineral content of the environment. Here, we apply 3D AFM to characterize at angstrom-scale resolution the interfacial water structure of collagen nanoribbons. For a neutral tip, the interfacial water structure is characterized by the oscillation of the water particle density distribution with a value of 0.3 nm (hydration layers). The interfacial structure does not depend on the collagen region. For a negatively charged tip, the interfacial structure might depend on the collagen region. Hydration layers are observed in overlap regions, while in gap regions, the interfacial solvent structure is dominated by electrostatic interactions. These interactions generate interlayer distances of 0.2 nm.
Collapse
Affiliation(s)
- Diana M Arvelo
- Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain
| | | | - Enrique Chacón
- Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain
| | - Pedro Tarazona
- Departamento de Física Teórica de la Materia Condensada, IFIMAC Condensed Matter Physics Center, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain
| |
Collapse
|
7
|
Deymier AC, Deymier PA. Open-system force-elongation relationship of collagen in chemo-mechanical equilibrium with water. J Mech Behav Biomed Mater 2024; 152:106464. [PMID: 38367533 DOI: 10.1016/j.jmbbm.2024.106464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
A significant deformation mechanism of collagen at low loads is molecular uncoiling and rearrangement. Although the effect of hydration and cross-linking has been investigated at larger loads when collagen undergoes molecular sliding, their effects on collagen molecular reorganization remain unclear. Here we develop two thermodynamic models that use the notion of open-system elasticity to elucidate the effect of swelling due to water uptake during deformation of collagen networks under low and high cross-linking conditions. With low crosslinking, entropic contributions dominate resulting in rejection of solvent from the polymer network leading to reduced collagen stiffness with increased loads. Contrarily, high cross-linking inhibits initial coiling and structural kinking and the mechanical behavior is dominated by elastic energy. In this configuration, the solvent content depends on the sign of the applied load resulting in a non-linear open-system stress-strain relationship. The models provide insight on the parameters that impact the stress-strain relationships of hydrated collagen and can inform the way collagenous matrices are treated both in medical and laboratory settings.
Collapse
Affiliation(s)
- A C Deymier
- Department of Biomedical Engineering, UConn Health, Farmington, CT, USA.
| | - P A Deymier
- Department of Materials Science and Engineering, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
8
|
Buck HV, Stains JP. Osteocyte-mediated mechanical response controls osteoblast differentiation and function. Front Physiol 2024; 15:1364694. [PMID: 38529481 PMCID: PMC10961341 DOI: 10.3389/fphys.2024.1364694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/29/2024] [Indexed: 03/27/2024] Open
Abstract
Low bone mass is a pervasive global health concern, with implications for osteoporosis, frailty, disability, and mortality. Lifestyle factors, including sedentary habits, metabolic dysfunction, and an aging population, contribute to the escalating prevalence of osteopenia and osteoporosis. The application of mechanical load to bone through physical activity and exercise prevents bone loss, while sufficient mechanical load stimulates new bone mass acquisition. Osteocytes, cells embedded within the bone, receive mechanical signals and translate these mechanical cues into biological signals, termed mechano-transduction. Mechano-transduction signals regulate other bone resident cells, such as osteoblasts and osteoclasts, to orchestrate changes in bone mass. This review explores the mechanisms through which osteocyte-mediated response to mechanical loading regulates osteoblast differentiation and bone formation. An overview of bone cell biology and the impact of mechanical load will be provided, with emphasis on the mechanical cues, mechano-transduction pathways, and factors that direct progenitor cells toward the osteoblast lineage. While there are a wide range of clinically available treatments for osteoporosis, the majority act through manipulation of the osteoclast and may have significant disadvantages. Despite the central role of osteoblasts to the deposition of new bone, few therapies directly target osteoblasts for the preservation of bone mass. Improved understanding of the mechanisms leading to osteoblastogenesis may reveal novel targets for translational investigation.
Collapse
Affiliation(s)
| | - Joseph Paul Stains
- School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
9
|
Gahlawat S, Nanda V, Shreiber DI. Designing collagens to shed light on the multi-scale structure-function mapping of matrix disorders. Matrix Biol Plus 2024; 21:100139. [PMID: 38186852 PMCID: PMC10765305 DOI: 10.1016/j.mbplus.2023.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024] Open
Abstract
Collagens are the most abundant structural proteins in the extracellular matrix of animals and play crucial roles in maintaining the structural integrity and mechanical properties of tissues and organs while mediating important biological processes. Fibrillar collagens have a unique triple helix structure with a characteristic repeating sequence of (Gly-X-Y)n. Variations within the repetitive sequence can cause misfolding of the triple helix, resulting in heritable connective tissue disorders. The most common variations are single-point missense mutations that lead to the substitution of a glycine residue with a bulkier amino acid (Gly → X). In this review, we will first discuss the importance of collagen's triple helix structure and how single Gly substitutions can impact its folding, structure, secretion, assembly into higher-order structures, and biological functions. We will review the role of "designer collagens," i.e., synthetic collagen-mimetic peptides and recombinant bacterial collagen as model systems to include Gly → X substitutions observed in collagen disorders and investigate their impact on structure and function utilizing in vitro studies. Lastly, we will explore how computational modeling of collagen peptides, especially molecular and steered molecular dynamics, has been instrumental in probing the effects of Gly substitutions on structure, receptor binding, and mechanical stability across multiple length scales.
Collapse
Affiliation(s)
- Sonal Gahlawat
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Vikas Nanda
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - David I. Shreiber
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
10
|
Kowalewski A, Forde NR. Fluence-dependent degradation of fibrillar type I collagen by 222 nm far-UVC radiation. PLoS One 2024; 19:e0292298. [PMID: 38165863 PMCID: PMC10760738 DOI: 10.1371/journal.pone.0292298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/09/2023] [Indexed: 01/04/2024] Open
Abstract
For more than 100 years, germicidal lamps emitting 254 nm ultraviolet (UV) radiation have been used for drinking-water disinfection and surface sterilization. However, due to the carcinogenic nature of 254 nm UV, these lamps have been unable to be used for clinical procedures such as wound or surgical site sterilization. Recently, technical advances have facilitated a new generation of germicidal lamp whose emissions centre at 222 nm. These novel 222 nm lamps have commensurate antimicrobial properties to 254 nm lamps while producing few short- or long-term health effects in humans upon external skin exposure. However, to realize the full clinical potential of 222 nm UV, its safety upon internal tissue exposure must also be considered. Type I collagen is the most abundant structural protein in the body, where it self-assembles into fibrils which play a crucial role in connective tissue structure and function. In this work, we investigate the effect of 222 nm UV radiation on type I collagen fibrils in vitro. We show that collagen's response to irradiation with 222 nm UV is fluence-dependent, ranging from no detectable fibril damage at low fluences to complete fibril degradation and polypeptide chain scission at high fluences. However, we also show that fibril degradation is significantly attenuated by increasing collagen sample thickness. Given the low fluence threshold for bacterial inactivation and the macroscopic thickness of collagenous tissues in vivo, our results suggest a range of 222 nm UV fluences which may inactivate pathogenic bacteria without causing significant damage to fibrillar collagen. This presents an initial step toward the validation of 222 nm UV radiation for internal tissue disinfection.
Collapse
Affiliation(s)
- Antonia Kowalewski
- Department of Physics, Simon Fraser University, Burnaby, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Nancy R. Forde
- Department of Physics, Simon Fraser University, Burnaby, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
11
|
DiCecco LA, Gao R, Gray JL, Kelly DF, Sone ED, Grandfield K. Liquid Transmission Electron Microscopy for Probing Collagen Biomineralization. NANO LETTERS 2023; 23:9760-9768. [PMID: 37669509 DOI: 10.1021/acs.nanolett.3c02344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Collagen biomineralization is fundamental to hard tissue assembly. While studied extensively, collagen mineralization processes are not fully understood, with the majority of theories derived from electron microscopy (EM) under static, dehydrated, or frozen conditions, unlike the liquid phase environment where mineralization occurs. Herein, novel liquid transmission EM (TEM) strategies are presented, in which collagen mineralization was explored in liquid for the first time via TEM. Custom thin-film enclosures were employed to visualize the mineralization of reconstituted collagen fibrils in a calcium phosphate and polyaspartic acid solution to promote intrafibrillar mineralization. TEM highlighted that at early time points precursor mineral particles attached to collagen and progressed to crystalline mineral platelets aligned with fibrils at later time points. This aligns with observations from other techniques and validates the liquid TEM approach. This work provides a new liquid imaging approach for exploring collagen biomineralization, advancing toward understanding disease pathogenesis and remineralization strategies for hard tissues.
Collapse
Affiliation(s)
- Liza-Anastasia DiCecco
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802-4400, United States
| | - Ruixin Gao
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Jennifer L Gray
- Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Deborah F Kelly
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802-4400, United States
- Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Structural Oncology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Eli D Sone
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1X3, Canada
| | - Kathryn Grandfield
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
12
|
Parvez N, Merson J, Picu RC. Stiffening mechanisms in stochastic athermal fiber networks. Phys Rev E 2023; 108:044502. [PMID: 37978689 DOI: 10.1103/physreve.108.044502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/06/2023] [Indexed: 11/19/2023]
Abstract
Stochastic athermal networks composed of fibers that deform axially and in bending strain stiffen much faster than thermal networks of axial elements, such as elastomers. Here we investigate the physical origin of stiffening in athermal network materials. To this end, we use models of stochastic networks subjected to uniaxial deformation and identify the emergence of two subnetworks, the stress path subnetwork (SPSN) and the bending support subnetwork (BSSN), which carry most of the axial and bending energies, respectively. The BSSN controls lateral contraction and modulates the organization of the SPSN during deformation. The SPSN is preferentially oriented in the loading direction, while the BSSN's preferential orientation is orthogonal to the SPSN. In nonaffine networks stiffening is exponential, while in close-to-affine networks it is quadratic. The difference is due to a much more modest lateral contraction in the approximately affine case and to a stiffer BSSN. Exponential stiffening emerges from the interplay of the axial and bending deformation modes at the scale of individual or small groups of fibers undergoing large deformations and being subjected to the constraint of rigid cross-links, and it is not necessarily a result of complex interactions involving many connected fibers. An apparent third regime of quadratic stiffening may be evidenced in nonaffinely deforming networks provided the nominal stress is observed. This occurs at large stretches, when the BSSN contribution of stiffening vanishes. However, this regime is not present if the Cauchy stress is used, in which case stiffening is exponential throughout the entire deformation. These results shed light on the physical nature of stiffening in a broad class of materials including connective tissue, the extracellular matrix, nonwovens, felt, and other athermal network materials.
Collapse
Affiliation(s)
- N Parvez
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - J Merson
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - R C Picu
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| |
Collapse
|
13
|
Abdelrahman S, Ge R, Susapto HH, Liu Y, Samkari F, Moretti M, Liu X, Hoehndorf R, Emwas AH, Jaremko M, Rawas RH, Hauser CAE. The Impact of Mechanical Cues on the Metabolomic and Transcriptomic Profiles of Human Dermal Fibroblasts Cultured in Ultrashort Self-Assembling Peptide 3D Scaffolds. ACS NANO 2023; 17:14508-14531. [PMID: 37477873 DOI: 10.1021/acsnano.3c01176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Cells' interactions with their microenvironment influence their morphological features and regulate crucial cellular functions including proliferation, differentiation, metabolism, and gene expression. Most biological data available are based on in vitro two-dimensional (2D) cellular models, which fail to recapitulate the three-dimensional (3D) in vivo systems. This can be attributed to the lack of cell-matrix interaction and the limitless access to nutrients and oxygen, in contrast to in vivo systems. Despite the emergence of a plethora of 3D matrices to address this challenge, there are few reports offering a proper characterization of these matrices or studying how the cell-matrix interaction influences cellular metabolism in correlation with gene expression. In this study, two tetrameric ultrashort self-assembling peptide sequences, FFIK and FIIK, were used to create in vitro 3D models using well-described human dermal fibroblast cells. The peptide sequences are derived from naturally occurring amino acids that are capable of self-assembling into stable hydrogels without UV or chemical cross-linking. Our results showed that 2D cultured fibroblasts exhibited distinct metabolic and transcriptomic profiles compared to 3D cultured cells. The observed changes in the metabolomic and transcriptomic profiles were closely interconnected and influenced several important metabolic pathways including the TCA cycle, glycolysis, MAPK signaling cascades, and hemostasis. Data provided here may lead to clearer insights into the influence of the surrounding microenvironment on human dermal fibroblast metabolic patterns and molecular mechanisms, underscoring the importance of utilizing efficient 3D in vitro models to study such complex mechanisms.
Collapse
Affiliation(s)
- Sherin Abdelrahman
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Rui Ge
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Hepi H Susapto
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yang Liu
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Faris Samkari
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Manola Moretti
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Xinzhi Liu
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Robert Hoehndorf
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computer, Electrical and Mathematical Sciences & Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Ranim H Rawas
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Charlotte A E Hauser
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
14
|
Yang F, Das D, Karunakaran K, Genin GM, Thomopoulos S, Chasiotis I. Nonlinear time-dependent mechanical behavior of mammalian collagen fibrils. Acta Biomater 2023; 163:63-77. [PMID: 35259515 PMCID: PMC9441475 DOI: 10.1016/j.actbio.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/16/2022] [Accepted: 03/02/2022] [Indexed: 11/01/2022]
Abstract
The viscoelastic mechanical behavior of collagenous tissues has been studied extensively at the macroscale, yet a thorough quantitative understanding of the time-dependent mechanics of the basic building blocks of tissues, the collagen fibrils, is still missing. In order to address this knowledge gap, stress relaxation and creep tests at various stress (5-35 MPa) and strain (5-20%) levels were performed with individual collagen fibrils (average diameter of fully hydrated fibrils: 253 ± 21 nm) in phosphate buffered saline (PBS). The experimental results showed that the time-dependent mechanical behavior of fully hydrated individual collagen fibrils reconstituted from Type I calf skin collagen, is described by strain-dependent stress relaxation and stress-dependent creep functions in both the heel-toe and the linear regimes of deformation in monotonic stress-strain curves. The adaptive quasilinear viscoelastic (QLV) model, originally developed to capture the nonlinear viscoelastic response of collagenous tissues, provided a very good description of the nonlinear stress relaxation and creep behavior of the collagen fibrils. On the other hand, the nonlinear superposition (NSP) model fitted well the creep but not the stress relaxation data. The time constants and rates extracted from the adaptive QLV and the NSP models, respectively, pointed to a faster rate for stress relaxation than creep. This nonlinear viscoelastic behavior of individual collagen fibrils agrees with prior studies of macroscale collagenous tissues, thus demonstrating consistent time-dependent behavior across length scales and tissue hierarchies. STATEMENT OF SIGNIFICANCE: Pure stress relaxation and creep experiments were conducted for the first time with fully hydrated individual collagen fibrils. It is shown that collagen nanofibrils have a nonlinear time-dependent behavior which agrees with prior studies on macroscale collagenous tissues, thus demonstrating consistent time-dependent behavior across length scales and tissue hierarchies. This new insight into the non-linear viscoelastic behavior of the building blocks of mammalian collagenous tissues may serve as the foundation for improved macroscale tissue models that capture the mechanical behavior across length scales.
Collapse
Affiliation(s)
- Fan Yang
- Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Debashish Das
- Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kathiresan Karunakaran
- Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Guy M Genin
- Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130, USA
| | - Stavros Thomopoulos
- Orthopedic Surgery, Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Ioannis Chasiotis
- Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
15
|
Unraveling the molecular mechanism of collagen flexibility during physiological warmup using molecular dynamics simulation and machine learning. Comput Struct Biotechnol J 2023; 21:1630-1638. [PMID: 36860343 PMCID: PMC9969283 DOI: 10.1016/j.csbj.2023.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Physiological warmup plays an important role in reducing the injury risk in different sports. In response to the associated temperature increase, the muscle and tendon soften and become easily stretched. In this study, we focused on type I collagen, the main component of the Achilles tendon, to unveil the molecular mechanism of collagen flexibility upon slight heating and to develop a model to predict the strain of collagen sequences. We used molecular dynamics approaches to simulate the molecular structures and mechanical behavior of the gap and overlap regions in type I collagen at 307 K, 310 K, and 313 K. The results showed that the molecular model in the overlap region is more sensitive to temperature increases. Upon increasing the temperature by 3 degrees Celsius, the end-to-end distance and Young's modulus of the overlap region decreased by 5% and 29.4%, respectively. The overlap region became more flexible than the gap region at higher temperatures. GAP-GPA and GNK-GSK triplets are critical for providing molecular flexibility upon heating. A machine learning model developed from the molecular dynamics simulation results showed good performance in predicting the strain of collagen sequences at a physiological warmup temperature. The strain-predictive model could be applied to future collagen designs to obtain desirable temperature-dependent mechanical properties.
Collapse
|
16
|
Ryou H, Tay FR, Ossa A, Arola D. Preparation of collagen fibrils from mineralized tissues and evaluation by atomic force microscopy. J Mech Behav Biomed Mater 2023; 138:105624. [PMID: 36543081 PMCID: PMC9845140 DOI: 10.1016/j.jmbbm.2022.105624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Mineralized tissues like bone and dentin are materials that support the distribution of mechanical loads through the body of humans and other animals. While their organic content plays a critical role on the structural behavior of these materials, investigations that quantify the structural properties of collagen fibrils in mineralized tissues at the nanoscale are rather limited. We report a new experimental methodology to prepare samples of dentinal collagen fibrils for evaluation by atomic force microscopy and characterize their mechanical behavior. Specifically, a Dynamic Mechanical Analysis (DMA) of the collagen fibrils was performed to study their viscoelastic behavior. The capacity for viscous dampening in the fibrils was characterized in terms of measures of the energy dissipation, phase angle and loss modulus in both the peak and trough regions of the fibrils. According to the phase angle and the loss modulus, the peak regions of the fibrils exhibit significantly greater stiffness and capacity for dampening than the trough regions. This new approach will help in exploring the role of collagen fibrils in the mechanical behavior of dentin and other mineralized tissues as well as help to understand the potential effects from changes in fibril confirmation with tissue treatments, aging or that result from chronic disease.
Collapse
Affiliation(s)
- Heonjune Ryou
- U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Franklin R Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Alex Ossa
- School of Applied Sciences and Engineering, Universidad Eafit, Medellin, Colombia
| | - Dwayne Arola
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA; Department of Restorative Dentistry, University of Washington, Seattle, WA, USA; Department of Oral Health Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
17
|
Mashkin MN, Mashkina VA, Kozlova SG. 1H NMR Study of the Effect of tert-Butyl Alcohol on Collagen I. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922050116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
18
|
Mull V, Kreplak L. Adhesion force microscopy is sensitive to the charge distribution at the surface of single collagen fibrils. NANOSCALE ADVANCES 2022; 4:4829-4837. [PMID: 36381506 PMCID: PMC9642350 DOI: 10.1039/d2na00514j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Collagen fibrils are a key component of the extracellular matrix of mammalian tissues where they serve as structural elements and as a ligand for receptor-mediated signaling. As collagen molecules assemble into fibrils, in vitro or in vivo, they acquire a modulation of their molecular and electron densities called the D-band, with a 67 nm spacing, that can be visualized by cryo-electron microscopy. The D-band is composed of a gap region missing one-fifth of the molecules in the cross-section compared to the overlap region. This leads to the gap region having a positive potential and the overlap region a negative potential with respect to an n-doped silicon probe as observed by Kelvin Probe Force Microscopy. In this study, we use the adhesion force between an n-doped silicon probe and a collagen substrate to demonstrate the sensitivity of adhesion force towards charge distribution on the surface of collagen fibrils. We also map the charge distribution at the surface of single in vivo and in vitro assembled collagen fibrils and characterize the three-dimensional location and strength of three sub D-band regions that have been observed previously by cryo-electron microscopy. Our approach provides an adhesion fingerprint unique to each fibril type we analyzed and points to local charge variations at the sub D-band level even along a single fibril. It opens the road for a detailed analysis of collagen fibrils surface modifications due to ligand binding or the accumulation of advanced glycation end products at sub D-band resolution on a fibril by fibril basis.
Collapse
Affiliation(s)
- Vinayak Mull
- Department of Physics and Atmospheric Science, Dalhousie University Halifax Nova Scotia Canada +1 902 494 8435
| | - Laurent Kreplak
- Department of Physics and Atmospheric Science, Dalhousie University Halifax Nova Scotia Canada +1 902 494 8435
| |
Collapse
|
19
|
Xiao H, Wang Y, Hao B, Cao Y, Cui Y, Huang X, Shi B. Collagen Fiber-Based Advanced Separation Materials: Recent Developments and Future Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107891. [PMID: 34894376 DOI: 10.1002/adma.202107891] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Separation plays a critical role in a broad range of industrial applications. Developing advanced separation materials is of great significance for the future development of separation technology. Collagen fibers (CFs), the typical structural proteins, exhibit unique structural hierarchy, amphiphilic wettability, and versatile chemical reactivity. These distinctive properties provide infinite possibilities for the rational design of advanced separation materials. During the past 2 decades, many progressive achievements in the development of CFs-derived advanced separation materials have been witnessed already. Herein, the CFs-based separation materials are focused on and the recent progresses in this topic are reviewed. CFs widely existing in animal skins display unique hierarchically fibrous structure, amphiphilicity-enabled surface wetting behaviors, multi-functionality guaranteed covalent/non-covalent reaction versatility. These outstanding merits of CFs bring great opportunities for realizing rational design of a variety of advanced separation materials that were capable of achieving high-performance separations to diverse specific targets, including oily pollutants, natural products, metal ions, anionic contaminants and proteins, etc. Besides, the important issues for the further development of CFs-based advanced separation materials are also discussed.
Collapse
Affiliation(s)
- Hanzhong Xiao
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yujia Wang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Baicun Hao
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yiran Cao
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yiwen Cui
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xin Huang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Bi Shi
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
20
|
Zhang Y, Zhang W, Snow T, Ju Y, Liu Y, Smith AJ, Prabakar S. Minimising Chemical Crosslinking for Stabilising Collagen in Acellular Bovine Pericardium: Mechanistic Insights via Structural Characterisations. Acta Biomater 2022; 152:113-123. [DOI: 10.1016/j.actbio.2022.08.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/10/2022] [Accepted: 08/24/2022] [Indexed: 11/01/2022]
|
21
|
Darvish DM. Collagen fibril formation in vitro: From origin to opportunities. Mater Today Bio 2022; 15:100322. [PMID: 35757034 PMCID: PMC9218154 DOI: 10.1016/j.mtbio.2022.100322] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 12/13/2022] Open
Abstract
Sometimes, to move forward, it is necessary to look back. Collagen type I is one of the most commonly used biomaterials in tissue engineering and regenerative medicine. There are a variety of collagen scaffolds and biomedical products based on collagen have been made, and the development of new ones is still ongoing. Materials, where collagen is in the fibrillar form, have some advantages: they have superior mechanical properties, higher degradation time and, what is most important, mimic the structure of the native extracellular matrix. There are some standard protocols for the formation of collagen fibrils in vitro, but if we look more carefully at those methods, we can see some controversies. For example, why is the formation of collagen gel commonly carried out at 37 °C, when it was well investigated that the temperature higher than 35 °C results in a formation of not well-ordered fibrils? Biomimetic collagen materials can be obtained both using culture medium or neutralizing solution, but it requires a deep understanding of all of the crucial points. One of this point is collagen extraction method, since not every method retains the ability of collagen to reconstitute native banded fibrils. Collagen polymorphism is also often overlooked in spite of the appearance of different polymorphic forms during fibril formation is possible, especially when collagen blends are utilized. In this review, we will not only pay attention to these issues, but we will overview the most prominent works related to the formation of collagen fibrils in vitro starting from the first approaches and moving to the up-to-date recipes.
Collapse
Affiliation(s)
- Diana M Darvish
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Prospekt, 4, Saint-Petersburg, 194064, Russia
| |
Collapse
|
22
|
Li JZ, Wang X, He LT, Yan FX, Zhang N, Ren CX, Hu QD. Strength-fracture toughness synergy strategy in ostrich tibia's compact bone: Hierarchical and gradient. J Mech Behav Biomed Mater 2022; 131:105262. [PMID: 35561599 DOI: 10.1016/j.jmbbm.2022.105262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/25/2022] [Accepted: 05/01/2022] [Indexed: 10/18/2022]
Abstract
Ostriches are the fastest bipeds in the world, but their tibias are very thin. How the thin tibia can withstand the huge momentum impacts of the heavy body during running? The present work revealed that the combination of hierarchical and gradient design strategies was the main reason for their high strength and fracture toughness. The microstructure of ostrich's tibias compact bone was self-assembled into the 6-level hierarchical structure from the hydroxyapatite (HAP) crystals, collagen fiber (sub-nano), mineralized collagen fiber (nano-), mineralized collagen fiber bundle (sub-micro), lamellae (micro-) and osteon (macro-scales). The most distinctive design in the ostrich compact bone was that the HAP crystals were embedded in collagen fibers as well as wrapped in the outer layer of mineral collagen fibers (MCFs) in the form of HAP nanocrystals, thus achieving a high degree of soft and hard combination from the nanoscale. The bending strength was gradient-structure dependent and up to 787.2 ± 40.5 MPa, 4 times that of a human's compact bone. The fracture toughness (KJc) is 5.8 ± 0.1 MPa m1/2. Several toughening mechanisms, such as crack deflection/twist, bridging, HAP fibers pulling-out, and fracture of the MCF bundles were found in the compact bone.
Collapse
Affiliation(s)
- J Z Li
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, China
| | - X Wang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, China; Center for Advanced Structural Materials, Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China.
| | - L T He
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, China
| | - F X Yan
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, China
| | - N Zhang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, China
| | - C X Ren
- Center for Advanced Structural Materials, Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Q D Hu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
23
|
Leather Dyeing by Plant-Derived Colorants in the Presence of Natural Additives. MATERIALS 2022; 15:ma15093326. [PMID: 35591660 PMCID: PMC9102541 DOI: 10.3390/ma15093326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 11/30/2022]
Abstract
This research aimed to dye leather fabric samples with the application of plant-derived colorants and natural additives. Two grades of chitosan were used as additives, in addition to caffeine, nettle extract, and shellac solution. The ability of colorants to dye leather fabric and the impact of additives on leather fabric properties such as structure, color intensity, color stability under exposure to UVC irradiation, and mechanical properties were examined. For this purpose, dyed samples were tested by a colorimeter, ATR-FTIR spectrophotometer, mechanical testing machine, and X-ray diffractometer. The results indicated that the applied colorants of plant origin have the potential to dye leather fabrics without affecting their structure and without a negative impact on the environment. Applied natural additives can, therefore, beneficially influence the effects of the dyeing process, such as color intensity, colorfastness after exposure to UV irradiation, or tensile strength of the material.
Collapse
|
24
|
Bhattacharya S, Dubey DK. Impact of Variations in Water Concentration on the Nanomechanical Behavior of Type I Collagen Microfibrils in Annulus Fibrosus. J Biomech Eng 2022; 144:1120715. [PMID: 34820681 DOI: 10.1115/1.4052563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Indexed: 11/08/2022]
Abstract
Radial variation in water concentration from outer to inner lamellae is one of the characteristic features of annulus fibrosus (AF). In addition, water concentration changes are also associated with intervertebral disc (IVD) degeneration. Such changes alter the chemo-mechanical interactions among the biomolecular constituents at molecular level, affecting the load-bearing nature of IVD. This study investigates mechanistic impacts of water concentration on the collagen type I microfibrils in AF using molecular dynamics simulations. Results show, in axial tension, that increase in water concentration (WC) from 0% to 50% increases the elastic modulus from 2.7 GPa to 3.9 GPa. This is attributed to combination of shift in deformation from backbone straightening to combined backbone stretching- intermolecular sliding and subsequent strengthening of tropocollagen-water (TC-water-TC) interfaces through water bridges and intermolecular electrostatic attractions. Further increase in WC to 75% reduces the modulus to 1.8 GPa due to shift in deformation to polypeptide straightening and weakening of TC-water-TC interface due to reduced electrostatic attraction and increase in the number of water molecules in a water bridge. During axial compression, increase in WC to 50% results in increase in modulus from 0.8 GPa to 4.5 GPa. This is attributed to the combination of the development of hydrostatic pressure and strengthening of the TC-water-TC interface. Further increase in WC to 75% shifts load-bearing characteristic from collagen to water, resulting in a decrease in elastic modulus to 2.8 GPa. Such water-mediated alteration in load-bearing properties acts as foundations toward AF mechanics and provides insights toward understanding degeneration-mediated altered spinal stiffness.
Collapse
Affiliation(s)
- Shambo Bhattacharya
- Department of Mechanical Engineering, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Devendra K Dubey
- Department of Mechanical Engineering, Indian Institute of Technology, Delhi, New Delhi 110016, India
| |
Collapse
|
25
|
Xia J, Liu ZY, Han ZY, Yuan Y, Shao Y, Feng XQ, Weitz DA. Regulation of cell attachment, spreading, and migration by hydrogel substrates with independently tunable mesh size. Acta Biomater 2022; 141:178-189. [PMID: 35041902 PMCID: PMC8898306 DOI: 10.1016/j.actbio.2022.01.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/25/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022]
Abstract
Hydrogels are widely used as substrates to investigate interactions between cells and their microenvironment as they mimic many attributes of the extracellular matrix. The stiffness of hydrogels is an important property that is known to regulate cell behavior. Beside stiffness, cells also respond to structural cues such as mesh size. However, since the mesh size of hydrogel is intrinsically coupled to its stiffness, its role in regulating cell behavior has never been independently investigated. Here, we report a hydrogel system whose mesh size and stiffness can be independently controlled. Cell behavior, including spreading, migration, and formation of focal adhesions is significantly altered on hydrogels with different mesh sizes but with the same stiffness. At the transcriptional level, hydrogel mesh size affects cellular mechanotransduction by regulating nuclear translocation of yes-associated protein. These findings demonstrate that the mesh size of a hydrogel plays an important role in cell-substrate interactions. STATEMENT OF SIGNIFICANCE: Hydrogels are ideal platforms with which to investigate interactions between cells and their microenvironment as they mimic many physical properties of the extracellular matrix. However, the mesh size of hydrogels is intrinsically coupled to their stiffness, making it challenging to investigate the contribution of mesh size to cell behavior. In this work, we use hydrogel-on-glass substrates with defined thicknesses whose stiffness and mesh size can be independently tuned. We use these substrates to isolate the effects of mesh size on cell behavior, including attachment, spreading, migration, focal adhesion formation and YAP localization in the nucleus. Our results show that mesh size has significant, yet often overlooked, effects, on cell behavior, and contribute to a further understanding of cell-substrate interactions.
Collapse
Affiliation(s)
- Jing Xia
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Zong-Yuan Liu
- Department of Engineering Mechanics, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing 100084, China
| | - Zheng-Yuan Han
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Yuan Yuan
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Yue Shao
- Department of Engineering Mechanics, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing 100084, China
| | - Xi-Qiao Feng
- Department of Engineering Mechanics, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing 100084, China.
| | - David A Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Physics, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
26
|
Bełdowski P, Przybyłek M, Sionkowska A, Cysewski P, Gadomska M, Musiał K, Gadomski A. Effect of Chitosan Deacetylation on Its Affinity to Type III Collagen: A Molecular Dynamics Study. MATERIALS (BASEL, SWITZERLAND) 2022; 15:463. [PMID: 35057179 PMCID: PMC8781747 DOI: 10.3390/ma15020463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 02/04/2023]
Abstract
The ability to form strong intermolecular interactions by linear glucosamine polysaccharides with collagen is strictly related to their nonlinear dynamic behavior and hence bio-lubricating features. Type III collagen plays a crucial role in tissue regeneration, and its presence in the articular cartilage affects its bio-technical features. In this study, the molecular dynamics methodology was applied to evaluate the effect of deacetylation degree on the chitosan affinity to type III collagen. The computational procedure employed docking and geometry optimizations of different chitosan structures characterized by randomly distributed deacetylated groups. The eight different degrees of deacetylation from 12.5% to 100% were taken into account. We found an increasing linear trend (R2 = 0.97) between deacetylation degree and the collagen-chitosan interaction energy. This can be explained by replacing weak hydrophobic contacts with more stable hydrogen bonds involving amino groups in N-deacetylated chitosan moieties. In this study, the properties of chitosan were compared with hyaluronic acid, which is a natural component of synovial fluid and cartilage. As we found, when the degree of deacetylation of chitosan was greater than 0.4, it exhibited a higher affinity for collagen than in the case of hyaluronic acid.
Collapse
Affiliation(s)
- Piotr Bełdowski
- Institute of Mathematics & Physics, Bydgoszcz University of Science & Technology, 85-796 Bydgoszcz, Poland;
| | - Maciej Przybyłek
- Department of Physical Chemistry, Pharmacy Faculty, Collegium Medicum of Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-950 Bydgoszcz, Poland; (M.P.); (P.C.)
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7, 87-100 Toruń, Poland; (A.S.); (M.G.); (K.M.)
| | - Piotr Cysewski
- Department of Physical Chemistry, Pharmacy Faculty, Collegium Medicum of Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-950 Bydgoszcz, Poland; (M.P.); (P.C.)
| | - Magdalena Gadomska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7, 87-100 Toruń, Poland; (A.S.); (M.G.); (K.M.)
| | - Katarzyna Musiał
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7, 87-100 Toruń, Poland; (A.S.); (M.G.); (K.M.)
| | - Adam Gadomski
- Institute of Mathematics & Physics, Bydgoszcz University of Science & Technology, 85-796 Bydgoszcz, Poland;
| |
Collapse
|
27
|
Slyker L, Diamantides N, Kim J, Bonassar LJ. Mechanical performance of collagen gels is dependent on purity, α1/α2 ratio, and telopeptides. J Biomed Mater Res A 2022; 110:11-20. [PMID: 34236763 PMCID: PMC9271356 DOI: 10.1002/jbm.a.37261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/27/2021] [Accepted: 06/25/2021] [Indexed: 01/03/2023]
Abstract
This article describes the compositional, mechanical, and structural differences between collagen gels fabricated from different sources and processing methods. Despite extensive use of collagen in the manufacturing of biomaterials and implants, there is little information as to the variation in properties based on collagen source or processing methods. As such, differences in purity and composition may affect gel structure and mechanical performance. Using mass spectrometry, we assessed protein composition of collagen from seven different sources. The mechanics and gelation kinetics of each gel were assessed through oscillatory shear rheology. Scanning electron microscopy enabled visualization of distinct differences in fiber morphology. Mechanics and gelation kinetics differed with source and processing method and were found to correlate with differences in composition. Gels fabricated from telopeptide-containing collagens had higher storage modulus (144 vs. 54 Pa) and faster gelation (251 vs. 734 s) compared to atelocollagens, despite having lower purity (93.4 vs. 99.8%). For telopeptide-containing collagens, as collagen purity increased, storage modulus increased and fiber diameter decreased. As α1/α2 chain ratio increased, fiber diameter increased and gelation slowed. As such, this study provides an examination of the effects of collagen processing on key quality attributes for use of collagen gels in biomedical contexts.
Collapse
Affiliation(s)
- Leigh Slyker
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
| | | | - Jongkil Kim
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
| | - Lawrence J. Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY
| |
Collapse
|
28
|
ColGen: An end-to-end deep learning model to predict thermal stability of de novo collagen sequences. J Mech Behav Biomed Mater 2021; 125:104921. [PMID: 34758444 DOI: 10.1016/j.jmbbm.2021.104921] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/21/2021] [Indexed: 11/22/2022]
Abstract
Collagen is the most abundant structural protein in humans, with dozens of sequence variants accounting for over 30% of the protein in an animal body. The fibrillar and hierarchical arrangements of collagen are critical in providing mechanical properties with high strength and toughness. Due to this ubiquitous role in human tissues, collagen-based biomaterials are commonly used for tissue repairs and regeneration, requiring chemical and thermal stability over a range of temperatures during materials preparation ex vivo and subsequent utility in vivo. Collagen unfolds from a triple helix to a random coil structure during a temperature interval in which the midpoint or Tm is used as a measure to evaluate the thermal stability of the molecules. However, finding a robust framework to facilitate the design of a specific collagen sequence to yield a specific Tm remains a challenge, including using conventional molecular dynamics modeling. Here we propose a de novo framework to provide a model that outputs the Tm values of input collagen sequences by incorporating deep learning trained on a large data set of collagen sequences and corresponding Tm values. By using this framework, we are able to quickly evaluate how mutations and order in the primary sequence affect the stability of collagen triple helices. Specifically, we confirm that mutations to glycines, mutations in the middle of a sequence, and short sequence lengths cause the greatest drop in Tm values.
Collapse
|
29
|
|
30
|
De Caro L, Terzi A, Fusaro L, Altamura D, Boccafoschi F, Bunk O, Giannini C. Time scale of glycation in collagen of bovine pericardium-derived bio-tissues. IUCRJ 2021; 8:1024-1034. [PMID: 34804554 PMCID: PMC8562672 DOI: 10.1107/s2052252521010344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Glycosyl-ation is the process of combining one or more glucose molecules (or other monosaccharides) with molecules of a different nature (which are therefore glycosyl-ated). In biochemistry, glycosyl-ation is catalyzed by several specific enzymes, and assumes considerable importance since it occurs mainly at the expense of proteins and phospho-lipids which are thus transformed into glycoproteins and glycolipids. Conversely, in diabetes and aging, glycation of proteins is a phenomenon of non-enzymatic nature and thus not easily controlled. Glycation of collagen distorts its structure, renders the extracellular matrix stiff and brittle and at the same time lowers the degradation susceptibility thereby preventing renewal. Based on models detailed in this paper and with parameters determined from experimental data, we describe the glycation of type 1 collagen in bovine pericardium derived bio-tissues, upon incubation in glucose and ribose. With arginine and lysine/hy-droxy-lysine amino acids as the primary sites of glycation and assuming that the topological polar surface area of the sugar molecules determines the glycation rates, we modelled the glycation as a function of time and determined the glycation rate and thus the progression of glycation as well as the resulting volume increase.
Collapse
Affiliation(s)
- Liberato De Caro
- Institute of Crystallography, National Research Council, via Amendola 122/O, Bari 70126, Italy
| | - Alberta Terzi
- Institute of Crystallography, National Research Council, via Amendola 122/O, Bari 70126, Italy
| | - Luca Fusaro
- Department of Health Sciences, University of Piemonte Orientale, Novara Italy
- Tissuegraft srl., Novara Italy
| | - Davide Altamura
- Institute of Crystallography, National Research Council, via Amendola 122/O, Bari 70126, Italy
| | - Francesca Boccafoschi
- Institute of Crystallography, National Research Council, via Amendola 122/O, Bari 70126, Italy
- Department of Health Sciences, University of Piemonte Orientale, Novara Italy
| | - Oliver Bunk
- Paul Scherrer Institut, 5232 Villigen, PSI Switzerland
| | - Cinzia Giannini
- Institute of Crystallography, National Research Council, via Amendola 122/O, Bari 70126, Italy
| |
Collapse
|
31
|
Leighton MP, Rutenberg AD, Kreplak L. D-band strain underestimates fibril strain for twisted collagen fibrils at low strains. J Mech Behav Biomed Mater 2021; 124:104854. [PMID: 34601435 DOI: 10.1016/j.jmbbm.2021.104854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/01/2021] [Accepted: 09/19/2021] [Indexed: 11/29/2022]
Abstract
Collagen fibrils are the main structural component of load-bearing tissues such as tendons, ligaments, skin, the cornea of the eye, and the heart. The D-band of collagen fibrils is an axial periodic density modulation that can be easily characterized by tissue-level X-ray scattering. During mechanical testing, D-band strain is often used as a proxy for fibril strain. However, this approach ignores the coupling between strain and molecular tilt. We examine the validity of this approximation using an elastomeric collagen fibril model that includes both the D-band and a molecular tilt field. In the low strain regime, we show that the D-band strain substantially underestimates fibril strain for strongly twisted collagen fibrils - such as fibrils from skin or corneal tissue.
Collapse
Affiliation(s)
- Matthew P Leighton
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, B3H 4R2, Nova Scotia, Canada; Department of Physics, Simon Fraser University, Burnaby, V5A 1S6, British Columbia, Canada
| | - Andrew D Rutenberg
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, B3H 4R2, Nova Scotia, Canada.
| | - Laurent Kreplak
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, B3H 4R2, Nova Scotia, Canada
| |
Collapse
|
32
|
Varma S, Orgel JPRO, Schieber JD. Contrasting Local and Macroscopic Effects of Collagen Hydroxylation. Int J Mol Sci 2021; 22:ijms22169068. [PMID: 34445791 PMCID: PMC8396666 DOI: 10.3390/ijms22169068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
Collagen is heavily hydroxylated. Experiments show that proline hydroxylation is important to triple helix (monomer) stability, fibril assembly, and interaction of fibrils with other molecules. Nevertheless, experiments also show that even without hydroxylation, type I collagen does assemble into its native D-banded fibrillar structure. This raises two questions. Firstly, even though hydroxylation removal marginally affects macroscopic structure, how does such an extensive chemical change, which is expected to substantially reduce hydrogen bonding capacity, affect local structure? Secondly, how does such a chemical perturbation, which is expected to substantially decrease electrostatic attraction between monomers, affect collagen's mechanical properties? To address these issues, we conduct a benchmarked molecular dynamics study of rat type I fibrils in the presence and absence of hydroxylation. Our simulations reproduce the experimental observation that hydroxylation removal has a minimal effect on collagen's D-band length. We also find that the gap-overlap ratio, monomer width and monomer length are minimally affected. Surprisingly, we find that de-hydroxylation also has a minor effect on the fibril's Young's modulus, and elastic stress build up is also accompanied by tightening of triple-helix windings. In terms of local structure, de-hydroxylation does result in a substantial drop (23%) in inter-monomer hydrogen bonding. However, at the same time, the local structures and inter-monomer hydrogen bonding networks of non-hydroxylated amino acids are also affected. It seems that it is this intrinsic plasticity in inter-monomer interactions that preclude fibrils from undergoing any large changes in macroscopic properties. Nevertheless, changes in local structure can be expected to directly impact collagen's interaction with extra-cellular matrix proteins. In general, this study highlights a key challenge in tissue engineering and medicine related to mapping collagen chemistry to macroscopic properties but suggests a path forward to address it using molecular dynamics simulations.
Collapse
Affiliation(s)
- Sameer Varma
- Department of Cell Biology, Microbiology and Molecular Biology, Department of Physics, University of South Florida, Tampa, FL 33620, USA
- Correspondence:
| | - Joseph P. R. O. Orgel
- Department of Biology, Department of Physics, Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA;
| | - Jay D. Schieber
- Department of Chemical and Biological Engineering, Department of Physics, Illinois Institute of Technology, Chicago, IL 60616, USA;
| |
Collapse
|
33
|
Leskovar T, Zupanič Pajnič I, Jerman I. Dealing with minor differences in bone matrix: can spectra follow the DNA preservation? AUST J FORENSIC SCI 2021. [DOI: 10.1080/00450618.2021.1948102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Tamara Leskovar
- Centre for Interdisciplinary Research in Archaeology, Department of Archaeology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| | - Irena Zupanič Pajnič
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Ivan Jerman
- Department for Materials Chemistry, National Institute of Chemistry, Ljubljana, Slovenia
| |
Collapse
|
34
|
Giannini C, De Caro L, Terzi A, Fusaro L, Altamura D, Diaz A, Lassandro R, Boccafoschi F, Bunk O. Decellularized pericardium tissues at increasing glucose, galactose and ribose concentrations and at different time points studied using scanning X-ray microscopy. IUCRJ 2021; 8:621-632. [PMID: 34258010 PMCID: PMC8256709 DOI: 10.1107/s2052252521005054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/12/2021] [Indexed: 05/13/2023]
Abstract
Diseases like widespread diabetes or rare galactosemia may lead to high sugar concentrations in the human body, thereby promoting the formation of glycoconjugates. Glycation of collagen, i.e. the formation of glucose bridges, is nonenzymatic and therefore cannot be prevented in any other way than keeping the sugar level low. It relates to secondary diseases, abundantly occurring in aging populations and diabetics. However, little is known about the effects of glycation of collagen on the molecular level. We studied in vitro the effect of glycation, with d-glucose and d-galactose as well as d-ribose, on the structure of type 1 collagen by preparing decellularized matrices of bovine pericardia soaked in different sugar solutions, at increasing concentrations (0, 2.5, 5, 10, 20 and 40 mg ml-1), and incubated at 37°C for 3, 14, 30 and 90 days. The tissue samples were analyzed with small- and wide-angle X-ray scattering in scanning mode. We found that glucose and galactose produce similar changes in collagen, i.e. they mainly affect the lateral packing between macromolecules. However, ribose is much faster in glycation, provoking a larger effect on the lateral packing, but also seems to cause qualitatively different effects on the collagen structure.
Collapse
Affiliation(s)
- Cinzia Giannini
- Institute of Crystallography, National Research Council, Bari, 70126, Italy
| | - Liberato De Caro
- Institute of Crystallography, National Research Council, Bari, 70126, Italy
| | - Alberta Terzi
- Institute of Crystallography, National Research Council, Bari, 70126, Italy
| | - Luca Fusaro
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
- Tissuegraft srl., Novara, Italy
| | - Davide Altamura
- Institute of Crystallography, National Research Council, Bari, 70126, Italy
| | - Ana Diaz
- Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Rocco Lassandro
- Institute of Crystallography, National Research Council, Bari, 70126, Italy
| | - Francesca Boccafoschi
- Institute of Crystallography, National Research Council, Bari, 70126, Italy
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Oliver Bunk
- Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| |
Collapse
|
35
|
Raffone C, Baeta M, Lambacher N, Granizo-Rodríguez E, Etxeberria F, de Pancorbo MM. Intrinsic and extrinsic factors that may influence DNA preservation in skeletal remains: A review. Forensic Sci Int 2021; 325:110859. [PMID: 34098475 DOI: 10.1016/j.forsciint.2021.110859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 05/11/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
The identification of skeletal human remains, severely compromised by putrefaction, or highly deteriorated, is important for legal and humanitarian reasons. There are different tools that can help in the identification process such as anthropological and genetic studies. The success observed during the last decade in genetic analysis of skeletal remains has been possible especially due to the refinements of DNA extraction and posterior analysis techniques. However, despite these progresses, many challenges keep influencing the results of such analysis, mainly the limited amount and the degradation of the DNA recovered from badly preserved samples. By now, there is still no wide-range knowledge about post-mortem kinetics of DNA degradation. Therefore, taphonomy studies can play a key role in the reconstruction of post-mortem transformations that skeletal remains, and consequently DNA, have undergone. Thus, the goal of the present review focuses on the assessment of the literature regarding the possible effect of intrinsic (characteristics of the bone) and extrinsic (environmental) factors on the state of preservation of skeletal remains recovered in a terrestrial environment and their genetic material. The establishment of useful indicators describing the state of the remains is a key factor in order to determine their suitability for posterior biomolecular analysis.
Collapse
Affiliation(s)
- Caterina Raffone
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Department of Physical Anthropology, Society of Sciences Aranzadi, Donostia-San Sebastian, Spain
| | - Miriam Baeta
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Nicole Lambacher
- Department of Physical Anthropology, Society of Sciences Aranzadi, Donostia-San Sebastian, Spain
| | - Eva Granizo-Rodríguez
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Francisco Etxeberria
- Department of Legal Medicine, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| | - Marian M de Pancorbo
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.
| |
Collapse
|
36
|
Chen G, Hao B, Wang Y, Wang Y, Xiao H, Li H, Huang X, Shi B. Insights into Regional Wetting Behaviors of Amphiphilic Collagen for Dual Separation of Emulsions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18209-18217. [PMID: 33845568 DOI: 10.1021/acsami.0c22601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Industrial manufacture generates a huge quantity of emulsion wastewater, which causes serious threats to the aquatic ecosystems. Water-in-oil (W/O) and oil-in-water (O/W) emulsions are two major types of emulsions discharged by industries. However, dual separation of W/O and O/W emulsions remains a challenging issue due to the contradictory permselectivity for separating the two emulsions. In the present investigation, the amphiphilicity-derived regional wetting mechanism of water and oil on the amphiphilic collagen fibers was revealed based on the combination of numerous experiments and molecular dynamics (MD) simulations. Electrostatic interactions and van der Waals force were manifested to be the driving forces of regional wetting in the hydrophilic and hydrophobic regions, respectively. The regional wetting endowed amphiphilic collagen fibers with underwater oleophobicity and underoil hydrophilicity, which enabled dual separation of emulsions by selectively retaining the dispersed water phase of W/O emulsions in the hydrophilic regions while the dispersed oil phase of O/W emulsions in the hydrophobic regions. The achieved separation efficiency was higher than 99.98%, and the flux reached 3337.6 L m-2 h-1. Initial wetting status significantly affects the regional wetting-enabled dual separation. Based on the MD simulations, amphiphilic intramolecular conformations of tropocollagen were suggested to be the origins of regional wetting on collagen fibers. Our findings may pave the way for developing high-performance dual separation materials that are promising to be utilized for the practical treatment of emulsion wastewater.
Collapse
Affiliation(s)
- Guangyan Chen
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, P. R. China
| | - Baicun Hao
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, P. R. China
| | - Yujia Wang
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, P. R. China
| | - Yanan Wang
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, P. R. China
| | - Hanzhong Xiao
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, P. R. China
| | - Huifang Li
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, P. R. China
| | - Xin Huang
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, P. R. China
| | - Bi Shi
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
37
|
Nanofibrous Gelatin-Based Biomaterial with Improved Biomimicry Using D-Periodic Self-Assembled Atelocollagen. Biomimetics (Basel) 2021; 6:biomimetics6010020. [PMID: 33803778 PMCID: PMC8006151 DOI: 10.3390/biomimetics6010020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 01/14/2023] Open
Abstract
Design of bioinspired materials that mimic the extracellular matrix (ECM) at the nanoscale is a challenge in tissue engineering. While nanofibrillar gelatin materials mimic chemical composition and nano-architecture of natural ECM collagen components, it lacks the characteristic D-staggered array (D-periodicity) of 67 nm, which is an important cue in terms of cell recognition and adhesion properties. In this study, a nanofibrous gelatin matrix with improved biomimicry is achieved using a formulation including a minimal content of D-periodic self-assembled atelocollagen. We suggest a processing route approach consisting of the thermally induced phase separation of the gelatin based biopolymeric mixture precursor followed by chemical-free material cross-linking. The matrix nanostructure is characterized using field emission gun scanning electron microscopy (FEG-SEM), transmission electron microscopy (TEM), wide angle X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). The cell culture assays indicate that incorporation of 2.6 wt.% content of D-periodic atelocollagen to the gelatin material, produces a significant increase of MC3T3-E1 mouse preosteoblast cells attachment and human mesenchymal stem cells (hMSCs) proliferation, in comparison with related bare gelatin matrices. The presented results demonstrate the achievement of an efficient route to produce a cost-effective, compositionally defined and low immunogenic “collagen-like” instructive biomaterial, based on gelatin.
Collapse
|
38
|
Borrego-González S, Rico-Llanos G, Becerra J, Díaz-Cuenca A, Visser R. Sponge-like processed D-periodic self-assembled atelocollagen supports bone formation in vivo. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111679. [DOI: 10.1016/j.msec.2020.111679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022]
|
39
|
Nakamura T, Takata M, Michimoto I, Koyama D, Matsukawa M. Site dependence of ultrasonically induced electrical potentials in bone. JASA EXPRESS LETTERS 2021; 1:012002. [PMID: 36154087 DOI: 10.1121/10.0003195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The success rate of low-intensity pulsed ultrasound (LIPUS) therapy depends on the bone site. However, the initial mechanism of physical stimulation by ultrasound and bone cellular response remains unclear. One possible physical stimulation is the induced electrical potentials due to the piezoelectricity. In this study, the output electrical potentials of ultrasound transducers made from bovine bones were investigated. Transducers made from the radius bone showed the largest electric potentials, followed by tibia, femur, and humerus. There was clear site dependence of the induced electric potentials of bone, in good accordance with the success rate of LIPUS therapy.
Collapse
Affiliation(s)
- Tsukasa Nakamura
- Laboratory of Ultrasonic Electronics, Applied Ultrasonic Research Center, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan , , , ,
| | - Mineaki Takata
- Laboratory of Ultrasonic Electronics, Applied Ultrasonic Research Center, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan , , , ,
| | - Itsuki Michimoto
- Laboratory of Ultrasonic Electronics, Applied Ultrasonic Research Center, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan , , , ,
| | - Daisuke Koyama
- Laboratory of Ultrasonic Electronics, Applied Ultrasonic Research Center, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan , , , ,
| | - Mami Matsukawa
- Laboratory of Ultrasonic Electronics, Applied Ultrasonic Research Center, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan , , , ,
| |
Collapse
|
40
|
Romero-Castillo I, López-Ruiz E, Fernández-Sánchez JF, Marchal JA, Gómez-Morales J. Self-Assembled Type I Collagen-Apatite Fibers with Varying Mineralization Extent and Luminescent Terbium Promote Osteogenic Differentiation of Mesenchymal Stem Cells. Macromol Biosci 2020; 21:e2000319. [PMID: 33369064 DOI: 10.1002/mabi.202000319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/27/2020] [Indexed: 11/10/2022]
Abstract
This work explores in depth the simultaneous self-assembly and mineralization of type I collagen by a base-acid neutralization technique to prepare biomimetic collagen-apatite fibrils with varying mineralization extent and doped with luminescent bactericidal Tb3+ ions. Two variants of the method are tested: base-acid titration, a solution of Ca(OH)2 is added dropwise to a stirred solution containing type I collagen dispersed in H3 PO4 ; and direct mixing, the Ca(OH)2 solution is added by fast dripping onto the acidic solution. Only the direct mixing variant yielded an effective control of calcium phosphate polymorphism. Luminescence spectroscopy reveals the long luminescence lifetime and high relative luminescence intensity of the Tb3+ -doped materials, while two-photon confocal fluorescence microscopy shows the characteristic green fluorescence light when using excitation wavelength of 458 nm, which is not harmful to bone tissue. Cytotoxicity/viability tests reveal that direct mixing samples show higher cell proliferation than titration samples. Additionally, osteogenic differentiation essays show that all mineralized fibrils promote the osteogenic differentiation, but the effect is more pronounced when using samples prepared by direct mixing, and more notably when using the Tb3+ -doped mineralized fibrils. Based on these findings it is concluded that the new nanocomposite is an ideal candidate for bone regenerative therapy.
Collapse
Affiliation(s)
- Ismael Romero-Castillo
- Laboratorio de Estudios Cristalográficos, IACT-CSIC-UGR, Avda. Las Palmeras, no. 4, Armilla, Granada, E-18100, Spain
| | - Elena López-Ruiz
- Instituto de Investigación Biosanitaria ibs. Granada, University of Granada, Granada, E-18014, Spain.,Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, E-18100, Spain.,Excellence Research Unit "Modelling Nature" (MNat), University of Granada, Granada, E-18071, Spain.,Department of Health Science, Faculty of Experimental Science, University of Jaén, Jaén, E-23071, Spain
| | | | - Juan Antonio Marchal
- Instituto de Investigación Biosanitaria ibs. Granada, University of Granada, Granada, E-18014, Spain.,Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, E-18100, Spain.,Excellence Research Unit "Modelling Nature" (MNat), University of Granada, Granada, E-18071, Spain
| | - Jaime Gómez-Morales
- Laboratorio de Estudios Cristalográficos, IACT-CSIC-UGR, Avda. Las Palmeras, no. 4, Armilla, Granada, E-18100, Spain
| |
Collapse
|
41
|
Kwon J, Cho H. Piezoelectric Heterogeneity in Collagen Type I Fibrils Quantitatively Characterized by Piezoresponse Force Microscopy. ACS Biomater Sci Eng 2020; 6:6680-6689. [PMID: 33320620 DOI: 10.1021/acsbiomaterials.0c01314] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Piezoelectricity of Type I collagen can provide the stress-generated potential that is considered to be one of the candidate mechanisms to explain bone's adaptation to loading. However, it is still challenging to quantify piezoelectricity because of its heterogeneity and small magnitude. In this study, resonance-enhanced piezoresponse force microscopy (PFM) was utilized to amplify a weak piezoresponse of a single collagen fibril with a carefully calibrated cantilever. The quantitative PFM, combined with a dual-frequency resonance-tracking method, successfully identified the anisotropic and heterogenous nature of the piezoelectric properties in the collagen fibril. The profile of shear piezoelectric coefficient (d15) was obtained to be periodic along the collagen fibril, with a larger value in the gap zone (0.51 pm/V) compared to the value in the overlap zone (0.29 pm/V). Interestingly, this piezoelectric profile corresponds to the periodic profile of mechanical stiffness in a mineralized collagen fibril having a higher stiffness in the gap zone. Considering that apatite crystals are nucleated at the gap zone and subsequently grown along the collagen fibril, the heterogeneous and anisotropic nature of piezoelectric properties highlights the physiological importance of the collagen piezoelectricity in bone mineralization.
Collapse
Affiliation(s)
- Jinha Kwon
- Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19th Avenue, Columbus, Ohio 43210, United States
| | - Hanna Cho
- Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
42
|
Type II Collagen from Cartilage of Acipenser baerii Promotes Wound Healing in Human Dermal Fibroblasts and in Mouse Skin. Mar Drugs 2020; 18:md18100511. [PMID: 33050593 PMCID: PMC7601416 DOI: 10.3390/md18100511] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/23/2020] [Accepted: 10/07/2020] [Indexed: 12/21/2022] Open
Abstract
Type II collagen is an important component of cartilage; however, little is known about its effect on skin wound healing. In this study, type II collagen was extracted from the cartilage of Acipenser baerii and its effect on in vitro and in vivo wound healing was compared to type I collagen derived from tilapia skin. Sturgeon cartilage collagen (SCC) was composed of α1 chains and with a thermal denaturation (Td) at 22.5 and melting temperature (Tm) at 72.5 °C. Coating SCC potentiated proliferation, migration, and invasion of human dermal fibroblast adult (HDFa) cells. Furthermore, SCC upregulated the gene expression of extracellular matrix (ECM) components (col Iα1, col IIIα1, elastin, and Has2) and epithelial-mesenchymal transition (EMT) molecules (N-cadherin, Snail, and MMP-1) in HDFa. Pretreatment with Akt and mitogen-activated protein kinase (MAPK) inhibitors significantly attenuated the HDFa invasion caused by SCC. In mice, the application of SCC on dorsal wounds effectively facilitated wound healing as evidenced by 40–59% wound contraction, whereas the untreated wounds were 18%. We observed that SCC reduced inflammation, promoted granulation, tissue formation, and ECM deposition, as well as re-epithelialization in skin wounds. In addition, SCC markedly upregulated the production of growth factors in the dermis, and dermal and subcutaneous white adipose tissue; in contrast, the administration of tilapia skin collagen (TSC) characterized by typical type I collagen was mainly expressed in the epidermis. Collectively, these findings indicate SCC accelerated wound healing by targeting fibroblast in vitro and in vivo.
Collapse
|
43
|
The Influence of UV Light on Rheological Properties of Collagen Extracted from Silver Carp Skin. MATERIALS 2020; 13:ma13194453. [PMID: 33049939 PMCID: PMC7579024 DOI: 10.3390/ma13194453] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 11/16/2022]
Abstract
Acid soluble collagen (ASC) was extracted from Silver Carp fish skin. Collagen was dissolved in acetic acid at varying concentrations and its rheological properties were studied. Steady shear flow properties of collagen solutions at concentrations of 5 and 10 mg/mL were characterized using rheometry at 20 °C. Collagen solutions were irradiated with UV light (wavelength 254 nm) for up to 2 h and rheological properties were measured. All the collagen solutions showed a shear-thinning flow behavior. A constant viscosity region was observed after 1 h of UV irradiation, which showed that collagen molecules were fully denatured. A short treatment with collagen solution by UV (ultraviolet) light led to an increase in viscosity; however, the denaturation temperature of UV-irradiated collagen decreased. Depending on the time of UV treatment, collagen extracted from Silver Carp fish skin may undergo physical crosslinking or photodegradation. Physically crosslinked collagen may find applications in functional food, cosmetic, biomedical, and pharmaceutical industries.
Collapse
|
44
|
Roy R, Warren E, Xu Y, Yow C, Madhurapantula RS, Orgel JPRO, Lister K. Functional Grading of a Transversely Isotropic Hyperelastic Model with Applications in Modeling Tricuspid and Mitral Valve Transition Regions. Int J Mol Sci 2020; 21:ijms21186503. [PMID: 32899559 PMCID: PMC7554844 DOI: 10.3390/ijms21186503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 01/20/2023] Open
Abstract
Surgical simulators and injury-prediction human models require a combination of representative tissue geometry and accurate tissue material properties to predict realistic tool-tissue interaction forces and injury mechanisms, respectively. While biological tissues have been individually characterized, the transition regions between tissues have received limited research attention, potentially resulting in inaccuracies within simulations. In this work, an approach to characterize the transition regions in transversely isotropic (TI) soft tissues using functionally graded material (FGM) modeling is presented. The effect of nonlinearities and multi-regime nature of the TI model on the functional grading process is discussed. The proposed approach has been implemented to characterize the transition regions in the leaflet (LL), chordae tendinae (CT) and the papillary muscle (PM) of porcine tricuspid valve (TV) and mitral valve (MV). The FGM model is informed using high resolution morphological measurements of the collagen fiber orientation and tissue composition in the transition regions, and deformation characteristics predicted by the FGM model are numerically validated to experimental data using X-ray diffraction imaging. The results indicate feasibility of using the FGM approach in modeling soft-tissue transitions and has implications in improving physical representation of tissue deformation throughout the body using a scalable version of the proposed approach.
Collapse
Affiliation(s)
- Rajarshi Roy
- Corvid Technologies, Mooresville, NC 28117, USA; (Y.X.); (C.Y.); (K.L.)
- Correspondence: ; Tel.: +1-704-799-6944
| | | | - Yaoyao Xu
- Corvid Technologies, Mooresville, NC 28117, USA; (Y.X.); (C.Y.); (K.L.)
| | - Caleb Yow
- Corvid Technologies, Mooresville, NC 28117, USA; (Y.X.); (C.Y.); (K.L.)
| | - Rama S. Madhurapantula
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA; (R.S.M.); (J.P.R.O.O.)
- Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Joseph P. R. O. Orgel
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA; (R.S.M.); (J.P.R.O.O.)
- Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Kevin Lister
- Corvid Technologies, Mooresville, NC 28117, USA; (Y.X.); (C.Y.); (K.L.)
| |
Collapse
|
45
|
Reznikov N, Hoac B, Buss DJ, Addison WN, Barros NMT, McKee MD. Biological stenciling of mineralization in the skeleton: Local enzymatic removal of inhibitors in the extracellular matrix. Bone 2020; 138:115447. [PMID: 32454257 DOI: 10.1016/j.bone.2020.115447] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/14/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022]
Abstract
Biomineralization is remarkably diverse and provides myriad functions across many organismal systems. Biomineralization processes typically produce hardened, hierarchically organized structures usually having nanostructured mineral assemblies that are formed through inorganic-organic (usually protein) interactions. Calcium‑carbonate biomineral predominates in structures of small invertebrate organisms abundant in marine environments, particularly in shells (remarkably it is also found in the inner ear otoconia of vertebrates), whereas calcium-phosphate biomineral predominates in the skeletons and dentitions of both marine and terrestrial vertebrates, including humans. Reconciliation of the interplay between organic moieties and inorganic crystals in bones and teeth is a cornerstone of biomineralization research. Key molecular determinants of skeletal and dental mineralization have been identified in health and disease, and in pathologic ectopic calcification, ranging from small molecules such as pyrophosphate, to small membrane-bounded matrix vesicles shed from cells, and to noncollagenous extracellular matrix proteins such as osteopontin and their derived bioactive peptides. Beyond partly knowing the regulatory role of the direct actions of inhibitors on vertebrate mineralization, more recently the importance of their enzymatic removal from the extracellular matrix has become increasingly understood. Great progress has been made in deciphering the relationship between mineralization inhibitors and the enzymes that degrade them, and how adverse changes in this physiologic pathway (such as gene mutations causing disease) result in mineralization defects. Two examples of this are rare skeletal diseases having osteomalacia/odontomalacia (soft bones and teeth) - namely hypophosphatasia (HPP) and X-linked hypophosphatemia (XLH) - where inactivating mutations occur in the gene for the enzymes tissue-nonspecific alkaline phosphatase (TNAP, TNSALP, ALPL) and phosphate-regulating endopeptidase homolog X-linked (PHEX), respectively. Here, we review and provide a concept for how existing and new information now comes together to describe the dual nature of regulation of mineralization - through systemic mineral ion homeostasis involving circulating factors, coupled with molecular determinants operating at the local level in the extracellular matrix. For the local mineralization events in the extracellular matrix, we present a focused concept in skeletal mineralization biology called the Stenciling Principle - a principle (building upon seminal work by Neuman and Fleisch) describing how the action of enzymes to remove tissue-resident inhibitors defines with precision the location and progression of mineralization.
Collapse
Affiliation(s)
- N Reznikov
- Object Research Systems Inc., 760 St. Paul West, Montreal, Quebec H3C 1M4, Canada.
| | - B Hoac
- Faculty of Dentistry, McGill University, 3640 University St., Montreal, Quebec H3A 0C7, Canada
| | - D J Buss
- Department of Anatomy and Cell Biology, McGill University, 3640 University St., Montreal, Quebec H3A 0C7, Canada
| | - W N Addison
- Department of Molecular Signaling and Biochemistry, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka, Japan
| | - N M T Barros
- Departamento de Biofísica, São Paulo, Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, Brazil
| | - M D McKee
- Faculty of Dentistry, McGill University, 3640 University St., Montreal, Quebec H3A 0C7, Canada; Department of Anatomy and Cell Biology, McGill University, 3640 University St., Montreal, Quebec H3A 0C7, Canada.
| |
Collapse
|
46
|
Chuang YC, Chang CC, Yang F, Simon M, Rafailovich M. TiO 2 nanoparticles synergize with substrate mechanics to improve dental pulp stem cells proliferation and differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111366. [PMID: 33254985 DOI: 10.1016/j.msec.2020.111366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/10/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022]
Abstract
Multiple studies exist on the influence of TiO2 nanoparticle uptake on cell behavior. Yet little is known about the lingering influence of nanoparticles accumulation within the external environment which is particularly important to stem cell differentiation. Herein, dental pulp stem cells were cultured on hard and soft polybutadiene substrates, where 0.1 mg/mL rutile TiO2 nanoparticles were introduced once, 24 h after plating. In the absence of TiO2, the doubling time on soft substrate is significantly longer, while addition of TiO2 decreases it to the same level as on the hard substrate. FACS analysis indicates particle uptake initially at 25% is reduced to 2.5% after 14 days. In the absence of TiO2, no biomineralization on the soft and snowflake-like hydroxyapatite deposits on the hard substrate are shown at week 4. With the addition of TiO2, SEM/EDAX reveals copious mineral deposition templated on large banded collagen fibers on both substrates. The mineral-to-matrix ratios analyzed by Raman spectroscopy are unremarkable in the absence of TiO2. However, with addition of TiO2, the ratios are consistent with native bone on the hard and dentin on the soft substrates. This is further confirmed by RT-PCR, which showed upregulation of markers consistent with osteogenesis and odontogenesis, respectively.
Collapse
Affiliation(s)
- Ya-Chen Chuang
- Department of Materials Science & Engineering, Stony Brook University, NY 11794, USA; ThINC Facility, Advanced Energy Center, Stony Brook University, NY 11794, USA
| | - Chung-Chueh Chang
- ThINC Facility, Advanced Energy Center, Stony Brook University, NY 11794, USA
| | - Fan Yang
- Department of Materials Science & Engineering, Stony Brook University, NY 11794, USA
| | - Marcia Simon
- Department of Oral Biology & Pathology, Stony Brook University School of Dental Medicine, NY 11794, USA
| | - Miriam Rafailovich
- Department of Materials Science & Engineering, Stony Brook University, NY 11794, USA.
| |
Collapse
|
47
|
McCluskey AR, Hung KSW, Marzec B, Sindt JO, Sommerdijk NAJM, Camp PJ, Nudelman F. Disordered Filaments Mediate the Fibrillogenesis of Type I Collagen in Solution. Biomacromolecules 2020; 21:3631-3643. [DOI: 10.1021/acs.biomac.0c00667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrew R. McCluskey
- EaStCHEM, School of Chemistry, The King’s Buildings, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Kennes S. W. Hung
- EaStCHEM, School of Chemistry, The King’s Buildings, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Bartosz Marzec
- EaStCHEM, School of Chemistry, The King’s Buildings, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Julien O. Sindt
- EPCC, University of Edinburgh, Bayes Centre, 47 Potterrow, Edinburgh EH8 9BT, U.K
| | - Nico A. J. M. Sommerdijk
- Department of Biochemistry, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein, 6525 GA Nijmegen, The Netherlands
| | - Philip J. Camp
- EaStCHEM, School of Chemistry, The King’s Buildings, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Fabio Nudelman
- EaStCHEM, School of Chemistry, The King’s Buildings, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| |
Collapse
|
48
|
Zhu J, Madhurapantula RS, Kalyanasundaram A, Sabharwal T, Antipova O, Bishnoi SW, Orgel JPRO. Ultrastructural Location and Interactions of the Immunoglobulin Receptor Binding Sequence within Fibrillar Type I Collagen. Int J Mol Sci 2020; 21:ijms21114166. [PMID: 32545195 PMCID: PMC7312686 DOI: 10.3390/ijms21114166] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/30/2022] Open
Abstract
Collagen type I is a major constituent of animal bodies. It is found in large quantities in tendon, bone, skin, cartilage, blood vessels, bronchi, and the lung interstitium. It is also produced and accumulates in large amounts in response to certain inflammations such as lung fibrosis. Our understanding of the molecular organization of fibrillar collagen and cellular interaction motifs, such as those involved with immune-associated molecules, continues to be refined. In this study, antibodies raised against type I collagen were used to label intact D-periodic type I collagen fibrils and observed with atomic force microscopy (AFM), and X-ray diffraction (XRD) and immunolabeling positions were observed with both methods. The antibodies bind close to the C-terminal telopeptide which verifies the location and accessibility of both the major histocompatibility complex (MHC) class I (MHCI) binding domain and C-terminal telopeptide on the outside of the collagen fibril. The close proximity of the C-telopeptide and the MHC1 domain of type I collagen to fibronectin, discoidin domain receptor (DDR), and collagenase cleavage domains likely facilitate the interaction of ligands and receptors related to cellular immunity and the collagen-based Extracellular Matrix.
Collapse
Affiliation(s)
- Jie Zhu
- Institute of Biophysics, College of science, Northwest A&F University, Yangling 712100, China
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA; (R.S.M.); (A.K.); (T.S.); (O.A.)
- Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
- Correspondence: (J.Z.); (J.P.R.O.O.)
| | - Rama S. Madhurapantula
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA; (R.S.M.); (A.K.); (T.S.); (O.A.)
- Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Aruna Kalyanasundaram
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA; (R.S.M.); (A.K.); (T.S.); (O.A.)
| | - Tanya Sabharwal
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA; (R.S.M.); (A.K.); (T.S.); (O.A.)
| | - Olga Antipova
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA; (R.S.M.); (A.K.); (T.S.); (O.A.)
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Sandra W. Bishnoi
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Joseph P. R. O. Orgel
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA; (R.S.M.); (A.K.); (T.S.); (O.A.)
- Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
- Correspondence: (J.Z.); (J.P.R.O.O.)
| |
Collapse
|
49
|
Mitura S, Sionkowska A, Jaiswal A. Biopolymers for hydrogels in cosmetics: review. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:50. [PMID: 32451785 PMCID: PMC7248025 DOI: 10.1007/s10856-020-06390-w] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 05/12/2020] [Indexed: 06/02/2023]
Abstract
Hydrogels are cross-linked networks of macromolecular compounds characterized by high water absorption capacity. Such materials find a wide range of biomedical applications. Several polymeric hydrogels can also be used in cosmetics. Herein, the structure, properties and selected applications of hydrogels in cosmetics are discussed in general. Detailed examples from scientific literature are also shown. In this review paper, most common biopolymers used in cosmetics are presented in detail together with issues related to skin treatment and hair conditioning. Hydrogels based on collagen, chitosan, hyaluronic acid, and other polysaccharides have been characterized. New trends in the preparation of hydrogels based on biopolymer blends as well as bigels have been shown. Moreover, biopolymer hydrogels employment in encapsulation has been mentioned.
Collapse
Affiliation(s)
- Stanisław Mitura
- President Stanisław Wojciechowski State University of Applied Sciences in Kalisz, Medical Faculty, Nowy Świat 4 st., 62-800, Kalisz, Poland
- Technical University of Liberec, Faculty of Mechanical Engineering, Department of Material Science, Liberec, Czech Republic
| | - Alina Sionkowska
- Nicolaus Copernicus University in Torun, Faculty of Chemistry, Department of Chemistry of Biomaterials and Cosmetics, Gagarin 7 street, 87-100, Torun, Poland.
| | - Amit Jaiswal
- Centre for Biomaterials Cellular and Molecular Theranostics (CBCMT) VIT, Vellore, India
| |
Collapse
|
50
|
An efficient two-scale 3D FE model of the bone fibril array: comparison of anisotropic elastic properties with analytical methods and micro-sample testing. Biomech Model Mechanobiol 2020; 19:2127-2147. [DOI: 10.1007/s10237-020-01328-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 04/11/2020] [Indexed: 12/14/2022]
|