1
|
Khamassi A, Dumon C. Enzyme synergy for plant cell wall polysaccharide degradation. Essays Biochem 2023; 67:521-531. [PMID: 37067158 DOI: 10.1042/ebc20220166] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 04/18/2023]
Abstract
Valorizing plant cell wall, marine and algal polysaccharides is of utmost importance for the development of the circular bioeconomy. This is because polysaccharides are by far the most abundant organic molecules found in nature with complex chemical structures that require a large set of enzymes for their degradation. Microorganisms produce polysaccharide-specific enzymes that act in synergy when performing hydrolysis. Although discovered since decades enzyme synergy is still poorly understood at the molecular level and thus it is difficult to harness and optimize. In the last few years, more attention has been given to improve and characterize enzyme synergy for polysaccharide valorization. In this review, we summarize literature to provide an overview of the different type of synergy involving carbohydrate modifying enzymes and the recent advances in the field exemplified by plant cell-wall degradation.
Collapse
Affiliation(s)
- Ahmed Khamassi
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Claire Dumon
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| |
Collapse
|
2
|
Smith MM, Melrose J. Xylan Prebiotics and the Gut Microbiome Promote Health and Wellbeing: Potential Novel Roles for Pentosan Polysulfate. Pharmaceuticals (Basel) 2022; 15:ph15091151. [PMID: 36145372 PMCID: PMC9503530 DOI: 10.3390/ph15091151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/17/2022] [Accepted: 09/09/2022] [Indexed: 12/12/2022] Open
Abstract
This narrative review highlights the complexities of the gut microbiome and health-promoting properties of prebiotic xylans metabolized by the gut microbiome. In animal husbandry, prebiotic xylans aid in the maintenance of a healthy gut microbiome. This prevents the colonization of the gut by pathogenic organisms obviating the need for dietary antibiotic supplementation, a practice which has been used to maintain animal productivity but which has led to the emergence of antibiotic resistant bacteria that are passed up the food chain to humans. Seaweed xylan-based animal foodstuffs have been developed to eliminate ruminant green-house gas emissions by gut methanogens in ruminant animals, contributing to atmospheric pollution. Biotransformation of pentosan polysulfate by the gut microbiome converts this semi-synthetic sulfated disease-modifying anti-osteoarthritic heparinoid drug to a prebiotic metabolite that promotes gut health, further extending the therapeutic profile and utility of this therapeutic molecule. Xylans are prominent dietary cereal components of the human diet which travel through the gastrointestinal tract as non-digested dietary fibre since the human genome does not contain xylanolytic enzymes. The gut microbiota however digest xylans as a food source. Xylo-oligosaccharides generated in this digestive process have prebiotic health-promoting properties. Engineered commensal probiotic bacteria also have been developed which have been engineered to produce growth factors and other bioactive factors. A xylan protein induction system controls the secretion of these compounds by the commensal bacteria which can promote gut health or, if these prebiotic compounds are transported by the vagal nervous system, may also regulate the health of linked organ systems via the gut–brain, gut–lung and gut–stomach axes. Dietary xylans are thus emerging therapeutic compounds warranting further study in novel disease prevention protocols.
Collapse
Affiliation(s)
- Margaret M. Smith
- Raymond Purves Laboratory of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - James Melrose
- Raymond Purves Laboratory of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern Campus, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Correspondence:
| |
Collapse
|
3
|
Sohail M, Barzkar N, Michaud P, Tamadoni Jahromi S, Babich O, Sukhikh S, Das R, Nahavandi R. Cellulolytic and Xylanolytic Enzymes from Yeasts: Properties and Industrial Applications. Molecules 2022; 27:3783. [PMID: 35744909 PMCID: PMC9229053 DOI: 10.3390/molecules27123783] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
Lignocellulose, the main component of plant cell walls, comprises polyaromatic lignin and fermentable materials, cellulose and hemicellulose. It is a plentiful and renewable feedstock for chemicals and energy. It can serve as a raw material for the production of various value-added products, including cellulase and xylanase. Cellulase is essentially required in lignocellulose-based biorefineries and is applied in many commercial processes. Likewise, xylanases are industrially important enzymes applied in papermaking and in the manufacture of prebiotics and pharmaceuticals. Owing to the widespread application of these enzymes, many prokaryotes and eukaryotes have been exploited to produce cellulase and xylanases in good yields, yet yeasts have rarely been explored for their plant-cell-wall-degrading activities. This review is focused on summarizing reports about cellulolytic and xylanolytic yeasts, their properties, and their biotechnological applications.
Collapse
Affiliation(s)
- Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan;
| | - Noora Barzkar
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas 3995, Iran
| | - Philippe Michaud
- Institute Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000 Clermont-Ferrand, France;
| | - Saeid Tamadoni Jahromi
- Persian Gulf and Oman Sea Ecology Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas 3995, Iran
| | - Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia; (O.B.); (S.S.)
| | - Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia; (O.B.); (S.S.)
| | - Rakesh Das
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), 1433 Aas, Norway;
| | - Reza Nahavandi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj 8361, Iran;
| |
Collapse
|
4
|
Fei Y, Huang L, Wang H, Liang J, Liu G, Bai W. Adaptive mechanism of Lactobacillus amylolyticus L6 in soymilk environment based on metabolism of nutrients and related gene-expression profiles. Food Sci Nutr 2022; 10:1548-1563. [PMID: 35592287 PMCID: PMC9094474 DOI: 10.1002/fsn3.2779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 11/10/2022] Open
Abstract
Lactobacillus amylolyticus L6 isolated from naturally fermented tofu-whey was characterized as potential probiotics. To give insight into the adaptive mechanism of L. amylolyticus L6 in soymilk, the gene-expression profiles of this strain and changes of chemical components in fermented soymilk were investigated. The viable counts of L. amylolyticus L6 in soymilk reached 1012 CFU/mL in the stationary phase (10 hr). The main sugars reduced gradually while the acidity value significantly increased from 45.33° to 95.88° during fermentation. About 50 genes involved in sugar metabolization and lactic acid production were highly induced during soymilk fermentation. The concentration of total amino acid increased to 668.38 mg/L in the logarithmic phase, and 45 differentially expressed genes (DEGs) in terms of nitrogen metabolism and biosynthesis of amino acid were detected. Other genes related to lipid metabolism, inorganic ion transport, and stress response were also highly induced. Besides, the concentration of isoflavone aglycones with high bioactivity increased from 14.51 mg/L to 36.09 mg/L during the fermentation, and the expression of 6-phospho-β-glucosidase gene was also synchronously induced. This study revealed the adaptive mechanism of L. amylolyticus L6 in the soymilk-based ecosystem, which gives the theoretical guidance for the application of this strain in other soybean-derived products.
Collapse
Affiliation(s)
- Yongtao Fei
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China.,College of Light Industry and Food Science Zhongkai University of Agriculture and Engineering Guangzhou China.,Academy of Contemporary Agricultural Engineering Innovations Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Li Huang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China.,College of Light Industry and Food Science Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Jinglong Liang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China.,Academy of Contemporary Agricultural Engineering Innovations Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Gongliang Liu
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China.,College of Light Industry and Food Science Zhongkai University of Agriculture and Engineering Guangzhou China.,Academy of Contemporary Agricultural Engineering Innovations Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Weidong Bai
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China.,College of Light Industry and Food Science Zhongkai University of Agriculture and Engineering Guangzhou China.,Academy of Contemporary Agricultural Engineering Innovations Zhongkai University of Agriculture and Engineering Guangzhou China
| |
Collapse
|
5
|
Elucidating Sequence and Structural Determinants of Carbohydrate Esterases for Complete Deacetylation of Substituted Xylans. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092655. [PMID: 35566004 PMCID: PMC9105624 DOI: 10.3390/molecules27092655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 11/26/2022]
Abstract
Acetylated glucuronoxylan is one of the most common types of hemicellulose in nature. The structure is formed by a β-(1→4)-linked D-xylopyranosyl (Xylp) backbone that can be substituted with an acetyl group at O-2 and O-3 positions, and α-(1→2)-linked 4-O-methylglucopyranosyluronic acid (MeGlcpA). Acetyl xylan esterases (AcXE) that target mono- or doubly acetylated Xylp are well characterized; however, the previously studied AcXE from Flavobacterium johnsoniae (FjoAcXE) was the first to remove the acetyl group from 2-O-MeGlcpA-3-O-acetyl-substituted Xylp units, yet structural characteristics of these enzymes remain unspecified. Here, six homologs of FjoAcXE were produced and three crystal structures of the enzymes were solved. Two of them are complex structures, one with bound MeGlcpA and another with acetate. All homologs were confirmed to release acetate from 2-O-MeGlcpA-3-O-acetyl-substituted xylan, and the crystal structures point to key structural elements that might serve as defining features of this unclassified carbohydrate esterase family. Enzymes comprised two domains: N-terminal CBM domain and a C-terminal SGNH domain. In FjoAcXE and all studied homologs, the sequence motif around the catalytic serine is Gly-Asn-Ser-Ile (GNSI), which differs from other SGNH hydrolases. Binding by the MeGlcpA-Xylp ligand is directed by positively charged and highly conserved residues at the interface of the CBM and SGNH domains of the enzyme.
Collapse
|
6
|
Unraveling Synergism between Various GH Family Xylanases and Debranching Enzymes during Hetero-Xylan Degradation. Molecules 2021; 26:molecules26226770. [PMID: 34833862 PMCID: PMC8618192 DOI: 10.3390/molecules26226770] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/15/2021] [Accepted: 10/27/2021] [Indexed: 11/20/2022] Open
Abstract
Enzymes classified with the same Enzyme Commission (EC) that are allotted in different glycoside hydrolase (GH) families can display different mechanisms of action and substrate specificities. Therefore, the combination of different enzyme classes may not yield synergism during biomass hydrolysis, as the GH family allocation of the enzymes influences their behavior. As a result, it is important to understand which GH family combinations are compatible to gain knowledge on how to efficiently depolymerize biomass into fermentable sugars. We evaluated GH10 (Xyn10D and XT6) and GH11 (XynA and Xyn2A) β-xylanase performance alone and in combination with various GH family α-l-arabinofuranosidases (GH43 AXH-d and GH51 Abf51A) and α-d-glucuronidases (GH4 Agu4B and GH67 AguA) during xylan depolymerization. No synergistic enhancement in reducing sugar, xylose and glucuronic acid released from beechwood xylan was observed when xylanases were supplemented with either one of the glucuronidases, except between Xyn2A and AguA (1.1-fold reducing sugar increase). However, overall sugar release was significantly improved (≥1.1-fold reducing sugar increase) when xylanases were supplemented with either one of the arabinofuranosidases during wheat arabinoxylan degradation. Synergism appeared to result from the xylanases liberating xylo-oligomers, which are the preferred substrates of the terminal arabinofuranosyl-substituent debranching enzyme, Abf51A, allowing the exolytic β-xylosidase, SXA, to have access to the generated unbranched xylo-oligomers. Here, it was shown that arabinofuranosidases are key enzymes in the efficient saccharification of hetero-xylan into xylose. This study demonstrated that consideration of GH family affiliations of the carbohydrate-active enzymes (CAZymes) used to formulate synergistic enzyme cocktails is crucial for achieving efficient biomass saccharification.
Collapse
|
7
|
Tamayo-Ordóñez MC, Contreras-Esquivel JC, Ayil-Gutiérrez BA, De la Cruz-Arguijo EA, Tamayo-Ordóñez FA, Ríos-González LJ, Tamayo-Ordóñez YJ. Interspecific evolutionary relationships of alpha-glucuronidase in the genus Aspergillus. Fungal Biol 2021; 125:560-575. [PMID: 34140152 DOI: 10.1016/j.funbio.2021.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 02/05/2021] [Accepted: 02/21/2021] [Indexed: 12/15/2022]
Abstract
The increased availability and production of lignocellulosic agroindustrial wastes has originated proposals for their use as raw material to obtain biofuels (ethanol and biodiesel) or derived products. However, for biomass generated from lignocellulosic residues to be successfully degraded, in most cases it requires a physical (thermal), chemical, or enzymatic pretreatment before the application of microbial or enzymatic fermentation technologies (biocatalysis). In the context of enzymatic technologies, fungi have demonstrated to produce enzymes capable of degrading polysaccharides like cellulose, hemicelluloses and pectin. Because of this ability for degrading lignocellulosic material, researchers are making efforts to isolate and identify fungal enzymes that could have a better activity for the degradation of plant cell walls and agroindustrial biomass. We performed an in silico analysis of alpha-glucoronidase in 82 accessions of the genus Aspergillus. The constructed dendrograms of amino acid sequences defined the formation of 6 groups (I, II, III, IV, V, and VI), which demonstrates the high diversity of the enzyme. Despite this ample divergence between enzyme groups, our 3D structure modeling showed both conservation and differences in amino acid residues participating in enzyme-substrate binding, which indicates the possibility that some enzymes are functionally specialized for the specific degradation of a substrate depending on the genetics of each species in the genus and the condition of the habitat where they evolved. The identification of alpha-glucuronidase isoenzymes would allow future use of genetic engineering and biocatalysis technologies aimed at specific production of the enzyme for its use in biotransformation.
Collapse
Affiliation(s)
- M C Tamayo-Ordóñez
- Laboratorio de Ingeniería Genética, Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing J. Cárdenas Valdez S/N, República, 25280, Saltillo, Coah, Mexico
| | - J C Contreras-Esquivel
- Laboratorio de Glicobiotecnologia Aplicada, Departamento de Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing. J. Cárdenas Valdez S/N, República, 25280, Saltillo, Coah, Mexico
| | - B A Ayil-Gutiérrez
- CONACYT- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Biotecnologia Vegetal. Blvd. del Maestro, s/n, Esq. Elías Piña, Reynosa, 88710, Mexico
| | - E A De la Cruz-Arguijo
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Blvd. del Maestro, s/n, Esq. Elías Piña, Reynosa, 88710, Mexico
| | - F A Tamayo-Ordóñez
- Facultad de Química, Universidad Autónoma del Carmen, Calle 56 No. 4 por Av. Concordia, Campus Principal, 24180, Ciudad del Carmen, Campeche, Mexico
| | - L J Ríos-González
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing Cárdenas Valdez S/N, República, 25280, Saltillo, Coah, Mexico
| | - Y J Tamayo-Ordóñez
- Estancia Posdoctoral Nacional-CONACyT, Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing J. Cardenas Valdez S/N, República, 25280, Saltillo, Coah, Mexico.
| |
Collapse
|
8
|
Teramoto K, Tsutsui S, Sato T, Fujimoto Z, Kaneko S. Substrate Specificities of GH8, GH39, and GH52 β-xylosidases from Bacillus halodurans C-125 Toward Substituted Xylooligosaccharides. Appl Biochem Biotechnol 2021; 193:1042-1055. [PMID: 33394289 DOI: 10.1007/s12010-020-03451-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/08/2020] [Indexed: 11/30/2022]
Abstract
Substrate specificities of glycoside hydrolase families 8 (Rex), 39 (BhXyl39), and 52 (BhXyl52) β-xylosidases from Bacillus halodurans C-125 were investigated. BhXyl39 hydrolyzed xylotriose most efficiently among the linear xylooligosaccharides. The activity decreased in the order of xylohexaose > xylopentaose > xylotetraose and it had little effect on xylobiose. In contrast, BhXyl52 hydrolyzed xylobiose and xylotriose most efficiently, and its activity decreased when the main chain became longer as follows: xylotetraose > xylopentaose > xylohexaose. Rex produced O-β-D-xylopyranosyl-(1 → 4)-[O-α-L-arabinofuranosyl-(1 → 3)]-O-β-D-xylopyranosyl-(1 → 4)-β-D-xylopyranose (Ara2Xyl3) and O-β-D-xylopyranosyl-(1 → 4)-[O-4-O-methyl-α-D-glucuronopyranosyl-(l → 2)]-β-D-xylopyranosyl-(1 → 4)-β-D-xylopyranose (MeGlcA2Xyl3), which lost a xylose residue from the reducing end of O-β-D-xylopyranosyl-(1 → 4)-[O-α-L-arabinofuranosyl-(1 → 3)]-O-β-D-xylopyranosyl-(1 → 4)-β-D-xylopyranosyl-(1 → 4)-β-D-xylopyranose (Ara3Xyl4) and O-β-D-xylopyranosyl-(1 → 4)-[O-4-O-methyl-α-D-glucuronopyranosyl-(1 → 2)]-β-D-xylopyranosyl-(1 → 4)-β-D-xylopyranosyl-(1 → 4)-β-D-xylopyranose (MeGlcA3Xyl4). It was considered that there is no space to accommodate side chains at subsite -1. BhXyl39 rapidly hydrolyzes the non-reducing-end xylose linkages of MeGlcA3Xyl4, while the arabinose branch does not significantly affect the enzyme activity because it degrades Ara3Xyl4 as rapidly as unmodified xylotetraose. The model structure suggested that BhXyl39 enhanced the activity for MeGlcA3Xyl4 by forming a hydrogen bond between glucuronic acid and Lys265. BhXyl52 did not hydrolyze Ara3Xyl4 and MeGlcA3Xyl4 because it has a narrow substrate binding pocket and 2- and 3-hydroxyl groups of xylose at subsite +1 hydrogen bond to the enzyme.
Collapse
Affiliation(s)
- Koji Teramoto
- Department of Subtropical Biochemistry and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Sosyu Tsutsui
- Department of Subtropical Biochemistry and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan.,The United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto, Kagoshima, 890-0065, Japan
| | - Tomoko Sato
- Advanced Analysis Center, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, 305-8602, Japan
| | - Zui Fujimoto
- Advanced Analysis Center, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, 305-8602, Japan
| | - Satoshi Kaneko
- Department of Subtropical Biochemistry and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan. .,The United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto, Kagoshima, 890-0065, Japan.
| |
Collapse
|
9
|
Mahasenan KV, Batuecas MT, De Benedetti S, Kim C, Rana N, Lee M, Hesek D, Fisher JF, Sanz-Aparicio J, Hermoso JA, Mobashery S. Catalytic Cycle of Glycoside Hydrolase BglX from Pseudomonas aeruginosa and Its Implications for Biofilm Formation. ACS Chem Biol 2020; 15:189-196. [PMID: 31877028 PMCID: PMC7995829 DOI: 10.1021/acschembio.9b00754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BglX is a heretofore uncharacterized periplasmic glycoside hydrolase (GH) of the human pathogen Pseudomonas aeruginosa. X-ray analysis identifies it as a protein homodimer. The two active sites of the homodimer comprise catalytic residues provided by each monomer. This arrangement is seen in <2% of the hydrolases of known structure. In vitro substrate profiling shows BglX is a catalyst for β-(1→2) and β-(1→3) saccharide hydrolysis. Saccharides with β-(1→4) or β-(1→6) bonds, and the β-(1→4) muropeptides from the cell-wall peptidoglycan, are not substrates. Additional structural insights from X-ray analysis (including structures of a mutant enzyme-derived Michaelis complex, two transition-state mimetics, and two enzyme-product complexes) enabled the comprehensive description of BglX catalysis. The half-chair (4H3) conformation of the transition-state oxocarbenium species, the approach of the hydrolytic water molecule to the oxocarbenium species, and the stepwise release of the two reaction products were also visualized. The substrate pattern for BglX aligns with the [β-(1→2)-Glc]x and [β-(1→3)-Glc]x periplasmic osmoregulated periplasmic glucans, and possibly with the Psl exopolysaccharides, of P. aeruginosa. Both polysaccharides are implicated in biofilm formation. Accordingly, we show that inactivation of the bglX gene of P. aeruginosa PAO1 attenuates biofilm formation.
Collapse
Affiliation(s)
- Kiran V Mahasenan
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - María T Batuecas
- Department of Crystallography and Structural Biology , Institute of Physical Chemistry "Rocasolano", CSIC , 28006 Madrid , Spain
| | - Stefania De Benedetti
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Choon Kim
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Neha Rana
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Mijoon Lee
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Dusan Hesek
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Jed F Fisher
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Julia Sanz-Aparicio
- Department of Crystallography and Structural Biology , Institute of Physical Chemistry "Rocasolano", CSIC , 28006 Madrid , Spain
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology , Institute of Physical Chemistry "Rocasolano", CSIC , 28006 Madrid , Spain
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| |
Collapse
|
10
|
Malgas S, Mafa MS, Mkabayi L, Pletschke BI. A mini review of xylanolytic enzymes with regards to their synergistic interactions during hetero-xylan degradation. World J Microbiol Biotechnol 2019; 35:187. [PMID: 31728656 DOI: 10.1007/s11274-019-2765-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/06/2019] [Indexed: 10/25/2022]
Abstract
This review examines the recent models describing the mode of action of various xylanolytic enzymes and how these enzymes can be applied (sequentially or simultaneously) with their distinctive roles in mind to achieve efficient xylan degradation. With respect to homeosynergy, synergism appears to be as a result of β-xylanase and/or oligosaccharide reducing-end β-xylanase liberating xylo-oligomers (XOS) that are preferred substrates of the processive β-xylosidase. With regards to hetero-synergism, two cross relationships appear to exist and seem to be the reason for synergism between the enzymes during xylan degradation. These cross relations are the debranching enzymes such as α-glucuronidase or side-chain cleaving enzymes such as carbohydrate esterases (CE) removing decorations that would have hindered back-bone-cleaving enzymes, while backbone-cleaving-enzymes liberate XOS that are preferred substrates of the debranching and side-chain-cleaving enzymes. This interaction is demonstrated by high yields in co-production of xylan substituents such as arabinose, glucuronic acid and ferulic acid, and XOS. Finally, lytic polysaccharide monooxygenases (LPMO) have also been implicated in boosting whole lignocellulosic biomass or insoluble xylan degradation by glycoside hydrolases (GH) by possibly disrupting entangled xylan residues. Since it has been observed that the same enzyme (same Enzyme Commission, EC, classification) from different GH or CE and/or AA families can display different synergistic interactions with other enzymes due to different substrate specificities and properties, in this review, we propose an approach of enzyme selection (and mode of application thereof) during xylan degradation, as this can improve the economic viability of the degradation of xylan for producing precursors of value added products.
Collapse
Affiliation(s)
- Samkelo Malgas
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, Eastern Cape, 6140, South Africa
| | - Mpho S Mafa
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, Eastern Cape, 6140, South Africa.,Protein Structure-Function Research Unit (PSFRU), School of Molecular and Cell Biology, Wits University, Johannesburg, Gauteng, 2000, South Africa
| | - Lithalethu Mkabayi
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, Eastern Cape, 6140, South Africa
| | - Brett I Pletschke
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, Eastern Cape, 6140, South Africa.
| |
Collapse
|
11
|
Basic Mechanism of Lignocellulose Mycodegradation. Fungal Biol 2019. [DOI: 10.1007/978-3-030-23834-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Tryfona T, Sorieul M, Feijao C, Stott K, Rubtsov DV, Anders N, Dupree P. Development of an oligosaccharide library to characterise the structural variation in glucuronoarabinoxylan in the cell walls of vegetative tissues in grasses. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:109. [PMID: 31080516 PMCID: PMC6501314 DOI: 10.1186/s13068-019-1451-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/25/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Grass glucuronoarabinoxylan (GAX) substitutions can inhibit enzymatic degradation and are involved in the interaction of xylan with cell wall cellulose and lignin, factors which contribute to the recalcitrance of biomass to saccharification. Therefore, identification of xylan characteristics central to biomass biorefining improvement is essential. However, the task of assessing biomass quality is complicated and is often hindered by the lack of a reference for a given crop. RESULTS In this study, we created a reference library, expressed in glucose units, of Miscanthus sinensis GAX stem and leaf oligosaccharides, using DNA sequencer-Assisted Saccharide analysis in high throughput (DASH), supported by liquid chromatography (LC), nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). Our analysis of a number of grass species highlighted variations in substitution type and frequency of stem and leaf GAX. In miscanthus, for example, the β-Xylp-(1 → 2)-α-Araf-(1 → 3) side chain is more abundant in leaf than stem. CONCLUSIONS The reference library allows fast identification and comparison of GAX structures from different plants and tissues. Ultimately, this reference library can be used in directing biomass selection and improving biorefining.
Collapse
Affiliation(s)
- Theodora Tryfona
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge, CB2 1QW UK
| | - Mathias Sorieul
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge, CB2 1QW UK
- Present Address: Scion, 49 Sala Street, Private Bag 3020, Rotorua, 3046 New Zealand
| | - Carolina Feijao
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge, CB2 1QW UK
- Present Address: Frontiers, WeWork, 1 Fore St, London, EC2Y 5EJ UK
| | - Katherine Stott
- Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge, CB2 1GA UK
| | - Denis V. Rubtsov
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge, CB2 1QW UK
- Present Address: ideaSpace South, Cambridge Biomedical Campus, Bay 13 Hills Road, Cambridge, CB2 0SP UK
| | - Nadine Anders
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge, CB2 1QW UK
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge, CB2 1QW UK
| |
Collapse
|
13
|
EcXyl43 β-xylosidase: molecular modeling, activity on natural and artificial substrates, and synergism with endoxylanases for lignocellulose deconstruction. Appl Microbiol Biotechnol 2018; 102:6959-6971. [PMID: 29876606 DOI: 10.1007/s00253-018-9138-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/10/2018] [Accepted: 05/15/2018] [Indexed: 10/14/2022]
Abstract
Biomass hydrolysis constitutes a bottleneck for the biotransformation of lignocellulosic residues into bioethanol and high-value products. The efficient deconstruction of polysaccharides to fermentable sugars requires multiple enzymes acting concertedly. GH43 β-xylosidases are among the most interesting enzymes involved in hemicellulose deconstruction into xylose. In this work, the structural and functional properties of β-xylosidase EcXyl43 from Enterobacter sp. were thoroughly characterized. Molecular modeling suggested a 3D structure formed by a conserved N-terminal catalytic domain linked to an ancillary C-terminal domain. Both domains resulted essential for enzymatic activity, and the role of critical residues, from the catalytic and the ancillary modules, was confirmed by mutagenesis. EcXyl43 presented β-xylosidase activity towards natural and artificial substrates while arabinofuranosidase activity was only detected on nitrophenyl α-L-arabinofuranoside (pNPA). It hydrolyzed xylobiose and purified xylooligosaccharides (XOS), up to degree of polymerization 6, with higher activity towards longer XOS. Low levels of activity on commercial xylan were also observed, mainly on the soluble fraction. The addition of EcXyl43 to GH10 and GH11 endoxylanases increased the release of xylose from xylan and pre-treated wheat straw. Additionally, EcXyl43 exhibited high efficiency and thermal stability under its optimal conditions (40 °C, pH 6.5), with a half-life of 58 h. Therefore, this enzyme could be a suitable additive for hemicellulases in long-term hydrolysis reactions. Because of its moderate inhibition by monomeric sugars but its high inhibition by ethanol, EcXyl43 could be particularly more useful in separate hydrolysis and fermentation (SHF) than in simultaneous saccharification and co-fermentation (SSCF) or consolidated bioprocessing (CBP).
Collapse
|
14
|
Lee BD, Apel WA, Sheridan PP, DeVeaux LC. Glycoside hydrolase gene transcription by Alicyclobacillus acidocaldarius during growth on wheat arabinoxylan and monosaccharides: a proposed xylan hydrolysis mechanism. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:110. [PMID: 29686728 PMCID: PMC5901876 DOI: 10.1186/s13068-018-1110-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 04/06/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND Metabolism of carbon bound in wheat arabinoxylan (WAX) polysaccharides by bacteria requires a number of glycoside hydrolases active toward different bonds between sugars and other molecules. Alicyclobacillus acidocaldarius is a Gram-positive thermoacidophilic bacterium capable of growth on a variety of mono-, di-, oligo-, and polysaccharides. Nineteen proposed glycoside hydrolases have been annotated in the A. acidocaldarius Type Strain ATCC27009/DSM 446 genome. Experiments were performed to understand the effect of monosaccharides on gene expression during growth on the polysaccharide, WAX. RESULTS Molecular analysis using high-density oligonucleotide microarrays was performed on A. acidocaldarius strain ATCC27009 when growing on WAX. When a culture growing exponentially at the expense of arabinoxylan saccharides was challenged with glucose or xylose, most glycoside hydrolases were downregulated. Interestingly, regulation was more intense when xylose was added to the culture than when glucose was added, showing a clear departure from classical carbon catabolite repression demonstrated by many Gram-positive bacteria. In silico analyses of the regulated glycoside hydrolases, along with the results from the microarray analyses, yielded a potential mechanism for arabinoxylan metabolism by A. acidocaldarius. Glycoside hydrolases expressed by this strain may have broad substrate specificity, and initial hydrolysis is catalyzed by an extracellular xylanase, while subsequent steps are likely performed inside the growing cell. CONCLUSIONS Glycoside hydrolases, for the most part, appear to be found in clusters, throughout the A. acidocaldarius genome. Not all of the glycoside hydrolase genes found at loci within these clusters were regulated during the experiment, indicating that a specific subset of the 19 glycoside hydrolase genes found in A. acidocaldarius were used during metabolism of WAX. While specific functions of the glycoside hydrolases were not tested as part of the research discussed, many of the glycoside hydrolases found in the A. acidocaldarius Type Strain appear to have a broader substrate range than that represented by the glycoside hydrolase family in which the enzymes were categorized.
Collapse
Affiliation(s)
- Brady D. Lee
- Biological Systems Department, Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID 83415 USA
- Department of Biological Sciences, Idaho State University, Campus Box 8007, Pocatello, ID 83209 USA
- Present Address: Pacific Northwest National Laboratory, Energy and Environment Directorate, Richland, WA USA
| | - William A. Apel
- Biological Systems Department, Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID 83415 USA
| | - Peter P. Sheridan
- Department of Biological Sciences, Idaho State University, Campus Box 8007, Pocatello, ID 83209 USA
| | - Linda C. DeVeaux
- Department of Biology, New Mexico Institute of Mining and Technology, 801 Leroy Pl, Socorro, NM 87801 USA
| |
Collapse
|
15
|
Yagi H, Maehara T, Tanaka T, Takehara R, Teramoto K, Yaoi K, Kaneko S. 4- O-Methyl Modifications of Glucuronic Acids in Xylans Are Indispensable for Substrate Discrimination by GH67 α-Glucuronidase from Bacillus halodurans C-125. J Appl Glycosci (1999) 2017; 64:115-121. [PMID: 34354504 PMCID: PMC8056927 DOI: 10.5458/jag.jag.jag-2017_016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/18/2017] [Indexed: 10/29/2022] Open
Abstract
A GH67 α-glucuronidase gene derived from Bacillus halodurans C-125 was expressed in E. coli to obtain a recombinant enzyme (BhGlcA67). Using the purified enzyme, the enzymatic properties and substrate specificities of the enzyme were investigated. BhGlcA67 showed maximum activity at pH 5.4 and 45 °C. When BhGlcA67 was incubated with birchwood, oat spelts, and cotton seed xylan, the enzyme did not release any glucuronic acid or 4-O-methyl-glucuronic acid from these substrates. BhGlcA67 acted only on 4-O-methyl-α-D-glucuronopyranosyl-(1→2)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranose (MeGlcA3Xyl3), which has a glucuronic acid side chain with a 4-O-methyl group located at its non-reducing end, but did not on β-D-xylopyranosyl-(1→4)-[4-O-methyl-α-D-glucuronopyranosyl-(l→2)]-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-β-D-xylop- yranose (MeGlcA3Xyl4) and α-D-glucuronopyranosyl-(l→2)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranose (GlcA3Xyl3). The environment for recognizing the 4-O-methyl group of glucuronic acid was observed in all the crystal structures of reported GH67 glucuronidases, and the amino acids for discriminating the 4-O-methyl group of glucuronic acid were widely conserved in the primary sequences of the GH67 family, suggesting that the 4-O-methyl group is critical for the activities of the GH67 family.
Collapse
Affiliation(s)
- Haruka Yagi
- 1 Department of Subtropical Biochemistry and Biotechnology, Faculty of Agriculture, University of the Ryukyus
| | - Tomoko Maehara
- 2 Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Tsuyoshi Tanaka
- 1 Department of Subtropical Biochemistry and Biotechnology, Faculty of Agriculture, University of the Ryukyus.,3 The United Graduate School of Agricultural Sciences, Kagoshima University
| | - Ryo Takehara
- 1 Department of Subtropical Biochemistry and Biotechnology, Faculty of Agriculture, University of the Ryukyus
| | - Koji Teramoto
- 1 Department of Subtropical Biochemistry and Biotechnology, Faculty of Agriculture, University of the Ryukyus
| | - Katsuro Yaoi
- 2 Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Satoshi Kaneko
- 1 Department of Subtropical Biochemistry and Biotechnology, Faculty of Agriculture, University of the Ryukyus
| |
Collapse
|
16
|
Towards enzymatic breakdown of complex plant xylan structures: State of the art. Biotechnol Adv 2016; 34:1260-1274. [PMID: 27620948 DOI: 10.1016/j.biotechadv.2016.09.001] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 02/07/2023]
Abstract
Significant progress over the past few years has been achieved in the enzymology of microbial degradation and saccharification of plant xylan, after cellulose being the most abundant natural renewable polysaccharide. Several new types of xylan depolymerizing and debranching enzymes have been described in microorganisms. Despite the increasing variety of known glycoside hydrolases and carbohydrate esterases, some xylan structures still appear quite recalcitrant. This review focuses on the mode of action of different types of depolymerizing endoxylanases and their cooperation with β-xylosidase and accessory enzymes in breakdown of complex highly branched xylan structures. Emphasis is placed on the enzymatic hydrolysis of alkali-extracted deesterified polysaccharide as well as acetylated xylan isolated from plant cell walls under non-alkaline conditions. It is also shown how the combination of selected endoxylanases and debranching enzymes can determine the nature of prebiotic xylooligosaccharides or lead to complete hydrolysis of the polysaccharide. The article also highlights the possibility for discovery of novel xylanolytic enzymes, construction of multifunctional chimeric enzymes and xylanosomes in parallel with increasing knowledge on the fine structure of the polysaccharide.
Collapse
|
17
|
Comparison of fungal carbohydrate esterases of family CE16 on artificial and natural substrates. J Biotechnol 2016; 233:228-36. [DOI: 10.1016/j.jbiotec.2016.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/28/2016] [Accepted: 07/06/2016] [Indexed: 01/04/2023]
|
18
|
Gardner JG. Polysaccharide degradation systems of the saprophytic bacterium Cellvibrio japonicus. World J Microbiol Biotechnol 2016; 32:121. [PMID: 27263016 DOI: 10.1007/s11274-016-2068-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/07/2016] [Indexed: 01/10/2023]
Abstract
Study of recalcitrant polysaccharide degradation by bacterial systems is critical for understanding biological processes such as global carbon cycling, nutritional contributions of the human gut microbiome, and the production of renewable fuels and chemicals. One bacterium that has a robust ability to degrade polysaccharides is the Gram-negative saprophyte Cellvibrio japonicus. A bacterium with a circuitous history, C. japonicus underwent several taxonomy changes from an initially described Pseudomonas sp. Most of the enzymes described in the pre-genomics era have also been renamed. This review aims to consolidate the biochemical, structural, and genetic data published on C. japonicus and its remarkable ability to degrade cellulose, xylan, and pectin substrates. Initially, C. japonicus carbohydrate-active enzymes were studied biochemically and structurally for their novel polysaccharide binding and degradation characteristics, while more recent systems biology approaches have begun to unravel the complex regulation required for lignocellulose degradation in an environmental context. Also included is a discussion for the future of C. japonicus as a model system, with emphasis on current areas unexplored in terms of polysaccharide degradation and emerging directions for C. japonicus in both environmental and biotechnological applications.
Collapse
Affiliation(s)
- Jeffrey G Gardner
- Department of Biological Sciences, University of Maryland - Baltimore County, Baltimore, MD, USA.
| |
Collapse
|
19
|
Wang W, Yan R, Nocek BP, Vuong TV, Di Leo R, Xu X, Cui H, Gatenholm P, Toriz G, Tenkanen M, Savchenko A, Master ER. Biochemical and Structural Characterization of a Five-domain GH115 α-Glucuronidase from the Marine Bacterium Saccharophagus degradans 2-40T. J Biol Chem 2016; 291:14120-14133. [PMID: 27129264 DOI: 10.1074/jbc.m115.702944] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Indexed: 01/01/2023] Open
Abstract
Glucuronic acid (GlcAp) and/or methylglucuronic acid (MeGlcAp) decorate the major forms of xylan in hardwood and coniferous softwoods as well as many cereal grains. Accordingly, the complete utilization of glucuronoxylans or conversion to sugar precursors requires the action of main chain xylanases as well as α-glucuronidases that release the α- (1→2)-linked (Me)GlcAp side groups. Herein, a family GH115 enzymefrom the marine bacterium Saccharophagus degradans 2-40(T), SdeAgu115A, demonstrated activity toward glucuronoxylan and oligomers thereof with preference toward MeGlcAp linked to internal xylopyranosyl residues. Unique biochemical characteristics of NaCl activation were also observed. The crystal structure of SdeAgu115A revealed a five-domain architecture, with an additional insertion C(+) domain that had significant impact on the domain arrangement of SdeAgu115A monomer and its dimerization. The participation of domain C(+) in substrate binding was supported by reduced substrate inhibition upon introducing W773A, W689A, and F696A substitutions within this domain. In addition to Asp-335, the catalytic essentiality of Glu-216 was revealed by site-specific mutagenesis. A primary sequence analysis suggested that the SdeAgu115A architecture is shared by more than half of GH115 members, thus defining a distinct archetype for GH115 enzymes.
Collapse
Affiliation(s)
- Weijun Wang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Ruoyu Yan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Boguslaw P Nocek
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Thu V Vuong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Rosa Di Leo
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Xiaohui Xu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Hong Cui
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Paul Gatenholm
- Department of Chemistry and Chemical Engineering, Wallenberg Wood Science Center and Biopolymer Technology, Chalmers University of Technology, Kemivägen 4, Gothenburg 412 96, Sweden
| | - Guillermo Toriz
- Department of Chemistry and Chemical Engineering, Wallenberg Wood Science Center and Biopolymer Technology, Chalmers University of Technology, Kemivägen 4, Gothenburg 412 96, Sweden,; Department of Wood, Cellulose and Paper Research, University of Guadalajara, Guadalajara 44100, Mexico
| | - Maija Tenkanen
- Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 27, Helsinki 00014, Finland
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada,.
| | - Emma R Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada,.
| |
Collapse
|
20
|
Bajwa PK, Harrington S, Dashtban M, Lee H. Expression and Characterization of Glycosyl Hydrolase Family 115 α-Glucuronidase fromScheffersomyces stipitis. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1089/ind.2015.0031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Paramjit K. Bajwa
- School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - Sean Harrington
- School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - Mehdi Dashtban
- School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - Hung Lee
- School of Environmental Sciences, University of Guelph, Guelph, Canada
| |
Collapse
|
21
|
McKee LS, Sunner H, Anasontzis GE, Toriz G, Gatenholm P, Bulone V, Vilaplana F, Olsson L. A GH115 α-glucuronidase from Schizophyllum commune contributes to the synergistic enzymatic deconstruction of softwood glucuronoarabinoxylan. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:2. [PMID: 26734072 PMCID: PMC4700659 DOI: 10.1186/s13068-015-0417-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/15/2015] [Indexed: 05/11/2023]
Abstract
BACKGROUND Lignocellulosic biomass from softwood represents a valuable resource for the production of biofuels and bio-based materials as alternatives to traditional pulp and paper products. Hemicelluloses constitute an extremely heterogeneous fraction of the plant cell wall, as their molecular structures involve multiple monosaccharide components, glycosidic linkages, and decoration patterns. The complete enzymatic hydrolysis of wood hemicelluloses into monosaccharides is therefore a complex biochemical process that requires the activities of multiple degradative enzymes with complementary activities tailored to the structural features of a particular substrate. Glucuronoarabinoxylan (GAX) is a major hemicellulose component in softwood, and its structural complexity requires more enzyme specificities to achieve complete hydrolysis compared to glucuronoxylans from hardwood and arabinoxylans from grasses. RESULTS We report the characterisation of a recombinant α-glucuronidase (Agu115) from Schizophyllum commune capable of removing (4-O-methyl)-glucuronic acid ((Me)GlcA) residues from polymeric and oligomeric xylan. The enzyme is required for the complete deconstruction of spruce glucuronoarabinoxylan (GAX) and acts synergistically with other xylan-degrading enzymes, specifically a xylanase (Xyn10C), an α-l-arabinofuranosidase (AbfA), and a β-xylosidase (XynB). Each enzyme in this mixture showed varying degrees of potentiation by the other activities, likely due to increased physical access to their respective target monosaccharides. The exo-acting Agu115 and AbfA were unable to remove all of their respective target side chain decorations from GAX, but their specific activity was significantly boosted by the addition of the endo-Xyn10C xylanase. We demonstrate that the proposed enzymatic cocktail (Agu115 with AbfA, Xyn10C and XynB) achieved almost complete conversion of GAX to arabinofuranose (Araf), xylopyranose (Xylp), and MeGlcA monosaccharides. Addition of Agu115 to the enzymatic cocktail contributes specifically to 25 % of the conversion. However, traces of residual oligosaccharides resistant to this combination of enzymes were still present after deconstruction, due to steric hindrances to enzyme access to the substrate. CONCLUSIONS Our GH115 α-glucuronidase is capable of finely tailoring the molecular structure of softwood GAX, and contributes to the almost complete saccharification of GAX in synergy with other exo- and endo-xylan-acting enzymes. This has great relevance for the cost-efficient production of biofuels from softwood lignocellulose.
Collapse
Affiliation(s)
- Lauren S. McKee
- />Wallenberg Wood Science Centre, Division of Glycoscience, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91 Stockholm, Sweden
| | - Hampus Sunner
- />Wallenberg Wood Science Centre, Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - George E. Anasontzis
- />Wallenberg Wood Science Centre, Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Guillermo Toriz
- />Wallenberg Wood Science Centre, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- />Department of Wood, Cellulose and Paper Research, University of Guadalajara, Guadalajara, Mexico
| | - Paul Gatenholm
- />Wallenberg Wood Science Centre, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Vincent Bulone
- />Wallenberg Wood Science Centre, Division of Glycoscience, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91 Stockholm, Sweden
- />ARC Centre of Excellence in Plant Cell Walls and School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064 Australia
| | - Francisco Vilaplana
- />Wallenberg Wood Science Centre, Division of Glycoscience, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91 Stockholm, Sweden
| | - Lisbeth Olsson
- />Wallenberg Wood Science Centre, Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
22
|
Martínez PM, Appeldoorn MM, Gruppen H, Kabel MA. The two Rasamsonia emersonii α-glucuronidases, ReGH67 and ReGH115, show a different mode-of-action towards glucuronoxylan and glucuronoxylo-oligosaccharides. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:105. [PMID: 27195020 PMCID: PMC4870768 DOI: 10.1186/s13068-016-0519-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/05/2016] [Indexed: 05/11/2023]
Abstract
BACKGROUND The production of biofuels and biochemicals from grass-type plant biomass requires a complete utilisation of the plant cellulose and hemicellulosic xylan via enzymatic degradation to their constituent monosaccharides. Generally, physical and/or thermochemical pretreatments are performed to enable access for the subsequent added carbohydrate-degrading enzymes. Nevertheless, partly substituted xylan structures remain after pretreatment, in particular the ones substituted with (4-O-methyl-)glucuronic acids (UAme). Hence, α-glucuronidases play an important role in the degradation of UAmexylan structures facilitating the complete utilisation of plant biomass. The characterisation of α-glucuronidases is a necessity to find the right enzymes to improve degradation of recalcitrant UAmexylan structures. RESULTS The mode-of-action of two α-glucuronidases was demonstrated, both obtained from the fungus Rasamsonia emersonii; one belonging to the glycoside hydrolase (GH) family 67 (ReGH67) and the other to GH115 (ReGH115). Both enzymes functioned optimal at around pH 4 and 70 °C. ReGH67 was able to release UAme from UAme-substituted xylo-oligosaccharides (UAmeXOS), but only the UAme linked to the non-reducing end xylosyl residue was cleaved. In particular, in a mixture of oligosaccharides, UAmeXOS having a degree of polymerisation (DP) of two were hydrolysed to a further extent than longer UAmeXOS (DP 3-4). On the contrary, ReGH115 was able to release UAme from both polymeric UAmexylan and UAmeXOS. ReGH115 cleaved UAme from both internal and non-reducing end xylosyl residues, with the exception of UAme attached to the non-reducing end of a xylotriose oligosaccharide. CONCLUSION In this research, and for the first time, we define the mode-of-action of two α-glucuronidases from two different GH families both from the ascomycete R. emersonii. To date, only four α-glucuronidases classified in GH115 are characterised. ReGH67 showed limited substrate specificity towards only UAmeXOS, cleaving UAme only when attached to the non-reducing end xylosyl residue. ReGH115 was much less substrate specific compared to ReGH67, because UAme was released from both polymeric UAmexylan and UAmeXOS, from both internal and non-reducing end xylosyl residues. The characterisation of the mode-of-action of these two α-glucuronidases helps understand how R. emersonii attacks UAmexylan in plant biomass and the knowledge presented is valuable to improve enzyme cocktails for biorefinery applications.
Collapse
Affiliation(s)
- Patricia Murciano Martínez
- />Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Maaike M. Appeldoorn
- />DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| | - Harry Gruppen
- />Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Mirjam A. Kabel
- />Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
23
|
Cuskin F, Baslé A, Ladevèze S, Day AM, Gilbert HJ, Davies GJ, Potocki-Véronèse G, Lowe EC. The GH130 Family of Mannoside Phosphorylases Contains Glycoside Hydrolases That Target β-1,2-Mannosidic Linkages in Candida Mannan. J Biol Chem 2015; 290:25023-33. [PMID: 26286752 PMCID: PMC4599007 DOI: 10.1074/jbc.m115.681460] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 08/12/2015] [Indexed: 11/06/2022] Open
Abstract
The depolymerization of complex glycans is an important biological process that is of considerable interest to environmentally relevant industries. β-Mannose is a major component of plant structural polysaccharides and eukaryotic N-glycans. These linkages are primarily cleaved by glycoside hydrolases, although recently, a family of glycoside phosphorylases, GH130, have also been shown to target β-1,2- and β-1,4-mannosidic linkages. In these phosphorylases, bond cleavage was mediated by a single displacement reaction in which phosphate functions as the catalytic nucleophile. A cohort of GH130 enzymes, however, lack the conserved basic residues that bind the phosphate nucleophile, and it was proposed that these enzymes function as glycoside hydrolases. Here we show that two Bacteroides enzymes, BT3780 and BACOVA_03624, which lack the phosphate binding residues, are indeed β-mannosidases that hydrolyze β-1,2-mannosidic linkages through an inverting mechanism. Because the genes encoding these enzymes are located in genetic loci that orchestrate the depolymerization of yeast α-mannans, it is likely that the two enzymes target the β-1,2-mannose residues that cap the glycan produced by Candida albicans. The crystal structure of BT3780 in complex with mannose bound in the -1 and +1 subsites showed that a pair of glutamates, Glu(227) and Glu(268), hydrogen bond to O1 of α-mannose, and either of these residues may function as the catalytic base. The candidate catalytic acid and the other residues that interact with the active site mannose are conserved in both GH130 mannoside phosphorylases and β-1,2-mannosidases. Functional phylogeny identified a conserved lysine, Lys(199) in BT3780, as a key specificity determinant for β-1,2-mannosidic linkages.
Collapse
Affiliation(s)
- Fiona Cuskin
- From the Institute for Cell and Molecular Biosciences, Medical School Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Arnaud Baslé
- From the Institute for Cell and Molecular Biosciences, Medical School Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Simon Ladevèze
- Université de Toulouse, INSA/UPS/INP, LISBP, F-31077 Toulouse, France, CNRS, UMR5504 and INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France, and
| | - Alison M Day
- From the Institute for Cell and Molecular Biosciences, Medical School Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Harry J Gilbert
- From the Institute for Cell and Molecular Biosciences, Medical School Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom,
| | - Gideon J Davies
- the York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Gabrielle Potocki-Véronèse
- Université de Toulouse, INSA/UPS/INP, LISBP, F-31077 Toulouse, France, CNRS, UMR5504 and INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France, and
| | - Elisabeth C Lowe
- From the Institute for Cell and Molecular Biosciences, Medical School Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom,
| |
Collapse
|
24
|
Aalbers F, Turkenburg JP, Davies GJ, Dijkhuizen L, Lammerts van Bueren A. Structural and Functional Characterization of a Novel Family GH115 4-O-Methyl-α-Glucuronidase with Specificity for Decorated Arabinogalactans. J Mol Biol 2015; 427:3935-46. [PMID: 26186997 DOI: 10.1016/j.jmb.2015.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/07/2015] [Accepted: 07/07/2015] [Indexed: 12/16/2022]
Abstract
Glycoside hydrolases are clustered into families based on amino acid sequence similarities, and belonging to a particular family can infer biological activity of an enzyme. Family GH115 contains α-glucuronidases where several members have been shown to hydrolyze terminal α-1,2-linked glucuronic acid and 4-O-methylated glucuronic acid from the plant cell wall polysaccharide glucuronoxylan. Other GH115 enzymes show no activity on glucuronoxylan, and therefore, it has been proposed that family GH115 may be a poly-specific family. In this study, we reveal that a putative periplasmic GH115 from the human gut symbiont Bacteroides thetaiotaomicron, BtGH115A, hydrolyzes terminal 4-O-methyl-glucuronic acid residues from decorated arabinogalactan isolated from acacia tree. The three-dimensional structure of BtGH115A reveals that BtGH115A has the same domain architecture as the other structurally characterized member of this family, BoAgu115A; however the position of the C-terminal module is altered with respect to each individual enzyme. Phylogenetic analysis of GH115 amino sequences divides the family into distinct clades that may distinguish different substrate specificities. Finally, we show that BtGH115A α-glucuronidase activity is necessary for the sequential digestion of branched galactans from acacia gum by a galactan-β-1,3-galactosidase from family GH43; however, while B. thetaiotaomicron grows on larch wood arabinogalactan, the bacterium is not able to metabolize acacia gum arabinogalactan, suggesting that BtGH115A is involved in degradation of arabinogalactan fragments liberated by other microbial species in the gastrointestinal tract.
Collapse
Affiliation(s)
- Friso Aalbers
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, The Netherlands
| | - Johan P Turkenburg
- York Structural Biology Laboratory, Department of Chemistry, University of York, YO10 5DD, York, United Kingdom
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, University of York, YO10 5DD, York, United Kingdom
| | - Lubbert Dijkhuizen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, The Netherlands
| | - Alicia Lammerts van Bueren
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, The Netherlands; York Structural Biology Laboratory, Department of Chemistry, University of York, YO10 5DD, York, United Kingdom.
| |
Collapse
|
25
|
Glycan complexity dictates microbial resource allocation in the large intestine. Nat Commun 2015; 6:7481. [PMID: 26112186 PMCID: PMC4491172 DOI: 10.1038/ncomms8481] [Citation(s) in RCA: 302] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 05/13/2015] [Indexed: 12/20/2022] Open
Abstract
The structure of the human gut microbiota is controlled primarily through the degradation of complex dietary carbohydrates, but the extent to which carbohydrate breakdown products are shared between members of the microbiota is unclear. We show here, using xylan as a model, that sharing the breakdown products of complex carbohydrates by key members of the microbiota, such as Bacteroides ovatus, is dependent on the complexity of the target glycan. Characterization of the extensive xylan degrading apparatus expressed by B. ovatus reveals that the breakdown of the polysaccharide by the human gut microbiota is significantly more complex than previous models suggested, which were based on the deconstruction of xylans containing limited monosaccharide side chains. Our report presents a highly complex and dynamic xylan degrading apparatus that is fine-tuned to recognize the different forms of the polysaccharide presented to the human gut microbiota. The human gut microbiota helps us to degrade complex dietary carbohydrates such as xylan and, in turn, the carbohydrate breakdown products control the structure of the microbiota. Here the authors characterize the xylan-degrading apparatus of a key member of the gut microbiota, Bacteroides ovatus.
Collapse
|
26
|
Cobucci-Ponzano B, Strazzulli A, Iacono R, Masturzo G, Giglio R, Rossi M, Moracci M. Novel thermophilic hemicellulases for the conversion of lignocellulose for second generation biorefineries. Enzyme Microb Technol 2015. [PMID: 26215346 DOI: 10.1016/j.enzmictec.2015.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The biotransformation of lignocellulose biomasses into fermentable sugars is a very complex procedure including, as one of the most critical steps, the (hemi) cellulose hydrolysis by specific enzymatic cocktails. We explored here, the potential of stable glycoside hydrolases from thermophilic organisms, so far not used in commercial enzymatic preparations, for the conversion of glucuronoxylan, the major hemicellulose of several energy crops. Searches in the genomes of thermophilic bacteria led to the identification, efficient production, and detailed characterization of novel xylanase and α-glucuronidase from Alicyclobacillus acidocaldarius (GH10-XA and GH67-GA, respectively) and a α-glucuronidase from Caldicellulosiruptor saccharolyticus (GH67-GC). Remarkably, GH10-XA, if compared to other thermophilic xylanases from this family, coupled good specificity on beechwood xylan and the best stability at 65 °C (3.5 days). In addition, GH67-GC was the most stable α-glucuronidases from this family and the first able to hydrolyse both aldouronic acid and aryl-α-glucuronic acid substrates. These enzymes, led to the very efficient hydrolysis of beechwood xylan by using 7- to 9-fold less protein (concentrations <0.3 μM) and in much less reaction time (2h vs 12h) if compared to other known biotransformations catalyzed by thermophilic enzymes. In addition, remarkably, together with a thermophilic β-xylosidase, they catalyzed the production of xylose from the smart cooking pre-treated biomass of one of the most promising energy crops for second generation biorefineries. We demonstrated that search by the CAZy Data Bank of currently available genomes and detailed enzymatic characterization of recombinant enzymes allow the identification of glycoside hydrolases with novel and interesting properties and applications.
Collapse
Affiliation(s)
- Beatrice Cobucci-Ponzano
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy.
| | - Andrea Strazzulli
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy.
| | - Roberta Iacono
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy.
| | - Giuseppe Masturzo
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy.
| | - Rosa Giglio
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy.
| | - Mosè Rossi
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy.
| | - Marco Moracci
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy.
| |
Collapse
|
27
|
Val-Cid C, Biarnés X, Faijes M, Planas A. Structural-Functional Analysis Reveals a Specific Domain Organization in Family GH20 Hexosaminidases. PLoS One 2015; 10:e0128075. [PMID: 26024355 PMCID: PMC4449183 DOI: 10.1371/journal.pone.0128075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 04/23/2015] [Indexed: 12/20/2022] Open
Abstract
Hexosaminidases are involved in important biological processes catalyzing the hydrolysis of N-acetyl-hexosaminyl residues in glycosaminoglycans and glycoconjugates. The GH20 enzymes present diverse domain organizations for which we propose two minimal model architectures: Model A containing at least a non-catalytic GH20b domain and the catalytic one (GH20) always accompanied with an extra α-helix (GH20b-GH20-α), and Model B with only the catalytic GH20 domain. The large Bifidobacterium bifidum lacto-N-biosidase was used as a model protein to evaluate the minimal functional unit due to its interest and structural complexity. By expressing different truncated forms of this enzyme, we show that Model A architectures cannot be reduced to Model B. In particular, there are two structural requirements general to GH20 enzymes with Model A architecture. First, the non-catalytic domain GH20b at the N-terminus of the catalytic GH20 domain is required for expression and seems to stabilize it. Second, the substrate-binding cavity at the GH20 domain always involves a remote element provided by a long loop from the catalytic domain itself or, when this loop is short, by an element from another domain of the multidomain structure or from the dimeric partner. Particularly, the lacto-N-biosidase requires GH20b and the lectin-like domain at the N- and C-termini of the catalytic GH20 domain to be fully soluble and functional. The lectin domain provides this remote element to the active site. We demonstrate restoration of activity of the inactive GH20b-GH20-α construct (model A architecture) by a complementation assay with the lectin-like domain. The engineering of minimal functional units of multidomain GH20 enzymes must consider these structural requirements.
Collapse
Affiliation(s)
- Cristina Val-Cid
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain
| | - Xevi Biarnés
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain
| | - Magda Faijes
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain
| | - Antoni Planas
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain
| |
Collapse
|
28
|
Septiningrum K, Ohi H, Waeonukul R, Pason P, Tachaapaikoon C, Ratanakhanokchai K, Sermsathanaswadi J, Deng L, Prawitwong P, Kosugi A. The GH67 α-glucuronidase of Paenibacillus curdlanolyticus B-6 removes hexenuronic acid groups and facilitates biodegradation of the model xylooligosaccharide hexenuronosyl xylotriose. Enzyme Microb Technol 2015; 71:28-35. [PMID: 25765307 DOI: 10.1016/j.enzmictec.2015.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/25/2014] [Accepted: 01/19/2015] [Indexed: 10/24/2022]
Abstract
4-O-Methylglucuronic acid (MeGlcA) side groups attached to the xylan backbone through α-1,2 linkages are converted to hexenuronic acid (HexA) during alkaline pulping. α-Glucuronidase (EC 3.2.1.139) hydrolyzes 1,2-linked MeGlcA from xylooligosaccharides. To determine whether α-glucuronidase can also hydrolyze HexA-decorated xylooligosaccharides, a gene encoding α-glucuronidase (AguA) was cloned from Paenibacillus curdlanolyticus B-6. The purified protein degraded hexenuronosyl xylotriose (ΔX3), a model substrate prepared from kraft pulp. AguA released xylotriose and HexA from ΔX3, but the Vmax and kcat values for ΔX3 were lower than those for MeGlcA, indicating that HexA side groups may affect the hydrolytic activity. To explore the potential for biological bleaching, ΔX3 degradation was performed using intracellular extract from P. curdlanolyticus B-6. The intracellular extract, with synergistic α-glucuronidase and β-xylosidase activities, degraded ΔX3 to xylose and HexA. These results indicate that α-glucuronidase can be used to remove HexA from ΔX3 derived from pulp, reducing the need for chemical treatments in the pulping process.
Collapse
Affiliation(s)
- Krisna Septiningrum
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - Hiroshi Ohi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Rattiya Waeonukul
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok 10150, Thailand
| | - Patthra Pason
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok 10150, Thailand
| | - Chakrit Tachaapaikoon
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok 10150, Thailand
| | - Khanok Ratanakhanokchai
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok 10150, Thailand
| | - Junjarus Sermsathanaswadi
- Department of Chemical Technology, Faculty of Science and Technology, Suan Dusit Rajabhat University, 295 Rajasrima Road, Dusit, Bangkok 10300, Thailand
| | - Lan Deng
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - Panida Prawitwong
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - Akihiko Kosugi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan.
| |
Collapse
|
29
|
Wang X, Liu Y, Wang C, Feng X, Li C. Properties and structures of β-glucuronidases with different transformation types of glycyrrhizin. RSC Adv 2015. [DOI: 10.1039/c5ra11484e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Substrate recognition mechanisms of three fungi β-glucuronidases with different types of GL hydrolysis were analyzed.
Collapse
Affiliation(s)
- Xiaoyan Wang
- School of Chemical Engineering and Technology
- State Key Laboratory of System Bio-engineering of Ministry of Education
- Tianjin University
- Tianjin 300072
- China
| | - Yanli Liu
- School of Biomedicine
- Beijing City University
- Beijing 100081
- China
| | - Chao Wang
- School of Life Science
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Xudong Feng
- School of Life Science
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Chun Li
- School of Chemical Engineering and Technology
- State Key Laboratory of System Bio-engineering of Ministry of Education
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
30
|
Optimisation and scale-up of α-glucuronidase production by recombinant Saccharomyces cerevisiae in aerobic fed-batch culture with constant growth rate. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Rogowski A, Baslé A, Farinas CS, Solovyova A, Mortimer JC, Dupree P, Gilbert HJ, Bolam DN. Evidence that GH115 α-glucuronidase activity, which is required to degrade plant biomass, is dependent on conformational flexibility. J Biol Chem 2013; 289:53-64. [PMID: 24214982 PMCID: PMC3879575 DOI: 10.1074/jbc.m113.525295] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The microbial degradation of the plant cell wall is an important biological process that is highly relevant to environmentally significant industries such as the bioenergy and biorefining sectors. A major component of the wall is glucuronoxylan, a β1,4-linked xylose polysaccharide that is decorated with α-linked glucuronic and/or methylglucuronic acid (GlcA/MeGlcA). Recently three members of a glycoside hydrolase family, GH115, were shown to hydrolyze MeGlcA side chains from the internal regions of xylan, an activity that has not previously been described. Here we show that a dominant member of the human microbiota, Bacteroides ovatus, contains a GH115 enzyme, BoAgu115A, which displays glucuronoxylan α-(4-O-methyl)-glucuronidase activity. The enzyme is significantly more active against substrates in which the xylose decorated with GlcA/MeGlcA is flanked by one or more xylose residues. The crystal structure of BoAgu115A revealed a four-domain protein in which the active site, comprising a pocket that abuts a cleft-like structure, is housed in the second domain that adopts a TIM barrel-fold. The third domain, a five-helical bundle, and the C-terminal β-sandwich domain make inter-chain contacts leading to protein dimerization. Informed by the structure of the enzyme in complex with GlcA in its open ring form, in conjunction with mutagenesis studies, the potential substrate binding and catalytically significant amino acids were identified. Based on the catalytic importance of residues located on a highly flexible loop, the enzyme is required to undergo a substantial conformational change to form a productive Michaelis complex with glucuronoxylan.
Collapse
Affiliation(s)
- Artur Rogowski
- From the Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH United Kingdom and
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Déjean G, Blanvillain-Baufumé S, Boulanger A, Darrasse A, de Bernonville TD, Girard AL, Carrére S, Jamet S, Zischek C, Lautier M, Solé M, Büttner D, Jacques MA, Lauber E, Arlat M. The xylan utilization system of the plant pathogen Xanthomonas campestris pv campestris controls epiphytic life and reveals common features with oligotrophic bacteria and animal gut symbionts. THE NEW PHYTOLOGIST 2013; 198:899-915. [PMID: 23442088 DOI: 10.1111/nph.12187] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/09/2013] [Indexed: 06/01/2023]
Abstract
Xylan is a major structural component of plant cell wall and the second most abundant plant polysaccharide in nature. Here, by combining genomic and functional analyses, we provide a comprehensive picture of xylan utilization by Xanthomonas campestris pv campestris (Xcc) and highlight its role in the adaptation of this epiphytic phytopathogen to the phyllosphere. The xylanolytic activity of Xcc depends on xylan-deconstruction enzymes but also on transporters, including two TonB-dependent outer membrane transporters (TBDTs) which belong to operons necessary for efficient growth in the presence of xylo-oligosaccharides and for optimal survival on plant leaves. Genes of this xylan utilization system are specifically induced by xylo-oligosaccharides and repressed by a LacI-family regulator named XylR. Part of the xylanolytic machinery of Xcc, including TBDT genes, displays a high degree of conservation with the xylose-regulon of the oligotrophic aquatic bacterium Caulobacter crescentus. Moreover, it shares common features, including the presence of TBDTs, with the xylan utilization systems of Bacteroides ovatus and Prevotella bryantii, two gut symbionts. These similarities and our results support an important role for TBDTs and xylan utilization systems for bacterial adaptation in the phyllosphere, oligotrophic environments and animal guts.
Collapse
Affiliation(s)
- Guillaume Déjean
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Servane Blanvillain-Baufumé
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Alice Boulanger
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Armelle Darrasse
- INRA, UMR 1345, Institut de Recherche en Horticulture et Semences (IRHS), 42 rue Georges Morel, 49071, Beaucouzé CEDEX 01, France
| | - Thomas Dugé de Bernonville
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Anne-Laure Girard
- INRA, UMR 1345, Institut de Recherche en Horticulture et Semences (IRHS), 42 rue Georges Morel, 49071, Beaucouzé CEDEX 01, France
| | - Sébastien Carrére
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Stevie Jamet
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Claudine Zischek
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Martine Lautier
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
- Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Magali Solé
- Institut für Biologie, Bereich Genetik, Martin-Luther-Universität Halle-Wittenberg, D-06099, Halle (Saale), Germany
| | - Daniela Büttner
- Institut für Biologie, Bereich Genetik, Martin-Luther-Universität Halle-Wittenberg, D-06099, Halle (Saale), Germany
| | - Marie-Agnès Jacques
- INRA, UMR 1345, Institut de Recherche en Horticulture et Semences (IRHS), 42 rue Georges Morel, 49071, Beaucouzé CEDEX 01, France
| | - Emmanuelle Lauber
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Matthieu Arlat
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
- Université de Toulouse, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
33
|
Rosa L, Ravanal MC, Mardones W, Eyzaguirre J. Characterization of a recombinant α-glucuronidase from Aspergillus fumigatus. Fungal Biol 2013; 117:380-7. [DOI: 10.1016/j.funbio.2013.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 03/05/2013] [Accepted: 04/07/2013] [Indexed: 11/16/2022]
|
34
|
Wang C, Guo XX, Wang XY, Qi F, Feng SJ, Li C, Zhou XH. Isolation and characterization of three fungi with the potential of transforming glycyrrhizin. World J Microbiol Biotechnol 2012; 29:781-8. [PMID: 23247917 DOI: 10.1007/s11274-012-1233-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 12/03/2012] [Indexed: 10/27/2022]
Abstract
Three fungi with different types of transformation of glycyrrhizin (GL) were isolated from the soil samples of glycyrrhiza glabra planting area in China. According to their morphologies and 18 S rDNA gene sequence analysis, the three fungi were identified and named as Penicillium purpurogenum Li-3, Aspergillus terreus Li-20 and Aspergillus ustus Li-62. Transforming products analysis by TLC and HPLC-MS indicated that P. purpurogenum Li-3, A. terreus Li-20 and A. ustus Li-62 could stably transform GL into GAMG, GAMG and GA, and GA, respectively. P. purpurogenum Li-3 was especially valuable to directly prepare GAMG for applications in the pharmaceutical industry.
Collapse
Affiliation(s)
- Chao Wang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Isolation and characterization of a novel GH67 α-glucuronidase from a mixed culture. ACTA ACUST UNITED AC 2012; 39:1245-51. [DOI: 10.1007/s10295-012-1128-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/30/2012] [Indexed: 10/28/2022]
Abstract
Abstract
Hemicelluloses represent a large reservoir of carbohydrates that can be utilized for renewable products. Hydrolysis of hemicellulose into simple sugars is inhibited by its various chemical substituents. The glucuronic acid substituent is removed by the enzyme α-glucuronidase. A gene (deg75-AG) encoding a putative α-glucuronidase enzyme was isolated from a culture of mixed compost microorganisms. The gene was subcloned into a prokaryotic vector, and the enzyme was overexpressed and biochemically characterized. The DEG75-AG enzyme had optimum activity at 45 °C. Unlike other α-glucuronidases, the DEG75-AG had a more basic pH optimum of 7–8. When birchwood xylan was used as substrate, the addition of DEG75-AG increased hydrolysis twofold relative to xylanase alone.
Collapse
|
36
|
Inverting character of family GH115 α-glucuronidases. FEBS Lett 2010; 584:4063-8. [DOI: 10.1016/j.febslet.2010.08.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/21/2010] [Accepted: 08/19/2010] [Indexed: 11/21/2022]
|
37
|
Gilbert HJ. The biochemistry and structural biology of plant cell wall deconstruction. PLANT PHYSIOLOGY 2010; 153:444-55. [PMID: 20406913 PMCID: PMC2879781 DOI: 10.1104/pp.110.156646] [Citation(s) in RCA: 221] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 04/17/2010] [Indexed: 05/18/2023]
Affiliation(s)
- Harry J Gilbert
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA.
| |
Collapse
|
38
|
Zhu Y, Suits MDL, Thompson AJ, Chavan S, Dinev Z, Dumon C, Smith N, Moremen KW, Xiang Y, Siriwardena A, Williams SJ, Gilbert HJ, Davies GJ. Mechanistic insights into a Ca2+-dependent family of alpha-mannosidases in a human gut symbiont. Nat Chem Biol 2009; 6:125-32. [PMID: 20081828 DOI: 10.1038/nchembio.278] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 10/30/2009] [Indexed: 11/09/2022]
Abstract
Colonic bacteria, exemplified by Bacteroides thetaiotaomicron, play a key role in maintaining human health by harnessing large families of glycoside hydrolases (GHs) to exploit dietary polysaccharides and host glycans as nutrients. Such GH family expansion is exemplified by the 23 family GH92 glycosidases encoded by the B. thetaiotaomicron genome. Here we show that these are alpha-mannosidases that act via a single displacement mechanism to utilize host N-glycans. The three-dimensional structure of two GH92 mannosidases defines a family of two-domain proteins in which the catalytic center is located at the domain interface, providing acid (glutamate) and base (aspartate) assistance to hydrolysis in a Ca(2+)-dependent manner. The three-dimensional structures of the GH92s in complex with inhibitors provide insight into the specificity, mechanism and conformational itinerary of catalysis. Ca(2+) plays a key catalytic role in helping distort the mannoside away from its ground-state (4)C(1) chair conformation toward the transition state.
Collapse
Affiliation(s)
- Yanping Zhu
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Dodd D, Cann IKO. Enzymatic deconstruction of xylan for biofuel production. GLOBAL CHANGE BIOLOGY. BIOENERGY 2009; 1:2-17. [PMID: 20431716 PMCID: PMC2860967 DOI: 10.1111/j.1757-1707.2009.01004.x] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The combustion of fossil-derived fuels has a significant impact on atmospheric carbon dioxide (CO(2)) levels and correspondingly is an important contributor to anthropogenic global climate change. Plants have evolved photosynthetic mechanisms in which solar energy is used to fix CO(2) into carbohydrates. Thus, combustion of biofuels, derived from plant biomass, can be considered a potentially carbon neutral process. One of the major limitations for efficient conversion of plant biomass to biofuels is the recalcitrant nature of the plant cell wall, which is composed mostly of lignocellulosic materials (lignin, cellulose, and hemicellulose). The heteropolymer xylan represents the most abundant hemicellulosic polysaccharide and is composed primarily of xylose, arabinose, and glucuronic acid. Microbes have evolved a plethora of enzymatic strategies for hydrolyzing xylan into its constituent sugars for subsequent fermentation to biofuels. Therefore, microorganisms are considered an important source of biocatalysts in the emerging biofuel industry. To produce an optimized enzymatic cocktail for xylan deconstruction, it will be valuable to gain insight at the molecular level of the chemical linkages and the mechanisms by which these enzymes recognize their substrates and catalyze their reactions. Recent advances in genomics, proteomics, and structural biology have revolutionized our understanding of the microbial xylanolytic enzymes. This review focuses on current understanding of the molecular basis for substrate specificity and catalysis by enzymes involved in xylan deconstruction.
Collapse
Affiliation(s)
- Dylan Dodd
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | | |
Collapse
|
40
|
Cerqueira NMFSA, Bras NF, Fernandes PA, Ramos MJ. MADAMM: A multistaged docking with an automated molecular modeling protocol. Proteins 2009; 74:192-206. [DOI: 10.1002/prot.22146] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Emami K, Topakas E, Nagy T, Henshaw J, Jackson KA, Nelson KE, Mongodin EF, Murray JW, Lewis RJ, Gilbert HJ. Regulation of the xylan-degrading apparatus of Cellvibrio japonicus by a novel two-component system. J Biol Chem 2008; 284:1086-96. [PMID: 18922794 DOI: 10.1074/jbc.m805100200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The microbial degradation of lignocellulose biomass is not only an important biological process but is of increasing industrial significance in the bioenergy sector. The mechanism by which the plant cell wall, an insoluble composite structure, activates the extensive repertoire of microbial hydrolytic enzymes required to catalyze its degradation is poorly understood. Here we have used a transposon mutagenesis strategy to identify a genetic locus, consisting of two genes that modulate the expression of xylan side chain-degrading enzymes in the saprophytic bacterium Cellvibrio japonicus. Significantly, the locus encodes a two-component signaling system, designated AbfS (sensor histidine kinase) and AbfR (response regulator). The AbfR/S two-component system is required to activate the expression of the suite of enzymes that remove the numerous side chains from xylan, but not the xylanases that hydrolyze the beta1,4-linked xylose polymeric backbone of this polysaccharide. Studies on the recombinant sensor domain of AbfS (AbfS(SD)) showed that it bound to decorated xylans and arabinoxylo-oligosaccharides, but not to undecorated xylo-oligosaccharides or other plant structural polysaccharides/oligosaccharides. The crystal structure of AbfS(SD) was determined to a resolution of 2.6A(.) The overall fold of AbfS(SD) is that of a classical Per Arndt Sim domain with a central antiparallel four-stranded beta-sheet flanked by alpha-helices. Our data expand the number of molecules known to bind to the sensor domain of two-component histidine kinases to include complex carbohydrates. The biological rationale for a regulatory system that induces enzymes that remove the side chains of xylan, but not the hydrolases that cleave the backbone of the polysaccharide, is discussed.
Collapse
Affiliation(s)
- Kaveh Emami
- Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Simultaneous production of endo-β-1,4-xylanase and branched xylooligosaccharides by Thermomyces lanuginosus. J Biotechnol 2008; 137:34-43. [DOI: 10.1016/j.jbiotec.2008.07.1789] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 06/25/2008] [Accepted: 07/07/2008] [Indexed: 11/20/2022]
|
43
|
Structure of N-acetyl-β-D-glucosaminidase (GcnA) from the Endocarditis Pathogen Streptococcus gordonii and its Complex with the Mechanism-based Inhibitor NAG-thiazoline. J Mol Biol 2008; 377:104-16. [DOI: 10.1016/j.jmb.2007.09.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 09/11/2007] [Indexed: 11/20/2022]
|
44
|
Understanding the structural basis for substrate and inhibitor recognition in eukaryotic GH11 xylanases. J Mol Biol 2007; 375:1293-305. [PMID: 18078955 DOI: 10.1016/j.jmb.2007.11.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 11/01/2007] [Accepted: 11/02/2007] [Indexed: 11/21/2022]
Abstract
Endo-beta1,4-xylanases (xylanases) hydrolyse the beta1,4 glycosidic bonds in the backbone of xylan. Although xylanases from glycoside hydrolase family 11 (GH11) have been extensively studied, several issues remain unresolved. Thus, the mechanism by which these enzymes hydrolyse decorated xylans is unclear and the structural basis for the variation in catalytic activity within this family is unknown. Furthermore, the mechanism for the differences in the inhibition of fungal GH11 enzymes by the wheat protein XIP-I remains opaque. To address these issues we report the crystal structure and biochemical properties of the Neocallimastix patriciarum xylanase NpXyn11A, which displays unusually high catalytic activity and is one of the few fungal GH11 proteins not inhibited by XIP-I. Although the structure of NpXyn11A could not be determined in complex with substrates, we have been able to investigate how GH11 enzymes hydrolyse decorated substrates by solving the crystal structure of a second GH11 xylanase, EnXyn11A (encoded by an environmental DNA sample), bound to ferulic acid-1,5-arabinofuranose-alpha1,3-xylotriose (FAX(3)). The crystal structure of the EnXyn11A-FAX(3) complex shows that solvent exposure of the backbone xylose O2 and O3 groups at subsites -3 and +2 allow accommodation of alpha1,2-linked 4-methyl-D-glucuronic acid and L-arabinofuranose side chains. Furthermore, the ferulated arabinofuranose side chain makes hydrogen bonds and hydrophobic interactions at the +2 subsite, indicating that the decoration may represent a specificity determinant at this aglycone subsite. The structure of NpXyn11A reveals potential -3 and +3 subsites that are kinetically significant. The extended substrate-binding cleft of NpXyn11A, compared to other GH11 xylanases, may explain why the Neocallimastix enzyme displays unusually high catalytic activity. Finally, the crystal structure of NpXyn11A shows that the resistance of the enzyme to XIP-I is not due solely to insertions in the loop connecting beta strands 11 and 12, as suggested previously, but is highly complex.
Collapse
|
45
|
Cloning, characterisation and expression analysis of α-glucuronidase from the thermophilic fungus Talaromyces emersonii. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2007.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Maslen SL, Goubet F, Adam A, Dupree P, Stephens E. Structure elucidation of arabinoxylan isomers by normal phase HPLC–MALDI-TOF/TOF-MS/MS. Carbohydr Res 2007; 342:724-35. [PMID: 17208205 DOI: 10.1016/j.carres.2006.12.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 11/16/2006] [Accepted: 12/11/2006] [Indexed: 11/28/2022]
Abstract
Normal phase-high performance liquid chromatography (NP-HPLC) coupled to matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight (MALDI-TOF/TOF) tandem mass spectrometry is evaluated for the detailed structural characterization of various isomers of arabinoxylan (AX) oligosaccharides produced from endo-beta-(1-->4)-xylanase (endoxylanase) digestion of wheat AX. The fragmentation characteristics of these oligosaccharides upon MALDI-TOF/TOF high-energy collision induced dissociation (CID) were investigated using purified AX oligosaccharide standards labeled at the reducing end with 2-aminobenzoic acid (2-AA). A variety of cross-ring cleavages and 'elimination' ions in the fragment ion spectra provided extensive structural information, including Araf substitution patterns along the xylan backbone and comprehensive linkage assignment. The off-line coupling of this MALDI-CID technique to capillary normal phase HPLC enabled the separation and identification of isomeric oligosaccharides (DP 4-8) produced by endoxylanase digestion of AX. Furthermore, this technique was used to characterize structurally different isomeric AX oligosaccharides produced by endoxylanase enzymes with different substrate specificities.
Collapse
Affiliation(s)
- Sarah L Maslen
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | | | | | | | |
Collapse
|
47
|
St John FJ, Rice JD, Preston JF. Characterization of XynC from Bacillus subtilis subsp. subtilis strain 168 and analysis of its role in depolymerization of glucuronoxylan. J Bacteriol 2006; 188:8617-26. [PMID: 17028274 PMCID: PMC1698249 DOI: 10.1128/jb.01283-06] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 09/28/2006] [Indexed: 11/20/2022] Open
Abstract
Secretion of xylanase activities by Bacillus subtilis 168 supports the development of this well-defined genetic system for conversion of methylglucuronoxylan (MeGAXn [where n represents the number of xylose residues]) in the hemicellulose component of lignocellulosics to biobased products. In addition to the characterized glycosyl hydrolase family 11 (GH 11) endoxylanase designated XynA, B. subtilis 168 secretes a second endoxylanase as the translated product of the ynfF gene. This sequence shows remarkable homology to the GH 5 endoxylanase secreted by strains of Erwinia chrysanthemi. To determine its properties and potential role in the depolymerization of MeGAXn, the ynfF gene was cloned and overexpressed to provide an endoxylanase, designated XynC, which was characterized with respect to substrate preference, kinetic properties, and product formation. With different sources of MeGAXn as the substrate, the specific activity increased with increasing methylglucuronosyl substitutions on the beta-1,4-xylan chain. With MeGAXn from sweetgum as a preferred substrate, XynC exhibited a Vmax of 59.9 units/mg XynC, a Km of 1.63 mg MeGAXn/ml, and a k(cat) of 2,635/minute at pH 6.0 and 37 degrees C. Matrix-assisted laser desorption ionization-time of flight mass spectrometry and 1H nuclear magnetic resonance data revealed that each hydrolysis product has a single glucuronosyl substitution penultimate to the reducing terminal xylose. This detailed analysis of XynC from B. subtilis 168 defines the unique depolymerization process catalyzed by the GH 5 endoxylanases. Based upon product analysis, B. subtilis 168 secretes both XynA and XynC. Expression of xynA was subject to MeGAXn induction; xynC expression was constitutive with growth on different substrates. Translation and secretion of both GH 11 and GH 5 endoxylanases by the fully sequenced and genetically malleable B. subtilis 168 recommends this bacterium for the introduction of genes required for the complete utilization of products of the enzyme-catalyzed depolymerization of MeGAXn. B. subtilis may serve as a model platform for development of gram-positive biocatalysts for conversion of lignocellulosic materials to renewable fuels and chemicals.
Collapse
Affiliation(s)
- Franz J St John
- Department of Microbiology and Cell Science, University of Florida, Box 110700, Bldg. 981, Museum Rd., Gainesville, FL 32611, USA
| | | | | |
Collapse
|
48
|
Taylor E, Smith N, Turkenburg J, D'Souza S, Gilbert H, Davies G. Structural insight into the ligand specificity of a thermostable family 51 arabinofuranosidase, Araf51, from Clostridium thermocellum. Biochem J 2006; 395:31-7. [PMID: 16336192 PMCID: PMC1409695 DOI: 10.1042/bj20051780] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The digestion of the plant cell wall requires the concerted action of a diverse repertoire of enzyme activities. An important component of these hydrolase consortia are arabinofuranosidases, which release L-arabinofuranose moieties from a range of plant structural polysaccharides. The anaerobic bacterium Clostridium thermocellum, a highly efficient plant cell wall degrader, possesses a single alpha-L-arabinofuranosidase (EC 3.2.1.55), CtAraf51A, located in GH51 (glycoside hydrolase family 51). The crystal structure of the enzyme has been solved in native form and in 'Michaelis' complexes with both alpha-1,5-linked arabinotriose and alpha-1,3 arabinoxylobiose, both forming a hexamer in the asymmetric unit. Kinetic studies reveal that CtAraf51A, in contrast with well-characterized GH51 enzymes including the Cellvibrio japonicus enzyme [Beylot, McKie, Voragen, Doeswijk-Voragen and Gilbert (2001) Biochem. J. 358, 607-614], catalyses the hydrolysis of alpha-1,5-linked arabino-oligosaccharides and the alpha-1,3 arabinosyl side chain decorations of xylan with equal efficiency. The paucity of direct hydrogen bonds with the aglycone moiety and the flexible conformation adopted by Trp(178), which stacks against the sugar at the +1 subsite, provide a structural explanation for the plasticity in substrate specificity displayed by the clostridial arabinofuranosidase.
Collapse
Affiliation(s)
- Edward J. Taylor
- *York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW, U.K
| | - Nicola L. Smith
- †Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, U.K
| | - Johan P. Turkenburg
- *York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW, U.K
| | - Simone D'Souza
- *York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW, U.K
| | - Harry J. Gilbert
- †Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, U.K
| | - Gideon J. Davies
- *York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
49
|
de Wet B, van Zyl W, Prior B. Characterization of the Aureobasidium pullulans α-glucuronidase expressed in Saccharomyces cerevisiae. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2005.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
Stjohn FJ, Rice JD, Preston JF. Paenibacillus sp. strain JDR-2 and XynA1: a novel system for methylglucuronoxylan utilization. Appl Environ Microbiol 2006; 72:1496-506. [PMID: 16461704 PMCID: PMC1392964 DOI: 10.1128/aem.72.2.1496-1506.2006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Accepted: 12/01/2005] [Indexed: 11/20/2022] Open
Abstract
Environmental and economic factors predicate the need for efficient processing of renewable sources of fuels and chemicals. To fulfill this need, microbial biocatalysts must be developed to efficiently process the hemicellulose fraction of lignocellulosic biomass for fermentation of pentoses. The predominance of methylglucuronoxylan (MeGAXn), a beta-1,4 xylan in which 10% to 20% of the xylose residues are substituted with alpha-1,2-4-O-methylglucuronate residues, in hemicellulose fractions of hardwood and crop residues has made this a target for processing and fermentation. A Paenibacillus sp. (strain JDR-2) has been isolated and characterized for its ability to efficiently utilize MeGAXn. A modular xylanase (XynA1) of glycosyl hydrolase family 10 (GH 10) was identified through DNA sequence analysis that consists of a triplicate family 22 carbohydrate binding module followed by a GH 10 catalytic domain followed by a single family 9 carbohydrate binding module and concluding with C-terminal triplicate surface layer homology (SLH) domains. Immunodetection of the catalytic domain of XynA1 (XynA1 CD) indicates that the enzyme is associated with the cell wall fraction, supporting an anchoring role for the SLH modules. With MeGAXn as substrate, XynA1 CD generated xylobiose and aldotetrauronate (MeGAX3) as predominant products. The inability to detect depolymerization products in medium during exponential growth of Paenibacillus sp. strain JDR-2 on MeGAXn, as well as decreased growth rate and yield with XynA1 CD-generated xylooligosaccharides and aldouronates as substrates, indicates that XynA1 catalyzes a depolymerization process coupled to product assimilation. This depolymerization/assimilation system may be utilized for development of biocatalysts to efficiently convert MeGAXn to alternative fuels and biobased products.
Collapse
Affiliation(s)
- Franz J Stjohn
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700, USA
| | | | | |
Collapse
|