1
|
Kumar H, Bajaj A, Kumar P, Aggarwal R, Chalia V, Pradhan RK, Yadav R, Sinha S, Agarwal V, Harries W, Dua M, Stroud RM, Johri AK. Biochemical characterization of a high affinity phosphate transporter (PiPT) from root endophyte fungus Piriformospora indica. Protein Expr Purif 2024; 223:106559. [PMID: 39089400 DOI: 10.1016/j.pep.2024.106559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
We have functionally characterized the high-affinity phosphate transporter (PiPT) from the root endophyte fungus Piriformospora indica. PiPT belongs to the major facilitator superfamily (MFS). PiPT protein was purified by affinity chromatography (Ni-NTA) and Size Exclusion Chromatography (SEC). The functionality of solubilized PiPT was determined in detergent-solubilized state by fluorescence quenching and in proteoliposomes. In the fluorescence quenching assay, PiPT exhibited a saturation concentration of approximately 2 μM, at a pH of 4.5. Proteoliposomes of size 121.6 nm radius, showed transportation of radioactive phosphate. Vmax was measured to be 232.2 ± 11 pmol/min/mg protein. We have found Km to be 45.8 ± 6.2 μM suggesting high affinity towards phosphate.
Collapse
Affiliation(s)
- Hemant Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India; Department of Biochemistry and Biophysics, University of California San Francisco, Mission bay, San Francisco, CA, 94158-2517, USA; Bapubhai Desaibhai Patel Institute of Paramedical Science, Charotar University of Science and Technology, Anand, Gujarat, 388421, India
| | - Aayushi Bajaj
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Paras Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rupesh Aggarwal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Vinayak Chalia
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | | | - Ritu Yadav
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shalini Sinha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Vishad Agarwal
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - William Harries
- Department of Biochemistry and Biophysics, University of California San Francisco, Mission bay, San Francisco, CA, 94158-2517, USA
| | - Meenakshi Dua
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, University of California San Francisco, Mission bay, San Francisco, CA, 94158-2517, USA
| | - Atul Kumar Johri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
2
|
The ATP-Binding Cassette (ABC) Transport Systems in Mycobacterium tuberculosis: Structure, Function, and Possible Targets for Therapeutics. BIOLOGY 2020; 9:biology9120443. [PMID: 33291531 PMCID: PMC7761784 DOI: 10.3390/biology9120443] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 12/22/2022]
Abstract
Simple Summary Mycobacterium tuberculosis is a bacterium of great medical importance because it causes tuberculosis, a disease that affects millions of people worldwide. Two important features are related to this bacterium: its ability to infect and survive inside the host, minimizing the immune response, and the burden of clinical isolates that are highly resistant to antibiotics treatment. These two phenomena are directly affected by cell envelope proteins, such as proteins from the ATP-Binding Cassette (ABC transporters) superfamily. In this review, we have compiled information on all the M. tuberculosis ABC transporters described so far, both from a functional and structural point of view, and show their relevance for the bacillus and the potential targets for studies aiming to control the microorganism and structural features. Abstract Mycobacterium tuberculosis is the etiological agent of tuberculosis (TB), a disease that affects millions of people in the world and that is associated with several human diseases. The bacillus is highly adapted to infect and survive inside the host, mainly because of its cellular envelope plasticity, which can be modulated to adapt to an unfriendly host environment; to manipulate the host immune response; and to resist therapeutic treatment, increasing in this way the drug resistance of TB. The superfamily of ATP-Binding Cassette (ABC) transporters are integral membrane proteins that include both importers and exporters. Both types share a similar structural organization, yet only importers have a periplasmic substrate-binding domain, which is essential for substrate uptake and transport. ABC transporter-type importers play an important role in the bacillus physiology through the transport of several substrates that will interfere with nutrition, pathogenesis, and virulence. Equally relevant, exporters have been involved in cell detoxification, nutrient recycling, and antibiotics and drug efflux, largely affecting the survival and development of multiple drug-resistant strains. Here, we review known ABC transporters from M. tuberculosis, with particular focus on the diversity of their structural features and relevance in infection and drug resistance.
Collapse
|
3
|
Bando-Campos G, Juárez-López D, Román-González SA, Castillo-Rodal AI, Olvera C, López-Vidal Y, Arreguín-Espinosa R, Espitia C, Trujillo-Roldán MA, Valdez-Cruz NA. Recombinant O-mannosylated protein production (PstS-1) from Mycobacterium tuberculosis in Pichia pastoris (Komagataella phaffii) as a tool to study tuberculosis infection. Microb Cell Fact 2019; 18:11. [PMID: 30660186 PMCID: PMC6339365 DOI: 10.1186/s12934-019-1059-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
Background Pichia pastoris (syn. Komagataella phaffii) is one of the most highly utilized eukaryotic expression systems for the production of heterologous glycoproteins, being able to perform both N- and O-mannosylation. In this study, we present the expression in P. pastoris of an O-mannosylated recombinant version of the 38 kDa glycolipoprotein PstS-1 from Mycobacterium tuberculosis (Mtb), that is similar in primary structure to the native secreted protein. Results The recombinant PstS-1 (rPstS-1) was produced without the native lipidation signal. Glycoprotein expression was under the control of the methanol-inducible promoter pAOX1, with secretion being directed by the α-mating factor secretion signal. Production of rPstS-1 was carried out in baffled shake flasks (BSFs) and controlled bioreactors. A production up to ~ 46 mg/L of the recombinant protein was achieved in both the BSFs and the bioreactors. The recombinant protein was recovered from the supernatant and purified in three steps, achieving a preparation with 98% electrophoretic purity. The primary and secondary structures of the recombinant protein were characterized, as well as its O-mannosylation pattern. Furthermore, a cross-reactivity analysis using serum antibodies from patients with active tuberculosis demonstrated recognition of the recombinant glycoprotein, indirectly indicating the similarity between the recombinant PstS-1 and the native protein from Mtb. Conclusions rPstS-1 (98.9% sequence identity, O-mannosylated, and without tags) was produced and secreted by P. pastoris, demonstrating that this yeast is a useful cell factory that could also be used to produce other glycosylated Mtb antigens. The rPstS-1 could be used as a tool for studying the role of this molecule during Mtb infection, and to develop and improve vaccines or kits based on the recombinant protein for serodiagnosis. Electronic supplementary material The online version of this article (10.1186/s12934-019-1059-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giroshi Bando-Campos
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP. 04510, Ciudad de México, Mexico
| | - Daniel Juárez-López
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP. 04510, Ciudad de México, Mexico
| | - Sergio A Román-González
- Unidad de Proteómica, Instituto Nacional de Medicina Genómica (INMEGEN), Periférico Sur 4809, Col. Arenal Tepepan, Tlalpan, C.P. 14610, Ciudad de México, Mexico
| | - Antonia I Castillo-Rodal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, Mexico
| | - Clarita Olvera
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología UNAM, Av. Universidad 2001 Chamilpa, Cuernavaca, Morelos, Mexico
| | - Yolanda López-Vidal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, Mexico
| | - Roberto Arreguín-Espinosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Apdo, Postal 70250, C.P. 04510, México City, Mexico
| | - Clara Espitia
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Mauricio A Trujillo-Roldán
- Programa de Investigación de Producción de Biomoléculas, Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP. 04510, Ciudad de México, Mexico
| | - Norma A Valdez-Cruz
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP. 04510, Ciudad de México, Mexico.
| |
Collapse
|
4
|
Qi R, Jing Z, Liu C, Piquemal JP, Dalby KN, Ren P. Elucidating the Phosphate Binding Mode of Phosphate-Binding Protein: The Critical Effect of Buffer Solution. J Phys Chem B 2018; 122:6371-6376. [PMID: 29807433 DOI: 10.1021/acs.jpcb.8b03194] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphate is an essential component of cell functions, and the specific transport of phosphorus into a cell is mediated by phosphate-binding protein (PBP). The mechanism of PBP-phosphate recognition remains controversial: on the basis of similar binding affinities at acidic and basic pHs, it is believed that the hydrogen network in the binding site is flexible to adapt to different protonation states of phosphates. However, only hydrogen (1H) phosphate was observed in the sub-angstrom X-ray structures. To address this inconsistency, we performed molecular dynamics simulations using the AMOEBA polarizable force field. Structural and free energy data from simulations suggested that 1H phosphate was the preferred bound form at both pHs. The binding of dihydrogen (2H) phosphate disrupted the hydrogen-bond network in the PBP pocket, and the computed affinity was much weaker than that of 1H phosphate. Furthermore, we showed that the discrepancy in the studies described above is resolved if the interaction between phosphate and the buffer agent is taken into account. The calculated apparent binding affinities are in excellent agreement with experimental measurements. Our results suggest the high specificity of PBP for 1H phosphate and highlight the importance of the buffer solution for the binding of highly charged ligands.
Collapse
Affiliation(s)
| | | | | | - Jean-Philip Piquemal
- Sorbonne Université, CNRS, Laboratoire de Chimie Theórique , 75252 Cedex 05 Paris , France
| | | | | |
Collapse
|
5
|
Weinhold F. Theoretical Prediction of Robust Second-Row Oxyanion Clusters in the Metastable Domain of Antielectrostatic Hydrogen Bonding. Inorg Chem 2018; 57:2035-2044. [PMID: 29381336 DOI: 10.1021/acs.inorgchem.7b02943] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We provide ab initio and density functional theory evidence for a family of surprisingly robust like-charged clusters of common HSO4- and H2PO4- oxyanions, ranging up to tetramers of net charge 4-. Our results support other recent theoretical and experimental evidence for "antielectrostatic" hydrogen-bonded (AEHB) species that challenge conventional electrostatic conceptions and force-field modeling of closed-shell ion interactions. We provide structural and energetic descriptors of the predicted kinetic well-depths (in the range 3-10 kcal/mol) and barrier widths (in the range 2-4 Å) for simple AEHB dimers, including evidence of extremely strong hydrogen bonding in the fluoride-bisulfate dianion. For more complex polyanionic species, we employ natural-bond-orbital-based descriptors to characterize the electronic features of the cooperative hydrogen-bonding network that are able to successfully defy Coulomb explosion. The computational results suggest a variety of kinetically stable AEHB species that may be suitable for experimental detection as long-lived gas-phase species or structural units of condensed phases, despite the imposing electrostatic barriers that oppose their formation under ambient conditions.
Collapse
Affiliation(s)
- Frank Weinhold
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
6
|
Squeglia F, Ruggiero A, De Simone A, Berisio R. A structural overview of mycobacterial adhesins: Key biomarkers for diagnostics and therapeutics. Protein Sci 2017; 27:369-380. [PMID: 29139177 DOI: 10.1002/pro.3346] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/09/2017] [Accepted: 11/09/2017] [Indexed: 01/14/2023]
Abstract
Adherence, colonization, and survival of mycobacteria in host cells require surface adhesins, which are attractive pharmacotherapeutic targets. A large arsenal of pilus and non-pilus adhesins have been identified in mycobacteria. These adhesins are capable of interacting with host cells, including macrophages and epithelial cells and are essential to microbial pathogenesis. In the last decade, several structures of mycobacterial adhesins responsible for adhesion to either macrophages or extra cellular matrix proteins have been elucidated. In addition, key structural and functional information have emerged for the process of mycobacterial adhesion to epithelial cells, mediated by the Heparin-binding hemagglutinin (HBHA). In this review, we provide an overview of the structural and functional features of mycobacterial adhesins and discuss their role as important biomarkers for diagnostics and therapeutics. Based on the reported data, it appears clear that adhesins are endowed with a variety of different structures and functions. Most adhesins play important roles in the cell life of mycobacteria and are key virulence factors. However, they have adapted to an extracellular life to exert a role in host-pathogen interaction. The type of interactions they form with the host and the adhesin regions involved in binding is partly known and is described in this review.
Collapse
Affiliation(s)
- Flavia Squeglia
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, Napoli, I-80134, Italy
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, Napoli, I-80134, Italy
| | - Alfonso De Simone
- Division of Molecular Biosciences, Imperial College London, SW7 2AZ, UK
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, Napoli, I-80134, Italy
| |
Collapse
|
7
|
Pegos VR, Hey L, LaMirande J, Pfeffer R, Lipsh R, Amitay M, Gonzalez D, Elias M. Phosphate-binding protein from Polaromonas JS666: purification, characterization, crystallization and sulfur SAD phasing. Acta Crystallogr F Struct Biol Commun 2017; 73:342-346. [PMID: 28580922 PMCID: PMC5458391 DOI: 10.1107/s2053230x17007373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/19/2017] [Indexed: 11/10/2022] Open
Abstract
Phosphate-binding proteins (PBPs) are key proteins that belong to the bacterial ABC-type phosphate transporters. PBPs are periplasmic (or membrane-anchored) proteins that capture phosphate anions from the environment and release them to the transmembrane transporter. Recent work has suggested that PBPs have evolved for high affinity as well as high selectivity. In particular, a short, unique hydrogen bond between the phosphate anion and an aspartate residue has been shown to be critical for selectivity, yet is not strictly conserved in PBPs. Here, the PBP from Polaromonas JS666 is focused on. Interestingly, this PBP is predicted to harbor different phosphate-binding residues to currently known PBPs. Here, it is shown that the PBP from Polaromonas JS666 is capable of binding phosphate, with a maximal binding activity at pH 8. Its structure is expected to reveal its binding-cleft configuration as well as its phosphate-binding mode. Here, the expression, purification, characterization, crystallization and X-ray diffraction data collection to 1.35 Å resolution of the PBP from Polaromonas JS666 are reported.
Collapse
Affiliation(s)
- Vanessa R. Pegos
- Biochemistry, Molecular Biology and Biophysics Department and BioTechnology Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Louis Hey
- Biochemistry, Molecular Biology and Biophysics Department and BioTechnology Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Jacob LaMirande
- Biochemistry, Molecular Biology and Biophysics Department and BioTechnology Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Rachel Pfeffer
- Department of Bioinformatics, The Jerusalem College of Technology – Lev Academic Center, Jerusalem 91160, Israel
| | - Rosalie Lipsh
- Department of Bioinformatics, The Jerusalem College of Technology – Lev Academic Center, Jerusalem 91160, Israel
| | - Moshe Amitay
- Department of Bioinformatics, The Jerusalem College of Technology – Lev Academic Center, Jerusalem 91160, Israel
| | - Daniel Gonzalez
- URMITE, Aix Marseille Université, INSERM, CNRS, IRD, 27 Boulevard Jean Moulin, 13385 Marseille, France
| | - Mikael Elias
- Biochemistry, Molecular Biology and Biophysics Department and BioTechnology Institute, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
8
|
Structural features of PhoX, one of the phosphate-binding proteins from Pho regulon of Xanthomonas citri. PLoS One 2017; 12:e0178162. [PMID: 28542513 PMCID: PMC5439949 DOI: 10.1371/journal.pone.0178162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/08/2017] [Indexed: 11/19/2022] Open
Abstract
In Escherichia coli, the ATP-Binding Cassette transporter for phosphate is encoded by the pstSCAB operon. PstS is the periplasmic component responsible for affinity and specificity of the system and has also been related to a regulatory role and chemotaxis during depletion of phosphate. Xanthomonas citri has two phosphate-binding proteins: PstS and PhoX, which are differentially expressed under phosphate limitation. In this work, we focused on PhoX characterization and comparison with PstS. The PhoX three-dimensional structure was solved in a closed conformation with a phosphate engulfed in the binding site pocket between two domains. Comparison between PhoX and PstS revealed that they originated from gene duplication, but despite their similarities they show significant differences in the region that interacts with the permeases.
Collapse
|
9
|
Yruela I, Contreras-Moreira B, Magalhães C, Osório NS, Gonzalo-Asensio J. Mycobacterium tuberculosis Complex Exhibits Lineage-Specific Variations Affecting Protein Ductility and Epitope Recognition. Genome Biol Evol 2017; 8:3751-3764. [PMID: 28062754 PMCID: PMC5521731 DOI: 10.1093/gbe/evw279] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2016] [Indexed: 12/19/2022] Open
Abstract
The advent of whole-genome sequencing has provided an unprecedented detail about the evolution and genetic significance of species-specific variations across the whole Mycobacterium tuberculosis Complex. However, little attention has been focused on understanding the functional roles of these variations in the protein coding sequences. In this work, we compare the coding sequences from 74 sequenced mycobacterial species including M. africanum, M. bovis, M. canettii, M. caprae, M. orygis, and M. tuberculosis. Results show that albeit protein variations affect all functional classes, those proteins involved in lipid and intermediary metabolism and respiration have accumulated mutations during evolution. To understand the impact of these mutations on protein functionality, we explored their implications on protein ductility/disorder, a yet unexplored feature of mycobacterial proteomes. In agreement with previous studies, we found that a Gly71Ile substitution in the PhoPR virulence system severely affects the ductility of its nearby region in M. africanum and animal-adapted species. In the same line of evidence, the SmtB transcriptional regulator shows amino acid variations specific to the Beijing lineage, which affects the flexibility of the N-terminal trans-activation domain. Furthermore, despite the fact that MTBC epitopes are evolutionary hyperconserved, we identify strain- and lineage-specific amino acid mutations affecting previously known T-cell epitopes such as EsxH and FbpA (Ag85A). Interestingly, in silico studies reveal that these variations result in differential interaction of epitopes with the main HLA haplogroups.
Collapse
Affiliation(s)
- Inmaculada Yruela
- Estación Experimental de Aula Dei-Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Zaragoza, Spain.,Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada I+D+i al CSIC, Zaragoza, Spain
| | - Bruno Contreras-Moreira
- Estación Experimental de Aula Dei-Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Zaragoza, Spain.,Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada I+D+i al CSIC, Zaragoza, Spain.,Fundación ARAID, Aragón, Spain
| | - Carlos Magalhães
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno S Osório
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jesús Gonzalo-Asensio
- Grupo de Genética de Micobacterias, Departamento de Microbiología y Medicina Preventiva, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain.,CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Biocomputación y Física de Sistemas Complejos (BIFI-UNIZAR), Zaragoza, Spain.,Servicio de Microbiología Hospital Universitario Miguel Servet, ISS Aragón, Zaragoza, Spain
| |
Collapse
|
10
|
Genome scale identification, structural analysis, and classification of periplasmic binding proteins from Mycobacterium tuberculosis. Curr Genet 2016; 63:553-576. [DOI: 10.1007/s00294-016-0664-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/04/2016] [Accepted: 11/05/2016] [Indexed: 01/26/2023]
|
11
|
Khalid R, Afzal M, Khurshid S, Paracha RZ, Khan IH, Akhtar MW. Fusion Molecules of Heat Shock Protein HSPX with Other Antigens of Mycobacterium tuberculosis Show High Potential in Serodiagnosis of Tuberculosis. PLoS One 2016; 11:e0163349. [PMID: 27654048 PMCID: PMC5031420 DOI: 10.1371/journal.pone.0163349] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 09/07/2016] [Indexed: 12/02/2022] Open
Abstract
Variable individual response against the antigens of Mycobacterium tuberculosis necessitates detection of multiple antibodies for enhancing reliability of serodiagnosis of tuberculosis. Fusion molecules consisting of two or more antigens showing high sensitivity would be helpful in achieving this objective. Antigens of M. tuberculosis HSPX and PE35 were expressed in a soluble form whereas tnPstS1 and FbpC1 were expressed as inclusion bodies at 37°C. Heat shock protein HSPX when attached to the N-termini of the antigens PE35, tnPstS1 and FbpC1, all the fusion molecules were expressed at high levels in E. coli in a soluble form. ELISA analysis of the plasma samples of TB patients against HSPX-tnPstS1 showed 57.7% sensitivity which is nearly the same as the expected combined value obtained after deducting the number of plasma samples (32) containing the antibodies against both the individual antigens. Likewise, the 54.4% sensitivity of HSPX-PE35 was nearly the same as that expected from the combined values of the contributing antigens. Structural analysis of all the fusion molecules by CD spectroscopy showed that α-helical and β-sheet contents were found close to those obtained through molecular modeling. Molecular modeling studies of HSPX-tnPstS1 and HSPX-PE35 support the analytical results as most of the epitopes of the contributing antigens were found to be available for binding to the corresponding antibodies. Using these fusion molecules in combination with other antigenic molecules should reduce the number of antigenic proteins required for a more reliable and economical serodiagnosis of tuberculosis. Also, HSPX seems to have potential application in soluble expression of heterologous proteins in E. coli.
Collapse
Affiliation(s)
- Ruqyya Khalid
- School of Biological Sciences, Quaid-e-Azam Campus, University of the Punjab, Lahore, Pakistan
| | - Madeeha Afzal
- School of Biological Sciences, Quaid-e-Azam Campus, University of the Punjab, Lahore, Pakistan
| | - Sana Khurshid
- School of Biological Sciences, Quaid-e-Azam Campus, University of the Punjab, Lahore, Pakistan
| | - Rehan Zafar Paracha
- Atta-ur-Rehman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Imran H. Khan
- Department of Pathology and Laboratory Medicine, University of California, Davis, California, United States of America
| | - Muhammad Waheed Akhtar
- School of Biological Sciences, Quaid-e-Azam Campus, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
12
|
Tischler AD, Leistikow RL, Ramakrishnan P, Voskuil MI, McKinney JD. Mycobacterium tuberculosis Phosphate Uptake System Component PstA2 Is Not Required for Gene Regulation or Virulence. PLoS One 2016; 11:e0161467. [PMID: 27557082 PMCID: PMC4996455 DOI: 10.1371/journal.pone.0161467] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/05/2016] [Indexed: 11/19/2022] Open
Abstract
The Mycobacterium tuberculosis genome encodes two complete high-affinity Pst phosphate-specific transporters. We previously demonstrated that a membrane-spanning component of one Pst system, PstA1, was essential both for M. tuberculosis virulence and for regulation of gene expression in response to external phosphate availability. To determine if the alternative Pst system is similarly required for virulence or gene regulation, we constructed a deletion of pstA2. Transcriptome analysis revealed that PstA2 is not required for regulation of gene expression in phosphate-replete growth conditions. PstA2 was also dispensable for replication and virulence of M. tuberculosis in a mouse aerosol infection model. However, a ΔpstA1ΔpstA2 double mutant was attenuated in mice lacking the cytokine interferon-gamma, suggesting that M. tuberculosis requires high-affinity phosphate transport to survive phosphate limitation encountered in the host. Surprisingly, ΔpstA2 bacteria were more resistant to acid stress in vitro. This phenotype is intrinsic to the alternative Pst transporter since a ΔpstS1 mutant exhibited similar acid resistance. Our data indicate that the two M. tuberculosis Pst transporters have distinct physiological functions, with the PstA1 transporter being specifically involved in phosphate sensing and gene regulation while the PstA2 transporter influences survival in acidic conditions.
Collapse
Affiliation(s)
- Anna D. Tischler
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- * E-mail:
| | - Rachel L. Leistikow
- Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
| | - Pavithra Ramakrishnan
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Martin I. Voskuil
- Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
| | - John D. McKinney
- School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| |
Collapse
|
13
|
Keegan R, Waterman DG, Hopper DJ, Coates L, Taylor G, Guo J, Coker AR, Erskine PT, Wood SP, Cooper JB. The 1.1 Å resolution structure of a periplasmic phosphate-binding protein fromStenotrophomonas maltophilia: a crystallization contaminant identified by molecular replacement using the entire Protein Data Bank. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2016; 72:933-43. [DOI: 10.1107/s2059798316010433] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/28/2016] [Indexed: 01/27/2023]
Abstract
During efforts to crystallize the enzyme 2,4-dihydroxyacetophenone dioxygenase (DAD) fromAlcaligenessp. 4HAP, a small number of strongly diffracting protein crystals were obtained after two years of crystal growth in one condition. The crystals diffracted synchrotron radiation to almost 1.0 Å resolution and were, until recently, assumed to be formed by the DAD protein. However, when another crystal form of this enzyme was eventually solved at lower resolution, molecular replacement using this new structure as the search model did not give a convincing solution with the original atomic resolution data set. Hence, it was considered that these crystals might have arisen from a protein impurity, although molecular replacement using the structures of common crystallization contaminants as search models again failed. A script to perform molecular replacement usingMOLREPin which the first chain of every structure in the PDB was used as a search model was run on a multi-core cluster. This identified a number of prokaryotic phosphate-binding proteins as scoring highly in theMOLREPpeak lists. Calculation of an electron-density map at 1.1 Å resolution based on the solution obtained with PDB entry 2q9t allowed most of the amino acids to be identified visually and built into the model. ABLASTsearch then indicated that the molecule was most probably a phosphate-binding protein fromStenotrophomonas maltophilia(UniProt ID B4SL31; gene ID Smal_2208), and fitting of the corresponding sequence to the atomic resolution map fully corroborated this. Proteins in this family have been linked to the virulence of antibiotic-resistant strains of pathogenic bacteria and with biofilm formation. The structure of theS. maltophiliaprotein has been refined to anRfactor of 10.15% and anRfreeof 12.46% at 1.1 Å resolution. The molecule adopts the type II periplasmic binding protein (PBP) fold with a number of extensively elaborated loop regions. A fully dehydrated phosphate anion is bound tightly between the two domains of the protein and interacts with conserved residues and a number of helix dipoles.
Collapse
|
14
|
Afzal M, Khurshid S, Khalid R, Paracha RZ, Khan IH, Akhtar MW. Fusion of selected regions of mycobacterial antigens for enhancing sensitivity in serodiagnosis of tuberculosis. J Microbiol Methods 2015; 115:104-11. [PMID: 26068786 DOI: 10.1016/j.mimet.2015.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/04/2015] [Accepted: 06/06/2015] [Indexed: 11/27/2022]
Abstract
Serodiagnosis of tuberculosis requires detection of antibodies against multiple antigens of Mycobacterium tuberculosis, because antibody profiles differ among the patients. Using fusion proteins with epitopes from two or more antigens would facilitate in the detection of multiple antibodies. Fusion constructs tn1FbpC1-tnPstS1 and tn2FbpC1-tnPstS1 were produced by linking truncated regions of variable lengths from FbpC1 to the N-terminus of the truncated PstS1. Similarly a truncated fragment of HSP was linked to the N-terminus of a truncated fragment from FbpC1 to produce tnHSP-tn1FbpC1. ELISA analysis of the plasma samples of TB patients against tn2FbpC1-tnPstS1 showed 72.2% sensitivity which is nearly the same as the expected combined value for the two individual antigens. However, the sensitivity of tn1FbpC1-tnPstS1 was lowered to 60%. tnHSP-tn1FbpC1 showed 67.7% sensitivity which is slightly less than the expected combined value for the two individual antigens, but still significantly higher than that of each of the individual antigen. Data for secondary structure analysis by CD spectrometry was in reasonable agreement with the X-ray crystallographic data of the native proteins and the predicted structure of the fusion proteins. Comparative molecular modeling suggests that the epitopes of the constituent proteins are better exposed in tn2FbpC1-tnPstS1 as compared to those in tn1FbpC1-tnPstS1. Therefore, removal of the N-terminal non-epitopic region of FbpC1 from 34-96 amino acids seems to have unmasked at least some of the epitopes, resulting in greater sensitivity. The high level of sensitivity of tn2FbpC1-tnPstS1 and tnHSP-tn1FbpC1, not reported before, shows that these fusion proteins have great potential for use in serodiagnosis of tuberculosis.
Collapse
Affiliation(s)
- Madeeha Afzal
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan.
| | - Sana Khurshid
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan.
| | - Ruqyya Khalid
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan.
| | - Rehan Zafar Paracha
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan.
| | - Imran H Khan
- Department of Pathology and Laboratory Medicine, University of California, Davis 95616, USA.
| | - M Waheed Akhtar
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan.
| |
Collapse
|
15
|
Sippel KH, Quiocho FA. Ion-dipole interactions and their functions in proteins. Protein Sci 2015; 24:1040-6. [PMID: 25866296 DOI: 10.1002/pro.2685] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 03/25/2015] [Accepted: 03/31/2015] [Indexed: 12/17/2022]
Abstract
Ion-dipole interactions in biological macromolecules are formed between atomic or molecular ions and neutral protein dipolar groups through either hydrogen bond or coordination. Since their discovery 30 years ago, these interactions have proven to be a frequent occurrence in protein structures, appearing in everything from transporters and ion channels to enzyme active sites to protein-protein interfaces. However, their significance and roles in protein functions are largely underappreciated. We performed PDB data mining to identify a sampling of proteins that possess these interactions. In this review, we will define the ion-dipole interaction and discuss several prominent examples of their functional roles in nature.
Collapse
Affiliation(s)
- Katherine H Sippel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, 77030
| | - Florante A Quiocho
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, 77030
| |
Collapse
|
16
|
Ghosh MK, Choi TH, Choi CH. Like-charge ion pairs of hydronium and hydroxide in aqueous solution? Phys Chem Chem Phys 2015; 17:16233-7. [DOI: 10.1039/c5cp02182k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxide can form stronger like-ion pairs than hydronium in aqueous solution mostly due to its versatile coordination ability with solvents.
Collapse
Affiliation(s)
- Manik Kumer Ghosh
- Department of Chemistry and Green-Nano Materials Research Center
- College of Natural Sciences
- Kyungpook National University
- Daegu 702-701
- South Korea
| | - Tae Hoon Choi
- Department of Chemical Engineering Education
- Chungnam National University
- Daejeon 305-764
- Republic of Korea
| | - Cheol Ho Choi
- Department of Chemistry and Green-Nano Materials Research Center
- College of Natural Sciences
- Kyungpook National University
- Daegu 702-701
- South Korea
| |
Collapse
|
17
|
Pegos VR, Medrano FJ, Balan A. Crystallization and preliminary X-ray diffraction analysis of the phosphate-binding protein PhoX from Xanthomonas citri. Acta Crystallogr F Struct Biol Commun 2014; 70:1604-7. [PMID: 25484207 PMCID: PMC4259221 DOI: 10.1107/s2053230x14021840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 10/03/2014] [Indexed: 11/10/2022] Open
Abstract
Xanthomonas axonopodis pv. citri (X. citri) is an important bacterium that causes citrus canker disease in plants in Brazil and around the world, leading to significant economic losses. Determination of the physiology and mechanisms of pathogenesis of this bacterium is an important step in the development of strategies for its containment. Phosphate is an essential ion in all microrganisms owing its importance during the synthesis of macromolecules and in gene and protein regulation. Interestingly, X. citri has been identified to present two periplasmic binding proteins that have not been further characterized: PstS, from an ATP-binding cassette for high-affinity uptake and transport of phosphate, and PhoX, which is encoded by an operon that also contains a putative porin for the transport of phosphate. Here, the expression, purification and crystallization of the phosphate-binding protein PhoX and X-ray data collection at 3.0 Å resolution are described. Biochemical, biophysical and structural data for this protein will be helpful in the elucidation of its function in phosphate uptake and the physiology of the bacterium.
Collapse
Affiliation(s)
- Vanessa R. Pegos
- Laboratório Nacional de Biociências (LNBio), Centro de Pesquisa em Energia e Materiais (CNPEM), 13083-970 Campinas-SP, Brazil
| | | | - Andrea Balan
- Laboratório Nacional de Biociências (LNBio), Centro de Pesquisa em Energia e Materiais (CNPEM), 13083-970 Campinas-SP, Brazil
- Departamento de Microbiologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, Av. Prof. Lineu Prestes 1374, Cidade Universitária, 05508-900 São Paulo-SP, Brazil
| |
Collapse
|
18
|
Gonzalez D, Richez M, Bergonzi C, Chabriere E, Elias M. Crystal structure of the phosphate-binding protein (PBP-1) of an ABC-type phosphate transporter from Clostridium perfringens. Sci Rep 2014; 4:6636. [PMID: 25338617 PMCID: PMC5381212 DOI: 10.1038/srep06636] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 09/25/2014] [Indexed: 11/23/2022] Open
Abstract
Phosphate limitation is an important environmental stress that affects the metabolism of various organisms and, in particular, can trigger the virulence of numerous bacterial pathogens. Clostridium perfringens, a human pathogen, is one of the most common causes of enteritis necroticans, gas gangrene and food poisoning. Here, we focused on the high affinity phosphate-binding protein (PBP-1) of an ABC-type transporter, responsible for cellular phosphate uptake. We report the crystal structure (1.65 Å resolution) of the protein in complex with phosphate. Interestingly, PBP-1 does not form the short, low-barrier hydrogen bond with phosphate that is typical of previously characterized phosphate-binding proteins, but rather a canonical hydrogen bond. In its unique binding configuration, PBP-1 forms an unusually high number of hydrogen bonds (14) with the phosphate anion. Discrimination experiments reveal that PBP-1 is the least selective PBP characterised so far and is able to discriminate phosphate from its close competing anion, arsenate, by ~150-fold.
Collapse
Affiliation(s)
- Daniel Gonzalez
- URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine et de Pharmacie, Université de la Méditerranée, Marseille, France
| | - Magali Richez
- URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine et de Pharmacie, Université de la Méditerranée, Marseille, France
| | - Celine Bergonzi
- 1] URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine et de Pharmacie, Université de la Méditerranée, Marseille, France [2] University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics &Biotechnology Institute, St. Paul, MN 55108, USA
| | - Eric Chabriere
- URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine et de Pharmacie, Université de la Méditerranée, Marseille, France
| | - Mikael Elias
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics &Biotechnology Institute, St. Paul, MN 55108, USA
| |
Collapse
|
19
|
Neznansky A, Blus-Kadosh I, Yerushalmi G, Banin E, Opatowsky Y. The Pseudomonas aeruginosa phosphate transport protein PstS plays a phosphate-independent role in biofilm formation. FASEB J 2014; 28:5223-33. [PMID: 25223609 DOI: 10.1096/fj.14-258293] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pseudomonas aeruginosa (PA) is a primary cause of nosocomial infections. A key element in PA pathogenicity is its ability to form biofilms that withstand eradication by antibiotics and the immune system. Biofilm formation is controlled by phosphate signaling and here we provide evidence that PstS, a subunit of the PA Pst phosphate transporter, has a surprising role in this process. Using X-ray crystallography, we characterized the unique underpinnings of PstS phosphate binding and identified an unusual 15-residue N' loop extension. Structure-based experiments showed that PstS-mediated phosphate uptake and biofilm formation are in fact two distinct functions. Specifically, a point mutation that abrogated phosphate binding did not eliminate biofilm formation; conversely, truncation of the N' loop diminished the ability of PA to form biofilms but had no effect on phosphate binding and uptake. This places PstS at a junction that separately controls phosphate sensing and uptake and the ultrastructure organization of bacteria.
Collapse
Affiliation(s)
- Avi Neznansky
- Mina and Everard Goodman Faculty of Life Sciences and
| | - Inna Blus-Kadosh
- Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Gal Yerushalmi
- Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Ehud Banin
- Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | | |
Collapse
|
20
|
Neznansky A, Opatowsky Y. Expression, purification and crystallization of the phosphate-binding PstS protein from Pseudomonas aeruginosa. Acta Crystallogr F Struct Biol Commun 2014; 70:906-10. [PMID: 25005086 PMCID: PMC4089529 DOI: 10.1107/s2053230x14010279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 05/06/2014] [Indexed: 11/10/2022] Open
Abstract
Pseudomonas aeruginosa (PA) infections pose a serious threat to human health. PA is a leading cause of fatal lung infections in cystic fibrosis and immune-suppressed patients, of sepsis in burn victims and of nosocomial infections. An important element in PA virulence is its ability to establish biofilms that evade suppression by the host's immune system and antibiotics. PstS, a periplasmic subunit of the Pst phosphate-transport system of PA, plays a critical role in the establishment of biofilms. In some drug-resistant PA strains, PstS is secreted in large quantities from the bacteria, where it participates in the assembly of adhesion fibres that enhance bacterial virulence. In order to understand the dual function of PstS in biofilm formation and phosphate transport, the crystal structure of PA PstS was determined. Here, the overexpression in Escherichia coli and purification of PA PstS in the presence of phosphate are described. Two crystal forms were obtained using the vapour-diffusion method at 20°C and X-ray diffraction data were collected. The first crystal form belonged to the centred orthorhombic space group C222₁, with unit-cell parameters a=67.5, b=151.3, c=108.9 Å. Assuming the presence of a dimer in the asymmetric unit gives a crystal volume per protein weight (VM) of 2.09 Å3 Da(-1) and a solvent content of 41%. The second crystal form belonged to the primitive orthorhombic space group P2₁2₁2₁, with unit-cell parameters a=35.4, b=148.3, c=216.7 Å. Assuming the presence of a tetramer in the asymmetric unit gives a crystal volume per protein weight (VM) of 2.14 Å3 Da(-1) and a solvent content of 42.65%. A pseudo-translational symmetry is present in the P212121 crystal form which is consistent with a filamentous arrangement of PstS in the crystal lattice.
Collapse
Affiliation(s)
- Avi Neznansky
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Yarden Opatowsky
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
21
|
Sippel KH, Bacik J, Quiocho FA, Fisher SZ. Preliminary time-of-flight neutron diffraction studies of Escherichia coli ABC transport receptor phosphate-binding protein at the Protein Crystallography Station. Acta Crystallogr F Struct Biol Commun 2014; 70:819-22. [PMID: 24915101 PMCID: PMC4051545 DOI: 10.1107/s2053230x14009704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 04/29/2014] [Indexed: 11/10/2022] Open
Abstract
Inorganic phosphate is an essential molecule for all known life. Organisms have developed many mechanisms to ensure an adequate supply, even in low-phosphate conditions. In prokaryotes phosphate transport is instigated by the phosphate-binding protein (PBP), the initial receptor for the ATP-binding cassette (ABC) phosphate transporter. In the crystal structure of the PBP-phosphate complex, the phosphate is completely desolvated and sequestered in a deep cleft and is bound by 13 hydrogen bonds: 12 to protein NH and OH donor groups and one to a carboxylate acceptor group. The carboxylate plays a key recognition role by accepting a phosphate hydrogen. PBP phosphate affinity is relatively consistent across a broad pH range, indicating the capacity to bind monobasic (H2PO4-) and dibasic (HPO4(2-)) phosphate; however, the mechanism by which it might accommodate the second hydrogen of monobasic phosphate is unclear. To answer this question, neutron diffraction studies were initiated. Large single crystals with a volume of 8 mm3 were grown and subjected to hydrogen/deuterium exchange. A 2.5 Å resolution data set was collected on the Protein Crystallography Station at the Los Alamos Neutron Science Center. Initial refinement of the neutron data shows significant nuclear density, and refinement is ongoing. This is the first report of a neutron study from this superfamily.
Collapse
Affiliation(s)
- K. H. Sippel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - J. Bacik
- Bioscience Division B-11, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - F. A. Quiocho
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - S. Z. Fisher
- Scientific Activities Division, European Spallation Source, 221 00 Lund, Sweden
| |
Collapse
|
22
|
Ferraris DM, Spallek R, Oehlmann W, Singh M, Rizzi M. Crystal structure of the Mycobacterium tuberculosis phosphate binding protein PstS3. Proteins 2014; 82:2268-74. [PMID: 24615888 DOI: 10.1002/prot.24548] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 02/20/2014] [Accepted: 03/04/2014] [Indexed: 11/10/2022]
Abstract
Mycobacterium tuberculosis evades host immune responses by colonizing macrophages. Intraphagosomal M. tuberculosis is exposed to environmental stresses such as reactive oxygen and nitrogen intermediates as well as acid shock and inorganic phosphate (Pi) depletion. Experimental evidence suggests that expression levels of mycobacterial protein PstS3 (Rv0928) are significantly increased when M. tuberculosis bacilli are exposed to Pi starvation. Hence, PstS3 may be important for survival of Mtb in conditions where there is limited supply of Pi. We report here the structure of PstS3 from M. tuberculosis at 2.3-Å resolution. The protein presents a structure typical for ABC phosphate transfer receptors. Comparison with its cognate receptor PstS1 showed a different pattern distribution of surface charges in proximity to the Pi recognition site, suggesting complementary roles of the two proteins in Pi uptake.
Collapse
Affiliation(s)
- Davide M Ferraris
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "A. Avogadro,", Largo Donegani 2, 28100, Novara, Italy
| | | | | | | | | |
Collapse
|
23
|
Gruber M, Greisen P, Junker CM, Hélix-Nielsen C. Phosphorus Binding Sites in Proteins: Structural Preorganization and Coordination. J Phys Chem B 2014; 118:1207-15. [DOI: 10.1021/jp408689x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Mathias Gruber
- The Biomimetic Membrane Group,
Department of Physics, Technical University of Denmark, DK 2800 Kongens Lyngby Denmark
| | - Per Greisen
- The Biomimetic Membrane Group,
Department of Physics, Technical University of Denmark, DK 2800 Kongens Lyngby Denmark
| | - Caroline M. Junker
- The Biomimetic Membrane Group,
Department of Physics, Technical University of Denmark, DK 2800 Kongens Lyngby Denmark
| | - Claus Hélix-Nielsen
- The Biomimetic Membrane Group,
Department of Physics, Technical University of Denmark, DK 2800 Kongens Lyngby Denmark
| |
Collapse
|
24
|
Brautigam CA, Ouyang Z, Deka RK, Norgard MV. Sequence, biophysical, and structural analyses of the PstS lipoprotein (BB0215) from Borrelia burgdorferi reveal a likely binding component of an ABC-type phosphate transporter. Protein Sci 2013; 23:200-12. [PMID: 24318969 DOI: 10.1002/pro.2406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 01/23/2023]
Abstract
The Lyme disease agent Borrelia burgdorferi, which is transmitted via a tick vector, is dependent on its tick and mammalian hosts for a number of essential nutrients. Like other bacterial diderms, it must transport these biochemicals from the extracellular milieu across two membranes, ultimately to the B. burgdorferi cytoplasm. In the current study, we established that a gene cluster comprising genes bb0215 through bb0218 is cotranscribed and is therefore an operon. Sequence analysis of these proteins suggested that they are the components of an ABC-type transporter responsible for translocating phosphate anions from the B. burgdorferi periplasm to the cytoplasm. Biophysical experiments established that the putative ligand-binding protein of this system, BbPstS (BB0215), binds to phosphate in solution. We determined the high-resolution (1.3 Å) crystal structure of the protein in the absence of phosphate, revealing that the protein's fold is similar to other phosphate-binding proteins, and residues that are implicated in phosphate binding in other such proteins are conserved in BbPstS. Taken together, the gene products of bb0215-0218 function as a phosphate transporter for B. burgdorferi.
Collapse
Affiliation(s)
- Chad A Brautigam
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | | | | | | |
Collapse
|
25
|
Choi CH, Re S, Rashid MHO, Li H, Feig M, Sugita Y. Solvent Electronic Polarization Effects on Na+–Na+ and Cl––Cl– Pair Associations in Aqueous Solution. J Phys Chem B 2013; 117:9273-9. [DOI: 10.1021/jp4049346] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cheol Ho Choi
- Department of Chemistry and
Green-Nano Materials Research Center, College of Natural Sciences, Kyungpook National University, Taegu 702-701, Korea
| | - Suyong Re
- Theoretical Molecular Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama
351-0198, Japan
| | - Mohammad H. O. Rashid
- Department of Chemistry and
Green-Nano Materials Research Center, College of Natural Sciences, Kyungpook National University, Taegu 702-701, Korea
| | - Hui Li
- Department of
Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska
68588, United States
| | - Michael Feig
- Theoretical Molecular Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama
351-0198, Japan
- Chemistry and Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
- RIKEN Quantitative Biology Center, 7-1-26 minatojima-minamimachi, Chuo-ku,
Kobe, Hyogo 650-0047, Japan
| | - Yuji Sugita
- Theoretical Molecular Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama
351-0198, Japan
- RIKEN Quantitative Biology Center, 7-1-26 minatojima-minamimachi, Chuo-ku,
Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
26
|
Liu H, Jiang Y, Dou X, Wang H, Zhao X, Zhang W, Wan L, Zhang Z, Chen C, Wan K. pstS1 polymorphisms of Mycobacterium tuberculosis strains may reflect ongoing immune evasion. Tuberculosis (Edinb) 2013; 93:475-81. [PMID: 23849889 DOI: 10.1016/j.tube.2013.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/04/2013] [Accepted: 05/08/2013] [Indexed: 10/26/2022]
Abstract
The mycobacterial antigen PstS1 is a highly immunogenic and immunostimulatory component of the mycobacterial cell membrane and a good candidate for the diagnosis and vaccination against tuberculosis. Here we selected 180 clinical isolates of Mycobacterium tuberculosis complex (MTBC) in China and 11 different Bacille Calmette Guerin (BCG) strains, amplified the gene of the PstS1 antigen and compared the sequences with those of four other Mycobacterium bovis and BCG strains from the NCBI genome website. Some of the mutations, especially 2 frameshift mutations, occurred in the PstS1antigen, which may have resulted in the protein function alteration and ongoing immune evasion. A unique single nucleotide polymorphism of the M. bovis and BCG strains was found in this antigen and may be useful for differentiating M. bovis and BCG strains from M. tuberculosis strains.
Collapse
Affiliation(s)
- Haican Liu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Beijing 102206, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Francis BR. Evolution of the genetic code by incorporation of amino acids that improved or changed protein function. J Mol Evol 2013; 77:134-58. [PMID: 23743924 DOI: 10.1007/s00239-013-9567-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 05/25/2013] [Indexed: 12/31/2022]
Abstract
Fifty years have passed since the genetic code was deciphered, but how the genetic code came into being has not been satisfactorily addressed. It is now widely accepted that the earliest genetic code did not encode all 20 amino acids found in the universal genetic code as some amino acids have complex biosynthetic pathways and likely were not available from the environment. Therefore, the genetic code evolved as pathways for synthesis of new amino acids became available. One hypothesis proposes that early in the evolution of the genetic code four amino acids-valine, alanine, aspartic acid, and glycine-were coded by GNC codons (N = any base) with the remaining codons being nonsense codons. The other sixteen amino acids were subsequently added to the genetic code by changing nonsense codons into sense codons for these amino acids. Improvement in protein function is presumed to be the driving force behind the evolution of the code, but how improved function was achieved by adding amino acids has not been examined. Based on an analysis of amino acid function in proteins, an evolutionary mechanism for expansion of the genetic code is described in which individual coded amino acids were replaced by new amino acids that used nonsense codons differing by one base change from the sense codons previously used. The improved or altered protein function afforded by the changes in amino acid function provided the selective advantage underlying the expansion of the genetic code. Analysis of amino acid properties and functions explains why amino acids are found in their respective positions in the genetic code.
Collapse
Affiliation(s)
- Brian R Francis
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071-3944, USA,
| |
Collapse
|
28
|
Pedersen BP, Kumar H, Waight AB, Risenmay AJ, Roe-Zurz Z, Chau BH, Schlessinger A, Bonomi M, Harries W, Sali A, Johri AK, Stroud RM. Crystal structure of a eukaryotic phosphate transporter. Nature 2013; 496:533-6. [PMID: 23542591 PMCID: PMC3678552 DOI: 10.1038/nature12042] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 02/25/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Bjørn P Pedersen
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Structural and functional characterization of the Staphylococcus aureus virulence factor and vaccine candidate FhuD2. Biochem J 2013; 449:683-93. [PMID: 23113737 DOI: 10.1042/bj20121426] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Staphylococcus aureus is a human pathogen causing globally significant morbidity and mortality. The development of antibiotic resistance in S. aureus highlights the need for a preventive vaccine. In the present paper we explore the structure and function of FhuD2 (ferric-hydroxamate uptake D2), a staphylococcal surface lipoprotein mediating iron uptake during invasive infection, recently described as a promising vaccine candidate. Differential scanning fluorimetry and calorimetry studies revealed that FhuD2 is stabilized by hydroxamate siderophores. The FhuD2-ferrichrome interaction was of nanomolar affinity in surface plasmon resonance experiments and fully iron(III)-dependent. We determined the X-ray crystallographic structure of ligand-bound FhuD2 at 1.9 Å (1 Å=0.1 nm) resolution, revealing the bilobate fold of class III SBPs (solute-binding proteins). The ligand, ferrichrome, occupies a cleft between the FhuD2 N- and C-terminal lobes. Many FhuD2-siderophore interactions enable the specific recognition of ferrichrome. Biochemical data suggest that FhuD2 does not undergo significant conformational changes upon siderophore binding, supporting the hypothesis that the ligand-bound complex is essential for receptor engagement and uptake. Finally, immunizations with FhuD2 alone or FhuD2 formulated with hydroxamate siderophores were equally protective in a murine staphylococcal infection model, confirming the suitability and efficacy of apo-FhuD2 as a protective antigen, and suggesting that other class III SBPs might also be exploited as vaccine candidates.
Collapse
|
30
|
The molecular basis of phosphate discrimination in arsenate-rich environments. Nature 2012; 491:134-7. [PMID: 23034649 DOI: 10.1038/nature11517] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 08/15/2012] [Indexed: 11/08/2022]
Abstract
Arsenate and phosphate are abundant on Earth and have striking similarities: nearly identical pK(a) values, similarly charged oxygen atoms, and thermochemical radii that differ by only 4% (ref. 3). Phosphate is indispensable and arsenate is toxic, but this extensive similarity raises the question whether arsenate may substitute for phosphate in certain niches. However, whether it is used or excluded, discriminating phosphate from arsenate is a paramount challenge. Enzymes that utilize phosphate, for example, have the same binding mode and kinetic parameters as arsenate, and the latter's presence therefore decouples metabolism. Can proteins discriminate between these two anions, and how would they do so? In particular, cellular phosphate uptake systems face a challenge in arsenate-rich environments. Here we describe a molecular mechanism for this process. We examined the periplasmic phosphate-binding proteins (PBPs) of the ABC-type transport system that mediates phosphate uptake into bacterial cells, including two PBPs from the arsenate-rich Mono Lake Halomonas strain GFAJ-1. All PBPs tested are capable of discriminating phosphate over arsenate at least 500-fold. The exception is one of the PBPs of GFAJ-1 that shows roughly 4,500-fold discrimination and its gene is highly expressed under phosphate-limiting conditions. Sub-ångström-resolution structures of Pseudomonas fluorescens PBP with both arsenate and phosphate show a unique mode of binding that mediates discrimination. An extensive network of dipole-anion interactions, and of repulsive interactions, results in the 4% larger arsenate distorting a unique low-barrier hydrogen bond. These features enable the phosphate transport system to bind phosphate selectively over arsenate (at least 10(3) excess) even in highly arsenate-rich environments.
Collapse
|
31
|
Type II-dependent secretion of a Pseudomonas aeruginosa DING protein. Res Microbiol 2012; 163:457-69. [PMID: 22835944 DOI: 10.1016/j.resmic.2012.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/16/2012] [Indexed: 11/24/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that uses a wide range of protein secretion systems to interact with its host. Genes encoding the PAO1 Hxc type II secretion system are linked to genes encoding phosphatases (LapA/LapB). Microarray genotyping suggested that Pseudomonas aeruginosa clinical isolates, including urinary tract (JJ692) and blood (X13273) isolates, lacked the lapA/lapB genes. Instead, we show that they carry a gene encoding a protein of the PstS family. This protein, which we call LapC, also has significant similarities with LapA/LapB. LapC belongs to the family of DING proteins and displays the canonical DINGGG motif within its N terminus. DING proteins are members of a prokaryotic phosphate binding protein superfamily. We show that LapC is secreted in an Hxc-dependent manner and is under the control of the PhoB response regulator. The genetic organization hxc-lapC found in JJ692 and X13273 is similar to PA14, which is the most frequent P. aeruginosa genotype. While the role of LapA, LapB and LapC proteins remains unclear in P. aeruginosa pathogenesis, they are likely to be part of a phosphate scavenging or sensing system needed to survive and thrive when low phosphate environments are encountered within the host.
Collapse
|
32
|
LIMAYE BHAKTI, BANERJEE RUMA, DATTA AVIK, INAMDAR HARSHAL, VATS PANKAJ, DAHALE SONAL, BHANDARI ALOK, RAMAKRISHNAN EP, TUPAKULA RAJNIKANTH, MALVIYA SANDEEP, BAYASKAR AVINASH, GADHARI RENU, JAIN SANKALP, GAVANE VIVEK, MAHAJAN RASHMI, SUNITHA K, JOSHI RAJENDRA. ANVAYA: A WORKFLOWS ENVIRONMENT FOR AUTOMATED GENOME ANALYSIS. J Bioinform Comput Biol 2012; 10:1250006. [DOI: 10.1142/s0219720012500060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Anvaya is a workflow environment for automated genome analysis that provides an interface for several bioinformatics tools and databases, loosely coupled together in a coordinated system, enabling the execution of a set of analyses tools in series or in parallel. It is a client-server workflow environment that has an advantage over existing software as it enables extensive pre & post processing of biological data in an efficient manner. "Anvaya" offers the user, novel functionalities to carry out exhaustive comparative analysis via "custom tools," which are tools with new functionality not available in standard tools, and "built-in PERL parsers," which automate data-flow between tools that hitherto, required manual intervention. It also provides a set of 11 pre-defined workflows for frequently used pipelines in genome annotation and comparative genomics ranging from EST assembly and annotation to phylogenetic reconstruction and microarray analysis. It provides a platform that serves as a single-stop solution for biologists to carry out hassle-free and comprehensive analysis, without being bothered about the nuances involved in tool installation, command line parameters, format conversions required to connect tools and manage/process multiple data sets at a single instance.
Collapse
Affiliation(s)
- BHAKTI LIMAYE
- Bioinformatics Group, Centre for Development of Advanced Computing, Pune University Campus, Ganesh Khind, Pune – 411007, Maharashtra, India
| | - RUMA BANERJEE
- Bioinformatics Group, Centre for Development of Advanced Computing, Pune University Campus, Ganesh Khind, Pune – 411007, Maharashtra, India
| | - AVIK DATTA
- Bioinformatics Group, Centre for Development of Advanced Computing, Pune University Campus, Ganesh Khind, Pune – 411007, Maharashtra, India
| | - HARSHAL INAMDAR
- Bioinformatics Group, Centre for Development of Advanced Computing, Pune University Campus, Ganesh Khind, Pune – 411007, Maharashtra, India
| | - PANKAJ VATS
- Bioinformatics Group, Centre for Development of Advanced Computing, Pune University Campus, Ganesh Khind, Pune – 411007, Maharashtra, India
| | - SONAL DAHALE
- Bioinformatics Group, Centre for Development of Advanced Computing, Pune University Campus, Ganesh Khind, Pune – 411007, Maharashtra, India
| | - ALOK BHANDARI
- Bioinformatics Group, Centre for Development of Advanced Computing, Pune University Campus, Ganesh Khind, Pune – 411007, Maharashtra, India
| | - E. P. RAMAKRISHNAN
- Bioinformatics Group, Centre for Development of Advanced Computing, Pune University Campus, Ganesh Khind, Pune – 411007, Maharashtra, India
| | - RAJNIKANTH TUPAKULA
- Bioinformatics Group, Centre for Development of Advanced Computing, Pune University Campus, Ganesh Khind, Pune – 411007, Maharashtra, India
| | - SANDEEP MALVIYA
- Bioinformatics Group, Centre for Development of Advanced Computing, Pune University Campus, Ganesh Khind, Pune – 411007, Maharashtra, India
| | - AVINASH BAYASKAR
- Bioinformatics Group, Centre for Development of Advanced Computing, Pune University Campus, Ganesh Khind, Pune – 411007, Maharashtra, India
| | - RENU GADHARI
- Bioinformatics Group, Centre for Development of Advanced Computing, Pune University Campus, Ganesh Khind, Pune – 411007, Maharashtra, India
| | - SANKALP JAIN
- Bioinformatics Group, Centre for Development of Advanced Computing, Pune University Campus, Ganesh Khind, Pune – 411007, Maharashtra, India
| | - VIVEK GAVANE
- Bioinformatics Group, Centre for Development of Advanced Computing, Pune University Campus, Ganesh Khind, Pune – 411007, Maharashtra, India
| | - RASHMI MAHAJAN
- Bioinformatics Group, Centre for Development of Advanced Computing, Pune University Campus, Ganesh Khind, Pune – 411007, Maharashtra, India
| | - K SUNITHA
- Bioinformatics Group, Centre for Development of Advanced Computing, Pune University Campus, Ganesh Khind, Pune – 411007, Maharashtra, India
| | - RAJENDRA JOSHI
- Bioinformatics Group, Centre for Development of Advanced Computing, Pune University Campus, Ganesh Khind, Pune – 411007, Maharashtra, India
| |
Collapse
|
33
|
Collins KD. Why continuum electrostatics theories cannot explain biological structure, polyelectrolytes or ionic strength effects in ion–protein interactions. Biophys Chem 2012; 167:43-59. [DOI: 10.1016/j.bpc.2012.04.002] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 04/10/2012] [Accepted: 04/10/2012] [Indexed: 01/13/2023]
|
34
|
Ai H, Zhang C, He W, Chan K, Li Q. Solvation counteracts coulombic repulsion in the binding of two cations to a model hexapeptide. J Mol Model 2011; 18:53-64. [DOI: 10.1007/s00894-011-1026-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 02/14/2011] [Indexed: 10/18/2022]
|
35
|
Abstract
Due to large equilibrium fluctuations of protons at physiological pH, the orthophosphate ion as well as the imidazole group on histidine substantially regulate their charge upon approaching charged interfaces. This implies that these-and comparable-ions function as electostatic "proximity switches" when interacting with lipid membranes, DNA, proteins, etc. Using straightforward statistical thermodynamics as well as mesoscopic computer simulations we quantify the charge regulation mechanism and argue that it is important in a range of biological as well as technical processes.
Collapse
Affiliation(s)
- Mikael Lund
- Department of Theoretical Chemistry, Lund University, POB 124, SE-22100 Lund, Sweden.
| |
Collapse
|
36
|
Abstract
Bacterial lipoproteins are a set of membrane proteins with many different functions. Due to this broad-ranging functionality, these proteins have a considerable significance in many phenomena, from cellular physiology through cell division and virulence. Here we give a general overview of lipoprotein biogenesis and highlight examples of the roles of lipoproteins in bacterial disease caused by a selection of medically relevant Gram-negative and Gram-positive pathogens: Mycobacterium tuberculosis, Streptococcus pneumoniae, Borrelia burgdorferi, and Neisseria meningitidis. Lipoproteins have been shown to play key roles in adhesion to host cells, modulation of inflammatory processes, and translocation of virulence factors into host cells. As such, a number of lipoproteins have been shown to be potential vaccines. This review provides a summary of some of the reported roles of lipoproteins and of how this knowledge has been exploited in some cases for the generation of novel countermeasures to bacterial diseases.
Collapse
|
37
|
Cook GM, Berney M, Gebhard S, Heinemann M, Cox RA, Danilchanka O, Niederweis M. Physiology of mycobacteria. Adv Microb Physiol 2009; 55:81-182, 318-9. [PMID: 19573696 DOI: 10.1016/s0065-2911(09)05502-7] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mycobacterium tuberculosis is a prototrophic, metabolically flexible bacterium that has achieved a spread in the human population that is unmatched by any other bacterial pathogen. The success of M. tuberculosis as a pathogen can be attributed to its extraordinary stealth and capacity to adapt to environmental changes throughout the course of infection. These changes include: nutrient deprivation, hypoxia, various exogenous stress conditions and, in the case of the pathogenic species, the intraphagosomal environment. Knowledge of the physiology of M. tuberculosis during this process has been limited by the slow growth of the bacterium in the laboratory and other technical problems such as cell aggregation. Advances in genomics and molecular methods to analyze the M. tuberculosis genome have revealed that adaptive changes are mediated by complex regulatory networks and signals, resulting in temporal gene expression coupled to metabolic and energetic changes. An important goal for bacterial physiologists will be to elucidate the physiology of M. tuberculosis during the transition between the diverse conditions encountered by M. tuberculosis. This review covers the growth of the mycobacterial cell and how environmental stimuli are sensed by this bacterium. Adaptation to different environments is described from the viewpoint of nutrient acquisition, energy generation, and regulation. To gain quantitative understanding of mycobacterial physiology will require a systems biology approach and recent efforts in this area are discussed.
Collapse
Affiliation(s)
- Gregory M Cook
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | |
Collapse
|
38
|
Liebschner D, Elias M, Moniot S, Fournier B, Scott K, Jelsch C, Guillot B, Lecomte C, Chabrière E. Elucidation of the phosphate binding mode of DING proteins revealed by subangstrom X-ray crystallography. J Am Chem Soc 2009; 131:7879-86. [PMID: 19445459 DOI: 10.1021/ja901900y] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PfluDING is a bacterial protein isolated from Pseudomonas fluorescens that belongs to the DING protein family, which is ubiquitous in eukaryotes and extends to prokaryotes. DING proteins and PfluDING have very similar topologies to phosphate Solute Binding Proteins (SBPs). The three-dimensional structure of PfluDING was obtained at subangstrom resolution (0.88 and 0.98 A) at two different pH's (4.5 and 8.5), allowing us to discuss the hydrogen bond network that sequesters the phosphate ion in the binding site. From this high resolution data, we experimentally elucidated the molecular basis of phosphate binding in phosphate SBPs. The phosphate ion is tightly bound to the protein via 12 hydrogen bonds between phosphate oxygen atoms and OH and NH groups of the protein. The proton on one oxygen atom of the phosphate dianion forms a 2.5 A low barrier hydrogen bond with an aspartate, with the energy released by forming this strong bond ensuring the specificity for the dianion even at pH 4.5. In particular, contrary to previous theories on phosphate SBPs, accurate electrostatic potential calculations show that the binding cleft is positively charged. PfluDING structures reveal that only dibasic phosphate binds to the protein at both acidic and basic phosphate, suggesting that the protein binding site environment stabilizes the HPO(4)(2-) form of phosphate.
Collapse
Affiliation(s)
- Dorothee Liebschner
- Cristallographie Resonnance Magnetique et Modelisations, CNRS UMR 7036 Nancy-Universite, 54506 Vandoeuvre-les-Nancy, France
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Berna A, Scott K, Chabrière E, Bernier F. The DING family of proteins: ubiquitous in eukaryotes, but where are the genes? Bioessays 2009; 31:570-80. [PMID: 19360767 DOI: 10.1002/bies.200800174] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PstS and DING proteins are members of a superfamily of secreted, high-affinity phosphate-binding proteins. Whereas microbial PstS have a well-defined role in phosphate ABC transporters, the physiological function of DING proteins, named after their DINGGG N termini, still needs to be determined. PstS and DING proteins co-exist in some Pseudomonas strains, to which they confer a highly adhesive and virulent phenotype. More than 30 DING proteins have now been purified, mostly from eukaryotes. They are often associated with infections or with dysregulation of cell proliferation. Consequently, eukaryotic DING proteins could also be involved in cell-cell communication or adherence. The ubiquitous presence in eukaryotes of proteins structurally and functionally related to bacterial virulence factors is intriguing, as is the absence of eukaryotic genes encoding DING proteins in databases. DING proteins in eukaryotes could originate from unidentified commensal or symbiotic bacteria and could contribute to essential functions. Alternatively, DING proteins could be encoded by eukaryotic genes sharing special features that prevent their cloning. Both hypotheses are discussed.
Collapse
Affiliation(s)
- Anne Berna
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis Pasteur, Institut de Botanique, Strasbourg Cedex, France
| | | | | | | |
Collapse
|
40
|
Guelker M, Stagg L, Wittung-Stafshede P, Shamoo Y. Pseudosymmetry, high copy number and twinning complicate the structure determination of Desulfovibrio desulfuricans (ATCC 29577) flavodoxin. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2009; 65:523-34. [PMID: 19465766 PMCID: PMC2685730 DOI: 10.1107/s0907444909010075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 03/18/2009] [Indexed: 11/10/2022]
Abstract
The crystal structure of oxidized flavodoxin from Desulfovibrio desulfuricans (ATCC 29577) was determined by molecular replacement in two crystal forms, P3(1)21 and P4(3), at 2.5 and 2.0 A resolution, respectively. Structure determination in space group P3(1)21 was challenging owing to the presence of pseudo-translational symmetry and a high copy number in the asymmetric unit (8). Initial phasing attempts in space group P3(1)21 by molecular replacement using a poor search model (46% identity) and multi-wavelength anomalous dispersion were unsuccessful. It was necessary to solve the structure in a second crystal form, space group P4(3), which was characterized by almost perfect twinning, in order to obtain a suitable search model for molecular replacement. This search model with complementary approaches to molecular replacement utilizing the pseudo-translational symmetry operators determined by analysis of the native Patterson map facilitated the selection and manual placement of molecules to generate an initial solution in the P3(1)21 crystal form. During the early stages of refinement, application of the appropriate twin law, (-h, -k, l), was required to converge to reasonable R-factor values despite the fact that in the final analysis the data were untwinned and the twin law could subsequently be removed. The approaches used in structure determination and refinement may be applicable to other crystal structures characterized by these complicating factors. The refined model shows flexibility of the flavin mononucleotide coordinating loops indicated by the isolation of two loop conformations and provides a starting point for the elucidation of the mechanism used for protein-partner recognition.
Collapse
Affiliation(s)
- Megan Guelker
- Department of Biochemistry and Cell Biology, Rice University, 6100 Main Street, MS-140, Houston, TX 77005, USA
| | - Loren Stagg
- Department of Biochemistry and Cell Biology, Rice University, 6100 Main Street, MS-140, Houston, TX 77005, USA
| | - Pernilla Wittung-Stafshede
- Department of Biochemistry and Cell Biology, Rice University, 6100 Main Street, MS-140, Houston, TX 77005, USA
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Yousif Shamoo
- Department of Biochemistry and Cell Biology, Rice University, 6100 Main Street, MS-140, Houston, TX 77005, USA
| |
Collapse
|
41
|
Vondrášek J, Mason PE, Heyda J, Collins KD, Jungwirth P. The Molecular Origin of Like-Charge Arginine−Arginine Pairing in Water. J Phys Chem B 2009; 113:9041-5. [DOI: 10.1021/jp902377q] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jiří Vondrášek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, and Center for Biomolecules and Complex Molecular Systems, Flemingovo nám. 2,16610 Prague 6, Czech Republic, Department of Food Sciences, Stocking Hall, Cornell University, Ithaca, New York 14853, and Center of Marine Biotechnology and Medical Biotechnology Center, University of Maryland Biotechnology Institute, 725 West Lombard, Baltimore, Maryland 21201
| | - Philip E. Mason
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, and Center for Biomolecules and Complex Molecular Systems, Flemingovo nám. 2,16610 Prague 6, Czech Republic, Department of Food Sciences, Stocking Hall, Cornell University, Ithaca, New York 14853, and Center of Marine Biotechnology and Medical Biotechnology Center, University of Maryland Biotechnology Institute, 725 West Lombard, Baltimore, Maryland 21201
| | - Jan Heyda
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, and Center for Biomolecules and Complex Molecular Systems, Flemingovo nám. 2,16610 Prague 6, Czech Republic, Department of Food Sciences, Stocking Hall, Cornell University, Ithaca, New York 14853, and Center of Marine Biotechnology and Medical Biotechnology Center, University of Maryland Biotechnology Institute, 725 West Lombard, Baltimore, Maryland 21201
| | - Kim D. Collins
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, and Center for Biomolecules and Complex Molecular Systems, Flemingovo nám. 2,16610 Prague 6, Czech Republic, Department of Food Sciences, Stocking Hall, Cornell University, Ithaca, New York 14853, and Center of Marine Biotechnology and Medical Biotechnology Center, University of Maryland Biotechnology Institute, 725 West Lombard, Baltimore, Maryland 21201
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, and Center for Biomolecules and Complex Molecular Systems, Flemingovo nám. 2,16610 Prague 6, Czech Republic, Department of Food Sciences, Stocking Hall, Cornell University, Ithaca, New York 14853, and Center of Marine Biotechnology and Medical Biotechnology Center, University of Maryland Biotechnology Institute, 725 West Lombard, Baltimore, Maryland 21201
| |
Collapse
|
42
|
Davidson AL, Dassa E, Orelle C, Chen J. Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 2008; 72:317-64, table of contents. [PMID: 18535149 PMCID: PMC2415747 DOI: 10.1128/mmbr.00031-07] [Citation(s) in RCA: 981] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
SUMMARY ATP-binding cassette (ABC) systems are universally distributed among living organisms and function in many different aspects of bacterial physiology. ABC transporters are best known for their role in the import of essential nutrients and the export of toxic molecules, but they can also mediate the transport of many other physiological substrates. In a classical transport reaction, two highly conserved ATP-binding domains or subunits couple the binding/hydrolysis of ATP to the translocation of particular substrates across the membrane, through interactions with membrane-spanning domains of the transporter. Variations on this basic theme involve soluble ABC ATP-binding proteins that couple ATP hydrolysis to nontransport processes, such as DNA repair and gene expression regulation. Insights into the structure, function, and mechanism of action of bacterial ABC proteins are reported, based on phylogenetic comparisons as well as classic biochemical and genetic approaches. The availability of an increasing number of high-resolution structures has provided a valuable framework for interpretation of recent studies, and realistic models have been proposed to explain how these fascinating molecular machines use complex dynamic processes to fulfill their numerous biological functions. These advances are also important for elucidating the mechanism of action of eukaryotic ABC proteins, because functional defects in many of them are responsible for severe human inherited diseases.
Collapse
Affiliation(s)
- Amy L Davidson
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | |
Collapse
|
43
|
Abstract
The growth and nutritional requirements of mycobacteria have been intensively studied since the discovery of Mycobacterium tuberculosis more than a century ago. However, the identity of many transporters for essential nutrients of M. tuberculosis and other mycobacteria is still unknown despite a wealth of genomic data and the availability of sophisticated genetic tools. Recently, considerable progress has been made in recognizing that two lipid permeability barriers have to be overcome in order for a nutrient molecule to reach the cytoplasm of mycobacteria. Uptake processes are discussed by comparing M. tuberculosis with Mycobacterium smegmatis. For example, M. tuberculosis has only five recognizable carbohydrate transporters in the inner membrane, while M. smegmatis has 28 such transporters at its disposal. The specificities of inner-membrane transporters for sulfate, phosphate and some amino acids have been determined. Outer-membrane channel proteins in both organisms are thought to contribute to nutrient uptake. In particular, the Msp porins have been shown to be required for uptake of carbohydrates, amino acids and phosphate by M. smegmatis. The set of porins also appears to be different for M. tuberculosis and M. smegmatis. These differences likely reflect the lifestyles of these mycobacteria and the availability of nutrients in their natural habitats: the soil and the human body. The comprehensive identification and the biochemical and structural characterization of the nutrient transporters of M. tuberculosis will not only promote our understanding of the physiology of this important human pathogen, but might also be exploited to improve tuberculosis chemotherapy.
Collapse
Affiliation(s)
- Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, 609 Bevill Biomedical Research Building, 845 19th Street South, Birmingham, AL 35294, USA
| |
Collapse
|
44
|
Collins KD, Neilson GW, Enderby JE. Ions in water: Characterizing the forces that control chemical processes and biological structure. Biophys Chem 2007; 128:95-104. [PMID: 17418479 DOI: 10.1016/j.bpc.2007.03.009] [Citation(s) in RCA: 449] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 03/09/2007] [Accepted: 03/10/2007] [Indexed: 11/29/2022]
Abstract
The continuum electrostatics model of Debye and Hückel [P. Debye and E. Hückel, On the theory of electrolytes. I. Freezing point depression and related phenomena., Phys. Z. 24 (1923) 185-206.] and its successors utilize a macroscopic dielectric constant and assume that all interactions involving ions are strictly electrostatic, implying that simple ions in water generate electric fields strong enough to orient water dipoles over long distances. However, solution neutron and X-ray diffraction indicate that even di- and tri-valent ions do not significantly alter the density or orientation of water more than two water molecules (5 A) away. Therefore the long range electric fields (generated by simple ions) which can be detected by various resonance techniques such as fluorescence resonance energy transfer over distances of 30 A (about 11 water diameters) or more must be weak relative to the strength of water-water interactions. Two different techniques indicate that the interaction of water with anions is by an approximately linear hydrogen bond, suggesting that the dominant forces on ions in water are short range forces of a chemical nature.
Collapse
Affiliation(s)
- Kim D Collins
- Center of Marine Biotechnology and Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
45
|
Moniot S, Elias M, Kim D, Scott K, Chabriere E. Crystallization, diffraction data collection and preliminary crystallographic analysis of DING protein from Pseudomonas fluorescens. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:590-2. [PMID: 17620718 PMCID: PMC2335140 DOI: 10.1107/s1744309107028102] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Accepted: 06/07/2007] [Indexed: 11/11/2022]
Abstract
PfluDING is a phosphate-binding protein expressed in Pseudomonas fluorescens. This protein is clearly distinct from the bacterial ABC transporter soluble phosphate-binding protein PstS and is more homologous to eukaryotic DING proteins. Interestingly, bacterial DING proteins have only been detected in certain Pseudomonas species. Although DING proteins seem to be ubiquitous in eukaryotes, they are systematically absent from eukaryotic genomic databases and thus are still quite mysterious and poorly characterized. PfluDING displays mitogenic activity towards human cells and binds various ligands such as inorganic phosphate, pyrophosphate, nucleotide triphosphates and cotinine. Here, the crystallization of PfluDING is reported in a monoclinic space group (P2(1)), with typical unit-cell parameters a = 36.7, b = 123.7, c = 40.8 A, alpha = 90, beta = 116.7, gamma = 90 degrees. Preliminary crystallographic analysis reveals good diffraction quality for these crystals and a 1.43 A resolution data set has been collected.
Collapse
Affiliation(s)
- Sebastien Moniot
- Laboratoire de Cristallographie et Modélisation des Matériaux Minéraux et Biologiques, CNRS–Université Henri Poincaré, 54506 Vandoeuvre-lès-Nancy, France
| | - Mikael Elias
- Laboratoire de Cristallographie et Modélisation des Matériaux Minéraux et Biologiques, CNRS–Université Henri Poincaré, 54506 Vandoeuvre-lès-Nancy, France
| | - Donghyo Kim
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Ken Scott
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Eric Chabriere
- Laboratoire de Cristallographie et Modélisation des Matériaux Minéraux et Biologiques, CNRS–Université Henri Poincaré, 54506 Vandoeuvre-lès-Nancy, France
| |
Collapse
|
46
|
Morales R, Berna A, Carpentier P, Contreras-Martel C, Renault F, Nicodeme M, Chesne-Seck ML, Bernier F, Dupuy J, Schaeffer C, Diemer H, Van-Dorsselaer A, Fontecilla-Camps JC, Masson P, Rochu D, Chabrière E. Découverte et structure cristallographique d’une apolipoprotéine humaine. ANNALES PHARMACEUTIQUES FRANÇAISES 2007; 65:98-107. [PMID: 17404543 DOI: 10.1016/s0003-4509(07)90023-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We report the serendipitous discovery of a human plasma phosphate binding protein (HPBP). This 38 kDa protein is co-purified with paraoxonase (PON1). The association between HPON1 and HPBP is modulated by phosphate and calcium concentrations. The HPBP X-ray structure solved at 1.9 A resolution is similar to the prokaryotic phosphate solute-binding proteins (SBPs) associated with ATP binding cassette transmembrane transporters, though phosphate-SBPs have never been characterized or predicted from nucleic acid databases in eukaryotes. However, HPBP belongs to the family of ubiquitous eukaryotic proteins named DING, meaning that phosphate-SBPs are also widespread in eukaryotes. The absence of complete genes for eukaryotic phosphate-SBP from databases is intriguing, but the astonishing 90% sequence conservation of genes between evolutionary distant species suggests that the corresponding proteins play an important function. HPBP is the first identified transporter capable of binding phosphate ions in human plasma. Thus it is thought to become a new predictor and a potential therapeutic agent for phosphate-related diseases such as atherosclerosis.
Collapse
Affiliation(s)
- R Morales
- Laboratoire de cristallogenèse et cristallographie des Protéines, Institut de Biologie Structurale J.-P. Ebel, F 38027 Grenoble
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Berna A, Bernier F, Chabrière E, Perera T, Scott K. DING proteins; novel members of a prokaryotic phosphate-binding protein superfamily which extends into the eukaryotic kingdom. Int J Biochem Cell Biol 2007; 40:170-5. [PMID: 17368078 DOI: 10.1016/j.biocel.2007.02.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Revised: 02/04/2007] [Accepted: 02/05/2007] [Indexed: 10/23/2022]
Abstract
PstS proteins are the cell-bound phosphate-binding elements of the ubiquitous bacterial ABC phosphate uptake mechanisms. Primary and tertiary structures, characteristic of pstS proteins, are conserved in proteins, which are expressed in secretory operons and induced by phosphate deprivation, in Pseudomonas species. There are two subsets of these proteins; AP proteins, which are alkaline phosphatases, and DING proteins, named for their N-terminal sequence, which are phosphate-binding proteins. Both form elements of a proposed phosphate-scavenging system in pseudomonads. DING proteins have also been isolated from many eukaryotic sources, and are associated with both normal and pathological functions in mammals. Their phosphate-binding function suggests a role in biomineralization, but the ability to bind other ligands may be related to signal transduction in eukaryotes. Though it has been claimed that all such proteins may originate from pseudomonads, many eukaryotic DING proteins have unique features which are incompatible with a bacterial origin.
Collapse
Affiliation(s)
- Anne Berna
- Institut de Biologie Moléculaire des Plantes du C.N.R.S., Université Louis Pasteur, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France.
| | | | | | | | | |
Collapse
|
48
|
Koropatkin NM, Koppenaal DW, Pakrasi HB, Smith TJ. The structure of a cyanobacterial bicarbonate transport protein, CmpA. J Biol Chem 2006; 282:2606-14. [PMID: 17121816 DOI: 10.1074/jbc.m610222200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyanobacteria, blue-green algae, are the most abundant autotrophs in aquatic environments and form the base of the food chain by fixing carbon and nitrogen into cellular biomass. To compensate for the low selectivity of Rubisco for CO2 over O2, cyanobacteria have developed highly efficient CO2-concentrating machinery of which the ABC transport system CmpABCD from Synechocystis PCC 6803 is one component. Here, we have described the structure of the bicarbonate-binding protein CmpA in the absence and presence of bicarbonate and carbonic acid. CmpA is highly homologous to the nitrate transport protein NrtA. CmpA binds carbonic acid at the entrance to the ligand-binding pocket, whereas bicarbonate binds in nearly an identical location compared with nitrate binding to NrtA. Unexpectedly, bicarbonate binding is accompanied by a metal ion, identified as Ca2+ via inductively coupled plasma optical emission spectrometry. The binding of bicarbonate and metal appears to be highly cooperative and suggests that CmpA may co-transport bicarbonate and calcium or that calcium acts a cofactor in bicarbonate transport.
Collapse
|
49
|
Morales R, Berna A, Carpentier P, Contreras-Martel C, Renault F, Nicodeme M, Chesne-Seck ML, Bernier F, Dupuy J, Schaeffer C, Diemer H, Van-Dorsselaer A, Fontecilla-Camps JC, Masson P, Rochu D, Chabriere E. Serendipitous discovery and X-ray structure of a human phosphate binding apolipoprotein. Structure 2006; 14:601-9. [PMID: 16531243 DOI: 10.1016/j.str.2005.12.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 11/09/2005] [Accepted: 12/20/2005] [Indexed: 11/23/2022]
Abstract
We report the serendipitous discovery of a human plasma phosphate binding protein (HPBP). This 38 kDa protein is copurified with the enzyme paraoxonase. Its X-ray structure is similar to the prokaryotic phosphate solute binding proteins (SBPs) associated with ATP binding cassette transmembrane transporters, though phosphate-SBPs have never been characterized or predicted from nucleic acid databases in eukaryotes. However, HPBP belongs to the family of ubiquitous eukaryotic proteins named DING, meaning that phosphate-SBPs are also widespread in eukaryotes. The systematic absence of complete genes for eukaryotic phosphate-SBP from databases is intriguing, but the astonishing 90% sequence conservation between genes belonging to evolutionary distant species suggests that the corresponding proteins play an important function. HPBP is the only known transporter capable of binding phosphate ions in human plasma and may become a new predictor of or a potential therapeutic agent for phosphate-related diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Renaud Morales
- Laboratoire de Cristallogenèse et Cristallographie des Protéines, Institut de Biologie Structurale JP EBEL, 38027 Grenoble, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Koropatkin NM, Pakrasi HB, Smith TJ. Atomic structure of a nitrate-binding protein crucial for photosynthetic productivity. Proc Natl Acad Sci U S A 2006; 103:9820-5. [PMID: 16777960 PMCID: PMC1502537 DOI: 10.1073/pnas.0602517103] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyanobacteria, blue-green algae, are the most abundant autotrophs in aquatic environments and form the base of all aquatic food chains by fixing carbon and nitrogen into cellular biomass. The single most important nutrient for photosynthesis and growth is nitrate, which is severely limiting in many aquatic environments particularly the open ocean. It is therefore not surprising that NrtA, the solute-binding component of the high-affinity nitrate ABC transporter, is the single-most abundant protein in the plasma membrane of these bacteria. Here, we describe the structure of a nitrate-specific receptor, NrtA from Synechocystis sp. PCC 6803, complexed with nitrate and determined to a resolution of 1.5 A. NrtA is significantly larger than other oxyanion-binding proteins, representing a previously uncharacterized class of transport proteins. From sequence alignments, the only other solute-binding protein in this class is CmpA, a bicarbonate-binding protein. Therefore, these organisms created a solute-binding protein for two of the most important nutrients: inorganic nitrogen and carbon. The electrostatic charge distribution of NrtA appears to force the protein off the membrane while the flexible tether facilitates the delivery of nitrate to the membrane pore. The structure not only details the determinants for nitrate selectivity in NrtA but also the bicarbonate specificity in CmpA. Nitrate and bicarbonate transport are regulated by the cytoplasmic proteins NrtC and CmpC, respectively. Interestingly, the residues lining the ligand binding pockets suggest that they both bind nitrate. This implies that the nitrogen and carbon uptake pathways are synchronized by intracellular nitrate and nitrite.
Collapse
Affiliation(s)
- Nicole M. Koropatkin
- *Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132; and
| | | | - Thomas J. Smith
- *Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|