1
|
Xu Y, Zhao N, Li F, Wang C, Xie H, Wu J, Cheng L, Wang L, Wang Z. Application of Vitreoscilla Hemoglobin as a Green and Efficient Biocatalyst for the Synthesis of Benzoxazoles in Water. Chembiochem 2024; 25:e202300609. [PMID: 37877236 DOI: 10.1002/cbic.202300609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
We report an efficient and eco-friendly method for the Vitreoscilla hemoglobin (VHb)-catalyzed synthesis of benzoxazoles in water at room temperature. tert-Butyl hydroperoxide and 2,2,6,6-tetramethyl-1-piperidinyloxy were used as oxidant and radical scavenger, respectively. A total of 27 functionally diverse benzoxazoles were prepared in moderate to high yields (62 %-94 %) by the annulation reaction of phenols with amines in the presence of VHb in 1 h. Thus, this method is highly viable for practical applications. This work broadens the application of hemoglobin to organic synthesis.
Collapse
Affiliation(s)
- Yaning Xu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130023, P. R. China
| | - Nan Zhao
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130023, P. R. China
| | - Fengxi Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130023, P. R. China
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130023, P. R. China
| | - Hanqing Xie
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130023, P. R. China
| | - Junhao Wu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130023, P. R. China
| | - Lei Cheng
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130023, P. R. China
| | - Lei Wang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130023, P. R. China
| | - Zhi Wang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130023, P. R. China
| |
Collapse
|
2
|
Montes-Rodríguez IM, Cadilla CL, López-Garriga J, González-Méndez R. Bioinformatic Characterization and Molecular Evolution of the Lucina pectinata Hemoglobins. Genes (Basel) 2022; 13:2041. [PMID: 36360278 PMCID: PMC9690805 DOI: 10.3390/genes13112041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 10/01/2023] Open
Abstract
(1) Introduction: Lucina pectinata is a clam found in sulfide-rich mud environments that has three hemoglobins believed to be responsible for the transport of hydrogen sulfide (HbILp) and oxygen (HbIILp and HbIIILp) to chemoautotrophic endosymbionts. The physiological roles and evolution of these globins in sulfide-rich environments are not well understood. (2) Methods: We performed bioinformatic and phylogenetic analyses with 32 homologous mollusk globin sequences. Phylogenetics suggests a first gene duplication resulting in sulfide binding and oxygen binding genes. A more recent gene duplication gave rise to the two oxygen-binding hemoglobins. Multidimensional scaling analysis of the sequence space shows evolutionary drift of HbIILp and HbIIILp, while HbILp was closer to the Calyptogena hemoglobins. Further corroboration is seen by conservation in the coding region of hemoglobins from L. pectinata compared to those from Calyptogena. (3) Conclusions: Presence of glutamine in position E7 in organisms living in sulfide-rich environments can be considered an adaptation to prevent loss of protein function. In HbILp a substitution of phenylalanine in position B10 is accountable for its unique reactivity towards H2S. It appears that HbILp has been changing over time, apparently not subject to functional constraints of binding oxygen, and acquired a unique function for a specialized environment.
Collapse
Affiliation(s)
- Ingrid M. Montes-Rodríguez
- Cancer Biology Division, PROMIC, Comprehensive Cancer Center of the University of Puerto Rico, San Juan, PR 00936-3027, USA
| | - Carmen L. Cadilla
- Department of Biochemistry, School of Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936-5067, USA
| | - Juan López-Garriga
- Department of Chemistry, Faculty of Arts and Sciences, University of Puerto Rico—Mayagüez Campus, Mayagüez, PR 00681-9000, USA
| | - Ricardo González-Méndez
- Department of Radiological Sciences, School of Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936-5067, USA
| |
Collapse
|
3
|
Chen M, Wang J, Lin L, Xu X, Wei W, Shen Y, Wei D. Synergistic Regulation of Metabolism by Ca 2+/Reactive Oxygen Species in Penicillium brevicompactum Improves Production of Mycophenolic Acid and Investigation of the Ca 2+ Channel. ACS Synth Biol 2022; 11:273-285. [PMID: 34941247 DOI: 10.1021/acssynbio.1c00413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although Penicillium brevicompactum is a very important industrial strain for mycophenolic acid production, there are no reports on Ca2+/reactive oxygen species (ROS) synergistic regulation and calcium channels, Cch-pb. This study initially intensified the concentration of the intracellular Ca2+ in the high yielding mycophenolic acid producing strain NRRL864 to explore the physiological role of intracellular redox state in metabolic regulation by Penicillium brevicompactum. The addition of Ca2+ in the media caused an increase of intracellular Ca2+, which was accompanied by a strong increase, 1.5 times, in the higher intracellular ROS concentration. In addition, the more intensive ROS sparked the production of an unreported pigment and increase in mycophenolic acid production. Furthermore, the Ca2+ channel, the homologous gene of Cch1, Cch-pb, was investigated to verify the relationship between Ca2+ and the intracellular ROS. The Vitreoscilla hemoglobin was overexpressed, which was bacterial hemoglobin from Vitreoscilla, reducing the intracellular ROS concentration to verify the relationship between the redox state and the yield of mycophenolic acid. The strain pb-VGB expressed the Vitreoscilla hemoglobin exhibited a lower intracellular ROS concentration, 30% lower, and decreased the yield of mycophenolic acid as 10% lower at the same time. Subsequently, with the NRRL864 fermented under 1.7 and 28 mM Ca2+, the [NADH]/[NAD+] ratios were detected and the higher [NADH]/[NAD+] ratios (4 times higher with 28 mM) meant a more robust primary metabolism which provided more precursors to produce the pigment and the mycophenolic acid. Finally, the 10 times higher calcium addition in the media resulted in 25% enhanced mycophenolic acid production to 6.7 g/L and induced pigment synthesis in NRRL864.
Collapse
Affiliation(s)
- Mianhui Chen
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Jingjing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Lin Lin
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, People’s Republic of China
- Research Laboratory for Functional Nanomaterial, National Engineering Research Center for Nanotechnology, Shanghai 200241, People’s Republic of China
| | - Xiangyang Xu
- Zaozhuang jie nuo enzyme co. ltd, Zaozhuang 277100, People’s Republic of China
| | - Wei Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Yaling Shen
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| |
Collapse
|
4
|
Schneider T, Tan Y, Li H, Fisher JS, Zhang D. Photoglobin, a distinct family of non-heme binding globins, defines a potential photosensor in prokaryotic signal transduction systems. Comput Struct Biotechnol J 2022; 20:261-273. [PMID: 35024098 PMCID: PMC8717448 DOI: 10.1016/j.csbj.2021.12.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
Globins constitute an ancient superfamily of proteins, exhibiting enormous structural and functional diversity, as demonstrated by many heme-binding families and two non-heme binding families that were discovered in bacterial stressosome component RsbR and in light-harvesting phycobiliproteins (phycocyanin) in cyanobacteria and red algae. By comprehensively exploring the globin repertoire using sensitive computational analyses of sequences, structures, and genomes, we present the identification of the third family of non-heme binding globins—the photoglobin. By conducting profile-based comparisons, clustering analyses, and structural modeling, we demonstrate that photoglobin is related to, but distinct from, the phycocyanin family. Photoglobin preserves a potential ligand-binding pocket, whose residue configuration closely resembles that of phycocyanin, indicating that photoglobin potentially binds to a comparable linear tetrapyrrole. By exploring the contextual information provided by the photoglobin’s domain architectures and gene-neighborhoods, we found that photoglobin is frequently associated with the B12-binding light sensor domain and many domains typical of prokaryotic signal transduction systems. Structural modeling using AlphaFold2 demonstrated that photoglobin and B12-binding domains form a structurally conserved hub among different domain architecture contexts. Based on these strong associations, we predict that the coupled photoglobin and B12-binding domains act as a light-sensing regulatory bundle, with each domain sensing different wavelengths of light resulting in switch-like regulation of downstream signaling effectors. Thus, based on the above lines of evidence, we present a distinct non-heme binding globin family and propose that it may define a new type of light sensor, by means of a linear tetrapyrrole, in complex prokaryotic signal transduction systems.
Collapse
Affiliation(s)
- Theresa Schneider
- Department of Biology, College of Arts & Sciences, Saint Louis University, Saint Louis, MO 63105, United States
| | - Yongjun Tan
- Department of Biology, College of Arts & Sciences, Saint Louis University, Saint Louis, MO 63105, United States
| | - Huan Li
- Department of Biology, College of Arts & Sciences, Saint Louis University, Saint Louis, MO 63105, United States
| | - Jonathan S Fisher
- Department of Biology, College of Arts & Sciences, Saint Louis University, Saint Louis, MO 63105, United States
| | - Dapeng Zhang
- Department of Biology, College of Arts & Sciences, Saint Louis University, Saint Louis, MO 63105, United States.,Program of Bioinformatics and Computational Biology, College of Arts & Sciences, Saint Louis University, MO 63103, United States
| |
Collapse
|
5
|
Webster DA, Dikshit KL, Pagilla KR, Stark BC. The Discovery of Vitreoscilla Hemoglobin and Early Studies on Its Biochemical Functions, the Control of Its Expression, and Its Use in Practical Applications. Microorganisms 2021; 9:1637. [PMID: 34442716 PMCID: PMC8398370 DOI: 10.3390/microorganisms9081637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/25/2022] Open
Abstract
In 1986, the surprising identification of a hemoglobin (VHb) in the bacterium Vitreoscilla greatly extended the range of taxa in which this oxygen binding protein functions. Elucidation of many of its biochemical properties and relation to overall cell physiology, as well as the sequence of the gene encoding it and aspects of control of its expression were determined in the following years. In addition, during the early years following its discovery, strategies were developed to use its expression in heterologous microbial hosts to enhance processes of practical usefulness. The VHb discovery also served as the foundation for what has become the fascinatingly rich field of bacterial hemoglobins. VHb's position as the first known bacterial hemoglobin and its extensive use in biotechnological applications, which continue today, make a review of the early studies of its properties and uses an appropriate and interesting topic thirty-five years after its discovery.
Collapse
Affiliation(s)
- Dale A. Webster
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA;
| | - Kanak L. Dikshit
- Department of Biotechnology, Panjab University, Chandigarh 160014, India;
| | - Krishna R. Pagilla
- Department of Civil and Environmental Engineering, University of Nevada at Reno, Reno, NV 89557, USA;
| | - Benjamin C. Stark
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA;
| |
Collapse
|
6
|
Yu F, Zhao X, Wang Z, Liu L, Yi L, Zhou J, Li J, Chen J, Du G. Recent Advances in the Physicochemical Properties and Biotechnological Application of Vitreoscilla Hemoglobin. Microorganisms 2021; 9:microorganisms9071455. [PMID: 34361891 PMCID: PMC8306070 DOI: 10.3390/microorganisms9071455] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 11/16/2022] Open
Abstract
Vitreoscilla hemoglobin (VHb), the first discovered bacterial hemoglobin, is a soluble heme-binding protein with a faster rate of oxygen dissociation. Since it can enhance cell growth, product synthesis and stress tolerance, VHb has been widely applied in the field of metabolic engineering for microorganisms, plants, and animals. Especially under oxygen-limited conditions, VHb can interact with terminal oxidase to deliver enough oxygen to achieve high-cell-density fermentation. In recent years, with the development of bioinformatics and synthetic biology, several novel physicochemical properties and metabolic regulatory effects of VHb have been discovered and numerous strategies have been utilized to enhance the expression level of VHb in various hosts, which greatly promotes its applications in biotechnology. Thus, in this review, the new information regarding structure, function and expressional tactics for VHb is summarized to understand its latest applications and pave a new way for the future improvement of biosynthesis for other products.
Collapse
Affiliation(s)
- Fei Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (Z.W.); (L.L.); (L.Y.); (J.Z.); (J.L.); (J.C.)
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xinrui Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (Z.W.); (L.L.); (L.Y.); (J.Z.); (J.L.); (J.C.)
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Correspondence: (X.Z.); (G.D.)
| | - Ziwei Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (Z.W.); (L.L.); (L.Y.); (J.Z.); (J.L.); (J.C.)
| | - Luyao Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (Z.W.); (L.L.); (L.Y.); (J.Z.); (J.L.); (J.C.)
| | - Lingfeng Yi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (Z.W.); (L.L.); (L.Y.); (J.Z.); (J.L.); (J.C.)
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (Z.W.); (L.L.); (L.Y.); (J.Z.); (J.L.); (J.C.)
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (Z.W.); (L.L.); (L.Y.); (J.Z.); (J.L.); (J.C.)
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (Z.W.); (L.L.); (L.Y.); (J.Z.); (J.L.); (J.C.)
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (Z.W.); (L.L.); (L.Y.); (J.Z.); (J.L.); (J.C.)
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Correspondence: (X.Z.); (G.D.)
| |
Collapse
|
7
|
Salas A, Cabrera JJ, Jiménez-Leiva A, Mesa S, Bedmar EJ, Richardson DJ, Gates AJ, Delgado MJ. Bacterial nitric oxide metabolism: Recent insights in rhizobia. Adv Microb Physiol 2021; 78:259-315. [PMID: 34147187 DOI: 10.1016/bs.ampbs.2021.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) is a reactive gaseous molecule that has several functions in biological systems depending on its concentration. At low concentrations, NO acts as a signaling molecule, while at high concentrations, it becomes very toxic due to its ability to react with multiple cellular targets. Soil bacteria, commonly known as rhizobia, have the capacity to establish a N2-fixing symbiosis with legumes inducing the formation of nodules in their roots. Several reports have shown NO production in the nodules where this gas acts either as a signaling molecule which regulates gene expression, or as a potent inhibitor of nitrogenase and other plant and bacteria enzymes. A better understanding of the sinks and sources of NO in rhizobia is essential to protect symbiotic nitrogen fixation from nitrosative stress. In nodules, both the plant and the microsymbiont contribute to the production of NO. From the bacterial perspective, the main source of NO reported in rhizobia is the denitrification pathway that varies significantly depending on the species. In addition to denitrification, nitrate assimilation is emerging as a new source of NO in rhizobia. To control NO accumulation in the nodules, in addition to plant haemoglobins, bacteroids also contribute to NO detoxification through the expression of a NorBC-type nitric oxide reductase as well as rhizobial haemoglobins. In the present review, updated knowledge about the NO metabolism in legume-associated endosymbiotic bacteria is summarized.
Collapse
Affiliation(s)
- Ana Salas
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Juan J Cabrera
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain; School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Andrea Jiménez-Leiva
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Socorro Mesa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - David J Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Andrew J Gates
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - María J Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
| |
Collapse
|
8
|
Marcelli A, Patrizi B, Bonamore A, Boffi A, Becucci M, Foggi P. Exciplex Formation in Lipid-bound Escherichia coli Flavohemoglobin. Chemphyschem 2021; 22:1134-1140. [PMID: 33794073 DOI: 10.1002/cphc.202100019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/30/2021] [Indexed: 11/10/2022]
Abstract
Flavohemoglobins have the particular capability of binding unsaturated and cyclopropanated fatty acids as free acids or phospholipids. Fatty acid binding to the ferric heme results in a weak but direct bonding interaction. Ferrous and ferric protein, in presence or absence of a bound lipid molecule, have been characterized by transient absorption spectroscopy. Measurements have been also carried out both on the ferrous deoxygenated and on the CO bound protein to investigate possible long-range interaction between the lipid acyl chain moiety and the ferrous heme. After excitation of the deoxygenated derivatives the relaxation process reveals a slow dynamics (350 ps) in lipid-bound protein but is not observed in the lipid-free protein. The latter feature and the presence of an extra contribution in the absorption spectrum, indicates that the interaction of iron heme with the acyl chain moiety occurs only in the excited electronic state and not in the ground electronic state. Data analysis highlights the formation of a charge-transfer complex in which the iron ion of the lipid-bound protein in the expanded electronic excited state, possibly represented by a high spin Fe III intermediate, is able to bind to the sixth coordination ligand placed at a distance of at 3.5 Å from the iron. A very small nanosecond geminate rebinding is observed for CO adduct in lipid-free but not in the lipid-bound protein. The presence of the lipid thus appears to inhibit the mobility of CO in the heme pocket.
Collapse
Affiliation(s)
- Agnese Marcelli
- European Laboratory for Non-Linear Spectroscopy (LENS), Via Nello Carrara, 1, 50019 Sesto Fiorentino, Florence), Italy
| | - Barbara Patrizi
- European Laboratory for Non-Linear Spectroscopy (LENS), Via Nello Carrara, 1, 50019 Sesto Fiorentino, Florence), Italy.,National Institute of Optics-National Research Council (INO-CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino (Florence), Italy
| | - Alessandra Bonamore
- Istituto Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche, Università "Sapienza" di Roma, P. Aldo Moro 5, 00185, Rome, Italy
| | - Alberto Boffi
- Istituto Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche, Università "Sapienza" di Roma, P. Aldo Moro 5, 00185, Rome, Italy
| | - Maurizio Becucci
- European Laboratory for Non-Linear Spectroscopy (LENS), Via Nello Carrara, 1, 50019 Sesto Fiorentino, Florence), Italy.,Department of Chemistry Ugo Schiff, University of Florence, Via Della Lastruccia 3-13, 50019 Sesto Fiorentino, Florence), Italy
| | - Paolo Foggi
- European Laboratory for Non-Linear Spectroscopy (LENS), Via Nello Carrara, 1, 50019 Sesto Fiorentino, Florence), Italy.,National Institute of Optics-National Research Council (INO-CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino (Florence), Italy.,Department of Chemistry, University of Perugia, Via Elce di sotto 8, 06100, Perugia, Italy
| |
Collapse
|
9
|
Muraki N, Takeda K, Nam D, Muraki M, Aono S. Structural Characterization of Y29F Mutant of Thermoglobin from a Hyperthermophilic Bacterium Aquifex aeolicus. CHEM LETT 2021. [DOI: 10.1246/cl.200879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Norifumi Muraki
- Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Department of Structural Molecular Science, The Graduate University for Advanced Studies, 38 Nishogo-naka, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
| | - Kouta Takeda
- Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Dayeon Nam
- Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Megumi Muraki
- Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Shigetoshi Aono
- Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Department of Structural Molecular Science, The Graduate University for Advanced Studies, 38 Nishogo-naka, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
10
|
Talyzin VV, Bashirova NF, Kosmachevskaya OV, Punina NV, Arabova LI, Tikhomirova NV, Topunov AF. Methemoglobin Reductase of Bacteria and Bacteroids Bradyrhizobium lupini: Purification and Properties. APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818010131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Studies on the contributions of steric and polarity effects to the H2S-binding properties of Vitreoscilla hemoglobin. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.08.082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Ascenzi P, di Masi A, Leboffe L, Fiocchetti M, Nuzzo MT, Brunori M, Marino M. Neuroglobin: From structure to function in health and disease. Mol Aspects Med 2016; 52:1-48. [DOI: 10.1016/j.mam.2016.10.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 01/01/2023]
|
13
|
Abstract
If life without heme-Fe were at all possible, it would definitely be different. Indeed this complex and versatile iron-porphyrin macrocycle upon binding to different “globins” yields hemeproteins crucial to sustain a variety of vital functions, generally classified, for convenience, in a limited number of functional families. Over-and-above the array of functions briefly outlined below, the spectacular progress in molecular genetics seen over the last 30 years led to the discovery of many hitherto unknown novel hemeproteins in prokaryotes and eukaryotes. Here, we highlight a few basic aspects of the chemistry of the hemeprotein universe, in particular those that are relevant to the control of heme-Fe reactivity and specialization, as sculpted by a variety of interactions with the protein moiety.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Dipartimento di Scienze, Università Roma Tre, Viale Marconi 446, I-00146 Roma, Italy
| | - Maurizio Brunori
- Dipartimento di Scienze Biochimiche “Alessandro Rossi Fanelli” and Istituto Pasteur — Fondazione Cenci, Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| |
Collapse
|
14
|
Wang D, Liu L, Wang H, Xu H, Chen L, Ma L, Li Z. Clues for discovering a new biological function of Vitreoscilla
hemoglobin in organisms: potential sulfide receptor and storage. FEBS Lett 2016; 590:1132-42. [DOI: 10.1002/1873-3468.12141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/08/2016] [Accepted: 03/15/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Dandan Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education; College of Life Science; Jilin University; Changchun Jilin Province China
| | - Li Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education; College of Life Science; Jilin University; Changchun Jilin Province China
| | - Hui Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education; College of Life Science; Jilin University; Changchun Jilin Province China
| | - Haoran Xu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education; College of Life Science; Jilin University; Changchun Jilin Province China
| | - Lei Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education; College of Life Science; Jilin University; Changchun Jilin Province China
| | - Li Ma
- Department of Physics Georgia Southern University; Statesboro GA USA
| | - Zhengqiang Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education; College of Life Science; Jilin University; Changchun Jilin Province China
| |
Collapse
|
15
|
Open and Lys-His Hexacoordinated Closed Structures of a Globin with Swapped Proximal and Distal Sites. Sci Rep 2015; 5:11407. [PMID: 26094577 PMCID: PMC4476040 DOI: 10.1038/srep11407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 05/22/2015] [Indexed: 11/24/2022] Open
Abstract
Globins are haem-binding proteins with a conserved fold made up of α-helices and can possess diverse properties. A putative globin-coupled sensor from Methylacidiphilum infernorum, HGbRL, contains an N-terminal globin domain whose open and closed structures reveal an untypical dimeric architecture. Helices E and F fuse into an elongated helix, resulting in a novel site-swapped globin fold made up of helices A–E, hence the distal site, from one subunit and helices F–H, the proximal site, from another. The open structure possesses a large cavity binding an imidazole molecule, while the closed structure forms a unique Lys–His hexacoordinated species, with the first turn of helix E unravelling to allow Lys52(E10) to bind to the haem. Ligand binding induces reorganization of loop CE, which is stabilized in the closed form, and helix E, triggering a large conformational movement in the open form. These provide a mechanical insight into how a signal may be relayed between the globin domain and the C-terminal domain of HGbRL, a Roadblock/LC7 domain. Comparison with HGbI, a closely related globin, further underlines the high degree of structural versatility that the globin fold is capable of, enabling it to perform a diversity of functions.
Collapse
|
16
|
Recent applications of Vitreoscilla hemoglobin technology in bioproduct synthesis and bioremediation. Appl Microbiol Biotechnol 2015; 99:1627-36. [PMID: 25575886 DOI: 10.1007/s00253-014-6350-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/19/2014] [Accepted: 12/21/2014] [Indexed: 10/24/2022]
Abstract
Since its first use in 1990 to enhance production of α-amylase in E. coli, engineering of heterologous hosts to express the hemoglobin from the bacterium Vitreoscilla (VHb) has become a widely used strategy to enhance production of a variety of bioproducts, stimulate bioremediation, and increase growth and survival of engineered organisms. The hosts have included a variety of bacteria, yeast, fungi, higher plants, and even animals. The beneficial effects of VHb expression are presumably the result of one or more of its activities. The available evidence indicates that these include oxygen binding and delivery to the respiratory chain and oxygenases, protection against reactive oxygen species, and control of gene expression. In the past 4 to 5 years, the use of this "VHb technology" has continued in a variety of biotechnological applications in a wide range of organisms. These include enhancement of production of an ever wider array of bioproducts, new applications in bioremediation, a possible role in enhancing aerobic waste water treatment, and the potential to enhance growth and survival of both plants and animals of economic importance.
Collapse
|
17
|
Vinogradov SN, Tinajero-Trejo M, Poole RK, Hoogewijs D. Bacterial and archaeal globins — A revised perspective. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1789-800. [DOI: 10.1016/j.bbapap.2013.03.021] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/12/2013] [Accepted: 03/16/2013] [Indexed: 12/17/2022]
|
18
|
Li W, Zhang Y, Xu H, Wu L, Cao Y, Zhao H, Li Z. pH-induced quaternary assembly of Vitreoscilla hemoglobin: the monomer exhibits better peroxidase activity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2124-32. [PMID: 23886679 DOI: 10.1016/j.bbapap.2013.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 07/12/2013] [Accepted: 07/15/2013] [Indexed: 11/30/2022]
Abstract
pH-dependent (pH6.0-8.0) quaternary structural changes of ferric Vitreoscilla hemoglobin (VHb) have been investigated using dynamic light scattering. The VHb exhibits a monomeric state under neutral conditions at pH7.0, while the protein forms distinct homodimeric species at pH6.0 and 8.0, respectively. The dissociation constant obtained using the Bio-Layer Interferometry technology indicates that, at pH7.0, the monomer-monomer dissociation of VHb is about 6-fold or 5-fold higher (KD=6.34μM) compared with that at slightly acidic pH (KD=1.05μM) or slightly alkaline pH (KD=1.22μM). The pH-dependent absorption spectra demonstrate that the heme microenvironment of VHb is sensitive to the changes of pH value. The maximum absorption band of heme group of VHb shifts from 402nm to 407nm when pH changes from 6.0 to 8.0. In addition, the fluorescence emission spectra of VHb, taken at excitation wavelength of 295nm, suggest that the single Trp122 fluorescence quantum yields in VHb are decreased due to the formation of the homodimeric species. However, the circular dichroism spectra data display that the secondary structures of VHb are little affected by pH transitions. The pH-dependent peroxidase activity of VHb was also investigated in this study. The optimum pH for VHb using 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) as substrate is 7.0, which implies that the monomer state of VHb would exhibit better peroxidase activity than the homodimeric species of VHb at pH6.0 and 8.0.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, Jilin University, Changchun 130012, PR China
| | | | | | | | | | | | | |
Collapse
|
19
|
Ratakonda S, Anand A, Dikshit K, Stark BC, Howard AJ. Crystallographic structure determination of B10 mutants of Vitreoscilla hemoglobin: role of Tyr29 (B10) in the structure of the ligand-binding site. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:215-22. [PMID: 23519792 PMCID: PMC3606562 DOI: 10.1107/s1744309112044818] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 10/29/2012] [Indexed: 11/10/2022]
Abstract
Site-directed mutants of the gene encoding wild-type Vitreoscilla hemoglobin were made that changed Tyr29 (B10) of the wild-type Vitreoscilla hemoglobin (VHb) to either Phe or Ala. The wild-type and the two mutant hemoglobins were expressed in Escherichia coli and purified to homogeneity. The binding of the two mutants to CO was essentially identical to that of wild-type VHb as determined by CO-difference spectra. Circular-dichroism spectra also showed the two mutants to be essentially the same as wild-type VHb regarding overall helicity. All three VHbs were crystallized and their structures were determined at resolutions of 1.7-1.9 Å, which are similar to that of the original wild-type structure determination. The Tyr29Phe mutant has a structure that is essentially indistinguishable from that of the wild type. However, the structure of the Tyr29Ala mutant has significant differences from that of the wild type. In addition, for the Tyr29Ala mutant it was possible to determine the positions of most of the residues in the D region, which was disordered in the originally reported structure of wild-type VHb as well as in the wild-type VHb structure reported here. In the Tyr29Ala mutant, the five-membered ring of proline E8 (Pro54) occupies the space occupied by the aromatic ring of Tyr29 in the wild-type structure. These results are discussed in the context of the proposed role of Tyr29 in the structure of the oxygen-binding pocket.
Collapse
Affiliation(s)
- Sireesha Ratakonda
- Biology Division, Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Arvind Anand
- Institute of Microbial Technology, Sector 39A, Chandigarh 160 036, India
| | - Kanak Dikshit
- Institute of Microbial Technology, Sector 39A, Chandigarh 160 036, India
| | - Benjamin C. Stark
- Biology Division, Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Andrew J. Howard
- Biology Division, Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
20
|
Abstract
Campylobacter jejuni is a zoonotic Gram-negative bacterial pathogen that is exposed to reactive nitrogen species, such as nitric oxide, from a variety of sources. To combat the toxic effects of this nitrosative stress, C. jejuni upregulates a small regulon under the control of the transcriptional activator NssR, which positively regulates the expression of a single-domain globin protein (Cgb) and a truncated globin protein (Ctb). Cgb has previously been shown to detoxify nitric oxide, but the role of Ctb remains contentious. As C. jejuni is amenable to genetic manipulation, and its globin proteins are easily expressed and purified, a combination of mutagenesis, complementation, transcriptomics, spectroscopic characterisation and structural analyses has been used to probe the regulation, function and structure of Cgb and Ctb. This ability to study Cgb and Ctb with such a multi-pronged approach is a valuable asset, especially since only a small fraction of known globin proteins have been functionally characterised.
Collapse
|
21
|
El Hammi E, Warkentin E, Demmer U, Marzouki NM, Ermler U, Baciou L. Active site analysis of yeast flavohemoglobin based on its structure with a small ligand or econazole. FEBS J 2012; 279:4565-75. [DOI: 10.1111/febs.12043] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 10/19/2012] [Accepted: 10/19/2012] [Indexed: 11/27/2022]
Affiliation(s)
| | | | - Ulrike Demmer
- Max-Planck-Institut für Biophysik; Frankfurt; Germany
| | - Nejib M. Marzouki
- Laboratory of Protein Engineering; INSAT University of Carthage; Tunis; Tunisia
| | - Ulrich Ermler
- Max-Planck-Institut für Biophysik; Frankfurt; Germany
| | - Laura Baciou
- Laboratoire de Chimie Physique; CNRS - Université Paris-Sud; Orsay; France
| |
Collapse
|
22
|
Stark BC, Dikshit KL, Pagilla KR. The Biochemistry of Vitreoscilla hemoglobin. Comput Struct Biotechnol J 2012; 3:e201210002. [PMID: 24688662 PMCID: PMC3962134 DOI: 10.5936/csbj.201210002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 09/17/2012] [Indexed: 01/17/2023] Open
Abstract
The hemoglobin (VHb) from Vitreoscilla was the first bacterial hemoglobin discovered. Its structure and function have been extensively investigated, and engineering of a wide variety of heterologous organisms to express VHb has been performed to increase their growth and productivity. This strategy has shown promise in applications as far-ranging as the production of antibiotics and petrochemical replacements by microorganisms to increasing stress tolerance in plants. These applications of “VHb technology” have generally been of the “black box” variety, wherein the endpoint studied is an increase in the levels of a certain product or improved growth and survival. Their eventual optimization, however, will require a thorough understanding of the various functions and activities of VHb, and how VHb expression ripples to affect metabolism more generally. Here we review the current knowledge of these topics. VHb's functions all involve oxygen binding (and often delivery) in one way or another. Several biochemical and structure-function studies have provided an insight into the molecular details of this binding and delivery. VHb activities are varied. They include supply of oxygen to oxygenases and the respiratory chain, particularly under low oxygen conditions; oxygen sensing and modulation of transcription factor activity; and detoxification of NO, and seem to require interactions of VHb with “partner proteins”. VHb expression affects the levels of ATP and NADH, although not enormously. VHb expression may affect the level of many compounds of intermediary metabolism, and, apparently, alters the levels of expression of many genes. Thus, the metabolic changes in organisms engineered to express VHb are likely to be numerous and complicated.
Collapse
Affiliation(s)
- Benjamin C Stark
- Biology Division, Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago IL 60616, USA
| | - Kanak L Dikshit
- Institute of Microbial Technology, Sec-39a, Chandigarh, 160036, India
| | - Krishna R Pagilla
- Department of Civil and Architectural Engineering, Illinois Institute of Technology, Chicago IL 60616, USA
| |
Collapse
|
23
|
Teh AH, Saito JA, Baharuddin A, Tuckerman JR, Newhouse JS, Kanbe M, Newhouse EI, Rahim RA, Favier F, Didierjean C, Sousa EH, Stott MB, Dunfield PF, Gonzalez G, Gilles-Gonzalez MA, Najimudin N, Alam M. Hell's Gate globin I: An acid and thermostable bacterial hemoglobin resembling mammalian neuroglobin. FEBS Lett 2011; 585:3250-8. [DOI: 10.1016/j.febslet.2011.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 08/17/2011] [Accepted: 09/01/2011] [Indexed: 11/27/2022]
|
24
|
Stark BC, Dikshit KL, Pagilla KR. Recent advances in understanding the structure, function, and biotechnological usefulness of the hemoglobin from the bacterium Vitreoscilla. Biotechnol Lett 2011; 33:1705-14. [DOI: 10.1007/s10529-011-0621-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 04/08/2011] [Indexed: 11/24/2022]
|
25
|
Kuwada T, Hasegawa T, Takagi T, Sakae T, Sato I, Shishikura F. Involvement of the distal Arg residue in Cl−binding of midge larval haemoglobin. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:488-95. [DOI: 10.1107/s0907444911010808] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 03/23/2011] [Indexed: 11/10/2022]
|
26
|
El Hammi E, Warkentin E, Demmer U, Limam F, Marzouki NM, Ermler U, Baciou L. Structure of Ralstonia eutropha Flavohemoglobin in Complex with Three Antibiotic Azole Compounds. Biochemistry 2011; 50:1255-64. [DOI: 10.1021/bi101650q] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Emna El Hammi
- Laboratoire de Chimie Physique, CNRS-Université Paris-Sud 11, UMR8000, F-91405 Orsay, France
- UGB 99UR09-26 INSAT, University of 7 November at Carthage, Tunisia
| | | | - Ulrike Demmer
- Max-Planck-Institut für Biophysik, Frankfurt, Germany
| | - Férid Limam
- Laboratoire Interactions Légumineuses Microorganismes, CBBC, Hammam-Lif, Tunisia
| | | | - Ulrich Ermler
- Max-Planck-Institut für Biophysik, Frankfurt, Germany
| | - Laura Baciou
- Laboratoire de Chimie Physique, CNRS-Université Paris-Sud 11, UMR8000, F-91405 Orsay, France
| |
Collapse
|
27
|
Frey AD, Shepherd M, Jokipii-Lukkari S, Häggman H, Kallio PT. The single-domain globin of Vitreoscilla: augmentation of aerobic metabolism for biotechnological applications. Adv Microb Physiol 2011; 58:81-139. [PMID: 21722792 DOI: 10.1016/b978-0-12-381043-4.00003-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Extensive studies have revealed that large-scale, high-cell density bioreactor cultivations have significant impact on metabolic networks of oxygen-requiring production organisms. Oxygen transfer problems associated with fluid dynamics and inefficient mixing efficiencies result in oxygen gradients, which lead to reduced performance of the bioprocess, decreased product yields, and increased production costs. These problems can be partially alleviated by improving bioreactor configuration and setting, but significant improvements have been achieved by metabolic engineering methods, especially by heterologously expressing Vitreoscilla hemoglobin (VHb). Vast numbers of studies have been accumulating during the past 20 years showing the applicability of VHb to improve growth and product yields in a variety of industrially significant prokaryotic and eukaryotic hosts. The global view on the metabolism of globin-expressing Escherichia coli cells depicts increased energy generation, higher oxygen uptake rates, and a decrease in fermentative by-product excretion. Transcriptome and metabolic flux analysis clearly demonstrate the multidimensional influence of heterologous VHb on the expression of stationary phase-specific genes and on the regulation of cellular metabolic networks. The exact biochemical mechanisms by which VHb is able to improve the oxygen-limited growth remain poorly understood. The suggested mechanisms propose either the delivery of oxygen to the respiratory chain or the detoxification of reactive nitrogen species for the protection of cytochrome activity. The expression of VHb in E. coli bioreactor cultures is likely to assist bacterial growth through providing an increase in available intracellular oxygen, although to fully understand the exact role of VHb in vivo, further analysis will be required.
Collapse
|
28
|
Reisen F, Weisel M, Kriegl JM, Schneider G. Self-organizing fuzzy graphs for structure-based comparison of protein pockets. J Proteome Res 2010; 9:6498-510. [PMID: 20883038 DOI: 10.1021/pr100719n] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Patterns of receptor-ligand interaction can be conserved in functionally equivalent proteins even in the absence of sequence homology. Therefore, structural comparison of ligand-binding pockets and their pharmacophoric features allow for the characterization of so-called "orphan" proteins with known three-dimensional structure but unknown function, and predict ligand promiscuity of binding pockets. We present an algorithm for rapid pocket comparison (PoLiMorph), in which protein pockets are represented by self-organizing graphs that fill the volume of the cavity. Vertices in these three-dimensional frameworks contain information about the local ligand-receptor interaction potential coded by fuzzy property labels. For framework matching, we developed a fast heuristic based on the maximum dispersion problem, as an alternative to techniques utilizing clique detection or geometric hashing algorithms. A sophisticated scoring function was applied that incorporates knowledge about property distributions and ligand-receptor interaction patterns. In an all-against-all virtual screening experiment with 207 pocket frameworks extracted from a subset of PDBbind, PoLiMorph correctly assigned 81% of 69 distinct structural classes and demonstrated sustained ability to group pockets accommodating the same ligand chemotype. We determined a score threshold that indicates "true" pocket similarity with high reliability, which not only supports structure-based drug design but also allows for sequence-independent studies of the proteome.
Collapse
Affiliation(s)
- Felix Reisen
- Computer-Assisted Drug Design, Eidgenössische Technische Hochschule, Zürich, Zürich, Switzerland
| | | | | | | |
Collapse
|
29
|
Shepherd M, Barynin V, Lu C, Bernhardt PV, Wu G, Yeh SR, Egawa T, Sedelnikova SE, Rice DW, Wilson JL, Poole RK. The single-domain globin from the pathogenic bacterium Campylobacter jejuni: novel D-helix conformation, proximal hydrogen bonding that influences ligand binding, and peroxidase-like redox properties. J Biol Chem 2010; 285:12747-54. [PMID: 20164176 PMCID: PMC2857070 DOI: 10.1074/jbc.m109.084509] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 01/29/2010] [Indexed: 11/06/2022] Open
Abstract
The food-borne pathogen Campylobacter jejuni possesses a single-domain globin (Cgb) whose role in detoxifying nitric oxide has been unequivocally demonstrated through genetic and molecular approaches. The x-ray structure of cyanide-bound Cgb has been solved to a resolution of 1.35 A. The overall fold is a classic three-on-three alpha-helical globin fold, similar to that of myoglobin and Vgb from Vitreoscilla stercoraria. However, the D region (defined according to the standard globin fold nomenclature) of Cgb adopts a highly ordered alpha-helical conformation unlike any previously characterized members of this globin family, and the GlnE7 residue has an unexpected role in modulating the interaction between the ligand and the TyrB10 residue. The proximal hydrogen bonding network in Cgb demonstrates that the heme cofactor is ligated by an imidazolate, a characteristic of peroxidase-like proteins. Mutation of either proximal hydrogen-bonding residue (GluH23 or TyrG5) results in the loss of the high frequency nu(Fe-His) stretching mode (251 cm(-1)), indicating that both residues are important for maintaining the anionic character of the proximal histidine ligand. Cyanide binding kinetics for these proximal mutants demonstrate for the first time that proximal hydrogen bonding in globins can modulate ligand binding kinetics at the distal site. A low redox midpoint for the ferrous/ferric couple (-134 mV versus normal hydrogen electrode at pH 7) is consistent with the peroxidase-like character of the Cgb active site. These data provide a new insight into the mechanism via which Campylobacter may survive host-derived nitrosative stress.
Collapse
Affiliation(s)
- Mark Shepherd
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Parrilli E, Giuliani M, Marino G, Tutino ML. Influence of production process design on inclusion bodies protein: the case of an Antarctic flavohemoglobin. Microb Cell Fact 2010; 9:19. [PMID: 20334669 PMCID: PMC2857821 DOI: 10.1186/1475-2859-9-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 03/24/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Protein over-production in Escherichia coli often results in formation of inclusion bodies (IBs). Some recent reports have shown that the aggregation into IBs does not necessarily mean that the target protein is inactivated and that IBs may contain a high proportion of correctly folded protein. This proportion is variable depending on the protein itself, the genetic background of the producing cells and the expression temperature. In this paper we have evaluated the influence of other production process parameters on the quality of an inclusion bodies protein. RESULTS The present paper describes the recombinant production in Escherichia coli of the flavohemoglobin from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Flavohemoglobins are multidomain proteins requiring FAD and heme cofactors. The production was carried out in several different experimental setups differing in bioreactor geometry, oxygen supply and the presence of a nitrosating compound. In all production processes, the recombinant protein accumulates in IBs, from which it was solubilized in non-denaturing conditions. Comparing structural properties of the solubilized flavohemoglobins, i.e. deriving from the different process designs, our data demonstrated that the protein preparations differ significantly in the presence of cofactors (heme and FAD) and as far as their secondary and tertiary structure content is concerned. CONCLUSIONS Data reported in this paper demonstrate that other production process parameters, besides growth temperature, can influence the structure of a recombinant product that accumulates in IBs. To the best of our knowledge, this is the first reported example in which the structural properties of a protein solubilized from inclusion bodies have been correlated to the production process design.
Collapse
Affiliation(s)
- Ermenegilda Parrilli
- Department of Organic Chemistry and Biochemistry, Università degli studi di Napoli Federico II-Complesso Universitario M,S, Angelo via Cinthia 4, 80126, Naples, Italy
| | | | | | | |
Collapse
|
31
|
Redox-mediated interactions of VHb (Vitreoscilla haemoglobin) with OxyR: novel regulation of VHb biosynthesis under oxidative stress. Biochem J 2010; 426:271-80. [DOI: 10.1042/bj20091417] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The bacterial haemoglobin from Vitreoscilla, VHb, displays several unusual properties that are unique among the globin family. When the gene encoding VHb, vgb, is expressed from its natural promoter in either Vitreoscilla or Escherichia coli, the level of VHb increases more than 50-fold under hypoxic conditions and decreases significantly during oxidative stress, suggesting similar functioning of the vgb promoter in both organisms. In the present study we show that expression of VHb in E. coli induced the antioxidant genes katG (catalase–peroxidase G) and sodA (superoxide dismutase A) and conferred significant protection from oxidative stress. In contrast, when vgb was expressed in an oxyR mutant of E. coli, VHb levels increased and the strain showed high sensitivity to oxidative stress without induction of antioxidant genes; this indicates the involvement of the oxidative stress regulator OxyR in mediating the protective effect of VHb under oxidative stress. A putative OxyR-binding site was identified within the vgb promoter and a gel-shift assay confirmed its interaction with oxidized OxyR, an interaction which was disrupted by the reduced form of the transcriptional activator Fnr (fumurate and nitrate reductase). This suggested that the redox state of OxyR and Fnr modulates their interaction with the vgb promoter. VHb associated with reduced OxyR in two-hybrid screen experiments and in vitro, converting it into an oxidized state in the presence of NADH, a condition where VHb is known to generate H2O2. These observations unveil a novel mechanism by which VHb may transmit signals to OxyR to autoregulate its own biosynthesis, simultaneously activating oxidative stress functions. The activation of OxyR via VHb, reported in the present paper for the first time, suggests the involvement of VHb in transcriptional control of many other genes as well.
Collapse
|
32
|
Kuwada T, Hasegawa T, Takagi T, Sato I, Shishikura F. pH-dependent structural changes in haemoglobin component V from the midge larvaPropsilocerus akamusi(Orthocladiinae, Diptera). ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:258-67. [DOI: 10.1107/s0907444909055760] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 12/30/2009] [Indexed: 11/10/2022]
Abstract
Haemoglobin component V (Hb V) from the midge larvaPropsilocerus akamusiexhibits oxygen affinity despite the replacement of HisE7 and a pH-dependence of its functional properties. In order to understand the contribution of the distal residue to the ligand-binding properties and the pH-dependent structural changes in this insect Hb, the crystal structure of Hb V was determined under five different pH conditions. Structural comparisons of these Hb structures indicated that at neutral pH ArgE10 contributes to the stabilization of the haem-bound ligand molecule as a functional substitute for the nonpolar E7 residue. However, ArgE10 does not contribute to stabilization at acidic and alkaline pH because of the swinging movement of the Arg side chain under these conditions. This pH-dependent behaviour of Arg results in significant differences in the hydrogen-bond network on the distal side of the haem in the Hb V structures at different pH values. Furthermore, the change in pH results in a partial movement of the F helix, considering that coupled movements of ArgE10 and the F helix determine the haem location at each pH. These results suggested that Hb V retains its functional properties by adapting to the structural changes caused by amino-acid replacements.
Collapse
|
33
|
Mowat CG, Gazur B, Campbell LP, Chapman SK. Flavin-containing heme enzymes. Arch Biochem Biophys 2010; 493:37-52. [DOI: 10.1016/j.abb.2009.10.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 10/13/2009] [Accepted: 10/13/2009] [Indexed: 11/25/2022]
|
34
|
Kurt AG, Aytan E, Ozer U, Ates B, Geckil H. Production of L-DOPA and dopamine in recombinant bacteria bearing the Vitreoscilla hemoglobin gene. Biotechnol J 2009; 4:1077-88. [PMID: 19585534 DOI: 10.1002/biot.200900130] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Given the well-established beneficial effects of Vitreoscilla hemoglobin (VHb) on heterologous organisms, the potential of this protein for the production of L-DOPA and dopamine in two bacteria, Citrobacter freundii and Erwinia herbicola, was investigated. The constructed recombinants bearing the VHb gene (vgb(+)) had substantially higher levels of cytoplasmic L-DOPA (112 mg/L for C. freundii and 97 mg/L for E. herbicola) than their respective hosts (30.4 and 33.8 mg/L) and the vgb(-) control strains (35.6 and 35.8 mg/L). Further, the vgb(+) recombinants of C. freundii and E. herbicola had 20-fold and about two orders of magnitude higher dopamine levels than their hosts, repectively. The activity of tyrosine phenol-lyase, the enzyme converting L-tyrosine to L-DOPA, was well-correlated to cytoplasmic L-DOPA levels. As cultures aged, higher tyrosine phenol-lyase activity of the vgb(+) strains was more apparent.
Collapse
|
35
|
Jokipii-Lukkari S, Frey AD, Kallio PT, Häggman H. Intrinsic non-symbiotic and truncated haemoglobins and heterologous Vitreoscilla haemoglobin expression in plants. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:409-422. [PMID: 19129158 DOI: 10.1093/jxb/ern320] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To date, haemoglobins (Hbs) have been shown to exist in all kingdoms of life. The least studied and understood groups are plant non-symbiotic haemoglobins (nsHbs) and the recently found plant truncated Hbs (trHbs). From a biotechnological point of view, the best characterized and almost exclusively applied Hb is the bacterial Vitreoscilla haemoglobin (VHb). In this review, the present state of knowledge of structural features and ligand binding kinetics of plant nsHbs and trHbs and their proposed roles as oxygen carriers, oxygen sensors, and for oxygen storage, in nitric oxide (NO) detoxification, and in peroxidase activity are described. Furthermore, in order to predict the functioning of plant Hbs, their characteristics will be compared with those of the better known bacterial globins. In this context, the effects of heterologous applications of VHb on plants are reviewed. Finally, the challenging future of plant Hb research is discussed.
Collapse
|
36
|
Abstract
The mapping of physicochemical characteristics onto the surface of a protein provides crucial insights into its function and evolution. This information can be further used in the characterization and identification of similarities within protein surface regions. We propose a novel method which quantitatively compares global and local properties on the protein surface. We have tested the method on comparison of electrostatic potentials and hydrophobicity. The method is based on 3D Zernike descriptors, which provides a compact representation of a given property defined on a protein surface. Compactness and rotational invariance of this descriptor enable fast comparison suitable for database searches. The usefulness of this method is exemplified by studying several protein families including globins, thermophilic and mesophilic proteins, and active sites of TIM beta/alpha barrel proteins. In all the cases studied, the descriptor is able to cluster proteins into functionally relevant groups. The proposed approach can also be easily extended to other surface properties. This protein surface-based approach will add a new way of viewing and comparing proteins to conventional methods, which compare proteins in terms of their primary sequence or tertiary structure.
Collapse
Affiliation(s)
- Lee Sael
- Department of Computer Science, College of Science, Purdue University, West Lafayette, IN, 47907, USA
| | - David La
- Department of Biological Sciences, College of Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Bin Li
- Department of Computer Science, College of Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Raif Rustamov
- Department of Mathematics, College of Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Daisuke Kihara
- Department of Computer Science, College of Science, Purdue University, West Lafayette, IN, 47907, USA
- Department of Biological Sciences, College of Science, Purdue University, West Lafayette, IN, 47907, USA
- Markey Center for Structural Biology, Purdue University, West Lafayette, IN, 47907, USA
- The Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
37
|
Kaur R, Ahuja S, Anand A, Singh B, Stark BC, Webster DA, Dikshit KL. Functional implications of the proximal site hydrogen bonding network in Vitreoscilla
hemoglobin (VHb): Role of Tyr95 (G5) and Tyr126 (H12). FEBS Lett 2008; 582:3494-500. [DOI: 10.1016/j.febslet.2008.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 09/04/2008] [Accepted: 09/09/2008] [Indexed: 11/27/2022]
|
38
|
WAKASUGI KEISUKE, KITATSUJI CHIHIRO, MORISHIMA ISAO. Possible Neuroprotective Mechanism of Human Neuroglobin. Ann N Y Acad Sci 2008. [DOI: 10.1111/j.1749-6632.2005.tb00028.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Abstract
The key three-dimensional features of flavohemoglobins have been unveiled by X-ray crystallographic investigations carried out on the Alcaligenes eutrophus and Escherichia coli proteins. Flavohemoglobins are made of a globin domain fused with a ferredoxin reductase-like FAD binding module and display highly conserved sequences in the active sites of both the heme-binding domain and the flavin-binding domain. Structural studies are discussed and methodological approaches to the solution of the crystal structures and to the analysis of the relevant stereochemical properties of the active sites are presented. The understanding of the structural properties of flavohemoglobins serves as a guide for testing biological hypotheses and allows for a rational evaluation of structure-based alignments within the flavohemoglobin family.
Collapse
Affiliation(s)
- Andrea Ilari
- CNR Institute of Molecular Biology and Pathology, University of Rome La Sapienza, Rome, Italy
| | | |
Collapse
|
40
|
Farrés J, Burckhardt-Herold S, Scherrer J, Frey A, Kallio P. Analysis of the contribution of the globin and reductase domains to the ligand-binding properties of bacterial haemoglobins. Biochem J 2007; 407:15-22. [PMID: 17617059 PMCID: PMC2267399 DOI: 10.1042/bj20070668] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bacterial Hbs (haemoglobins), like VHb (Vitreoscilla sp. Hb), and flavoHbs (flavohaemoglobins), such as FHP (Ralstonia eutropha flavoHb), have different autoxidation and ligand-binding rates. To determine the influence of each domain of flavoHbs on ligand binding, we have studied the kinetic ligand-binding properties of oxygen, carbon monoxide and nitric oxide to the chimaeric proteins, FHPg (truncated form of FHP comprising the globin domain alone) and VHb-Red (fusion protein between VHb and the C-terminal reductase domain of FHP) and compared them with those of their natural counterparts, FHP and VHb. Moreover, we also analysed polarity and solvent accessibility to the haem pocket of these proteins. The rate constants for the engineered proteins, VHb-Red and FHPg, do not differ significantly from those of their natural counterparts, VHb and FHP respectively. Our results suggest that the globin domain structure controls the reactivity towards oxygen, carbon monoxide and nitric oxide. The presence or absence of a reductase domain does not affect the affinity to these ligands.
Collapse
Affiliation(s)
- Judith Farrés
- *Institute of Biotechnology, ETH Zürich, CH 8093 Zürich, Switzerland
| | | | - Jan Scherrer
- *Institute of Biotechnology, ETH Zürich, CH 8093 Zürich, Switzerland
| | | | - Pauli T. Kallio
- ‡Institute of Microbiology, ETH Zürich, CH 8093 Zürich, Switzerland
- To whom correspondence should be addressed (email )
| |
Collapse
|
41
|
Lu C, Mukai M, Lin Y, Wu G, Poole RK, Yeh SR. Structural and functional properties of a single domain hemoglobin from the food-borne pathogen Campylobactor jejuni. J Biol Chem 2007; 282:25917-28. [PMID: 17606611 DOI: 10.1074/jbc.m704415200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Campylobacter jejuni contains two globins, a truncated hemoglobin, Ctb, and a single domain hemoglobin, Cgb. The physiological function of Ctb remains unclear, whereas Cgb has been linked to NO detoxification. With resonance Raman scattering, the iron-histidine stretching mode of Cgb was identified at 251 cm(-1). This frequency is unusually high, suggesting an imidazolate character of the proximal histidine as a result of the H-bonding network linking the catalytic triad involving the F8His, H23Glu, and G5Tyr residues. In the CO-complex, two conformers were identified with the nuC-O/nuFe-CO at 529/1914 cm(-1) and 492/1963 cm(-1). The former is assigned to a "closed" conformation, in which the heme-bound CO is stabilized by the H-bond(s) donated from the B10Tyr-E7Gln residues, whereas the latter is assigned to an "open" conformer, in which the H-bonding interaction is absent. The presence of the two alternative conformations demonstrates the plasticity of the protein matrix. In the O2-complex, the iron-O2 stretching frequency was identified at 554 cm(-1), which is unusually low, indicating that the heme-bound O2 is stabilized by strong H-bond(s) donated by the B10Tyr-E7Gln residues. This scenario is consistent with its low O2 off-rate (0.87 s(-1)). Taken together the data suggest that the NO-detoxifying activity of Cgb is facilitated by the imidazolate character of the proximal F8His and the distal positive polar environment provided by the B10Tyr-E7Gln. They may offer electronic "push" and "pull," respectively, for the O-O bond cleavage reaction required for the isomerization of the presumed peroxynitrite intermediate to the product, nitrate.
Collapse
Affiliation(s)
- Changyuan Lu
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
42
|
Lu C, Egawa T, Wainwright LM, Poole RK, Yeh SR. Structural and functional properties of a truncated hemoglobin from a food-borne pathogen Campylobacter jejuni. J Biol Chem 2007; 282:13627-36. [PMID: 17339325 DOI: 10.1074/jbc.m609397200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Campylobacter jejuni contains two hemoglobins, Cgb and Ctb. Cgb has been suggested to perform an NO detoxification reaction to protect the bacterium against NO attack. On the other hand, the physiological function of Ctb, a class III truncated hemoglobin, remains unclear. By using CO as a structural probe, resonance Raman data show that the distal heme pocket of Ctb exhibits a positive electrostatic potential. In addition, two ligand-related vibrational modes, nu(Fe-O(2)) and nu(O-O), were identified in the oxy derivative, with frequencies at 542 and 1132 cm(-1), respectively, suggesting the presence of an intertwined H-bonding network surrounding the heme-bound ligand, which accounts for its unusually high oxygen affinity (222 microm(-1)). Mutagenesis studies of various distal mutants suggest that the heme-bound dioxygen is stabilized by H-bonds donated from the Tyr(B10) and Trp(G8) residues, which are highly conserved in the class III truncated hemoglobins; furthermore, an additional H-bond donated from the His(E7) to the Tyr(B10) further regulates these H-bonding interactions by restricting the conformational freedom of the phenolic side chain of the Tyr(B10). Taken together, the data suggest that it is the intricate balance of the H-bonding interactions that determines the unique ligand binding properties of Ctb. The extremely high oxygen affinity of Ctb makes it unlikely to function as an oxygen transporter; on the other hand, the distal heme environment of Ctb is surprisingly similar to that of cytochrome c peroxidase, suggesting a role of Ctb in performing a peroxidase or P450-type of oxygen chemistry.
Collapse
Affiliation(s)
- Changyuan Lu
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
43
|
Kvist M, Ryabova ES, Nordlander E, Bülow L. An investigation of the peroxidase activity of Vitreoscilla hemoglobin. J Biol Inorg Chem 2007; 12:324-34. [PMID: 17219165 DOI: 10.1007/s00775-006-0190-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Accepted: 10/24/2006] [Indexed: 10/23/2022]
Abstract
In order to investigate the ability of the Vitreoscilla hemoglobin (VHb) to act as a peroxidase, the protein was overexpressed in Escerichia coli and purified using a 6xHis-tag. The peroxidase activity of VHb was studied using 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferrocene carboxylic acid (FcCOOH) dopamine and L-dopa as substrates. The effects of external agents such as pH, salt concentration/ionic strength, and the thermal stability of VHb on the catalytic activity were assessed. The optimum pH for VHb using ABTS as a substrate was estimated to be 6-7. The VHb protein proved to be stable up to 80 degrees C, as judged by its peroxidase activity. Furthermore, NaCl concentrations up to 100 mM did not exert any significant effect on the activity. The catalytic activity against ABTS and FcCOOH was similar to that measured for horseradish peroxidase, whereas in the case of the phenolic substrates dopamine and L-dopa the activity was several orders of magnitude lower. The Michaelis constants, KmH2O2, were in good agreement with the data for human and bovine hemoglobin. No activity could be detected for the negative controls lacking VHb. These results demonstrate that VHb exhibits peroxidase activity, a finding in line with the hypothesis that VHb has cellular functions beyond the role as an oxygen carrier.
Collapse
Affiliation(s)
- Malin Kvist
- Center for Chemistry and Chemical Engineering, Pure and Applied Biochemistry, Lund Institute of Technology, Box 124, 221 00, Lund, Sweden
| | | | | | | |
Collapse
|
44
|
Bozzi A, Coccia C, Di Giulio A, Rinaldi AC, Amadei A, Mignogna G, Bonamore A, Fais A, Aschi M. Folding propensity and biological activity of peptides: New insights from conformational properties of a novel peptide derived fromVitreoscilla haemoglobin. Biopolymers 2007; 87:85-92. [PMID: 17554783 DOI: 10.1002/bip.20792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The synthetic peptide Vitr-p-13 (YPIVGQELLGAIK-NH(2)), derived from the bacterial dimeric Vitreoscilla haemoglobin (VHb) in the position 95-107, is characterized by a pre-eminent "statistical coil" conformation in water as demonstrated by CD experiments and long time-scale MD simulations. In particular, Vitr-p-13 does not spontaneously adopt an alpha-helix folding in water, but it is rather preferentially found in beta-hairpin-like conformations. Long time-scale MD simulations have also shown that Vitr-p-13 displays a "topological-trigger" which initiates alpha-helix folding within residues 7-10, exactly like seen in the temporins, a group of linear, membrane-active antimicrobial peptides of similar length. At variance with temporins, in Vitr-p-13 such a process is energetically very demanding (+10 kJ/mol) in water at 300 K, and the peptide was found to be unable to bind model membranes in vitro and was devoid of antimicrobial activity. The present results, compared with previous studies on similar systems, strengthen the hypothesis of the requirement of a partial folding when still in aqueous environment to allow a peptide to interact with cell-membranes and eventually exert membrane perturbation-related antibiotic effects on target microbial cells.
Collapse
Affiliation(s)
- A Bozzi
- Dipartimento di Scienze e Tecnologie Biomediche, Università de L'Aquila, Italia
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Miranda JL. Conservation and diversity of ancient hemoglobins in Bacteria. Biochem Biophys Res Commun 2006; 343:924-7. [PMID: 16574075 DOI: 10.1016/j.bbrc.2006.03.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 03/04/2006] [Indexed: 11/20/2022]
Abstract
A group of single-domain proteins in Bacteria similar to thermoglobin, an oxygen-avid hemoglobin representative of the ancestral form, reveals the primordial structure, function, and evolvability of the family. Conserved residues at specific positions function to bind ligand or participate in hydrophobic packing of the protein core during protein folding. A potential hydrogen bond network consisting of a tyrosine and glutamine residue in the distal ligand-binding site of most hemoglobins suggests that the ancestral protein bound oxygen avidly. Two divergent hemoglobins with mutations at generally conserved positions contain non-canonical ligand-binding sites, illustrating plasticity of the fold. One binds heme in a manner similar to cytochromes and may represent an evolutionary link to the precursor of the hemoglobin fold. Conservation suggests specific biochemical properties of the ancestral protein; diversity suggests an evolvability of this group of hemoglobins tolerant of mutations that perturb conserved biochemical properties for adaptation to novel functions.
Collapse
Affiliation(s)
- Jj L Miranda
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
46
|
Vinogradov SN, Hoogewijs D, Bailly X, Arredondo-Peter R, Gough J, Dewilde S, Moens L, Vanfleteren JR. A phylogenomic profile of globins. BMC Evol Biol 2006; 6:31. [PMID: 16600051 PMCID: PMC1457004 DOI: 10.1186/1471-2148-6-31] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 04/07/2006] [Indexed: 12/26/2022] Open
Abstract
Background Globins occur in all three kingdoms of life: they can be classified into single-domain globins and chimeric globins. The latter comprise the flavohemoglobins with a C-terminal FAD-binding domain and the gene-regulating globin coupled sensors, with variable C-terminal domains. The single-domain globins encompass sequences related to chimeric globins and «truncated» hemoglobins with a 2-over-2 instead of the canonical 3-over-3 α-helical fold. Results A census of globins in 26 archaeal, 245 bacterial and 49 eukaryote genomes was carried out. Only ~25% of archaea have globins, including globin coupled sensors, related single domain globins and 2-over-2 globins. From one to seven globins per genome were found in ~65% of the bacterial genomes: the presence and number of globins are positively correlated with genome size. Globins appear to be mostly absent in Bacteroidetes/Chlorobi, Chlamydia, Lactobacillales, Mollicutes, Rickettsiales, Pastorellales and Spirochaetes. Single domain globins occur in metazoans and flavohemoglobins are found in fungi, diplomonads and mycetozoans. Although red algae have single domain globins, including 2-over-2 globins, the green algae and ciliates have only 2-over-2 globins. Plants have symbiotic and nonsymbiotic single domain hemoglobins and 2-over-2 hemoglobins. Over 90% of eukaryotes have globins: the nematode Caenorhabditis has the most putative globins, ~33. No globins occur in the parasitic, unicellular eukaryotes such as Encephalitozoon, Entamoeba, Plasmodium and Trypanosoma. Conclusion Although Bacteria have all three types of globins, Archaeado not have flavohemoglobins and Eukaryotes lack globin coupled sensors. Since the hemoglobins in organisms other than animals are enzymes or sensors, it is likely that the evolution of an oxygen transport function accompanied the emergence of multicellular animals.
Collapse
Affiliation(s)
- Serge N Vinogradov
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - David Hoogewijs
- Department of Biology, Ghent University, B-9000 Ghent, Belgium
| | - Xavier Bailly
- Station Biologique de Roscoff, 29680 Roscoff, France
| | - Raúl Arredondo-Peter
- Laboratorio de Biofísica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, 62210 Cuernavaca, Morelos, México
| | - Julian Gough
- RIKEN Genomic Sciences Centre, Yokohama 230-0045, Japan
| | - Sylvia Dewilde
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Luc Moens
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | | |
Collapse
|
47
|
Murray JW, Delumeau O, Lewis RJ. Structure of a nonheme globin in environmental stress signaling. Proc Natl Acad Sci U S A 2005; 102:17320-5. [PMID: 16301540 PMCID: PMC1297668 DOI: 10.1073/pnas.0506599102] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Indexed: 11/18/2022] Open
Abstract
RsbR is a regulator of sigma(B), the RNA polymerase sigma factor subunit responsible for transcribing the general stress response genes when environmental stress is imposed on Bacillus subtilis. The C-terminal domain of RsbR and its paralogues is a substrate for the kinase function of another sigma(B) regulator, RsbT, but the amino acid sequence of the N-terminal domain of RsbR does not reveal any obvious biochemical function. RsbR, its paralogues, and other regulators of sigma(B), including RsbS and RsbT, form large signaling complexes, called stressosomes. We have determined and present here the crystal structure of the N-terminal domain of RsbR. Unexpectedly, this structure belongs to the globin fold superfamily, but there is no bound cofactor. The globin domain from globin-coupled sensory systems replaces the N-terminal domain of RsbR in some bacteria, indicating a common genetic ancestry for RsbR and the globin family. We suggest that the globin fold has been "recycled" in RsbR and that one more activity can be included in the repertoire of globin functions, namely the ability to bind signaling macromolecules such as RsbT.
Collapse
Affiliation(s)
- James W Murray
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, University of Newcastle, Newcastle upon Tyne, UK
| | | | | |
Collapse
|
48
|
Miranda JJL, Maillett DH, Soman J, Olson JS. Thermoglobin, Oxygen-avid Hemoglobin in a Bacterial Hyperthermophile. J Biol Chem 2005; 280:36754-61. [PMID: 16135523 DOI: 10.1074/jbc.m505918200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hemoglobin family of proteins, ubiquitous in all domains of life, evolved from an ancestral protein of primordial function to extant hemoglobins that perform a myriad of functions with diverged biochemical properties. Study of homologs in bacterial hyperthermophiles may shed light on both mechanisms of adaptation to extreme conditions and the nature of the ancestral protein. A hemoglobin was identified in Aquifex aeolicus, cloned, recombinantly expressed, purified, and characterized. This hemoglobin is monomeric, resistant to thermal and chemical denaturation, pentacoordinate in the ferrous deoxygenated state, and oxygen-avid. The oxygen equilibrium dissociation constant is approximately 1 nm at room temperature, due in part to a hydrogen bond between the bound ligand and a tyrosine residue in the distal pocket. These biochemical properties of A. aeolicus thermoglobin, AaTgb, may have been shared by the ancestral hemoglobin, thus suggesting possible primordial functions and providing a starting point for consequent evolution of the hemoglobin family.
Collapse
Affiliation(s)
- J J L Miranda
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | | | |
Collapse
|
49
|
Pesce A, Nardini M, Dewilde S, Hoogewijs D, Ascenzi P, Moens L, Bolognesi M. Modulation of oxygen binding to insect hemoglobins: the structure of hemoglobin from the botfly Gasterophilus intestinalis. Protein Sci 2005; 14:3057-63. [PMID: 16260762 PMCID: PMC2253232 DOI: 10.1110/ps.051742605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Hemoglobins (Hbs) reversibly bind gaseous diatomic ligands (e.g., O2) as the sixth heme axial ligand of the penta-coordinate deoxygenated form. Selected members of the Hb superfamily, however, display a functionally relevant hexa-coordinate heme Fe atom in their deoxygenated state. Endogenous heme hexa-coordination is generally provided in these Hbs by the E7 residue (often His), which thus modulates accessibility to the heme distal pocket and reactivity of the heme toward exogenous ligands. Such a pivotal role of the E7 residue is prominently shown by analysis of the functional and structural properties of insect Hbs. Here, we report the 2.6 A crystal structure of oxygenated Gasterophilus intestinalis Hb1, a Hb known to display a penta-coordinate heme in the deoxygenated form. The structure is analyzed in comparison with those of Drosophila melanogaster Hb, exhibiting a hexa-coordinate heme in its deoxygenated derivative, and of Chironomus thummi thummi HbIII, which displays a penta-coordinate heme in the deoxygenated form. Despite evident structural differences in the heme distal pockets, the distinct molecular mechanisms regulating O2 binding to the three insect Hbs result in similar O(2 affinities (P50 values ranging between 0.12 torr and 0.46 torr).
Collapse
Affiliation(s)
- Alessandra Pesce
- Department of Biomolecular Sciences and Biotechnology, University of Milano, Via Celoria 26, I-20131 Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
50
|
Vinogradov SN, Hoogewijs D, Bailly X, Arredondo-Peter R, Guertin M, Gough J, Dewilde S, Moens L, Vanfleteren JR. Three globin lineages belonging to two structural classes in genomes from the three kingdoms of life. Proc Natl Acad Sci U S A 2005; 102:11385-9. [PMID: 16061809 PMCID: PMC1183549 DOI: 10.1073/pnas.0502103102] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 06/16/2005] [Indexed: 11/18/2022] Open
Abstract
Although most globins, including the N-terminal domains within chimeric proteins such as flavohemoglobins and globin-coupled sensors, exhibit a 3/3 helical sandwich structure, many bacterial, plant, and ciliate globins have a 2/2 helical sandwich structure. We carried out a comprehensive survey of globins in the genomes from the three kingdoms of life. Bayesian phylogenetic trees based on manually aligned sequences indicate the possibility of past horizontal globin gene transfers from bacteria to eukaryotes. blastp searches revealed the presence of 3/3 single-domain globins related to the globin domains of the bacterial and fungal flavohemoglobins in many bacteria, a red alga, and a diatom. Iterated psi-blast searches based on groups of globin sequences found that only the single-domain globins and flavohemoglobins recognize the eukaryote 3/3 globins, including vertebrate neuroglobins, alpha- and beta-globins, and cytoglobins. The 2/2 globins recognize the flavohemoglobins, as do the globin coupled sensors and the closely related single-domain protoglobins. However, the 2/2 globins and the globin-coupled sensors do not recognize each other. Thus, all globins appear to be distributed among three lineages: (i) the 3/3 plant and metazoan globins, single-domain globins, and flavohemoglobins; (ii) the bacterial 3/3 globin-coupled sensors and protoglobins; and (iii) the bacterial, plant, and ciliate 2/2 globins. The three lineages may have evolved from an ancestral 3/3 or 2/2 globin. Furthermore, it appears likely that the predominant functions of globins are enzymatic and that oxygen transport is a specialized development that accompanied the evolution of metazoans.
Collapse
Affiliation(s)
- Serge N Vinogradov
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|