1
|
Pu Q, Lai X, Peng Y, Wu Q. A controllable DNA: structural features and advanced applications of i-motif. Analyst 2025; 150:1726-1740. [PMID: 40183738 DOI: 10.1039/d4an01549e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The i-motif consists of two parallel-stranded duplexes, stabilized by intercalated semi-protonated cytosine-cytosine (C·C+) pairing. Initially, the i-motif was thought to be unstable under physiological pH, which limited its biological interest. However, recent studies have demonstrated the presence of i-motifs in regulatory regions of the human genome at neutral pH, making their study biologically relevant. In addition, in the field of nanotechnology, the reversible pH-responsive properties of i-motif structures have been utilized to construct functional nanostructures for biomedical diagnostics and therapeutics. In this review, we present an overview of the structural features of i-motifs, the factors affecting their stability, and detection methods. Furthermore, we focus on summarizing recent advances in the application of i-motif-based functional nanostructures at the cellular level. The challenges and future prospects of i-motifs in nanomedicine are also discussed at the end of this paper.
Collapse
Affiliation(s)
- Qiumei Pu
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China
| | - Xiangde Lai
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China
| | - Yanan Peng
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China.
| | - Qiang Wu
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China
| |
Collapse
|
2
|
Obara P, Wolski P, Pańczyk T. Insights into the Molecular Structure, Stability, and Biological Significance of Non-Canonical DNA Forms, with a Focus on G-Quadruplexes and i-Motifs. Molecules 2024; 29:4683. [PMID: 39407611 PMCID: PMC11477922 DOI: 10.3390/molecules29194683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
This article provides a comprehensive examination of non-canonical DNA structures, particularly focusing on G-quadruplexes (G4s) and i-motifs. G-quadruplexes, four-stranded structures formed by guanine-rich sequences, are stabilized by Hoogsteen hydrogen bonds and monovalent cations like potassium. These structures exhibit diverse topologies and are implicated in critical genomic regions such as telomeres and promoter regions of oncogenes, playing significant roles in gene expression regulation, genome stability, and cellular aging. I-motifs, formed by cytosine-rich sequences under acidic conditions and stabilized by hemiprotonated cytosine-cytosine (C:C+) base pairs, also contribute to gene regulation despite being less prevalent than G4s. This review highlights the factors influencing the stability and dynamics of these structures, including sequence composition, ionic conditions, and environmental pH. Molecular dynamics simulations and high-resolution structural techniques have been pivotal in advancing our understanding of their folding and unfolding mechanisms. Additionally, the article discusses the therapeutic potential of small molecules designed to selectively bind and stabilize G4s and i-motifs, with promising implications for cancer treatment. Furthermore, the structural properties of these DNA forms are explored for applications in nanotechnology and molecular devices. Despite significant progress, challenges remain in observing these structures in vivo and fully elucidating their biological functions. The review underscores the importance of continued research to uncover new insights into the genomic roles of G4s and i-motifs and their potential applications in medicine and technology. This ongoing research promises exciting developments in both basic science and applied fields, emphasizing the relevance and future prospects of these intriguing DNA structures.
Collapse
Affiliation(s)
| | | | - Tomasz Pańczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30239 Cracow, Poland; (P.O.); (P.W.)
| |
Collapse
|
3
|
Feng X, Wang X, Liu J, Fu A, Wang Y, Wei S, Chen H, She R, Wang Y, Cui X, Hou H, Xu Y, Wu Y, Meng Q, Zhang L, Wang S, Zhao J. Accelerated Screening of Alternative DNA Base-Organic Molecule-Base Architectures via Integrated Theory and Experiment. Angew Chem Int Ed Engl 2024; 63:e202408003. [PMID: 38771290 DOI: 10.1002/anie.202408003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/22/2024]
Abstract
Organic molecule-mediated noncanonical DNA self-assembly expands the standard DNA base-pairing alphabets. However, only a very limited number of small molecules have been recognized as mediators because of the tedious and complicated experiments like crystallization and microscopy imaging. Here we present an integrative screening protocol incorporating molecular dynamics (MD) for fast theoretical simulation and native polyacrylamide gel electrophoresis for convenient experimental validation. Melamine, the molecule that was confirmed mediating noncanonical DNA base-pairing, and 38 other candidate molecules were applied to demonstrate the feasibility of this protocol. We successfully identified seven stable noncanonical DNA duplex structures, and another eight novel structures with sub-stability. In addition, we discovered that hairpins at both ends can significantly stabilize the noncanonical DNA structures, providing a guideline to design small organic molecule-incorporated DNA structures. Such an efficient screening protocol will accelerate the design of alternative DNA-molecule architectures beyond Watson-Crick pairs. Considering the wide range of potential mediators, it will also facilitate applications such as noncovalent, highly dense loading of drug molecules in DNA-based delivery system and probe design for sensitive detection of certain molecules.
Collapse
Affiliation(s)
- Xinyu Feng
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Jiahe Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Aiting Fu
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Ying Wang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Shuheng Wei
- Second Clinical Medical College, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Huichao Chen
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Rui She
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Yangying Wang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Xiao Cui
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
| | - Hui Hou
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
| | - Yuanyuan Xu
- Department of Pediatric Critical Care Medicine, Children's Medical Center of Anhui Medical University, Hefei, Anhui, 230051, China
| | - Yujing Wu
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Qian Meng
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Song Wang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jiemin Zhao
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, Anhui, 230032, China
| |
Collapse
|
4
|
Ng C, Samanta A, Mandrup OA, Tsang E, Youssef S, Klausen LH, Dong M, Nijenhuis MAD, Gothelf KV. Folding Double-Stranded DNA into Designed Shapes with Triplex-Forming Oligonucleotides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302497. [PMID: 37311656 DOI: 10.1002/adma.202302497] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/07/2023] [Indexed: 06/15/2023]
Abstract
The compaction and organization of genomic DNA is a central mechanism in eukaryotic cells, but engineered architectural control over double-stranded DNA (dsDNA) is notably challenging. Here, long dsDNA templates are folded into designed shapes via triplex-mediated self-assembly. Triplex-forming oligonucleotides (TFOs) bind purines in dsDNA via normal or reverse Hoogsteen interactions. In the triplex origami methodology, these non-canonical interactions are programmed to compact dsDNA (linear or plasmid) into well-defined objects, which demonstrate a variety of structural features: hollow and raster-filled, single- and multi-layered, with custom curvatures and geometries, and featuring lattice-free, square-, or honeycomb-pleated internal arrangements. Surprisingly, the length of integrated and free-standing dsDNA loops can be modulated with near-perfect efficiency; from hundreds down to only six bp (2 nm). The inherent rigidity of dsDNA promotes structural robustness and non-periodic structures of almost 25.000 nt are therefore formed with fewer unique starting materials, compared to other DNA-based self-assembly methods. Densely triplexed structures also resist degradation by DNase I. Triplex-mediated dsDNA folding is methodologically straightforward and orthogonal to Watson-Crick-based methods. Moreover, it enables unprecedented spatial control over dsDNA templates.
Collapse
Affiliation(s)
- Cindy Ng
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Central Denmark Region, 8000, Denmark
| | - Anirban Samanta
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Central Denmark Region, 8000, Denmark
| | - Ole Aalund Mandrup
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Central Denmark Region, 8000, Denmark
| | - Emily Tsang
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Central Denmark Region, 8000, Denmark
| | - Sarah Youssef
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Central Denmark Region, 8000, Denmark
| | - Lasse Hyldgaard Klausen
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Central Denmark Region, 8000, Denmark
| | - Mingdong Dong
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Central Denmark Region, 8000, Denmark
| | - Minke A D Nijenhuis
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Central Denmark Region, 8000, Denmark
| | - Kurt V Gothelf
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Central Denmark Region, 8000, Denmark
| |
Collapse
|
5
|
Yutong Huang F, Kumar Lat P, Sen D. Unusual Paradigm for DNA-DNA Recognition and Binding: "Socket-Plug" Complementarity. J Am Chem Soc 2023; 145:3146-3157. [PMID: 36706227 DOI: 10.1021/jacs.2c12514] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
DNA is the key informational polymer in biology by virtue of its precisely defined self-assembling properties. Watson-Crick complementarity, which underlies DNA's self-assembly, is required not only in biology but has also proved powerful in the field of nanoscience, where it has been utilized to assemble complex 2D and 3D architectures and nanodevices built from the DNA double-helix. Aside from Watson-Crick base-pairing, however, DNA also participates in alternative base pairing schemes, giving rise to DNA triplexes and G-quadruplexes. Herein, we describe "sticky-ended" DNA triplex-quadruplex composites that specifically recognize and bind to each other using a wholly different logic, "socket-plug" complementarity, a shape-sensing fitting of guanine "prongs" into guanine-lacking "cavities." A remarkable property of this kind of complementarity is the key role played in it by specific counter-cations: thus, exclusive "self" socket-plug recognition occurs over "other" in sodium salt solutions while precisely the reverse occurs in potassium salt solutions. We have used gel electrophoresis, Förster resonance energy transfer, alkylation protection, and structural modeling to study this remarkable fundamental property of DNA, that we anticipate will find wide practical application.
Collapse
Affiliation(s)
- Fiona Yutong Huang
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Prince Kumar Lat
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Dipankar Sen
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
6
|
Dalla Pozza M, Abdullrahman A, Cardin CJ, Gasser G, Hall JP. Three's a crowd - stabilisation, structure, and applications of DNA triplexes. Chem Sci 2022; 13:10193-10215. [PMID: 36277639 PMCID: PMC9473520 DOI: 10.1039/d2sc01793h] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/02/2022] [Indexed: 12/16/2022] Open
Abstract
DNA is a strikingly flexible molecule and can form a variety of secondary structures, including the triple helix, which is the subject of this review. The DNA triplex may be formed naturally, during homologous recombination, or can be formed by the introduction of a synthetic triplex forming oligonucleotide (TFO) to a DNA duplex. As the TFO will bind to the duplex with sequence specificity, there is significant interest in developing TFOs with potential therapeutic applications, including using TFOs as a delivery mechanism for compounds able to modify or damage DNA. However, to combine triplexes with functionalised compounds, a full understanding of triplex structure and chemical modification strategies, which may increase triplex stability or in vivo degradation, is essential - these areas will be discussed in this review. Ruthenium polypyridyl complexes, which are able to photooxidise DNA and act as luminescent DNA probes, may serve as a suitable photophysical payload for a TFO system and the developments in this area in the context of DNA triplexes will also be reviewed.
Collapse
Affiliation(s)
- Maria Dalla Pozza
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology F-75005 Paris France www.gassergroup.com
| | - Ahmad Abdullrahman
- Department of Pharmacy, Chemistry and Pharmacy Building, University of Reading Whiteknights Campus Reading Berkshire RG6 6AD UK
| | - Christine J Cardin
- Department of Chemistry, University of Reading Whiteknights Reading RG6 6AD UK
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology F-75005 Paris France www.gassergroup.com
| | - James P Hall
- Department of Pharmacy, Chemistry and Pharmacy Building, University of Reading Whiteknights Campus Reading Berkshire RG6 6AD UK
| |
Collapse
|
7
|
Tucker MR, Piana S, Tan D, LeVine MV, Shaw DE. Development of Force Field Parameters for the Simulation of Single- and Double-Stranded DNA Molecules and DNA-Protein Complexes. J Phys Chem B 2022; 126:4442-4457. [PMID: 35694853 PMCID: PMC9234960 DOI: 10.1021/acs.jpcb.1c10971] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Although molecular
dynamics (MD) simulations have been used extensively
to study the structural dynamics of proteins, the role of MD simulation
in studies of nucleic acid based systems has been more limited. One
contributing factor to this disparity is the historically lower level
of accuracy of the physical models used in such simulations to describe
interactions involving nucleic acids. By modifying nonbonded and torsion
parameters of a force field from the Amber family of models, we recently
developed force field parameters for RNA that achieve a level of accuracy
comparable to that of state-of-the-art protein force fields. Here
we report force field parameters for DNA, which we developed by transferring
nonbonded parameters from our recently reported RNA force field and
making subsequent adjustments to torsion parameters. We have also
modified the backbone charges in both the RNA and DNA parameter sets
to make the treatment of electrostatics compatible with our recently
developed variant of the Amber protein and ion force field. We name
the force field resulting from the union of these three parameter
sets (the new DNA parameters, the revised RNA parameters, and the
existing protein and ion parameters) DES-Amber. Extensive
testing of DES-Amber indicates that it can describe the thermal stability
and conformational flexibility of single- and double-stranded DNA
systems with a level of accuracy comparable to or, especially for
disordered systems, exceeding that of state-of-the-art nucleic acid
force fields. Finally, we show that, in certain favorable cases, DES-Amber
can be used for long-timescale simulations of protein–nucleic
acid complexes.
Collapse
Affiliation(s)
| | - Stefano Piana
- D. E. Shaw Research, New York, New York 10036, United States
| | - Dazhi Tan
- D. E. Shaw Research, New York, New York 10036, United States
| | | | - David E Shaw
- D. E. Shaw Research, New York, New York 10036, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, United States
| |
Collapse
|
8
|
Largy E, König A, Ghosh A, Ghosh D, Benabou S, Rosu F, Gabelica V. Mass Spectrometry of Nucleic Acid Noncovalent Complexes. Chem Rev 2021; 122:7720-7839. [PMID: 34587741 DOI: 10.1021/acs.chemrev.1c00386] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids have been among the first targets for antitumor drugs and antibiotics. With the unveiling of new biological roles in regulation of gene expression, specific DNA and RNA structures have become very attractive targets, especially when the corresponding proteins are undruggable. Biophysical assays to assess target structure as well as ligand binding stoichiometry, affinity, specificity, and binding modes are part of the drug development process. Mass spectrometry offers unique advantages as a biophysical method owing to its ability to distinguish each stoichiometry present in a mixture. In addition, advanced mass spectrometry approaches (reactive probing, fragmentation techniques, ion mobility spectrometry, ion spectroscopy) provide more detailed information on the complexes. Here, we review the fundamentals of mass spectrometry and all its particularities when studying noncovalent nucleic acid structures, and then review what has been learned thanks to mass spectrometry on nucleic acid structures, self-assemblies (e.g., duplexes or G-quadruplexes), and their complexes with ligands.
Collapse
Affiliation(s)
- Eric Largy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Alexander König
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Anirban Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Debasmita Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Sanae Benabou
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Frédéric Rosu
- Univ. Bordeaux, CNRS, INSERM, IECB, UMS 3033, F-33600 Pessac, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
9
|
Tateishi-Karimata H, Sugimoto N. Roles of non-canonical structures of nucleic acids in cancer and neurodegenerative diseases. Nucleic Acids Res 2021; 49:7839-7855. [PMID: 34244785 PMCID: PMC8373145 DOI: 10.1093/nar/gkab580] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 06/17/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer and neurodegenerative diseases are caused by genetic and environmental factors. Expression of tumour suppressor genes is suppressed by mutations or epigenetic silencing, whereas for neurodegenerative disease-related genes, nucleic acid-based effects may be presented through loss of protein function due to erroneous protein sequences or gain of toxic function from extended repeat transcripts or toxic peptide production. These diseases are triggered by damaged genes and proteins due to lifestyle and exposure to radiation. Recent studies have indicated that transient, non-canonical structural changes in nucleic acids in response to the environment can regulate the expression of disease-related genes. Non-canonical structures are involved in many cellular functions, such as regulation of gene expression through transcription and translation, epigenetic regulation of chromatin, and DNA recombination. Transcripts generated from repeat sequences of neurodegenerative disease-related genes form non-canonical structures that are involved in protein transport and toxic aggregate formation. Intracellular phase separation promotes transcription and protein assembly, which are controlled by the nucleic acid structure and can influence cancer and neurodegenerative disease progression. These findings may aid in elucidating the underlying disease mechanisms. Here, we review the influence of non-canonical nucleic acid structures in disease-related genes on disease onset and progression.
Collapse
Affiliation(s)
- Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.,Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
10
|
Park G, Kang B, Park SV, Lee D, Oh SS. A unified computational view of DNA duplex, triplex, quadruplex and their donor-acceptor interactions. Nucleic Acids Res 2021; 49:4919-4933. [PMID: 33893806 PMCID: PMC8136788 DOI: 10.1093/nar/gkab285] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 01/09/2023] Open
Abstract
DNA can assume various structures as a result of interactions at atomic and molecular levels (e.g., hydrogen bonds, π–π stacking interactions, and electrostatic potentials), so understanding of the consequences of these interactions could guide development of ways to produce elaborate programmable DNA for applications in bio- and nanotechnology. We conducted advanced ab initio calculations to investigate nucleobase model structures by componentizing their donor-acceptor interactions. By unifying computational conditions, we compared the independent interactions of DNA duplexes, triplexes, and quadruplexes, which led us to evaluate a stability trend among Watson–Crick and Hoogsteen base pairing, stacking, and even ion binding. For a realistic solution-like environment, the influence of water molecules was carefully considered, and the potassium-ion preference of G-quadruplex was first analyzed at an ab initio level by considering both base-base and ion-water interactions. We devised new structure factors including hydrogen bond length, glycosidic vector angle, and twist angle, which were highly effective for comparison between computationally-predicted and experimentally-determined structures; we clarified the function of phosphate backbone during nucleobase ordering. The simulated tendency of net interaction energies agreed well with that of real world, and this agreement validates the potential of ab initio study to guide programming of complicated DNA constructs.
Collapse
Affiliation(s)
- Gyuri Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Byunghwa Kang
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Soyeon V Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Donghwa Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea.,Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea.,Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Incheon 21983, South Korea
| | - Seung Soo Oh
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea.,Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Incheon 21983, South Korea.,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| |
Collapse
|
11
|
Contini A, Erba E, Bondavalli V, Barbiroli A, Gelmi ML, Romanelli A. Morpholino-based peptide oligomers: Synthesis and DNA binding properties. Biochem Biophys Res Commun 2021; 549:8-13. [PMID: 33652207 DOI: 10.1016/j.bbrc.2021.02.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 11/17/2022]
Abstract
The chemical structure of oligonucleotide analogues dictates the conformation of oligonucleotide analogue oligomers, their ability to hybridize complementary DNA and RNA, their stability to degradation and their pharmacokinetic properties. In a study aimed at investigating new analogues featuring a neutral backbone, we explored the ability of oligomers containing a morpholino-peptide backbone to bind oligonucleotides. Circular Dichroism studies revealed the ability of our oligomers to interact with DNA, molecular modelling studies revealed the interaction responsible for complex stabilization.
Collapse
Affiliation(s)
- Alessandro Contini
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Emanuela Erba
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Valeria Bondavalli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Alberto Barbiroli
- DeFENS - Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, Milano, Italy
| | - Maria Luisa Gelmi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Alessandra Romanelli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
12
|
Zhang J, Fakharzadeh A, Pan F, Roland C, Sagui C. Atypical structures of GAA/TTC trinucleotide repeats underlying Friedreich's ataxia: DNA triplexes and RNA/DNA hybrids. Nucleic Acids Res 2020; 48:9899-9917. [PMID: 32821947 PMCID: PMC7515735 DOI: 10.1093/nar/gkaa665] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 11/13/2022] Open
Abstract
Expansion of the GAA/TTC repeats in the first intron of the FXN gene causes Friedreich's ataxia. Non-canonical structures are linked to this expansion. DNA triplexes and R-loops are believed to arrest transcription, which results in frataxin deficiency and eventual neurodegeneration. We present a systematic in silico characterization of the possible DNA triplexes that could be assembled with GAA and TTC strands; the two hybrid duplexes [r(GAA):d(TTC) and d(GAA):r(UUC)] in an R-loop; and three hybrid triplexes that could form during bidirectional transcription when the non-template DNA strand bonds with the hybrid duplex (collapsed R-loops, where the two DNA strands remain antiparallel). For both Y·R:Y and R·R:Y DNA triplexes, the parallel third strand orientation is more stable; both parallel and antiparallel protonated d(GA+A)·d(GAA):d(TTC) triplexes are stable. Apparent contradictions in the literature about the R·R:Y triplex stability is probably due to lack of molecular resolution, since shifting the third strand by a single nucleotide alters the stability ranking. In the collapsed R-loops, antiparallel d(TTC+)·d(GAA):r(UUC) is unstable, while parallel d(GAA)·r(GAA):d(TTC) and d(GA+A)·r(GAA):d(TTC) are stable. In addition to providing new structural perspectives for specific therapeutic aims, our results contribute to a systematic structural basis for the emerging field of quantitative R-loop biology.
Collapse
Affiliation(s)
- Jiahui Zhang
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Ashkan Fakharzadeh
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Feng Pan
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA.,Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Christopher Roland
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Celeste Sagui
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| |
Collapse
|
13
|
Tateishi-Karimata H, Sugimoto N. Chemical biology of non-canonical structures of nucleic acids for therapeutic applications. Chem Commun (Camb) 2020; 56:2379-2390. [PMID: 32022004 DOI: 10.1039/c9cc09771f] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
DNA forms not only the canonical duplex structure but also non-canonical structures. Most potential sequences that induce the formation of non-canonical structures are present in disease-related genes. Interestingly, biological reactions are inhibited or dysregulated by non-canonical structure formation in disease-related genes. To control biological reactions, methods for inducing the formation of non-canonical structures have been developed using small molecules and oligonucleotides. In this feature article, we review biological reactions such as replication, transcription, and reverse transcription controlled by non-canonical DNA structures formed by disease-related genes. Furthermore, we discuss recent studies aimed at developing methods for regulating these biological reactions using drugs targeting the DNA structure.
Collapse
Affiliation(s)
- Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 17-1-20 Minatojima-minamimachi, Kobe, 650-0047, Japan.
| | | |
Collapse
|
14
|
Marchand A, Czar MF, Eggel EN, Kaeslin J, Zenobi R. Studying biomolecular folding and binding using temperature-jump mass spectrometry. Nat Commun 2020; 11:566. [PMID: 31992698 PMCID: PMC6987177 DOI: 10.1038/s41467-019-14179-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/19/2019] [Indexed: 01/14/2023] Open
Abstract
Characterizing folding and complex formation of biomolecules provides a view into their thermodynamics, kinetics and folding pathways. Deciphering kinetic intermediates is particularly important because they can often be targeted by drugs. The key advantage of native mass spectrometry over conventional methods that monitor a single observable is its ability to identify and quantify coexisting species. Here, we show the design of a temperature-jump electrospray source for mass spectrometry that allows one to perform fast kinetics experiments (0.16-32 s) at different temperatures (10-90 °C). The setup allows recording of both folding and unfolding kinetics by using temperature jumps from high to low, and low to high, temperatures. Six biological systems, ranging from peptides to proteins to DNA complexes, exemplify the use of this device. Using temperature-dependent experiments, the folding and unfolding of a DNA triplex are studied, providing detailed information on its thermodynamics and kinetics.
Collapse
Affiliation(s)
- Adrien Marchand
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Martin F Czar
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Elija N Eggel
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Jérôme Kaeslin
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland.
| |
Collapse
|
15
|
Sayoh I, Rusling DA, Brown T, Fox KR. DNA Structural Changes Induced by Intermolecular Triple Helix Formation. ACS OMEGA 2020; 5:1679-1687. [PMID: 32010842 PMCID: PMC6990630 DOI: 10.1021/acsomega.9b03776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
DNase I footprints of intermolecular DNA triplexes are often accompanied by enhanced cleavage at the 3'-end of the target site at the triplex-duplex junction. We have systematically studied the sequence dependence of this effect by examining oligonucleotide binding to sites flanked by each base in turn. For complexes with a terminal T.AT triplet, the greatest enhancement is seen with ApC, followed by ApG and ApT, with the weakest enhancement at ApA. Similar DNase I enhancements were observed for a triplex with a terminal C+.GC triplet, though with little difference between the different GpN sites. Enhanced reactivity to diethylpyrocarbonate was observed at As that flank the triplex-duplex junction at AAA or AAC but not AAG or AAT. Fluorescence melting experiments demonstrated that the flanking base affected the stability with a 4 °C difference in T m between a flanking C and G. Sequences that produced the strongest enhancement correlated with those having the lower thermal stability. These results are interpreted in terms of oligonucleotide-induced changes in DNA structure and/or flexibility.
Collapse
Affiliation(s)
- Ibrahim Sayoh
- School
of Biological Sciences, Life Sciences Building 85, University of Southampton, Southampton SO17 1BJ, U.K.
| | - David A. Rusling
- School
of Biological Sciences, Life Sciences Building 85, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Tom Brown
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Keith R. Fox
- School
of Biological Sciences, Life Sciences Building 85, University of Southampton, Southampton SO17 1BJ, U.K.
| |
Collapse
|
16
|
Abstract
BACKGROUND Numerous different types of variations can occur in DNA and have diverse effects and consequences. The Variation Ontology (VariO) was developed for systematic descriptions of variations and their effects at DNA, RNA and protein levels. RESULTS VariO use and terms for DNA variations are described in depth. VariO provides systematic names for variation types and detailed descriptions for changes in DNA function, structure and properties. The principles of VariO are presented along with examples from published articles or databases, most often in relation to human diseases. VariO terms describe local DNA changes, chromosome number and structure variants, chromatin alterations, as well as genomic changes, whether of genetic or non-genetic origin. CONCLUSIONS DNA variation systematics facilitates unambiguous descriptions of variations and their effects and further reuse and integration of data from different sources by both human and computers.
Collapse
Affiliation(s)
- Mauno Vihinen
- Department of Experimental Medical Science, Lund University, BMC B13, SE-22184, Lund, Sweden.
| |
Collapse
|
17
|
(C2G4)n repeat expansion sequences from the C9orf72 gene form an unusual DNA higher-order structure in the pH range of 5-6. PLoS One 2018; 13:e0198418. [PMID: 29912891 PMCID: PMC6005549 DOI: 10.1371/journal.pone.0198418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/19/2018] [Indexed: 12/14/2022] Open
Abstract
Massive expansion of a DNA hexanucleotide sequence repeat (C2G4) within the human C9orf72 gene has been linked to a number of neurodegenerative diseases. In sodium or potassium salt solutions, single-stranded d(C2G4)n DNAs fold to form G-quadruplexes. We have found that in magnesium or lithium salt solutions, especially under slightly acidic conditions, d(C2G4)n oligonucleotides fold to form a distinctive higher order structure whose most striking feature is an “inverted” circular dichroism spectrum, which is distinguishable from the spectrum of the left handed DNA double-helix, Z-DNA. On the basis of CD spectroscopy, gel mobility as well as chemical protection analysis, we propose that this structure, which we call “iCD-DNA”, may be a left-handed Hoogsteen base-paired duplex, an unorthodox G-quadruplex/i-motif composite, or a non-canonical, “braided” DNA triplex. Given that iCD-DNA forms under slightly acidic solution conditions, we do not know at this point in time whether or not it forms within living cells.
Collapse
|
18
|
Chandrasekaran AR, Rusling DA. Triplex-forming oligonucleotides: a third strand for DNA nanotechnology. Nucleic Acids Res 2018; 46:1021-1037. [PMID: 29228337 PMCID: PMC5814803 DOI: 10.1093/nar/gkx1230] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/21/2017] [Accepted: 11/30/2017] [Indexed: 11/14/2022] Open
Abstract
DNA self-assembly has proved to be a useful bottom-up strategy for the construction of user-defined nanoscale objects, lattices and devices. The design of these structures has largely relied on exploiting simple base pairing rules and the formation of double-helical domains as secondary structural elements. However, other helical forms involving specific non-canonical base-base interactions have introduced a novel paradigm into the process of engineering with DNA. The most notable of these is a three-stranded complex generated by the binding of a third strand within the duplex major groove, generating a triple-helical ('triplex') structure. The sequence, structural and assembly requirements that differentiate triplexes from their duplex counterparts has allowed the design of nanostructures for both dynamic and/or structural purposes, as well as a means to target non-nucleic acid components to precise locations within a nanostructure scaffold. Here, we review the properties of triplexes that have proved useful in the engineering of DNA nanostructures, with an emphasis on applications that hitherto have not been possible by duplex formation alone.
Collapse
Affiliation(s)
| | - David A Rusling
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, Hampshire SO17 1BJ, UK
| |
Collapse
|
19
|
Li Y, Syed J, Sugiyama H. RNA-DNA Triplex Formation by Long Noncoding RNAs. Cell Chem Biol 2016; 23:1325-1333. [DOI: 10.1016/j.chembiol.2016.09.011] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/29/2016] [Accepted: 09/26/2016] [Indexed: 01/06/2023]
|
20
|
Abstract
The non-B DNA structures formed by short tandem repeats on the nascent strand during DNA replication have been proposed to be the structural intermediates that lead to repeat expansion mutations. Tetranucleotide TTTA and CCTG repeat expansions have been known to cause reduction in biofilm formation in Staphylococcus aureus and myotonic dystrophy type 2 in human, respectively. In this study, we report the first three-dimensional minidumbbell (MDB) structure formed by natural DNA sequences containing two TTTA or CCTG repeats. The formation of MDB provides possible pathways for strand slippage to occur, which ultimately leads to repair escape and thus expansion mutations. Our result here shows that MDB is a highly compact structure composed of two type II loops. In addition to the typical stabilizing interactions in type II loops, MDB shows extensive stabilizing forces between the two loops, including two distinctive modes of interactions between the minor groove residues. The formation of MDB enriches the structural diversity of natural DNA sequences, reveals the importance of loop-loop interactions in unusual DNA structures, and provides insights into novel mechanistic pathways of DNA repeat expansion mutations.
Collapse
Affiliation(s)
- Pei Guo
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
| | - Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
| |
Collapse
|
21
|
Ghane T, Brancolini G, Varsano D, Di Felice R. Optical Properties of Triplex DNA from Time-Dependent Density Functional Theory. J Phys Chem B 2012; 116:10693-702. [DOI: 10.1021/jp304818s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Tahereh Ghane
- Center S3, CNR Institute of Nanoscience, Via Campi 213/A, 41125 Modena,
Italy
- Department of Physics, University of Modena and Reggio Emilia, Via Campi 213/A,
41125 Modena, Italy
| | - Giorgia Brancolini
- Center S3, CNR Institute of Nanoscience, Via Campi 213/A, 41125 Modena,
Italy
| | - Daniele Varsano
- Center S3, CNR Institute of Nanoscience, Via Campi 213/A, 41125 Modena,
Italy
- Department
of Physics, University of Rome “La Sapienza”, Piazzale
Aldo Moro 5, 00185 Rome, Italy
| | - Rosa Di Felice
- Center S3, CNR Institute of Nanoscience, Via Campi 213/A, 41125 Modena,
Italy
| |
Collapse
|
22
|
Mukherjee A, Vasquez KM. Triplex technology in studies of DNA damage, DNA repair, and mutagenesis. Biochimie 2011; 93:1197-208. [PMID: 21501652 DOI: 10.1016/j.biochi.2011.04.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 04/01/2011] [Indexed: 12/18/2022]
Abstract
Triplex-forming oligonucleotides (TFOs) can bind to the major groove of homopurine-homopyrimidine stretches of double-stranded DNA in a sequence-specific manner through Hoogsteen hydrogen bonding to form DNA triplexes. TFOs by themselves or conjugated to reactive molecules can be used to direct sequence-specific DNA damage, which in turn results in the induction of several DNA metabolic activities. Triplex technology is highly utilized as a tool to study gene regulation, molecular mechanisms of DNA repair, recombination, and mutagenesis. In addition, TFO targeting of specific genes has been exploited in the development of therapeutic strategies to modulate DNA structure and function. In this review, we discuss advances made in studies of DNA damage, DNA repair, recombination, and mutagenesis by using triplex technology to target specific DNA sequences.
Collapse
Affiliation(s)
- Anirban Mukherjee
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA
| | | |
Collapse
|
23
|
Krishnan R, Oh DH. Structural determinants of photoreactivity of triplex forming oligonucleotides conjugated to psoralens. J Nucleic Acids 2010; 2010:523498. [PMID: 20725628 PMCID: PMC2915845 DOI: 10.4061/2010/523498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Accepted: 06/03/2010] [Indexed: 11/23/2022] Open
Abstract
Triplex-forming oligonucleotides (TFOs) with both DNA and 2'-O-methyl RNA backbones can direct psoralen photoadducts to specific DNA sequences. However, the functional consequences of these differing structures on psoralen photoreactivity are unknown. We designed TFO sequences with DNA and 2'-O-methyl RNA backbones conjugated to psoralen by 2-carbon linkers and examined their ability to bind and target damage to model DNA duplexes corresponding to sequences within the human HPRT gene. While TFO binding affinity was not dramatically affected by the type of backbone, psoralen photoreactivity was completely abrogated by the 2'-O-methyl RNA backbone. Photoreactivity was restored when the psoralen was conjugated to the RNA TFO via a 6-carbon linker. In contrast to the B-form DNA of triplexes formed by DNA TFOs, the CD spectra of triplexes formed with 2'-O-methyl RNA TFOs exhibited features of A-form DNA. These results indicate that 2'-O-methyl RNA TFOs induce a partial B-to-A transition in their target DNA sequences which may impair the photoreactivity of a conjugated psoralen and suggest that optimal design of TFOs to target DNA damage may require a balance between binding ability and drug reactivity.
Collapse
Affiliation(s)
- Rajagopal Krishnan
- Department of Dermatology, University of California at San Francisco, San Francisco, CA 94121, USA
- Dermatology Research Unit, San Francisco VA Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA
| | - Dennis H. Oh
- Department of Dermatology, University of California at San Francisco, San Francisco, CA 94121, USA
- Dermatology Research Unit, San Francisco VA Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA
| |
Collapse
|
24
|
Detection of triple helix DNA formation of guanine-rich oligonucleotide in sodium ion abundant buffer by cross-checking FRET scheme. Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2010.03.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Ben Gaied N, Zhao Z, Gerrard SR, Fox KR, Brown T. Potent triple helix stabilization by 5',3'-modified triplex-forming oligonucleotides. Chembiochem 2009; 10:1839-51. [PMID: 19554592 DOI: 10.1002/cbic.200900232] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Anthraquinone and pyrene analogues attached to the 3' and/or 5' termini of triplex-forming oligonucleotides (TFOs) by various linkers increased the stability of parallel triple helices. The modifications are simple to synthesize and can be introduced during standard solid-phase oligonucleotide synthesis. Potent triplex stability was achieved by using doubly modified TFOs, which in the most favourable cases gave an increase in melting temperature of 30 degrees C over the unmodified counterparts and maintained their selectivity for the correct target duplex. Such TFOs can produce triplexes with melting temperatures of 40 degrees C at pH 7 even though they do not contain any triplex-stabilizing base analogues. These studies have implications for the design of triplex-forming oligonucleotides for use in biology and nanotechnology.
Collapse
Affiliation(s)
- Nouha Ben Gaied
- School of Chemistry, University of Southampton, Highfield, SO17 1BJ, Southampton, UK
| | | | | | | | | |
Collapse
|
26
|
Ramreddy T, Kombrabail M, Krishnamoorthy G, Rao BJ. Site-Specific Dynamics in TAT Triplex DNA As Revealed by Time-Domain Fluorescence of 2-Aminopurine. J Phys Chem B 2009; 113:6840-6. [DOI: 10.1021/jp901216h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- T. Ramreddy
- Department of Chemical Science and Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
| | - Mamata Kombrabail
- Department of Chemical Science and Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
| | - G. Krishnamoorthy
- Department of Chemical Science and Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
| | - B. J. Rao
- Department of Chemical Science and Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
| |
Collapse
|
27
|
Duca M, Vekhoff P, Oussedik K, Halby L, Arimondo PB. The triple helix: 50 years later, the outcome. Nucleic Acids Res 2008; 36:5123-38. [PMID: 18676453 PMCID: PMC2532714 DOI: 10.1093/nar/gkn493] [Citation(s) in RCA: 268] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Triplex-forming oligonucleotides constitute an interesting DNA sequence-specific tool that can be used to target cleaving or cross-linking agents, transcription factors or nucleases to a chosen site on the DNA. They are not only used as biotechnological tools but also to induce modifications on DNA with the aim to control gene expression, such as by site-directed mutagenesis or DNA recombination. Here, we report the state of art of the triplex-based anti-gene strategy 50 years after the discovery of such a structure, and we show the importance of the actual applications and the main challenges that we still have ahead of us.
Collapse
Affiliation(s)
- Maria Duca
- LCMBA CNRS UMR6001, University of Nice-Sophia Antipolis, Parc Valrose, 06108 NICE Cedex 2, France
| | | | | | | | | |
Collapse
|
28
|
Sørensen JJ, Nielsen JT, Petersen M. Solution structure of a dsDNA:LNA triplex. Nucleic Acids Res 2004; 32:6078-85. [PMID: 15550567 PMCID: PMC534625 DOI: 10.1093/nar/gkh942] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We have determined the NMR structure of an intramolecular dsDNA:LNA triplex, where the LNA strand is composed of alternating LNA and DNA nucleotides. The LNA oligonucleotide binds to the dsDNA duplex in the major groove by formation of Hoogsteen hydrogen bonds to the purine strand of the duplex. The structure of the dsDNA duplex is changed to accommodate the LNA strand, and it adopts a geometry intermediate between A- and B-type. There is a substantial propeller twist between base-paired nucleobases. This propeller twist and a concomitant large propeller twist between the purine and LNA strands allows the pyrimidines of the LNA strand to interact with the 5'-flanking duplex pyrimidines. Altogether, the triplex has a regular global geometry as shown by a straight helix axis. This shows that even though the third strand is composed of alternating DNA and LNA monomers with different sugar puckers, it forms a seamless triplex. The thermostability of the triplex is increased by 19 degrees C relative to the unmodified DNA triplex at acidic pH. Using NMR spectroscopy, we show that the dsDNA:LNA triplex is stable at pH 8, and that the triplex structure is identical to the structure determined at pH 5.1.
Collapse
Affiliation(s)
- Jesper J Sørensen
- Nucleic Acid Center, Department of Chemistry, University of Southern Denmark, 5230 Odense M, Denmark
| | | | | |
Collapse
|
29
|
Arimondo PB, Angenault S, Halby L, Boutorine A, Schmidt F, Monneret C, Garestier T, Sun JS, Bailly C, Hélène C. Spatial organization of topoisomerase I-mediated DNA cleavage induced by camptothecin-oligonucleotide conjugates. Nucleic Acids Res 2003; 31:4031-40. [PMID: 12853620 PMCID: PMC165972 DOI: 10.1093/nar/gkg457] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Triple helix-forming oligonucleotides covalently linked to topoisomerase I inhibitors, in particular the antitumor agent camptothecin, trigger topoisomerase I-mediated DNA cleavage selectively in the proximity of the binding site of the oligonucleotide vector. In the present study, we have performed a systematic analysis of the DNA cleavage efficiency as a function of the positioning of the camptothecin derivative, either on the 3' or the 5' side of the triplex, and the location of the cleavage site. A previously identified cleavage site was inserted at different positions within two triplex site-containing 59 bp duplexes. Sequence-specific DNA cleavage by topoisomerase I occurs only with triplex conjugates bearing the inhibitor at the 3'-end of the oligonucleotide and on the oligopyrimidine strand of the duplex. The lack of targeted cleavage on the 5' side is attributed to the structural differences of the 3' and 5' duplex-triplex DNA junctions. The changes induced in the double helix by the triple-helical structure interfere with the action of the enzyme according to a preferred spatial organization. Camptothecin conjugates of oligonucleotides provide efficient tools to probe the organization of the topoisomerase I-DNA complex and will be useful to understand the functioning of topoisomerase I in living cells.
Collapse
Affiliation(s)
- Paola B Arimondo
- Laboratoire de Biophysique, USM0503 Muséum National d'Histoire Naturelle, UMR8646 CNRS, UR565 INSERM, 43 Rue Cuvier, 75231 Paris Cedex 05, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Hydrogen-bonded base pairs are an important determinant of nucleic acid structure and function. However, other interactions such as base-base stacking, base-backbone, and backbone-backbone interactions as well as effects exerted by the solvent and by metal or NH(4)(+) ions also have to be taken into account. In addition, hydrogen-bonded base complexes involving more than two bases can occur. With the rapidly increasing number and structural diversity of nucleic acid structures known at atomic detail higher-order hydrogen-bonded base complexes, base polyads, have attracted much interest. This review provides an overview on the occurrence of base polyads in nucleic acid structures and describes computational studies on these nucleic acid building blocks.
Collapse
Affiliation(s)
- J Sühnel
- Biocomputing Group, Institut für Molekulare Biotechnologie, Postfach 100813, D-07708 Jena, Germany
| |
Collapse
|
31
|
Cubero E, Aviñó A, de la Torre BG, Frieden M, Eritja R, Luque FJ, González C, Orozco M. Hoogsteen-based parallel-stranded duplexes of DNA. Effect of 8-amino-purine derivatives. J Am Chem Soc 2002; 124:3133-42. [PMID: 11902902 DOI: 10.1021/ja011928+] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structure of parallel-stranded duplexes of DNA-containing a mixture of guanines (G) and adenines (A) is studied by means of molecular dynamics (MD) simulation, as well as NMR and circular dichroism (CD) spectroscopy. Results demonstrate that the structure is based on the Hoogsteen motif rather than on the reverse Watson-Crick one. Molecular dynamics coupled to thermodynamic integration (MD/TI) calculations and melting experiments allowed us to determine the effect of 8-amino derivatives of A and G and of 8-amino-2'-deoxyinosine on the stability of parallel-stranded duplexes. The large stabilization of the parallel-stranded helix upon 8-amino substitution agrees with a Hoogsteen pairing, confirming MD, NMR, and CD data, and suggests new methods to obtain DNA triplexes for antigene and antisense purposes.
Collapse
Affiliation(s)
- Elena Cubero
- Departament de Bioquímica i Biologia Molecular, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- A N Lane
- Division of Molecular Structure, National Institute for Medical Research, London NW7 1AA, United Kingdom
| |
Collapse
|
33
|
Cubero E, Güimil-García R, Luque FJ, Eritja R, Orozco M. The effect of amino groups on the stability of DNA duplexes and triplexes based on purines derived from inosine. Nucleic Acids Res 2001; 29:2522-34. [PMID: 11410660 PMCID: PMC55742 DOI: 10.1093/nar/29.12.2522] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The effect of amino groups attached at positions 2 and 8 of the hypoxanthine moiety in the structure, reactivity and stability of DNA duplexes and triplexes is studied by means of quantum mechanical calculations, as well as extended molecular dynamics (MD) and thermodynamic integration (MD/TI) simulations. Theoretical estimates of the change in stability related to 2'-deoxyguanosine (G) --> 2'-deoxyinosine (I) --> 8-amino-2'-deoxyinosine (8AI) mutations have been experimentally verified, after synthesis of the corresponding compounds. An amino group placed at position 2 stabilizes the duplex, as expected, and surprisingly also the triplex. The presence of an amino group at position 8 of the hypoxanthine moiety stabilizes the triplex but, surprisingly, destabilizes the duplex. The subtle electronic redistribution occurring upon the introduction of an amino group on the purine seems to be responsible for this surprising behavior. Interesting 'universal base' properties are found for 8AI.
Collapse
Affiliation(s)
- E Cubero
- Departament de Bioquímica i Biologia Molecular, Facultat de Química, Universitat de Barcelona, Martí i Franques 1, Barcelona 08028, Spain
| | | | | | | | | |
Collapse
|
34
|
Abstract
The study concerns the propensity of triple helix formation by different DNA oligonucleotides containing long A-tracts with and without flanking GxC base pairs in order to probe the role of length of the A-tract and the flanking sequences. From nuclear magnetic resonance (NMR) studies of imino proton spectra and circular dichroism (CD) spectroscopy of samples composed of potential triplex forming strand sequences in correct stoichiometries, we have concluded that 8-mer A-tracts flanked by GxC base pairs exert significant steric hindrance to triple helix formation. When as much as 50 mM Mg2+ was added, no triple helix formation was observed in these samples. In contrast, open-ended 8-mer A-tracts formed triplex with the corresponding two T8 strands under relatively mild ionic conditions (100 mM Na+). Moreover, the shorter the length of the A-tract, the less is the hindrance to form a triple helix.
Collapse
Affiliation(s)
- A Sen
- Department of Biophysics, Arrhenius Laboratories, Stockholm University, Sweden
| | | |
Collapse
|
35
|
Soliva R, Güimil García R, Blas JR, Eritja R, Asensio JL, González C, Luque FJ, Orozco M. DNA-triplex stabilizing properties of 8-aminoguanine. Nucleic Acids Res 2000; 28:4531-9. [PMID: 11071942 PMCID: PMC113881 DOI: 10.1093/nar/28.22.4531] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2000] [Revised: 09/25/2000] [Accepted: 09/25/2000] [Indexed: 11/12/2022] Open
Abstract
A DNA-triplex stabilizing purine (8-aminoguanine) is designed based on molecular modeling and synthesized. The substitution of guanine by 8-aminoguanine largely stabilizes the triplex both at neutral and acidic pH, as suggested by molecular dynamics and thermodynamic integration calculations, and demonstrated by melting experiments. NMR experiments confirm the triplex-stabilizing properties of 8-aminoguanine and demonstrate that few changes are found in the structure of the triplex due to the presence of this modified base.
Collapse
Affiliation(s)
- R Soliva
- Departament de Bioquímica i Biologia Molecular, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Weisz K, Leitner D, Krafft C, Welfle H. Structural heterogeneity in intramolecular DNA triple helices. Biol Chem 2000; 381:275-83. [PMID: 10839455 DOI: 10.1515/bc.2000.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Oligodeoxynucleotides designed to form intramolecular triple helices are widely used as model systems in thermodynamic and structural studies. We now report results from UV, Raman and NMR experiments demonstrating that the strand polarity, which also determines the orientation of the connecting loops, has a considerable impact on the formation and stability of pyr x pur x pyr triple helices. There are two types of monomolecular triplexes that can be defined by the location of their purine tract at either the 5'- or 3'-end of the sequence. We have examined four pairs of oligonucleotides with the same base composition but with reversed polarity that can fold into intramolecular triple helices with seven base triplets and two T4 loops under appropriate conditions. UV spectroscopic monitoring of thermal denaturation indicates a consistently higher thermal stability for the 5'-sequences at pH 5.0 in the absence of Mg2+ ions. Raman spectra provide evidence for the formation of triple helices at pH 5 for oligomers with purine tracts located at either the 5'- or 3'-end of the sequence. However, NMR measurements reveal considerable differences in the secondary structures formed by the two types of oligonucleotides. Thus, at acidic pH significant structural heterogeneity is observed for the 3'-sequences. Employing selectively 15N-labeled oligomers, NMR experiments indicate a folding pattern for the competing structures that at least partially changes both Hoogsteen and Watson-Crick base-base interactions.
Collapse
Affiliation(s)
- K Weisz
- Institut für Chemie der Freien Universität Berlin, Germany
| | | | | | | |
Collapse
|
37
|
Rhee S, Han ZJ, Liu K, Miles HT, Davies DR. Structure of a triple helical DNA with a triplex-duplex junction. Biochemistry 1999; 38:16810-5. [PMID: 10606513 DOI: 10.1021/bi991811m] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Extended purine sequences on a DNA strand can lead to the formation of triplex DNA in which the third strand runs parallel to the purine strand. Triplex DNA structures have been proposed to play a role in gene expression and recombination and also have potential application as antisense inhibitors of gene expression. Triplex structures have been studied in solution by NMR, but have hitherto resisted attempts at crystallization. Here, we report a novel design of DNA sequences, which allows the first crystallographic study of DNA segment containing triplexes and its junction with a duplex. In the 1.8 A resolution structure, the sugar-phosphate backbone of the third strand is parallel to the purine-rich strand. The bases of the third strand associate with the Watson and Crick duplex via Hoogsteen-type interactions, resulting in three consecutive C(+).GC, BU.ABU (BU = 5-bromouracil), and C(+).GC triplets. The overall conformation of the DNA triplex has some similarity to the B-form, but is distinct from both A- and B-forms. There are large changes in the phosphate backbone torsion angles (particularly gamma) of the purine strand, probably due to the electrostatic interactions between the phosphate groups and the protonated cytosine. These changes narrow the minor groove width of the purine-Hoogsteen strands and may represent sequence-specific structural variations of the DNA triplex.
Collapse
Affiliation(s)
- S Rhee
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
38
|
Foloppe N, MacKerell AD. Contribution of the Phosphodiester Backbone and Glycosyl Linkage Intrinsic Torsional Energetics to DNA Structure and Dynamics. J Phys Chem B 1999. [DOI: 10.1021/jp992716q] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nicolas Foloppe
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| |
Collapse
|
39
|
Asensio JL, Carr R, Brown T, Lane AN. Conformational and Thermodynamic Properties of Parallel Intramolecular Triple Helices Containing a DNA, RNA, or 2‘-OMeDNA Third Strand. J Am Chem Soc 1999. [DOI: 10.1021/ja991949s] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Juan Luis Asensio
- Contribution from the Division of Molecular Structure, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK, and Department of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Reuben Carr
- Contribution from the Division of Molecular Structure, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK, and Department of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Tom Brown
- Contribution from the Division of Molecular Structure, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK, and Department of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Andrew N. Lane
- Contribution from the Division of Molecular Structure, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK, and Department of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| |
Collapse
|
40
|
Rothwarf DM, Karin M. The NF-kappa B activation pathway: a paradigm in information transfer from membrane to nucleus. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 1999; 1999:RE1. [PMID: 11865184 DOI: 10.1126/stke.1999.5.re1] [Citation(s) in RCA: 280] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Nuclear factor kappa B (NF-kappaB)/Rel proteins are dimeric, sequence-specific transcription factors involved in the activation of an exceptionally large number of genes in response to inflammation, viral and bacterial infections, and other stressful situations requiring rapid reprogramming of gene expression. In unstimulated cells, NF-kappaB is sequestered in an inactive form in the cytoplasm bound to inhibitory IkappaB proteins. Stimulation leads to the rapid phosphorylation, ubiquitinylation, and ultimately proteolytic degradation of IkappaB, which frees NF-kappaB to translocate to the nucleus and activate the transcription of its target genes. The multisubunit IkappaB kinase (IKK) responsible for the inducible phosphorylation of IkappaB appears to be the initial point of convergence for most stimuli that activate NF-kappaB. IKK contains two catalytic subunits, IKKalpha and IKKbeta, both of which phosphorylate IkappaB at sites phosphorylated in vivo. Gene knockout studies indicate that IKKbeta is primarily responsible for the activation of NF-kappaB in response to proinflammatory stimuli, whereas IKKalpha is essential for keratinocyte differentiation. The activity of IKK is regulated by phosphorylation. IKK contains a regulatory subunit, IKKgamma, which is critical for activation of IKK and is postulated to serve as a recognition site for upstream activators. When phosphorylated, the IKK recognition site on IkappaBalpha serves as a specific recognition site for the kappa-TrCP-like component of a Skp1-Cullin-F-box-type E3 ubiquitin-protein ligase. A variety of other signaling events, including phosphorylation of NF-kappaB, phosphorylation of IKK, new synthesis of IkappaBs, and the processing of NF-kappaB precursors provide mechanisms of modulating the amount and duration of NF-kappaB activity.
Collapse
Affiliation(s)
- D M Rothwarf
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California, San Diego, CA 92093-0636, USA.
| | | |
Collapse
|
41
|
Abstract
DNA oligonucleotides can form multistranded helices through either the folding of a single strand or the association of two, three or four strands of DNA. Structures of several new DNA triplexes, G-quartet DNA quadruplexes and I-motif DNA quadruplexes have been reported recently. These structures provide new insights into helix stability and folding, loop conformations and cation interactions.
Collapse
Affiliation(s)
- D E Gilbert
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90095-1569, USA
| | | |
Collapse
|
42
|
Soliva R, Luque FJ, Orozco M. Can G-C Hoogsteen-wobble pairs contribute to the stability of d(G. C-C) triplexes? Nucleic Acids Res 1999; 27:2248-55. [PMID: 10325411 PMCID: PMC148788 DOI: 10.1093/nar/27.11.2248] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Quantum mechanics, molecular dynamics and statistical mechanics methods are used to analyze the importance of neutral Hoogsteen-wobble G.C pairing in the stabilization of triple helices based on the poly-(G.C-C) trio at neutral pH and low ionic strength. In spite of the existence of a single hydrogen bond, the Hoogsteen-wobble G.C pair is found to be quite stable both in gas phase and solvated DNA. Molecular dynamics simulations of different triplexes based on the d(G.C-C) trio leads to stable structures if the neutral d(G.C-C) steps stabilized by Hoogsteen-wobble pairs are mixed with d(G.C-C+) steps. Finally, high level ab initio calculations and thermodynamic integration techniques are used to determine the relative stability of G.C wobble and G.C imino pairings. It is found that triplexes containing the imino pairing are slightly more stable structures than those with the wobble one, due mainly to a better stacking.
Collapse
Affiliation(s)
- R Soliva
- Departament de Bioquímica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain
| | | | | |
Collapse
|
43
|
Nucleic acids on folded architectures, molecular recognition and catalysis. Curr Opin Struct Biol 1999. [DOI: 10.1016/s0959-440x(99)80039-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|