1
|
McMillan SD, Keck JL. Biochemical characterization of Escherichia coli DnaC variants that alter DnaB helicase loading onto DNA. J Biol Chem 2024; 300:107275. [PMID: 38588814 PMCID: PMC11087952 DOI: 10.1016/j.jbc.2024.107275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024] Open
Abstract
DNA replication in Escherichia coli starts with loading of the replicative helicase, DnaB, onto DNA. This reaction requires the DnaC loader protein, which forms a 6:6 complex with DnaB and opens a channel in the DnaB hexamer through which single-stranded DNA is thought to pass. During replication, replisomes frequently encounter DNA damage and nucleoprotein complexes that can lead to replication fork collapse. Such events require DnaB re-loading onto DNA to allow replication to continue. Replication restart proteins mediate this process by recruiting DnaB6/DnaC6 to abandoned DNA replication forks. Several dnaC mutations that bypass the requirement for replication restart proteins or that block replication restart have been identified in E. coli. To better understand how these DnaC variants function, we have purified and characterized the protein products of several such alleles. Unlike wild-type DnaC, three of the variants (DnaC 809, DnaC 809,820, and DnaC 811) can load DnaB onto replication forks bound by single-stranded DNA-binding protein. DnaC 809 can also load DnaB onto double-stranded DNA. These results suggest that structural changes in the variant DnaB6/DnaC6 complexes expand the range of DNA substrates that can be used for DnaB loading, obviating the need for the existing replication restart pathways. The protein product of dnaC1331, which phenocopies deletion of the priB replication restart gene, blocks loading through the major restart pathway in vitro. Overall, the results of our study highlight the utility of bacterial DnaC variants as tools for probing the regulatory mechanisms that govern replicative helicase loading.
Collapse
Affiliation(s)
- Sarah D McMillan
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - James L Keck
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, USA.
| |
Collapse
|
2
|
Bocanegra R, Ortíz-Rodríguez M, Zumeta L, Plaza-G A I, Faro E, Ibarra B. DNA replication machineries: Structural insights from crystallography and electron microscopy. Enzymes 2023; 54:249-271. [PMID: 37945174 DOI: 10.1016/bs.enz.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Since the discovery of DNA as the genetic material, scientists have been investigating how the information contained in this biological polymer is transmitted from generation to generation. X-ray crystallography, and more recently, cryo-electron microscopy techniques have been instrumental in providing essential information about the structure, functions and interactions of the DNA and the protein machinery (replisome) responsible for its replication. In this chapter, we highlight several works that describe the structure and structure-function relationships of the core components of the prokaryotic and eukaryotic replisomes. We also discuss the most recent studies on the structural organization of full replisomes.
Collapse
Affiliation(s)
| | | | - Lyra Zumeta
- IMDEA Nanociencia, Campus Cantoblanco, Madrid, Spain
| | | | - Elías Faro
- IMDEA Nanociencia, Campus Cantoblanco, Madrid, Spain
| | - Borja Ibarra
- IMDEA Nanociencia, Campus Cantoblanco, Madrid, Spain.
| |
Collapse
|
3
|
Burroughs A, Aravind L. New biochemistry in the Rhodanese-phosphatase superfamily: emerging roles in diverse metabolic processes, nucleic acid modifications, and biological conflicts. NAR Genom Bioinform 2023; 5:lqad029. [PMID: 36968430 PMCID: PMC10034599 DOI: 10.1093/nargab/lqad029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/10/2023] [Accepted: 03/09/2023] [Indexed: 03/25/2023] Open
Abstract
The protein-tyrosine/dual-specificity phosphatases and rhodanese domains constitute a sprawling superfamily of Rossmannoid domains that use a conserved active site with a cysteine to catalyze a range of phosphate-transfer, thiotransfer, selenotransfer and redox activities. While these enzymes have been extensively studied in the context of protein/lipid head group dephosphorylation and various thiotransfer reactions, their overall diversity and catalytic potential remain poorly understood. Using comparative genomics and sequence/structure analysis, we comprehensively investigate and develop a natural classification for this superfamily. As a result, we identified several novel clades, both those which retain the catalytic cysteine and those where a distinct active site has emerged in the same location (e.g. diphthine synthase-like methylases and RNA 2' OH ribosyl phosphate transferases). We also present evidence that the superfamily has a wider range of catalytic capabilities than previously known, including a set of parallel activities operating on various sugar/sugar alcohol groups in the context of NAD+-derivatives and RNA termini, and potential phosphate transfer activities involving sugars and nucleotides. We show that such activities are particularly expanded in the RapZ-C-DUF488-DUF4326 clade, defined here for the first time. Some enzymes from this clade are predicted to catalyze novel DNA-end processing activities as part of nucleic-acid-modifying systems that are likely to function in biological conflicts between viruses and their hosts.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
4
|
Cargemel C, Walbott H, Durand D, Legrand P, Ould Ali M, Ferat JL, Marsin S, Quevillon-Cheruel S. The apo-form of the Vibrio cholerae replicative helicase DnaB is a labile and inactive planar trimer of dimers. FEBS Lett 2022; 596:2031-2040. [PMID: 35568982 DOI: 10.1002/1873-3468.14403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/10/2022]
Abstract
To enable chromosomal replication, DNA is unwound by the ATPase molecular motor replicative helicase. The bacterial helicase DnaB is a ring-shaped homo-hexamer whose conformational dynamics are being studied through its different 3D structural states adopted along its functional cycle. Our findings describe a new crystal structure for the apo-DnaB from Vibrio cholerae, forming a planar hexamer with pseudo-symmetry, constituted by a trimer of dimers in which the C-terminal domains delimit a triskelion-shaped hole. This hexamer is labile and inactive. We suggest that it represents an intermediate state allowing the formation of the active NTP-bound hexamer from dimers.
Collapse
Affiliation(s)
- Claire Cargemel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Hélène Walbott
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Dominique Durand
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Pierre Legrand
- Synchrotron SOLEIL, L'Orme des Merisiers, 91192, Gif-sur-Yvette, France
| | - Malika Ould Ali
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Jean-Luc Ferat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Stéphanie Marsin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Sophie Quevillon-Cheruel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
5
|
Horikoshi N, Kurumizaka H. Structural insight into replicative helicase loading in Escherichia coli. J Biochem 2022; 171:605-607. [PMID: 35238386 DOI: 10.1093/jb/mvac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 11/14/2022] Open
Abstract
DNA replication is an essential, precisely regulated process that occurs once in a cell cycle. In the Gram-negative bacterium Escherichia coli, the replicative helicase EcDnaB and the helicase loader EcDnaC play key roles in the initiation step at the replication origin, oriC. EcDnaB and EcDnaC form a heterododecamer, in which hexameric EcDnaB is bound to hexameric EcDnaC. Using genetic, biochemical, and structural biology approaches, many groups have probed the mechanism of replicative helicase loading, using helicases and helicase loaders from various species. Recent X-ray crystallography and cryo-EM structural studies of the EcDnaB-EcDnaC complex revealed that the interaction of DnaC with DnaB triggers distortion accumulation on the closed ring of hexameric DnaB, inducing DnaB subunits to adopt the open helical form for replication progression. The high-resolution crystal structure of the DnaB-DnaC complex solved by Nagata et al. contributed to a better understanding of the conformational rearrangement of the DnaB ring. In addition to the structural alterations in DnaB subunits by DnaC, the binding of single stranded DNA (ssDNA) substrates alters the ATP- and ADP-bound forms of DnaB and DnaC. These studies have proposed mechanisms by which DnaC regulates helicase loading onto ssDNA.
Collapse
Affiliation(s)
- Naoki Horikoshi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
6
|
Williams ND, Landajuela A, Kasula RK, Zhou W, Powell JT, Xi Z, Isaacs FJ, Berro J, Toomre D, Karatekin E, Lin C. DNA-Origami-Based Fluorescence Brightness Standards for Convenient and Fast Protein Counting in Live Cells. NANO LETTERS 2020; 20:8890-8896. [PMID: 33164530 PMCID: PMC7726105 DOI: 10.1021/acs.nanolett.0c03925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Fluorescence microscopy has been one of the most discovery-rich methods in biology. In the digital age, the discipline is becoming increasingly quantitative. Virtually all biological laboratories have access to fluorescence microscopes, but abilities to quantify biomolecule copy numbers are limited by the complexity and sophistication associated with current quantification methods. Here, we present DNA-origami-based fluorescence brightness standards for counting 5-300 copies of proteins in bacterial and mammalian cells, tagged with fluorescent proteins or membrane-permeable organic dyes. Compared to conventional quantification techniques, our brightness standards are robust, straightforward to use, and compatible with nearly all fluorescence imaging applications, thereby providing a practical and versatile tool to quantify biomolecules via fluorescence microscopy.
Collapse
Affiliation(s)
- Nathan D. Williams
- Department of Cell Biology, Yale University School of
Medicine, New Haven, CT 06520, USA
- Nanobiology Institute, Yale University, West Haven CT
06516, USA
| | - Ane Landajuela
- Nanobiology Institute, Yale University, West Haven CT
06516, USA
- Department of Cellular and Molecular Physiology, Yale
University School of Medicine, New Haven, CT 06520, USA
| | - Ravi Kiran Kasula
- Department of Cell Biology, Yale University School of
Medicine, New Haven, CT 06520, USA
| | - Wenjiao Zhou
- Department of Cell Biology, Yale University School of
Medicine, New Haven, CT 06520, USA
- Nanobiology Institute, Yale University, West Haven CT
06516, USA
| | - John T. Powell
- Department of Cell Biology, Yale University School of
Medicine, New Haven, CT 06520, USA
- Nanobiology Institute, Yale University, West Haven CT
06516, USA
| | - Zhiqun Xi
- Department of Cell Biology, Yale University School of
Medicine, New Haven, CT 06520, USA
| | - Farren J. Isaacs
- Department of Molecular, Cellular and Developmental
Biology, Yale University, New Haven, CT 06520, USA
- Department of Biomedical Engineering, Yale University, New
Haven, CT 06520, USA
- Systems Biology Institute, Yale University, West Haven, CT
06516, USA
| | - Julien Berro
- Department of Cell Biology, Yale University School of
Medicine, New Haven, CT 06520, USA
- Nanobiology Institute, Yale University, West Haven CT
06516, USA
- Department of Molecular Biophysics and Biochemistry, New
Haven, CT 06520, USA
| | - Derek Toomre
- Department of Cell Biology, Yale University School of
Medicine, New Haven, CT 06520, USA
| | - Erdem Karatekin
- Nanobiology Institute, Yale University, West Haven CT
06516, USA
- Department of Cellular and Molecular Physiology, Yale
University School of Medicine, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, New
Haven, CT 06520, USA
- Université de Paris, SPPIN –
Saints-Pères Paris Institute for the Neurosciences, Centre National de la
Recherche Scientifique (CNRS), F-75006 Paris, France
| | - Chenxiang Lin
- Department of Cell Biology, Yale University School of
Medicine, New Haven, CT 06520, USA
- Nanobiology Institute, Yale University, West Haven CT
06516, USA
| |
Collapse
|
7
|
Nagata K, Okada A, Ohtsuka J, Ohkuri T, Akama Y, Sakiyama Y, Miyazaki E, Horita S, Katayama T, Ueda T, Tanokura M. Crystal structure of the complex of the interaction domains of Escherichia coli DnaB helicase and DnaC helicase loader: structural basis implying a distortion-accumulation mechanism for the DnaB ring opening caused by DnaC binding. J Biochem 2020; 167:1-14. [PMID: 31665315 DOI: 10.1093/jb/mvz087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/09/2019] [Indexed: 02/03/2023] Open
Abstract
Loading the bacterial replicative helicase DnaB onto DNA requires a specific loader protein, DnaC/DnaI, which creates the loading-competent state by opening the DnaB hexameric ring. To understand the molecular mechanism by which DnaC/DnaI opens the DnaB ring, we solved 3.1-Å co-crystal structure of the interaction domains of Escherichia coli DnaB-DnaC. The structure reveals that one N-terminal domain (NTD) of DnaC interacts with both the linker helix of a DnaB molecule and the C-terminal domain (CTD) of the adjacent DnaB molecule by forming a three α-helix bundle, which fixes the relative orientation of the two adjacent DnaB CTDs. The importance of the intermolecular interface in the crystal structure was supported by the mutational data of DnaB and DnaC. Based on the crystal structure and other available information on DnaB-DnaC structures, we constructed a molecular model of the hexameric DnaB CTDs bound by six DnaC NTDs. This model suggested that the binding of a DnaC would cause a distortion in the hexameric ring of DnaB. This distortion of the DnaB ring might accumulate by the binding of up to six DnaC molecules, resulting in the DnaB ring to open.
Collapse
Affiliation(s)
- Koji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akitoshi Okada
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Jun Ohtsuka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takatoshi Ohkuri
- Department of Protein Structure, Function and Design, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Yusuke Akama
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Yukari Sakiyama
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Erika Miyazaki
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Shoichiro Horita
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tsutomu Katayama
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Tadashi Ueda
- Department of Protein Structure, Function and Design, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
8
|
Oakley AJ. A structural view of bacterial DNA replication. Protein Sci 2019; 28:990-1004. [PMID: 30945375 DOI: 10.1002/pro.3615] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/03/2019] [Indexed: 11/11/2022]
Abstract
DNA replication mechanisms are conserved across all organisms. The proteins required to initiate, coordinate, and complete the replication process are best characterized in model organisms such as Escherichia coli. These include nucleotide triphosphate-driven nanomachines such as the DNA-unwinding helicase DnaB and the clamp loader complex that loads DNA-clamps onto primer-template junctions. DNA-clamps are required for the processivity of the DNA polymerase III core, a heterotrimer of α, ε, and θ, required for leading- and lagging-strand synthesis. DnaB binds the DnaG primase that synthesizes RNA primers on both strands. Representative structures are available for most classes of DNA replication proteins, although there are gaps in our understanding of their interactions and the structural transitions that occur in nanomachines such as the helicase, clamp loader, and replicase core as they function. Reviewed here is the structural biology of these bacterial DNA replication proteins and prospects for future research.
Collapse
Affiliation(s)
- Aaron J Oakley
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| |
Collapse
|
9
|
Liu P, Du J, Zhang J, Wang J, Gu W, Wang W, Meng Q. The structural and proteomic analysis of Spiroplasma eriocheiris in response to colchicine. Sci Rep 2018; 8:8577. [PMID: 29872058 PMCID: PMC5988712 DOI: 10.1038/s41598-018-26614-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/23/2018] [Indexed: 11/18/2022] Open
Abstract
Spiroplasma eriocheiris, a pathogen that causes mass mortality of Chinese mitten crab Eriocheir sinensis, is a wall less bacteria and belongs to the Mollicutes. This study was designed to investigate the effects of colchicine on S. eriocheiris growth, cell morphology, and proteins expression. We found that in the presence of colchicine, the spiroplasma cells lost their helicity, and the length of the cells in the experimental group was longer than that of the control. With varying concentrations of the colchicine treatment, the total time to achieve a stationary phase of the spiroplasma was increased, and the cell population was decreased. The virulence ability of S. eriocheiris to E. sinensis was effectively reduced in the presence of colchicine. To expound the toxical mechanism of colchicine on S. eriocheiris, 208 differentially expressed proteins of S. eriocheiris were reliably quantified by iTRAQ analysis, including 77 up-regulated proteins and 131 down-regulated proteins. Especially, FtsY, putative Spiralin, and NADH oxidase were down-regulated. F0F1 ATP synthase subunit delta, ParB, DNABs, and NAD(FAD)-dependent dehydrogenase were up-regulated. A qRT-PCR was conducted to detect 7 expressed genes from the iTRAQ results during the incubation. The qRT-PCR results were consistent with the iTRAQ results. All of our results indicate that colchicine have a strong impact on the cell morphology and cellular metabolism of S. eriocheiris.
Collapse
Affiliation(s)
- Peng Liu
- Jiangsu Key Laboratory for Microbes & Functional Genomics and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.,Department of Biology, College of Pharmacy and Biological Sciences, University of South China, Hengyang, 421001, P.R. China.,Hunan Province cooperative innovation Center for Molecular Target New Drug Study, Hengyang, 421001, P.R. China
| | - Jie Du
- Jiangsu Key Laboratory for Microbes & Functional Genomics and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Jia Zhang
- Jiangsu Key Laboratory for Microbes & Functional Genomics and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Jian Wang
- Jiangsu Key Laboratory for Microbes & Functional Genomics and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Wei Gu
- Jiangsu Key Laboratory for Microbes & Functional Genomics and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Wen Wang
- Jiangsu Key Laboratory for Microbes & Functional Genomics and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Qingguo Meng
- Jiangsu Key Laboratory for Microbes & Functional Genomics and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
10
|
Dynamics of DNA unwinding by helicases with frequent backward steps. Math Biosci 2017; 294:33-45. [DOI: 10.1016/j.mbs.2017.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/02/2017] [Accepted: 10/08/2017] [Indexed: 01/07/2023]
|
11
|
Felczak MM, Chodavarapu S, Kaguni JM. DnaC, the indispensable companion of DnaB helicase, controls the accessibility of DnaB helicase by primase. J Biol Chem 2017; 292:20871-20882. [PMID: 29070678 DOI: 10.1074/jbc.m117.807644] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/11/2017] [Indexed: 11/06/2022] Open
Abstract
Former studies relying on hydrogen/deuterium exchange analysis suggest that DnaC bound to DnaB alters the conformation of the N-terminal domain (NTD) of DnaB to impair the ability of this DNA helicase to interact with primase. Supporting this idea, the work described herein based on biosensor experiments and enzyme-linked immunosorbent assays shows that the DnaB-DnaC complex binds poorly to primase in comparison with DnaB alone. Using a structural model of DnaB complexed with the C-terminal domain of primase, we found that Ile-85 is located at the interface in the NTD of DnaB that contacts primase. An alanine substitution for Ile-85 specifically interfered with this interaction and impeded DnaB function in DNA replication, but not its activity as a DNA helicase or its ability to bind to ssDNA. By comparison, substitutions of Asn for Ile-136 (I136N) and Thr for Ile-142 (I142T) in a subdomain previously named the helical hairpin in the NTD of DnaB altered the conformation of the helical hairpin and/or compromised its pairwise arrangement with the companion subdomain in each brace of protomers of the DnaB hexamer. In contrast with the I85A mutant, the latter were defective in DNA replication due to impaired binding to both ssDNA and primase. In view of these findings, we propose that DnaC controls the ability of DnaB to interact with primase by modifying the conformation of the NTD of DnaB.
Collapse
Affiliation(s)
- Magdalena M Felczak
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| | - Sundari Chodavarapu
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| | - Jon M Kaguni
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| |
Collapse
|
12
|
Mangiameli SM, Merrikh CN, Wiggins PA, Merrikh H. Transcription leads to pervasive replisome instability in bacteria. eLife 2017; 6. [PMID: 28092263 PMCID: PMC5305214 DOI: 10.7554/elife.19848] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/15/2017] [Indexed: 12/19/2022] Open
Abstract
The canonical model of DNA replication describes a highly-processive and largely continuous process by which the genome is duplicated. This continuous model is based upon in vitro reconstitution and in vivo ensemble experiments. Here, we characterize the replisome-complex stoichiometry and dynamics with single-molecule resolution in bacterial cells. Strikingly, the stoichiometries of the replicative helicase, DNA polymerase, and clamp loader complexes are consistent with the presence of only one active replisome in a significant fraction of cells (>40%). Furthermore, many of the observed complexes have short lifetimes (<8 min), suggesting that replisome disassembly is quite prevalent, possibly occurring several times per cell cycle. The instability of the replisome complex is conflict-induced: transcription inhibition stabilizes these complexes, restoring the second replisome in many of the cells. Our results suggest that, in contrast to the canonical model, DNA replication is a largely discontinuous process in vivo due to pervasive replication-transcription conflicts. DOI:http://dx.doi.org/10.7554/eLife.19848.001
Collapse
Affiliation(s)
| | | | - Paul A Wiggins
- Department of Physics, University of Washington, Seattle, United States.,Department of Microbiology, University of Washington, Seattle, United States.,Department of Bioengineering, University of Washington, Seattle, United States
| | - Houra Merrikh
- Department of Microbiology, University of Washington, Seattle, United States.,Department of Genome Sciences, University of Washington, Seattle, United States
| |
Collapse
|
13
|
Mangiameli SM, Merrikh CN, Wiggins PA, Merrikh H. Transcription leads to pervasive replisome instability in bacteria. eLife 2017; 6. [PMID: 28092263 DOI: 10.7554/elife.19848.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/15/2017] [Indexed: 05/21/2023] Open
Abstract
The canonical model of DNA replication describes a highly-processive and largely continuous process by which the genome is duplicated. This continuous model is based upon in vitro reconstitution and in vivo ensemble experiments. Here, we characterize the replisome-complex stoichiometry and dynamics with single-molecule resolution in bacterial cells. Strikingly, the stoichiometries of the replicative helicase, DNA polymerase, and clamp loader complexes are consistent with the presence of only one active replisome in a significant fraction of cells (>40%). Furthermore, many of the observed complexes have short lifetimes (<8 min), suggesting that replisome disassembly is quite prevalent, possibly occurring several times per cell cycle. The instability of the replisome complex is conflict-induced: transcription inhibition stabilizes these complexes, restoring the second replisome in many of the cells. Our results suggest that, in contrast to the canonical model, DNA replication is a largely discontinuous process in vivo due to pervasive replication-transcription conflicts.
Collapse
Affiliation(s)
| | | | - Paul A Wiggins
- Department of Physics, University of Washington, Seattle, United States
- Department of Microbiology, University of Washington, Seattle, United States
- Department of Bioengineering, University of Washington, Seattle, United States
| | - Houra Merrikh
- Department of Microbiology, University of Washington, Seattle, United States
- Department of Genome Sciences, University of Washington, Seattle, United States
| |
Collapse
|
14
|
Xie P. Processivity of nucleic acid unwinding and translocation by helicases. Proteins 2016; 84:1590-1605. [PMID: 27410462 DOI: 10.1002/prot.25102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/24/2016] [Accepted: 06/24/2016] [Indexed: 11/05/2022]
Abstract
Helicases are a class of enzymes that use the chemical energy of NTP hydrolysis to drive mechanical processes such as translocation and nucleic acid (NA) strand separation. Besides the NA unwinding speed, another important factor for the helicase activity is the NA unwinding processivity. Here, we study the NA unwinding processivity with an analytical model that captures the phenomenology of the NA unwinding process. First, we study the processivity of the non-hexameric helicase that can unwind NA efficiently in the form of a monomer and the processivity of the hexameric helicase that can unwind DNA effectively, providing quantitative explanations of the available single-molecule experimental data. Then, we study the processivity of the non-hexameric helicases, in particular UvrD, in the form of a dimer and compare with that in the form of a monomer. The available single-molecule and some biochemical data showing that while UvrD monomer is a highly processive single-stranded DNA translocase it is inactive in DNA unwinding, whereas other biochemical data showing that UvrD is active in both single-stranded DNA translocation and DNA unwinding in the form of a monomer can be explained quantitatively and consistently. In addition, the recent single-molecule data are also explained quantitatively showing that constraining the 2B subdomain in closed conformation by intramolecular cross-linking can convert Rep monomer with a very poor DNA unwinding activity into a superhelicase that can unwind more than thousands of DNA base pairs processively, even against a large opposing force. Proteins 2016; 84:1590-1605. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
15
|
Hood IV, Berger JM. Viral hijacking of a replicative helicase loader and its implications for helicase loading control and phage replication. eLife 2016; 5. [PMID: 27244442 PMCID: PMC4887207 DOI: 10.7554/elife.14158] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/20/2016] [Indexed: 12/18/2022] Open
Abstract
Replisome assembly requires the loading of replicative hexameric helicases onto origins by AAA+ ATPases. How loader activity is appropriately controlled remains unclear. Here, we use structural and biochemical analyses to establish how an antimicrobial phage protein interferes with the function of the Staphylococcus aureus replicative helicase loader, DnaI. The viral protein binds to the loader’s AAA+ ATPase domain, allowing binding of the host replicative helicase but impeding loader self-assembly and ATPase activity. Close inspection of the complex highlights an unexpected locus for the binding of an interdomain linker element in DnaI/DnaC-family proteins. We find that the inhibitor protein is genetically coupled to a phage-encoded homolog of the bacterial helicase loader, which we show binds to the host helicase but not to the inhibitor itself. These findings establish a new approach by which viruses can hijack host replication processes and explain how loader activity is internally regulated to prevent aberrant auto-association. DOI:http://dx.doi.org/10.7554/eLife.14158.001 Cells must copy their DNA in order to grow and divide. DNA replication begins when a small region of the DNA double helix is unwound to expose single strands of DNA. A protein called a helicase is then shepherded onto the unwound DNA regions by other proteins known as loaders. Once loaded, the helicase can unwind long stretches of the chromosome in which the DNA is packaged, producing the template required by the replication machinery to duplicate the DNA. This process must be accurately executed to avoid generating errors that could damage the DNA and potentially cause cells to die. DnaI is a helicase loader protein that is found in some types of bacteria. In the disease-causing bacterial species Staphylococcus aureus (S. aureus), an inhibitor protein from a virus that infects the bacteria can interact with DnaI and halt S. aureus DNA replication, leading to cell death. However, it has not been understood how this viral protein controls the activity of the loader molecules. DnaI consists of three regions: one that binds to the helicase, a short 'linker' region, and a third element that harnesses chemical energy (in the form of a small high-energy molecule called ATP) to drive the loader’s activity. Using biochemical and structural techniques, Hood and Berger now show that the viral inhibitor protein interacts with the DnaI loader from S. aureus by binding to the loader's ATP-binding region. When the two proteins are bound together, the loader can still bind to its target helicase but it cannot interact with other loader molecules. This defect prevents the loaders from self-assembling into a structure that is required for them to load the replicative helicase. Hood and Berger also found that the region of DnaI targeted by the inhibitor is important for normally ensuring that the loader molecules self-assemble at the correct place and time. A second unexpected discovery was that the virus encodes its own helicase loader, which binds to the bacterial helicase but not to the viral inhibitor protein. The next stage of work will be to determine whether the regions on the helicase loader that are targeted by the inhibitor and that are important for regulating self-assembly can be selectively disrupted by small molecules to interfere with DNA replication in bacteria. DOI:http://dx.doi.org/10.7554/eLife.14158.002
Collapse
Affiliation(s)
- Iris V Hood
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
16
|
Abstract
DNA replication in Escherichia coli initiates at oriC, the origin of replication and proceeds bidirectionally, resulting in two replication forks that travel in opposite directions from the origin. Here, we focus on events at the replication fork. The replication machinery (or replisome), first assembled on both forks at oriC, contains the DnaB helicase for strand separation, and the DNA polymerase III holoenzyme (Pol III HE) for DNA synthesis. DnaB interacts transiently with the DnaG primase for RNA priming on both strands. The Pol III HE is made up of three subassemblies: (i) the αɛθ core polymerase complex that is present in two (or three) copies to simultaneously copy both DNA strands, (ii) the β2 sliding clamp that interacts with the core polymerase to ensure its processivity, and (iii) the seven-subunit clamp loader complex that loads β2 onto primer-template junctions and interacts with the α polymerase subunit of the core and the DnaB helicase to organize the two (or three) core polymerases. Here, we review the structures of the enzymatic components of replisomes, and the protein-protein and protein-DNA interactions that ensure they remain intact while undergoing substantial dynamic changes as they function to copy both the leading and lagging strands simultaneously during coordinated replication.
Collapse
Affiliation(s)
- J S Lewis
- Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - S Jergic
- Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - N E Dixon
- Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
17
|
Xie P. Dynamics of monomeric and hexameric helicases. Biophys Chem 2016; 211:49-58. [DOI: 10.1016/j.bpc.2016.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 01/19/2023]
|
18
|
Chodavarapu S, Jones AD, Feig M, Kaguni JM. DnaC traps DnaB as an open ring and remodels the domain that binds primase. Nucleic Acids Res 2015; 44:210-20. [PMID: 26420830 PMCID: PMC4705694 DOI: 10.1093/nar/gkv961] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/11/2015] [Indexed: 11/23/2022] Open
Abstract
Helicase loading at a DNA replication origin often requires the dynamic interactions between the DNA helicase and an accessory protein. In E. coli, the DNA helicase is DnaB and DnaC is its loading partner. We used the method of hydrogen/deuterium exchange mass spectrometry to address the importance of DnaB–DnaC complex formation as a prerequisite for helicase loading. Our results show that the DnaB ring opens and closes, and that specific amino acids near the N-terminus of DnaC interact with a site in DnaB's C-terminal domain to trap it as an open ring. This event correlates with conformational changes of the RecA fold of DnaB that is involved in nucleotide binding, and of the AAA+ domain of DnaC. DnaC also causes an alteration of the helical hairpins in the N-terminal domain of DnaB, presumably occluding this region from interacting with primase. Hence, DnaC controls the access of DnaB by primase.
Collapse
Affiliation(s)
- Sundari Chodavarapu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
| | - A Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA Department of Chemistry, Michigan State University, East Lansing, MI 48824-1319, USA
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA Department of Chemistry, Michigan State University, East Lansing, MI 48824-1319, USA
| | - Jon M Kaguni
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
| |
Collapse
|
19
|
Xie P. A unified model of nucleic acid unwinding by the ribosome and the hexameric and monomeric DNA helicases. J Theor Biol 2015; 380:359-66. [PMID: 26092375 DOI: 10.1016/j.jtbi.2015.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/05/2015] [Indexed: 11/18/2022]
Abstract
DNA helicases are enzymes that use the chemical energy to separate DNA duplex into their single-stranded forms. The ribosome, which catalyzes the translation of messenger RNAs (mRNAs) into proteins, can also unwind mRNA duplex. According to their structures, the DNA helicases can fall broadly into hexameric and monomeric forms. A puzzling issue for the monomeric helicases is that although they have similar structures, in vitro biochemical data showed convincingly that in the monomeric forms some have very weak DNA unwinding activities, some have relatively high unwinding activities while others have high unwinding activities. However, in the dimeric or oligomeric forms all of them have high unwinding activities. In addition, in the monomeric forms all of them can translocate efficiently along the single-stranded DNA (ssDNA). Here, we propose a model of the translocation along the ssDNA and DNA unwinding by the monomeric helicases, providing a consistent explanation of these in vitro experimental data. Moreover, by comparing the present model for the monomeric helicases with the model for the hexameric helicases and that for the ribosome which were proposed before, a unified model of nucleic acid unwinding by the three enzymes is proposed.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
20
|
Strycharska MS, Arias-Palomo E, Lyubimov AY, Erzberger JP, O'Shea VL, Bustamante CJ, Berger JM. Nucleotide and partner-protein control of bacterial replicative helicase structure and function. Mol Cell 2014; 52:844-54. [PMID: 24373746 DOI: 10.1016/j.molcel.2013.11.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/17/2013] [Accepted: 11/26/2013] [Indexed: 10/25/2022]
Abstract
Cellular replication forks are powered by ring-shaped, hexameric helicases that encircle and unwind DNA. To better understand the molecular mechanisms and control of these enzymes, we used multiple methods to investigate the bacterial replicative helicase, DnaB. A 3.3 Å crystal structure of Aquifex aeolicus DnaB, complexed with nucleotide, reveals a newly discovered conformational state for this motor protein. Electron microscopy and small angle X-ray scattering studies confirm the state seen crystallographically, showing that the DnaB ATPase domains and an associated N-terminal collar transition between two physical states in a nucleotide-dependent manner. Mutant helicases locked in either collar state are active but display different capacities to support critical activities such as duplex translocation and primase-dependent RNA synthesis. Our findings establish the DnaB collar as an autoregulatory hub that controls the ability of the helicase to transition between different functional states in response to both nucleotide and replication initiation/elongation factors.
Collapse
Affiliation(s)
- Melania S Strycharska
- Biophysics Program, University of California, Berkeley, Berkeley, CA 94720-3220, USA
| | - Ernesto Arias-Palomo
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Artem Y Lyubimov
- The James H Clark Center, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Jan P Erzberger
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Valerie L O'Shea
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Carlos J Bustamante
- Biophysics Program, University of California, Berkeley, Berkeley, CA 94720-3220, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3220, USA
| | - James M Berger
- Biophysics Program, University of California, Berkeley, Berkeley, CA 94720-3220, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3220, USA.
| |
Collapse
|
21
|
Abstract
The initiation of DNA replication represents a committing step to cell proliferation. Appropriate replication onset depends on multiprotein complexes that help properly distinguish origin regions, generate nascent replication bubbles, and promote replisome formation. This review describes initiation systems employed by bacteria, archaea, and eukaryotes, with a focus on comparing and contrasting molecular mechanisms among organisms. Although commonalities can be found in the functional domains and strategies used to carry out and regulate initiation, many key participants have markedly different activities and appear to have evolved convergently. Despite significant advances in the field, major questions still persist in understanding how initiation programs are executed at the molecular level.
Collapse
Affiliation(s)
- Alessandro Costa
- Clare Hall Laboratories, London Research Institute, Cancer Research UK, Hertfordshire, EN6 3LD United Kingdom
| | - Iris V. Hood
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720
| | - James M. Berger
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720
| |
Collapse
|
22
|
Robinson A, Causer RJ, Dixon NE. Architecture and conservation of the bacterial DNA replication machinery, an underexploited drug target. Curr Drug Targets 2012; 13:352-72. [PMID: 22206257 PMCID: PMC3290774 DOI: 10.2174/138945012799424598] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 11/03/2011] [Accepted: 11/05/2011] [Indexed: 11/22/2022]
Abstract
New antibiotics with novel modes of action are required to combat the growing threat posed by multi-drug resistant bacteria. Over the last decade, genome sequencing and other high-throughput techniques have provided tremendous insight into the molecular processes underlying cellular functions in a wide range of bacterial species. We can now use these data to assess the degree of conservation of certain aspects of bacterial physiology, to help choose the best cellular targets for development of new broad-spectrum antibacterials. DNA replication is a conserved and essential process, and the large number of proteins that interact to replicate DNA in bacteria are distinct from those in eukaryotes and archaea; yet none of the antibiotics in current clinical use acts directly on the replication machinery. Bacterial DNA synthesis thus appears to be an underexploited drug target. However, before this system can be targeted for drug design, it is important to understand which parts are conserved and which are not, as this will have implications for the spectrum of activity of any new inhibitors against bacterial species, as well as the potential for development of drug resistance. In this review we assess similarities and differences in replication components and mechanisms across the bacteria, highlight current progress towards the discovery of novel replication inhibitors, and suggest those aspects of the replication machinery that have the greatest potential as drug targets.
Collapse
Affiliation(s)
- Andrew Robinson
- School of Chemistry, University of Wollongong, NSW 2522, Australia
| | | | | |
Collapse
|
23
|
Mueser TC, Hinerman JM, Devos JM, Boyer RA, Williams KJ. Structural analysis of bacteriophage T4 DNA replication: a review in the Virology Journal series on bacteriophage T4 and its relatives. Virol J 2010; 7:359. [PMID: 21129204 PMCID: PMC3012046 DOI: 10.1186/1743-422x-7-359] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 12/03/2010] [Indexed: 12/13/2022] Open
Abstract
The bacteriophage T4 encodes 10 proteins, known collectively as the replisome, that are responsible for the replication of the phage genome. The replisomal proteins can be subdivided into three activities; the replicase, responsible for duplicating DNA, the primosomal proteins, responsible for unwinding and Okazaki fragment initiation, and the Okazaki repair proteins. The replicase includes the gp43 DNA polymerase, the gp45 processivity clamp, the gp44/62 clamp loader complex, and the gp32 single-stranded DNA binding protein. The primosomal proteins include the gp41 hexameric helicase, the gp61 primase, and the gp59 helicase loading protein. The RNaseH, a 5' to 3' exonuclease and T4 DNA ligase comprise the activities necessary for Okazaki repair. The T4 provides a model system for DNA replication. As a consequence, significant effort has been put forth to solve the crystallographic structures of these replisomal proteins. In this review, we discuss the structures that are available and provide comparison to related proteins when the T4 structures are unavailable. Three of the ten full-length T4 replisomal proteins have been determined; the gp59 helicase loading protein, the RNase H, and the gp45 processivity clamp. The core of T4 gp32 and two proteins from the T4 related phage RB69, the gp43 polymerase and the gp45 clamp are also solved. The T4 gp44/62 clamp loader has not been crystallized but a comparison to the E. coli gamma complex is provided. The structures of T4 gp41 helicase, gp61 primase, and T4 DNA ligase are unknown, structures from bacteriophage T7 proteins are discussed instead. To better understand the functionality of T4 DNA replication, in depth structural analysis will require complexes between proteins and DNA substrates. A DNA primer template bound by gp43 polymerase, a fork DNA substrate bound by RNase H, gp43 polymerase bound to gp32 protein, and RNase H bound to gp32 have been crystallographically determined. The preparation and crystallization of complexes is a significant challenge. We discuss alternate approaches, such as small angle X-ray and neutron scattering to generate molecular envelopes for modeling macromolecular assemblies.
Collapse
Affiliation(s)
| | - Jennifer M Hinerman
- Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Juliette M Devos
- European Molecular Biology Laboratory, Grenoble Outstation, Grenoble, France
| | | | - Kandace J Williams
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine, Toledo OH, USA
| |
Collapse
|
24
|
Essential biological processes of an emerging pathogen: DNA replication, transcription, and cell division in Acinetobacter spp. Microbiol Mol Biol Rev 2010; 74:273-97. [PMID: 20508250 DOI: 10.1128/mmbr.00048-09] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Within the last 15 years, members of the bacterial genus Acinetobacter have risen from relative obscurity to be among the most important sources of hospital-acquired infections. The driving force for this has been the remarkable ability of these organisms to acquire antibiotic resistance determinants, with some strains now showing resistance to every antibiotic in clinical use. There is an urgent need for new antibacterial compounds to combat the threat imposed by Acinetobacter spp. and other intractable bacterial pathogens. The essential processes of chromosomal DNA replication, transcription, and cell division are attractive targets for the rational design of antimicrobial drugs. The goal of this review is to examine the wealth of genome sequence and gene knockout data now available for Acinetobacter spp., highlighting those aspects of essential systems that are most suitable as drug targets. Acinetobacter spp. show several key differences from other pathogenic gammaproteobacteria, particularly in global stress response pathways. The involvement of these pathways in short- and long-term antibiotic survival suggests that Acinetobacter spp. cope with antibiotic-induced stress differently from other microorganisms.
Collapse
|
25
|
Abstract
DNA and RNA helicases are organized into six superfamilies of enzymes on the basis of sequence alignments, biochemical data, and available crystal structures. DNA helicases, members of which are found in each of the superfamilies, are an essential group of motor proteins that unwind DNA duplexes into their component single strands in a process that is coupled to the hydrolysis of nucleoside 5'-triphosphates. The purpose of this DNA unwinding is to provide nascent, single-stranded DNA (ssDNA) for the processes of DNA repair, replication, and recombination. Not surprisingly, DNA helicases share common biochemical properties that include the binding of single- and double-stranded DNA, nucleoside 5'-triphosphate binding and hydrolysis, and nucleoside 5'-triphosphate hydrolysis-coupled, polar unwinding of duplex DNA. These enzymes participate in every aspect of DNA metabolism due to the requirement for transient separation of small regions of the duplex genome into its component strands so that replication, recombination, and repair can occur. In Escherichia coli, there are currently twelve DNA helicases that perform a variety of tasks ranging from simple strand separation at the replication fork to more sophisticated processes in DNA repair and genetic recombination. In this chapter, the superfamily classification, role(s) in DNA metabolism, effects of mutations, biochemical analysis, oligomeric nature, and interacting partner proteins of each of the twelve DNA helicases are discussed.
Collapse
|
26
|
Integrating ion mobility mass spectrometry with molecular modelling to determine the architecture of multiprotein complexes. PLoS One 2010; 5:e12080. [PMID: 20711472 PMCID: PMC2919415 DOI: 10.1371/journal.pone.0012080] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 07/09/2010] [Indexed: 11/21/2022] Open
Abstract
Current challenges in the field of structural genomics point to the need for new tools and technologies for obtaining structures of macromolecular protein complexes. Here, we present an integrative computational method that uses molecular modelling, ion mobility-mass spectrometry (IM-MS) and incomplete atomic structures, usually from X-ray crystallography, to generate models of the subunit architecture of protein complexes. We begin by analyzing protein complexes using IM-MS, and by taking measurements of both intact complexes and sub-complexes that are generated in solution. We then examine available high resolution structural data and use a suite of computational methods to account for missing residues at the subunit and/or domain level. High-order complexes and sub-complexes are then constructed that conform to distance and connectivity constraints imposed by IM-MS data. We illustrate our method by applying it to multimeric protein complexes within the Escherichia coli replisome: the sliding clamp, (β2), the γ complex (γ3δδ′), the DnaB helicase (DnaB6) and the Single-Stranded Binding Protein (SSB4).
Collapse
|
27
|
Makowska-Grzyska MM, Ziebarth TD, Kaguni LS. Physical analysis of recombinant forms of the human mitochondrial DNA helicase. Methods 2010; 51:411-5. [PMID: 20347039 PMCID: PMC3312032 DOI: 10.1016/j.ymeth.2010.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Revised: 03/15/2010] [Accepted: 03/22/2010] [Indexed: 10/19/2022] Open
Abstract
Maintenance of the mitochondrial DNA (mtDNA) genome is dependent on numerous nuclear-encoded proteins including the mtDNA helicase, which is an essential component of the replicative machinery. Human mtDNA helicase shares a high degree of sequence similarity with the bacteriophage T7 primase-helicase gene 4 protein, and catalyzes duplex unwinding in the 5'-3' direction. As purified at 300 mM NaCl, the enzyme exists as a hexamer, with a modular architecture comprising distinct N- and C-terminal domains. We present here several methods that allow the identification of the oligomeric state of the human mtDNA helicase, and probe the modular architecture of the enzyme. Despite their relatively common usage, we believe that their versatility makes these techniques particularly helpful in the characterization of oligomeric proteins.
Collapse
Affiliation(s)
- Magdalena M Makowska-Grzyska
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI 48823, USA
| | | | | |
Collapse
|
28
|
Bhattacharjee SM. Interfacial instability and DNA fork reversal by repair proteins. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:155102. [PMID: 21389547 DOI: 10.1088/0953-8984/22/15/155102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A repair protein like RecG moves the stalled replication fork in the direction from the zipped to the unzipped state of DNA. It is proposed here that a softening of the zipped-unzipped interface at the fork results in the front propagating towards the unzipped side. In this scenario, an ordinary helicase destabilizes the zipped state locally near the interface and the fork propagates towards the zipped side. The softening of the interface can be produced by the aromatic interaction, predicted from the crystal structure, between RecG and the nascent broken base pairs at the Y-fork. A numerical analysis of the model also reveals the possibility of a stop and go type motion.
Collapse
|
29
|
Makowska-Grzyska M, Kaguni JM. Primase directs the release of DnaC from DnaB. Mol Cell 2010; 37:90-101. [PMID: 20129058 DOI: 10.1016/j.molcel.2009.12.031] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 09/03/2009] [Accepted: 12/18/2009] [Indexed: 10/20/2022]
Abstract
An AAA+ ATPase, DnaC, delivers DnaB helicase at the E. coli chromosomal origin by a poorly understood process. This report shows that mutant proteins bearing alanine substitutions for two conserved arginines in a motif named box VII are defective in DNA replication, but this deficiency does not arise from impaired interactions with ATP, DnaB, or single-stranded DNA. Despite their ability to deliver DnaB to the chromosomal origin to form the prepriming complex, this intermediate is inactive. Quantitative analysis of the prepriming complex suggests that the DnaB-DnaC complex contains three DnaC monomers per DnaB hexamer and that the interaction of primase with DnaB and primer formation triggers the release of DnaC, but not the mutants, from DnaB. The interaction of primase with DnaB and the release of DnaC mark discrete events in the transition from initiation to the elongation stage of DNA replication.
Collapse
Affiliation(s)
- Magdalena Makowska-Grzyska
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
| | | |
Collapse
|
30
|
Biswas T, Tsodikov OV. Hexameric ring structure of the N-terminal domain of Mycobacterium tuberculosis DnaB helicase. FEBS J 2008; 275:3064-71. [PMID: 18479467 DOI: 10.1111/j.1742-4658.2008.06460.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hexameric DnaB helicase unwinds the DNA double helix during replication of genetic material in bacteria. DnaB is an essential bacterial protein; therefore, it is an important potential target for antibacterial drug discovery. We report a crystal structure of the N-terminal region of DnaB from the pathogen Mycobacterium tuberculosis (MtDnaBn), determined at 2.0 A resolution. This structure provides atomic resolution details of formation of the hexameric ring of DnaB by two distinct interfaces. An extensive hydrophobic interface stabilizes a dimer of MtDnaBn by forming a four-helix bundle. The other, less extensive, interface is formed between the dimers, connecting three of them into a hexameric ring. On the basis of crystal packing interactions between MtDnaBn rings, we suggest a model of a helicase-primase complex that explains previously observed effects of DnaB mutations on DNA priming.
Collapse
Affiliation(s)
- Tapan Biswas
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
31
|
Chintakayala K, Larson MA, Griep MA, Hinrichs SH, Soultanas P. Conserved residues of the C-terminal p16 domain of primase are involved in modulating the activity of the bacterial primosome. Mol Microbiol 2008; 68:360-71. [PMID: 18366438 PMCID: PMC3035050 DOI: 10.1111/j.1365-2958.2008.06155.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bacterial primosome comprises the replicative homo-hexameric ring helicase DnaB and the primase DnaG. It is an integral component of the replisome as it unwinds the parental DNA duplex to allow progression of the replication fork, synthesizes the initiation primers at the replication origin, oriC, and the primers required for Okazaki fragment synthesis during lagging strand replication. The interaction between the two component proteins is mediated by a distinct C-terminal domain (p16) of the primase. Both proteins mutually regulate each other's activities and a putative network of conserved residues has been proposed to mediate these effects. We have targeted 10 residues from this network. To investigate the functional contributions of these residues to the primase, ATPase and helicase activities of the primosome, we have used site-directed mutagenesis and in vitro functional assays. Five of these residues (E464, H494, R495, Y548 and R555) exhibited some functional significance while the remaining five (E483, R484, E506, D512 and E530) exhibited no effects. E464 participates in functional modulation of the primase activity, whereas H494, R495 and R555 participate in allosteric functional modulation of the ATPase and/or helicase activities. Y548 contributes directly to the structural interaction with DnaB.
Collapse
Affiliation(s)
- Kiran Chintakayala
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Marilynn A. Larson
- Department of Pathology/Microbiology, 984080, University of Nebraska Medical Center, Omaha, NE 68198-4080, USA
| | - Mark A. Griep
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68988-0304, USA
| | - Steven H. Hinrichs
- Department of Pathology/Microbiology, 984080, University of Nebraska Medical Center, Omaha, NE 68198-4080, USA
| | - Panos Soultanas
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
32
|
The structure of a DnaB-family replicative helicase and its interactions with primase. Nat Struct Mol Biol 2007; 15:94-100. [PMID: 18157148 DOI: 10.1038/nsmb1356] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 12/04/2007] [Indexed: 11/08/2022]
Abstract
Helicases are essential enzymes for DNA replication, a fundamental process in all living organisms. The DnaB family are hexameric replicative helicases that unwind duplex DNA and coordinate with RNA primase and other proteins at the replication fork in prokaryotes. Here, we report the full-length crystal structure of G40P, a DnaB family helicase. The hexamer complex reveals an unusual architectural feature and a new type of assembly mechanism. The hexamer has two tiers: a three-fold symmetric N-terminal tier and a six-fold symmetric C-terminal tier. Monomers with two different conformations, termed cis and trans, come together to provide a topological solution for the dual symmetry within a hexamer. Structure-guided mutational studies indicate an important role for the N-terminal tier in binding primase and regulating primase-mediated stimulation of helicase activity. This study provides insights into the structural and functional interplay between G40P helicase and DnaG primase.
Collapse
|
33
|
Watt SJ, Sheil MM, Beck JL, Prosselkov P, Otting G, Dixon NE. Effect of protein stabilization on charge state distribution in positive- and negative-ion electrospray ionization mass spectra. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:1605-11. [PMID: 17629493 DOI: 10.1016/j.jasms.2007.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 05/28/2007] [Accepted: 06/05/2007] [Indexed: 05/16/2023]
Abstract
Changes in protein conformation are thought to alter charge state distributions observed in electrospray ionization mass spectra (ESI-MS) of proteins. In most cases, this has been demonstrated by unfolding proteins through acidification of the solution. This methodology changes the properties of the solvent so that changes in the ESI-MS charge envelopes from conformational changes are difficult to separate from the effects of changing solvent on the ionization process. A novel strategy is presented enabling comparison of ESI mass spectra of a folded and partially unfolded protein of the same amino acid sequence subjected to the same experimental protocols and conditions. The N-terminal domain of the Escherichia coli DnaB protein was cyclized by in vivo formation of an amide bond between its N- and C-termini. The properties of this stabilized protein were compared with its linear counterpart. When the linear form was unfolded by decreasing pH, a charge envelope at lower m/z appeared consistent with the presence of a population of unfolded protein. This was observed in both positive-ion and negative-ion ESI mass spectra. Under the same conditions, this low m/z envelope was not present in the ESI mass spectrum of the stable cyclized form. The effects of changing the desolvation temperature in the ionization source of the Q-TOF mass spectrometer were also investigated. Increasing the desolvation temperature had little effect on positive-ion ESI mass spectra, but in negative-ion spectra, a charge envelope at lower m/z appeared, consistent with an increase in the abundance of unfolded protein molecules.
Collapse
Affiliation(s)
- Stephen J Watt
- Chemistry Department, University of Wollongong, New South Wales, Australia
| | | | | | | | | | | |
Collapse
|
34
|
Bailey S, Eliason WK, Steitz TA. The crystal structure of the Thermus aquaticus DnaB helicase monomer. Nucleic Acids Res 2007; 35:4728-36. [PMID: 17606462 PMCID: PMC1950529 DOI: 10.1093/nar/gkm507] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The ring-shaped hexameric DnaB helicase unwinds duplex DNA at the replication fork of eubacteria. We have solved the crystal structure of the full-length Thermus aquaticus DnaB monomer, or possibly dimer, at 2.9 A resolution. DnaB is a highly flexible two domain protein. The C-terminal domain exhibits a RecA-like core fold and contains all the conserved sequence motifs that are characteristic of the DnaB helicase family. The N-terminal domain contains an additional helical hairpin that makes it larger than previously appreciated. Several DnaB mutations that modulate its interaction with primase are found in this hairpin. The similarity in the fold of the DnaB N-terminal domain with that of the C-terminal helicase-binding domain (HBD) of the DnaG primase also includes this hairpin. Comparison of hexameric homology models of DnaB with the structure of the papillomavirus E1 helicase suggests the two helicases may function through different mechanisms despite their sharing a common ancestor.
Collapse
Affiliation(s)
- Scott Bailey
- Department of Molecular Biophysics and Biochemistry, Department of Chemistry and Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, USA
| | - William K. Eliason
- Department of Molecular Biophysics and Biochemistry, Department of Chemistry and Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, USA
| | - Thomas A. Steitz
- Department of Molecular Biophysics and Biochemistry, Department of Chemistry and Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, USA
- *To whom correspondence should be addressed.+1 203 432 5619+1 203 432 3282
| |
Collapse
|
35
|
Farkašovská J, Klucar L, Vlček Č, Kokavec J, Godány A. Complete genome sequence and analysis of theStreptomyces aureofaciens phage μ1/6. Folia Microbiol (Praha) 2007; 52:347-58. [DOI: 10.1007/bf02932089] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Xie P. On translocation mechanism of ring-shaped helicase along single-stranded DNA. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:737-48. [PMID: 17499029 DOI: 10.1016/j.bbapap.2007.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2007] [Revised: 03/16/2007] [Accepted: 04/05/2007] [Indexed: 11/28/2022]
Abstract
The ring-shaped helicases represent one important group of helicases that can translocate along single-stranded (ss) DNA and unwinding double-stranded (ds) DNA by using the energy derived from NTP binding and hydrolysis. Despite intensive studies, the mechanism by which the ring-shaped helicase translocates along ssDNA and unwinds dsDNA remains undetermined. In order to understand their chemomechanical-coupling mechanism, two models on NTPase activities of the hexamers in the presence of DNA have been studied here. One model is assumed that, of the six nucleotide-binding sites, three are noncatalytic and three are catalytic. The other model is assumed that all the six nucleotide-binding sites are catalytic. In terms of the sequential NTPase activity around the ring and the previous determined crystal structure of bacteriophage T7 helicase it is shown that the obtained mechanical behaviors such as the ssDNA-translocation size and DNA-unwinding size per dTTPase cycle using the former model are in good quantitative agreement with the previous experimental results for T7 helicase. Moreover, the acceleration of DNA unwinding rate with the stimulation of DNA synthesis by DNA polymerase can also be well explained by using the former model. In contrast, the ssDNA-translocation size and DNA-unwinding size per dTTPase cycle obtained by using the latter model are not consistent with the experimental results for T7 helicase. Thus it is preferred that the former model is the appropriate one for the T7 helicase. Furthermore, using the former model some dynamic behaviors such as the rotational speeds of DNA relative to the T7 helicase when translocation along ssDNA and when unwinding dsDNA have been predicted, which are expected to test in order to further verify the model.
Collapse
Affiliation(s)
- Ping Xie
- Department of Physics, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
37
|
Ziebarth TD, Farr CL, Kaguni LS. Modular architecture of the hexameric human mitochondrial DNA helicase. J Mol Biol 2007; 367:1382-91. [PMID: 17324440 PMCID: PMC2711006 DOI: 10.1016/j.jmb.2007.01.079] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 01/19/2007] [Indexed: 11/29/2022]
Abstract
We have probed the structure of the human mitochondrial DNA helicase, an enzyme that uses the energy of nucleotide hydrolysis to unwind duplex DNA during mitochondrial DNA replication. This novel helicase shares substantial amino acid sequence and functional similarities with the bacteriophage T7 primase-helicase. We show in velocity sedimentation and gel filtration analyses that the mitochondrial DNA helicase exists as a hexamer. Limited proteolysis by trypsin results in the production of several stable fragments, and N-terminal sequencing reveals distinct N and C-terminal polypeptides that represent minimal structural domains. Physical analysis of the proteolytic products defines the region required to maintain oligomeric structure to reside within amino acid residues approximately 405-590. Truncations of the N and C termini affect differentially DNA-dependent ATPase activity, and whereas a C-terminal domain polypeptide is functional, an N-terminal domain polypeptide lacks ATPase activity. Sequence similarity and secondary structural alignments combined with biochemical data suggest that amino acid residue R609 serves as the putative arginine finger that is essential for ATPase activity in ring helicases. The hexameric conformation and modular architecture revealed in our study document that the mitochondrial DNA helicase and bacteriophage T7 primase-helicase share physical features. Our findings place the mitochondrial DNA helicase firmly in the DnaB-like family of replicative DNA helicases.
Collapse
Affiliation(s)
- Tawn D. Ziebarth
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48823 USA
| | - Carol L. Farr
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48823 USA
| | - Laurie S. Kaguni
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48823 USA
| |
Collapse
|
38
|
Nitharwal RG, Paul S, Dar A, Choudhury NR, Soni RK, Prusty D, Sinha S, Kashav T, Mukhopadhyay G, Chaudhuri TK, Gourinath S, Dhar SK. The domain structure of Helicobacter pylori DnaB helicase: the N-terminal domain can be dispensable for helicase activity whereas the extreme C-terminal region is essential for its function. Nucleic Acids Res 2007; 35:2861-74. [PMID: 17430964 PMCID: PMC1888833 DOI: 10.1093/nar/gkm167] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Hexameric DnaB type replicative helicases are essential for DNA strand unwinding along with the direction of replication fork movement. These helicases in general contain an amino terminal domain and a carboxy terminal domain separated by a linker region. Due to the lack of crystal structure of a full-length DnaB like helicase, the domain structure and function of these types of helicases are not clear. We have reported recently that Helicobacter pylori DnaB helicase is a replicative helicase in vitro and it can bypass Escherichia coli DnaC activity in vivo. Using biochemical, biophysical and genetic complementation assays, here we show that though the N-terminal region of HpDnaB is required for conformational changes between C6 and C3 rotational symmetry, it is not essential for in vitro helicase activity and in vivo function of the protein. Instead, an extreme carboxy terminal region and an adjacent unique 34 amino acid insertion region were found to be essential for HpDnaB activity suggesting that these regions are important for proper folding and oligomerization of this protein. These results confer great potential in understanding the domain structures of DnaB type helicases and their related function.
Collapse
Affiliation(s)
- Ram Gopal Nitharwal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India, Indian Institute of Technology, New Delhi, India, International Centre for Genetic Engineering and Biotechnology, New Delhi, India and School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Subhankar Paul
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India, Indian Institute of Technology, New Delhi, India, International Centre for Genetic Engineering and Biotechnology, New Delhi, India and School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ashraf Dar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India, Indian Institute of Technology, New Delhi, India, International Centre for Genetic Engineering and Biotechnology, New Delhi, India and School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nirupam Roy Choudhury
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India, Indian Institute of Technology, New Delhi, India, International Centre for Genetic Engineering and Biotechnology, New Delhi, India and School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rajesh K Soni
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India, Indian Institute of Technology, New Delhi, India, International Centre for Genetic Engineering and Biotechnology, New Delhi, India and School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Dhaneswar Prusty
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India, Indian Institute of Technology, New Delhi, India, International Centre for Genetic Engineering and Biotechnology, New Delhi, India and School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sukrat Sinha
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India, Indian Institute of Technology, New Delhi, India, International Centre for Genetic Engineering and Biotechnology, New Delhi, India and School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Tara Kashav
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India, Indian Institute of Technology, New Delhi, India, International Centre for Genetic Engineering and Biotechnology, New Delhi, India and School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Gauranga Mukhopadhyay
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India, Indian Institute of Technology, New Delhi, India, International Centre for Genetic Engineering and Biotechnology, New Delhi, India and School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Tapan Kumar Chaudhuri
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India, Indian Institute of Technology, New Delhi, India, International Centre for Genetic Engineering and Biotechnology, New Delhi, India and School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Samudrala Gourinath
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India, Indian Institute of Technology, New Delhi, India, International Centre for Genetic Engineering and Biotechnology, New Delhi, India and School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Suman Kumar Dhar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India, Indian Institute of Technology, New Delhi, India, International Centre for Genetic Engineering and Biotechnology, New Delhi, India and School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- *To whom correspondence should be addressed. +91-11-26704559+91-11-26161781
| |
Collapse
|
39
|
Chintakayala K, Larson MA, Grainger WH, Scott DJ, Griep MA, Hinrichs SH, Soultanas P. Domain swapping reveals that the C- and N-terminal domains of DnaG and DnaB, respectively, are functional homologues. Mol Microbiol 2007; 63:1629-39. [PMID: 17367384 PMCID: PMC3035176 DOI: 10.1111/j.1365-2958.2007.05617.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bacterial primase (DnaG)-helicase (DnaB) interaction is mediated by the C-terminal domain of DnaG (p16) and a linker that joins the N- and C-terminal domains (p17 and p33 respectively) of DnaB. The crystal and nuclear magnetic resonance structures of p16 from Escherichia coli and Bacillus stearothermophilus DnaG proteins revealed a unique structural homology with p17, despite the lack of amino acid sequence similarity. The functional significance of this is not clear. Here, we have employed a 'domain swapping' approach to replace p17 with its structural homologue p16 to create chimeras. p33 alone hydrolyses ATP but exhibits no helicase activity. Fusing p16 (p16-p33) or DnaG (G-p33) to the N-terminus of p33 produced chimeras with partially restored helicase activities. Neither chimera interacted with DnaG. The p16-p33 chimera formed hexamers while G-p33 assembled into tetramers. Furthermore, G-p33 and DnaB formed mixed oligomers with ATPase activity better than that of the DnaB/DnaG complex and helicase activity better than the sum of the individual DnaB and G-p33 activities but worse than that of the DnaB/DnaG complex. Our combined data provide direct evidence that p16 and p17 are not only structural but also functional homologues, albeit their amino acid composition differences are likely to influence their precise roles.
Collapse
Affiliation(s)
- Kiran Chintakayala
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Marilynn A. Larson
- Department of Pathology/Microbiology, 984080 University of Nebraska Medical Center, Omaha, NE 68198-4080, USA
| | - William H. Grainger
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - David J. Scott
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK
| | - Mark A. Griep
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Steven H. Hinrichs
- Department of Pathology/Microbiology, 984080 University of Nebraska Medical Center, Omaha, NE 68198-4080, USA
| | - Panos Soultanas
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
40
|
Watt SJ, Urathamakul T, Schaeffer PM, Williams NK, Sheil MM, Dixon NE, Beck JL. Multiple oligomeric forms of Escherichia coli DnaB helicase revealed by electrospray ionisation mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2007; 21:132-40. [PMID: 17154355 DOI: 10.1002/rcm.2818] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The Escherichia coli DnaB protein (DnaB(6)) is the hexameric helicase that unwinds genomic DNA so it can be copied by the DNA replication machinery. Loading of the helicase onto DNA requires interactions of DnaB(6) with six molecules of its loading partner protein, DnaC. Nano-electrospray ionisation mass spectrometry (nanoESI-MS) of mutant proteins was used to examine the roles of the residues Phe102 (F102) and Asp82 (D82) in the N-terminal domain of DnaB in the assembly of the hexamer. When the proteins were prepared in 1 M ammonium acetate containing magnesium and adenosine triphosphate (ATP) at pH 7.6, both hexameric and heptameric forms of wild-type and F102W, F102E and D82N mutant DnaBs were observed in mass spectra. The spectra of the D82N mutant also showed substantial amounts of a decameric species and small amounts of a dodecamer. In contrast, the F102H DnaB mutant was incapable of forming oligomers of order higher than the hexamer. Thus, although Phe102 is not the only determinant of hexamer assembly, this residue has a role in oligomerisation. NanoESI mass spectra were obtained of mixtures of DnaB(6) with DnaC. The DnaB(6)(DnaC)(6) complex (calculated M(r) 481 164) was observed only when the two proteins were present in equimolar amounts. The data are consistent with cooperative assembly of the complex. ESI mass spectra of mixtures containing DnaC and ATP showed that DnaC slowly hydrolysed ATP to ADP as indicated by ions corresponding to DnaC/ATP and DnaC/ADP complexes. These experiments show that E. coli DnaB can form a heptameric complex and that nanoESI-MS can be used to probe assembly of large (>0.5 MDa) macromolecular complexes.
Collapse
Affiliation(s)
- Stephen J Watt
- Department of Chemistry, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | | | | | | | | | | | | |
Collapse
|
41
|
Su XC, Schaeffer PM, Loscha KV, Gan PHP, Dixon NE, Otting G. Monomeric solution structure of the helicase-binding domain of Escherichia coli DnaG primase. FEBS J 2006; 273:4997-5009. [PMID: 17010164 DOI: 10.1111/j.1742-4658.2006.05495.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DnaG is the primase that lays down RNA primers on single-stranded DNA during bacterial DNA replication. The solution structure of the DnaB-helicase-binding C-terminal domain of Escherichia coli DnaG was determined by NMR spectroscopy at near-neutral pH. The structure is a rare fold that, besides occurring in DnaG C-terminal domains, has been described only for the N-terminal domain of DnaB. The C-terminal helix hairpin present in the DnaG C-terminal domain, however, is either less stable or absent in DnaB, as evidenced by high mobility of the C-terminal 35 residues in a construct comprising residues 1-171. The present structure identifies the previous crystal structure of the E. coli DnaG C-terminal domain as a domain-swapped dimer. It is also significantly different from the NMR structure reported for the corresponding domain of DnaG from the thermophile Bacillus stearothermophilus. NMR experiments showed that the DnaG C-terminal domain does not bind to residues 1-171 of the E. coli DnaB helicase with significant affinity.
Collapse
Affiliation(s)
- Xun-Cheng Su
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | | | | | | | | | | |
Collapse
|
42
|
Xie P. Model for helicase translocating along single-stranded DNA and unwinding double-stranded DNA. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1719-29. [PMID: 17070120 DOI: 10.1016/j.bbapap.2006.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 08/30/2006] [Accepted: 09/18/2006] [Indexed: 10/24/2022]
Abstract
A model is proposed for non-hexameric helicases translocating along single-stranded (ss) DNA and unwinding double-stranded (ds) DNA. The translocation of a monomeric helicase along ssDNA in weakly-ssDNA-bound state is driven by the Stokes force that is resulted from the conformational change following the transition of the nucleotide state. The unwinding of dsDNA is resulted mainly from the bending of ssDNA induced by the strong binding force of helicase with dsDNA. The interaction force between ssDNA and helicases in weakly-ssDNA-bound state determines whether monomeric helicases such as PcrA can unwind dsDNA or dimeric helicases such as Rep are required to unwind dsDNA.
Collapse
Affiliation(s)
- Ping Xie
- Department of Physics, Zhejiang Sci-Tech University, Xiasha College Park, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
43
|
Corn JE, Berger JM. Regulation of bacterial priming and daughter strand synthesis through helicase-primase interactions. Nucleic Acids Res 2006; 34:4082-8. [PMID: 16935873 PMCID: PMC1616961 DOI: 10.1093/nar/gkl363] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The replisome is a multi-component molecular machine responsible for rapidly and accurately copying the genome of an organism. A central member of the bacterial replisome is DnaB, the replicative helicase, which separates the parental duplex to provide templates for newly synthesized daughter strands. A unique RNA polymerase, the DnaG primase, associates with DnaB to repeatedly initiate thousands of Okazaki fragments per replication cycle on the lagging strand. A number of studies have shown that the stability and frequency of the interaction between DnaG and DnaB determines Okazaki fragment length. More recent work indicates that each DnaB hexamer associates with multiple DnaG molecules and that these primases can coordinate with one another to regulate their activities at a replication fork. Together, disparate lines of evidence are beginning to suggest that Okazaki fragment initiation may be controlled in part by crosstalk between multiple primases bound to the helicase.
Collapse
Affiliation(s)
| | - James M. Berger
- To whom correspondence should be addressed. Tel: +1 510 643 9483; Fax: +1 510 643 9290;
| |
Collapse
|
44
|
Núñez-Ramírez R, Robledo Y, Mesa P, Ayora S, Alonso JC, Carazo JM, Donate LE. Quaternary polymorphism of replicative helicase G40P: structural mapping and domain rearrangement. J Mol Biol 2006; 357:1063-76. [PMID: 16490212 DOI: 10.1016/j.jmb.2006.01.091] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 01/26/2006] [Accepted: 01/27/2006] [Indexed: 11/23/2022]
Abstract
Quaternary polymorphism is a distinctive structural feature of the DnaB family of replicative DNA hexameric helicases. The Bacillus subtilis bacteriophage SPP1 gene 40 product (G40P) belongs to this family. Three different quaternary states have been described for G40P homohexamers, two of them with C(3) symmetry, and the other with C(6) symmetry. We present three-dimensional reconstructions of the different architectures of G40P hexamers and a variant lacking the N-terminal domain. Comparison of the G40P and the deletion mutant structures sheds new light on the functional roles of the N and C-terminal domains, at the same time that it allows the direct structural mapping of these domains. Based on this new information, hybrid EM/X-ray models are presented for all the different symmetries. These results suggest that quaternary polymorphism of hexameric helicases may be implicated in the translocation along the DNA.
Collapse
Affiliation(s)
- Rafael Núñez-Ramírez
- Department of Macro-molecular Structure, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
45
|
Thirlway J, Soultanas P. In the Bacillus stearothermophilus DnaB-DnaG complex, the activities of the two proteins are modulated by distinct but overlapping networks of residues. J Bacteriol 2006; 188:1534-9. [PMID: 16452437 PMCID: PMC1367256 DOI: 10.1128/jb.188.4.1534-1539.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Accepted: 11/30/2005] [Indexed: 11/20/2022] Open
Abstract
We demonstrate the primase activity of Bacillus stearothermophilus DnaG and show that it initiates at 3'-ATC-5' and 3'-ATT-5' sites synthesizing primers that are 22 or 23 nucleotides long. In the presence of the helicase DnaB the size distribution of primers is different, and a range of additional smaller primers are also synthesized. Nine residues from the N- and C-terminal domains of DnaB, as well as its linker region, have been reported previously to affect this interaction. In Bacillus stearothermophilus only three residues from the linker region (I119 and I125) and the N-terminal domain (Y88) of DnaB have been shown previously to have direct structural importance, and I119 and I125 mediate DnaG-induced effects on DnaB activity. The functions of the other residues (L138, T191, E192, R195, and M196) are still a mystery. Here we show that the E15A, Y88A, and E15A Y88A mutants bind DnaG but are not able to modulate primer size, whereas the R195A M196A mutant inhibited the primase activity. Therefore, four of these residues, E15 and Y88 (N-terminal domain) and R195 and M196 (C-terminal domain), mediate DnaB-induced effects on DnaG activity. Overall, the data suggest that the effects of DnaB on DnaG activity and vice versa are mediated by distinct but overlapping networks of residues.
Collapse
Affiliation(s)
- Jenny Thirlway
- Centre for Biomolecular Sciences (CBS), School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | | |
Collapse
|
46
|
Neylon C, Kralicek AV, Hill TM, Dixon NE. Replication termination in Escherichia coli: structure and antihelicase activity of the Tus-Ter complex. Microbiol Mol Biol Rev 2005; 69:501-26. [PMID: 16148308 PMCID: PMC1197808 DOI: 10.1128/mmbr.69.3.501-526.2005] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The arrest of DNA replication in Escherichia coli is triggered by the encounter of a replisome with a Tus protein-Ter DNA complex. A replication fork can pass through a Tus-Ter complex when traveling in one direction but not the other, and the chromosomal Ter sites are oriented so replication forks can enter, but not exit, the terminus region. The Tus-Ter complex acts by blocking the action of the replicative DnaB helicase, but details of the mechanism are uncertain. One proposed mechanism involves a specific interaction between Tus-Ter and the helicase that prevents further DNA unwinding, while another is that the Tus-Ter complex itself is sufficient to block the helicase in a polar manner, without the need for specific protein-protein interactions. This review integrates three decades of experimental information on the action of the Tus-Ter complex with information available from the Tus-TerA crystal structure. We conclude that while it is possible to explain polar fork arrest by a mechanism involving only the Tus-Ter interaction, there are also strong indications of a role for specific Tus-DnaB interactions. The evidence suggests, therefore, that the termination system is more subtle and complex than may have been assumed. We describe some further experiments and insights that may assist in unraveling the details of this fascinating process.
Collapse
Affiliation(s)
- Cameron Neylon
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom.
| | | | | | | |
Collapse
|
47
|
Soultanas P. The bacterial helicase-primase interaction: a common structural/functional module. Structure 2005; 13:839-44. [PMID: 15939015 PMCID: PMC3033576 DOI: 10.1016/j.str.2005.04.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Accepted: 04/05/2005] [Indexed: 11/21/2022]
Abstract
The lack of a high-resolution structure for the bacterial helicase-primase complex and the fragmented structural information for the individual proteins have been hindering our detailed understanding of this crucial binary protein interaction. Two new structures for the helicase-interacting domain of the bacterial primases from Escherichia coli and Bacillus stearothermophilus have recently been solved and both revealed a unique and surprising structural similarity to the amino-terminal domain of the helicase itself. In this minireview, the current data are discussed and important new structural and functional aspects of the helicase-primase interaction are highlighted. An attractive structural model with direct biological significance for the function of this complex and also for the development of new antibacterial compounds is examined.
Collapse
Affiliation(s)
- Panos Soultanas
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
48
|
Syson K, Thirlway J, Hounslow AM, Soultanas P, Waltho JP. Solution structure of the helicase-interaction domain of the primase DnaG: a model for helicase activation. Structure 2005; 13:609-16. [PMID: 15837199 PMCID: PMC3033578 DOI: 10.1016/j.str.2005.01.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Revised: 01/20/2005] [Accepted: 01/26/2005] [Indexed: 11/30/2022]
Abstract
The helicase-primase interaction is a critical event in DNA replication and is mediated by a putative helicase-interaction domain within the primase. The solution structure of the helicase-interaction domain of DnaG reveals that it is made up of two independent subdomains: an N-terminal six-helix module and a C-terminal two-helix module that contains the residues of the primase previously identified as important in the interaction with the helicase. We show that the two-helix module alone is sufficient for strong binding between the primase and the helicase but fails to activate the helicase; both subdomains are required for helicase activation. The six-helix module of the primase has only one close structural homolog, the N-terminal domain of the corresponding helicase. This surprising structural relationship, coupled with the differences in surface properties of the two molecules, suggests how the helicase-interaction domain may perturb the structure of the helicase and lead to activation.
Collapse
Affiliation(s)
- Karl Syson
- Department of Molecular Biology and Biotechnology, Krebs Institute, Western Bank, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Jenny Thirlway
- Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Andrea M. Hounslow
- Department of Molecular Biology and Biotechnology, Krebs Institute, Western Bank, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Panos Soultanas
- Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- Correspondence: (P.S.); (J.P.W.)
| | - Jonathan P. Waltho
- Department of Molecular Biology and Biotechnology, Krebs Institute, Western Bank, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Correspondence: (P.S.); (J.P.W.)
| |
Collapse
|
49
|
Williams NK, Liepinsh E, Watt SJ, Prosselkov P, Matthews JM, Attard P, Beck JL, Dixon NE, Otting G. Stabilization of Native Protein Fold by Intein-Mediated Covalent Cyclization. J Mol Biol 2005; 346:1095-108. [PMID: 15701520 DOI: 10.1016/j.jmb.2004.12.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2004] [Revised: 12/14/2004] [Accepted: 12/16/2004] [Indexed: 10/26/2022]
Abstract
A mutant version of the N-terminal domain of Escherichia coli DnaB helicase was used as a model system to assess the stabilization against unfolding gained by covalent cyclization. Cyclization was achieved in vivo by formation of an amide bond between the N and C termini with the help of a split mini-intein. Linear and circular proteins were constructed to be identical in amino acid sequence. Mutagenesis of Phe102 to Glu rendered the protein monomeric even at high concentration. A difference in free energy of unfolding, DeltaDeltaG, between circular and linear protein of 2.3(+/-0.5) kcal mol(-1) was measured at 10 degrees C by circular dichroism. A theoretical estimate of the difference in conformational entropy of linear and circular random chains in a three-dimensional cubic lattice model predicted DeltaDeltaG=2.3 kcal mol(-1), suggesting that stabilization by protein cyclization is driven by the reduced conformational entropy of the unfolded state. Amide-proton exchange rates measured by NMR spectroscopy and mass spectrometry showed a uniform, approximately tenfold decrease of the exchange rates of the most slowly exchanging amide protons, demonstrating that cyclization globally decreases the unfolding rate of the protein. The amide proton exchange was found to follow EX1 kinetics at near-neutral pH, in agreement with an unusually slow refolding rate of less than 4 min(-1) measured by stopped-flow circular dichroism. The linear and circular proteins differed more in their unfolding than in their folding rates. Global unfolding of the N-terminal domain of E.coli DnaB is thus promoted strongly by spatial separation of the N and C termini, whereas their proximity is much less important for folding.
Collapse
Affiliation(s)
- Neal K Williams
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Oakley AJ, Loscha KV, Schaeffer PM, Liepinsh E, Pintacuda G, Wilce MCJ, Otting G, Dixon NE. Crystal and Solution Structures of the Helicase-binding Domain of Escherichia coli Primase. J Biol Chem 2005; 280:11495-504. [PMID: 15649896 DOI: 10.1074/jbc.m412645200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During bacterial DNA replication, the DnaG primase interacts with the hexameric DnaB helicase to synthesize RNA primers for extension by DNA polymerase. In Escherichia coli, this occurs by transient interaction of primase with the helicase. Here we demonstrate directly by surface plasmon resonance that the C-terminal domain of primase is responsible for interaction with DnaB6. Determination of the 2.8-angstroms crystal structure of the C-terminal domain of primase revealed an asymmetric dimer. The monomers have an N-terminal helix bundle similar to the N-terminal domain of DnaB, followed by a long helix that connects to a C-terminal helix hairpin. The connecting helix is interrupted differently in the two monomers. Solution studies using NMR showed that an equilibrium exists between a monomeric species with an intact, extended but naked, connecting helix and a dimer in which this helix is interrupted in the same way as in one of the crystal conformers. The other conformer is not significantly populated in solution, and its presence in the crystal is due largely to crystal packing forces. It is proposed that the connecting helix contributes necessary structural flexibility in the primase-helicase complex at replication forks.
Collapse
Affiliation(s)
- Aaron J Oakley
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | | | | | | | | | | | | | | |
Collapse
|