1
|
Tang Y, Tian X, Wang M, Cui Y, She Y, Shi Z, Liu J, Mao H, Liu L, Li C, Zhang Y, Li P, Ma Y, Sun J, Du Q, Li J, Wang J, Li DF, Wu B, Shao F, Chen Y. The β-d- manno-heptoses are immune agonists across kingdoms. Science 2024; 385:678-684. [PMID: 39116220 DOI: 10.1126/science.adk7314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 07/09/2024] [Indexed: 08/10/2024]
Abstract
Bacterial small molecule metabolites such as adenosine-diphosphate-d-glycero-β-d-manno-heptose (ADP-heptose) and their derivatives act as effective innate immune agonists in mammals. We show that functional nucleotide-diphosphate-heptose biosynthetic enzymes (HBEs) are distributed widely in bacteria, archaea, eukaryotes, and viruses. We identified a conserved STTR5 motif as a hallmark of heptose nucleotidyltransferases that can synthesize not only ADP-heptose but also cytidine-diphosphate (CDP)- and uridine-diphosphate (UDP)-heptose. Both CDP- and UDP-heptoses are agonists that trigger stronger alpha-protein kinase 1 (ALPK1)-dependent immune responses than ADP-heptose in human and mouse cells and mice. We also produced ADP-heptose in archaea and verified its innate immune agonist functions. Hence, the β-d-manno-heptoses are cross-kingdom, small-molecule, pathogen-associated molecular patterns that activate the ALPK1-dependent innate immune signaling cascade.
Collapse
Affiliation(s)
- Yue Tang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoying Tian
- National Institute of Biological Sciences, Beijing 102206, China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 102206, China
| | - Min Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Yinglu Cui
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang She
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhaoxiang Shi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 117004, China
| | - Jiaqi Liu
- National Institute of Biological Sciences, Beijing 102206, China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 102206, China
| | - Huijin Mao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lilu Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwei Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Pengwei Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yue Ma
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinyuan Sun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - De-Feng Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bian Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Feng Shao
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
- New Cornerstone Science Laboratory, Shenzhen 518054, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Ahmad N, Sharma P, Sharma S, Singh TP. Structure of a novel form of phosphopantetheine adenylyltransferase from Klebsiella pneumoniae at 2.59 Å resolution. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2024; 53:147-157. [PMID: 38456905 DOI: 10.1007/s00249-024-01703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/16/2024] [Accepted: 02/10/2024] [Indexed: 03/09/2024]
Abstract
Phosphopantetheine adenylyltransferase (EC. 2.7.7.3, PPAT) catalyzes the penultimate step of the multistep reaction in the coenzyme A (CoA) biosynthesis pathway. In this step, an adenylyl group from adenosine triphosphate (ATP) is transferred to 4'-phosphopantetheine (PNS) yielding 3'-dephospho-coenzyme A (dpCoA) and pyrophosphate (PPi). PPAT from strain C3 of Klebsiella pneumoniae (KpPPAT) was cloned, expressed and purified. It was crystallized using 0.1 M HEPES buffer and PEG10000 at pH 7.5. The crystals belonged to tetragonal space group P41212 with cell dimensions of a = b = 72.82 Å and c = 200.37 Å. The structure was determined using the molecular replacement method and refined to values of 0.208 and 0.255 for Rcryst and Rfree factors, respectively. The structure determination showed the presence of three crystallographically independent molecules A, B and C in the asymmetric unit. The molecules A and B are observed in the form of a dimer in the asymmetric unit while molecule C belongs to the second dimer whose partner is related by crystallographic twofold symmetry. The polypeptide chain of KpPPAT folds into a β/α structure. The conformations of the side chains of several residues in the substrate binding site in KpPPAT are significantly different from those reported in other PPATs. As a result, the modes of binding of substrates, phosphopantetheine (PNS) and adenosine triphosphate (ATP) differ considerably. The binding studies using fluorescence spectroscopy indicated a KD value of 3.45 × 10-4 M for ATP which is significantly lower than the corresponding values reported for PPAT from other species.
Collapse
Affiliation(s)
- Nabeel Ahmad
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Sujata Sharma
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| | - Tej P Singh
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
3
|
Siddiqui Q, Ali MSM, Leow ATC, Oslan SN, Mohd Shariff F. In silico identification and characterization of potential druggable targets among hypothetical proteins of Leptospira interrogans serovar Copenhageni: a comprehensive bioinformatics approach. J Biomol Struct Dyn 2023; 41:10347-10367. [PMID: 36510668 DOI: 10.1080/07391102.2022.2154845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
Abstract
Leptospirosis is one of the neglected zoonosis, affecting human and animal populations worldwide. Reliable effective therapeutics and concerns to look for more research into the molecular analysis of its genome is therefore needed. In the genomic pool of the Leptospira interrogans many hypothetical proteins are still uncharacterized. In the current research, we performed extensive in silico analysis to prioritize the potential hypothetical proteins of L. interrogans serovar Copenhageni via stepwise reducing the available hypothetical proteins (Total 3606) of the assembly to only 15, based on non-homologous to homosapien, essential, functional, virulent, cellular localization. Out of them, only two proteins WP_000898918.1 (Hypothetical Protein 1) & WP_001014594.1 (Hypothetical Protein 2) were found druggable and involved in protein-protein interaction network. The 3 D structures of these two target proteins were predicted via ab initio homology modeling followed by structures refinement and validation, as no structures were available till date. The analysis also revealed that the functional domains, families and protein-protein interacting partners identified in both proteins are crucial for the survival of the bacteria. The binding cavities were predicted for both the proteins through blind and specific protein-ligand docking with their respective ligands and inhibitors and were found to be in accordance with the druggable sites predicted by DoGSiteScorer. The docking interactions were found within the active functional domains for both the proteins while for Hypothetical Protein 2, the same residues were involved in interactions with Cytidine-5'-triphosphate in blind and specific docking. Furthermore, the simulations of molecular dynamics and free binding energy revealed the stable substrate binding and efficient binding energies, and were in accordance to our docking results. The work predicted two unique hypothetical proteins of L. interrogans as a potential druggable targets for designing of inhibitors for them.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Quratulain Siddiqui
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, UPM, Serdang, Malaysia
| | - Mohd Shukuri Mohd Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, UPM, Serdang, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, UniversitI Putra Malaysia, UPM, Serdang, Malaysia
| | - Adam Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, UPM, Serdang, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, Serdang, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, UPM, Serdang, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, UniversitI Putra Malaysia, UPM, Serdang, Malaysia
| | - Fairolniza Mohd Shariff
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, UPM, Serdang, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, Serdang, Malaysia
| |
Collapse
|
4
|
Litschko C, Budde I, Berger M, Bethe A, Schulze J, Alcala Orozco EA, Mahour R, Goettig P, Führing JI, Rexer T, Gerardy-Schahn R, Schubert M, Fiebig T. Mix-and-Match System for the Enzymatic Synthesis of Enantiopure Glycerol-3-Phosphate-Containing Capsule Polymer Backbones from Actinobacillus pleuropneumoniae, Neisseria meningitidis, and Bibersteinia trehalosi. mBio 2021; 12:e0089721. [PMID: 34076489 PMCID: PMC8262930 DOI: 10.1128/mbio.00897-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/12/2021] [Indexed: 01/19/2023] Open
Abstract
Capsule polymers are crucial virulence factors of pathogenic bacteria and are used as antigens in glycoconjugate vaccine formulations. Some Gram-negative pathogens express poly(glycosylglycerol phosphate) capsule polymers that resemble Gram-positive wall teichoic acids and are synthesized by TagF-like capsule polymerases. So far, the biotechnological use of these enzymes for vaccine developmental studies was restricted by the unavailability of enantiopure CDP-glycerol, one of the donor substrates required for polymer assembly. Here, we use CTP:glycerol-phosphate cytidylyltransferases (GCTs) and TagF-like polymerases to synthesize the poly(glycosylglycerol phosphate) capsule polymer backbones of the porcine pathogen Actinobacillus pleuropneumoniae, serotypes 3 and 7 (App3 and App7). GCT activity was confirmed by high-performance liquid chromatography, and polymers were analyzed using comprehensive nuclear magnetic resonance studies. Solid-phase synthesis protocols were established to allow potential scale-up of polymer production. In addition, one-pot reactions exploiting glycerol-kinase allowed us to start the reaction from inexpensive, widely available substrates. Finally, this study highlights that multidomain TagF-like polymerases can be transformed by mutagenesis of active site residues into single-action transferases, which in turn can act in trans to build-up structurally new polymers. Overall, our protocols provide enantiopure, nature-identical capsule polymer backbones from App2, App3, App7, App9, and App11, Neisseria meningitidis serogroup H, and Bibersteinia trehalosi serotypes T3 and T15. IMPORTANCE Economic synthesis platforms for the production of animal vaccines could help reduce the overuse and misuse of antibiotics in animal husbandry, which contributes greatly to the increase of antibiotic resistance. Here, we describe a highly versatile, easy-to-use mix-and-match toolbox for the generation of glycerol-phosphate-containing capsule polymers that can serve as antigens in glycoconjugate vaccines against Actinobacillus pleuropneumoniae and Bibersteinia trehalosi, two pathogens causing considerable economic loss in the swine, sheep, and cattle industries. We have established scalable protocols for the exploitation of a versatile enzymatic cascade with modular architecture, starting with the preparative-scale production of enantiopure CDP-glycerol, a precursor for a multitude of bacterial surface structures. Thereby, our approach not only allows the synthesis of capsule polymers but might also be exploitable for the (chemo)enzymatic synthesis of other glycerol-phosphate-containing structures such as Gram-positive wall teichoic acids or lipoteichoic acids.
Collapse
Affiliation(s)
- Christa Litschko
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Insa Budde
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Monika Berger
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Andrea Bethe
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Julia Schulze
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - E. Alberto Alcala Orozco
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Reza Mahour
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Peter Goettig
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Jana Indra Führing
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
- Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
| | - Thomas Rexer
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Rita Gerardy-Schahn
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Mario Schubert
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Timm Fiebig
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
5
|
Cornell RB. Membrane Lipids Assist Catalysis by CTP: Phosphocholine Cytidylyltransferase. J Mol Biol 2020; 432:5023-5042. [PMID: 32234309 DOI: 10.1016/j.jmb.2020.03.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
Abstract
While most of the articles in this issue review the workings of integral membrane enzymes, in this review, we describe the catalytic mechanism of an enzyme that contains a soluble catalytic domain but appears to catalyze its reaction on the membrane surface, anchored and assisted by a separate regulatory amphipathic helical domain and inter-domain linker. Membrane partitioning of CTP: phosphocholine cytidylyltransferase (CCT), a key regulatory enzyme of phosphatidylcholine metabolism, is regulated chiefly by changes in membrane phospholipid composition, and boosts the enzyme's catalytic efficiency >200-fold. Catalytic enhancement by membrane binding involves the displacement of an auto-inhibitory helix from the active site entrance-way and promotion of a new conformational ensemble for the inter-domain, allosteric linker that has an active role in the catalytic cycle. We describe the evidence for close contact between membrane lipid, a compact allosteric linker, and the CCT active site, and discuss potential ways that this interaction enhances catalysis.
Collapse
Affiliation(s)
- Rosemary B Cornell
- Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A-1S6.
| |
Collapse
|
6
|
Gupta A, Singh PK, Sharma P, Kaur P, Sharma S, Singh TP. Structural and biochemical studies of phosphopantetheine adenylyltransferase from Acinetobacter baumannii with dephospho-coenzyme A and coenzyme A. Int J Biol Macromol 2019; 142:181-190. [PMID: 31525415 DOI: 10.1016/j.ijbiomac.2019.09.090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 11/29/2022]
Abstract
Phosphopantetheine adenylyl transferase catalyzes a rate limiting penultimate step of the multistep reaction which produces coenzyme A (CoA) as a final product. CoA is required as an essential cofactor in a number of metabolic reactions. Therefore inhibiting the function of this enzyme will lead to cell death in bacteria. Acinetobacter baumannii is multi drug resistant pathogen and causes infections in immunocompromised patients. AbPPAT has been cloned, expressed, purified and crystallized and structures of two complexes of AbPPAT with dephospho coenzyme A (dPCoA) and coenzyme A (CoA) have been determined. Both dPCoA and CoA molecules are observed in the substrate binding site of AbPPAT. A comparison with the structures of the complexes of PPAT from other species shows that the orientations of dPCoA are identical in all the structures. On the other hand, as observed from the structures of the complexes of CoA with PPAT, the orientations of CoA are found to differ considerably. This shows that the substrates occupy identical positions in the substrate binding sites of enzymes whereas the positions of inhibitors may differ. The binding studies carried out using fluorescence method and surface plasmon resonance techniques showed that binding affinity of CoA towards AbPPAT is nearly three times higher than that of dPCoA.
Collapse
Affiliation(s)
- A Gupta
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - P K Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - P Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - P Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - S Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - T P Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
7
|
Taneva SG, Lee J, Knowles DG, Tishyadhigama C, Chen H, Cornell RB. Interdomain communication in the phosphatidylcholine regulatory enzyme, CCTα, relies on a modular αE helix. J Biol Chem 2019; 294:15517-15530. [PMID: 31488547 DOI: 10.1074/jbc.ra119.009849] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/18/2019] [Indexed: 12/14/2022] Open
Abstract
CTP:phosphocholine cytidylyltransferase (CCT), the rate-limiting enzyme in phosphatidylcholine (PC) synthesis, is an amphitropic enzyme that regulates PC homeostasis. Recent work has suggested that CCTα activation by binding to a PC-deficient membrane involves conformational transitions in a helix pair (αE) that, along with a short linker of unknown structure (J segment), bridges the catalytic domains of the CCTα dimer to the membrane-binding (M) domains. In the soluble, inactive form, the αE helices are constrained into unbroken helices by contacts with two auto-inhibitory (AI) helices from domain M. In the active, membrane-bound form, the AI helices are displaced and engage the membrane. Molecular dynamics simulations have suggested that AI displacement is associated with hinge-like bending in the middle of the αE, positioning its C terminus closer to the active site. Here, we show that CCTα activation by membrane binding is sensitive to mutations in the αE and J segments, especially within or proximal to the αE hinge. Substituting Tyr-213 within this hinge with smaller uncharged amino acids that could destabilize interactions between the αE helices increased both constitutive and lipid-dependent activities, supporting a link between αE helix bending and stimulation of CCT activity. The solvent accessibilities of Tyr-213 and Tyr-216 suggested that these tyrosines move to new partially buried environments upon membrane binding of CCT, consistent with a folded αE/J structure. These data suggest that signal transduction through the modular αE helix pair relies on shifts in its conformational ensemble that are controlled by the AI helices and their displacement upon membrane binding.
Collapse
Affiliation(s)
- Svetla G Taneva
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Jaeyong Lee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Daniel G Knowles
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Chanajai Tishyadhigama
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Hongwen Chen
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Rosemary B Cornell
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada .,Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
8
|
Wójcik-Augustyn A, Johansson AJ, Borowski T. Mechanism of Sulfate Activation Catalyzed by ATP Sulfurylase - Magnesium Inhibits the Activity. Comput Struct Biotechnol J 2019; 17:770-784. [PMID: 31312415 PMCID: PMC6607087 DOI: 10.1016/j.csbj.2019.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 11/11/2022] Open
Abstract
ATPS Sulfurylase (ATPS) is the first of three enzymes in the sulfate reduction pathway - one of the oldest metabolic pathways on Earth, utilized by Sulfate Reducing Bacteria (SRB). Due to the low redox potential of the sulfate ion, its reduction requires activation via formation of adenosine 5'-phosphosulfate (APS), which is catalyzed by ATPS. Dispersion-corrected hybrid density functional theory (DFT/B3LYP-D3) was used to test three reaction mechanisms proposed for conversion of ATP to APS: two-step SN-1 reaction running through AMP anhydride intermediate, two-step reaction involving cyclic AMP intermediate and direct SN-2 conversion of ATP to APS molecule. The study employed five different cluster models of the ATPS active site: one containing magnesium cation and four without it, constructed based on the crystal structure (PDB code: 1G8H) solved for ATPS from Saccharomyces cerevisiae in complex with APS and pyrophosphate (PPi), where Mg2+ was not detected. The model with magnesium ion was constructed based on the representative structure obtained from trajectory analysis of the molecular dynamics simulations (MD) performed for the hexameric ATPS-APS-Mg2+-PPi complex. The results obtained for all considered models suggest that ATPS-AMP anhydride intermediate is a highly energetic and unstable complex, while formation of cyclic AMP molecule requires formation of unfavorable hypervalent geometry at the transition state. Among all tested mechanism, the energetically most feasible mechanism of the ATPS reaction is SN-2 one-step conversion of ATP to APS occurring via a pentavalent transition state. Interestingly, such a reaction is inhibited by the presence of Mg2+ in the ATPS active site. Magnesium cation forces unfavorable geometry of reactants for SN-2 mechanism and formation of pentavalent transition state. Such a reaction requires rearrangement of Mg2+ ligands, which raises the barrier from 11-14 kcal/mol for the models without Mg2+ to 48 kcal/mol for model with magnesium ion included.
Collapse
Affiliation(s)
- Anna Wójcik-Augustyn
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Cracow, Poland
| | | | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Cracow, Poland
| |
Collapse
|
9
|
Guca E, Nagy GN, Hajdú F, Marton L, Izrael R, Hoh F, Yang Y, Vial H, Vértessy BG, Guichou JF, Cerdan R. Structural determinants of the catalytic mechanism of Plasmodium CCT, a key enzyme of malaria lipid biosynthesis. Sci Rep 2018; 8:11215. [PMID: 30046154 PMCID: PMC6060094 DOI: 10.1038/s41598-018-29500-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/10/2018] [Indexed: 11/13/2022] Open
Abstract
The development of the malaria parasite, Plasmodium falciparum, in the human erythrocyte, relies on phospholipid metabolism to fulfil the massive need for membrane biogenesis. Phosphatidylcholine (PC) is the most abundant phospholipid in Plasmodium membranes. PC biosynthesis is mainly ensured by the de novo Kennedy pathway that is considered as an antimalarial drug target. The CTP:phosphocholine cytidylyltransferase (CCT) catalyses the rate-limiting step of the Kennedy pathway. Here we report a series of structural snapshots of the PfCCT catalytic domain in its free, substrate- and product-complexed states that demonstrate the conformational changes during the catalytic mechanism. Structural data show the ligand-dependent conformational variations of a flexible lysine. Combined kinetic and ligand-binding analyses confirm the catalytic roles of this lysine and of two threonine residues of the helix αE. Finally, we assessed the variations in active site residues between Plasmodium and mammalian CCT which could be exploited for future antimalarial drug design.
Collapse
Affiliation(s)
- Ewelina Guca
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR 5235, CNRS, Université de Montpellier, Montpellier, France.,Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Carrer de Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Gergely N Nagy
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary.,Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford, OX37BN, United Kingdom
| | - Fanni Hajdú
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary.,Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Lívia Marton
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Doctoral School of Multidisciplinary Medical Science, University of Szeged, Szeged, Hungary
| | - Richard Izrael
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary.,Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - François Hoh
- CNRS UMR5048, Centre de Biochimie Structurale, Université de Montpellier, Montpellier, France.,INSERM U1054, Montpellier, France
| | - Yinshan Yang
- CNRS UMR5048, Centre de Biochimie Structurale, Université de Montpellier, Montpellier, France.,INSERM U1054, Montpellier, France
| | - Henri Vial
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR 5235, CNRS, Université de Montpellier, Montpellier, France
| | - Beata G Vértessy
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary.,Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Jean-François Guichou
- CNRS UMR5048, Centre de Biochimie Structurale, Université de Montpellier, Montpellier, France.,INSERM U1054, Montpellier, France
| | - Rachel Cerdan
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR 5235, CNRS, Université de Montpellier, Montpellier, France.
| |
Collapse
|
10
|
Ramezanpour M, Lee J, Taneva SG, Tieleman DP, Cornell RB. An auto-inhibitory helix in CTP:phosphocholine cytidylyltransferase hijacks the catalytic residue and constrains a pliable, domain-bridging helix pair. J Biol Chem 2018. [PMID: 29519816 DOI: 10.1074/jbc.ra118.002053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activity of CTP:phosphocholine cytidylyltransferase (CCT), a key enzyme in phosphatidylcholine synthesis, is regulated by reversible interactions of a lipid-inducible amphipathic helix (domain M) with membrane phospholipids. When dissociated from membranes, a portion of the M domain functions as an auto-inhibitory (AI) element to suppress catalysis. The AI helix from each subunit binds to a pair of α helices (αE) that extend from the base of the catalytic dimer to create a four-helix bundle. The bound AI helices make intimate contact with loop L2, housing a key catalytic residue, Lys122 The impacts of the AI helix on active-site dynamics and positioning of Lys122 are unknown. Extensive MD simulations with and without the AI helix revealed that backbone carbonyl oxygens at the point of contact between the AI helix and loop L2 can entrap the Lys122 side chain, effectively competing with the substrate, CTP. In silico, removal of the AI helices dramatically increased αE dynamics at a predicted break in the middle of these helices, enabling them to splay apart and forge new contacts with loop L2. In vitro cross-linking confirmed the reorganization of the αE element upon membrane binding of the AI helix. Moreover, when αE bending was prevented by disulfide engineering, CCT activation by membrane binding was thwarted. These findings suggest a novel two-part auto-inhibitory mechanism for CCT involving capture of Lys122 and restraint of the pliable αE helices. We propose that membrane binding enables bending of the αE helices, bringing the active site closer to the membrane surface.
Collapse
Affiliation(s)
- Mohsen Ramezanpour
- From the Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4 and
| | - Jaeyong Lee
- the Departments of Molecular Biology and Biochemistry and
| | | | - D Peter Tieleman
- From the Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4 and
| | - Rosemary B Cornell
- the Departments of Molecular Biology and Biochemistry and .,Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
11
|
Park J, Kim H, Kim S, Lee D, Kim MS, Shin DH. Crystal structure of D-glycero-Β-D-manno-heptose-1-phosphate adenylyltransferase fromBurkholderia pseudomallei. Proteins 2017; 86:124-131. [DOI: 10.1002/prot.25398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Jimin Park
- College of Pharmacy; Ewha W. University; Seoul Republic of Korea
| | - Hyojin Kim
- College of Pharmacy; Ewha W. University; Seoul Republic of Korea
| | - Suwon Kim
- College of Pharmacy; Ewha W. University; Seoul Republic of Korea
| | - Daeun Lee
- College of Pharmacy; Ewha W. University; Seoul Republic of Korea
| | - Mi-Sun Kim
- College of Pharmacy; Ewha W. University; Seoul Republic of Korea
| | - Dong Hae Shin
- College of Pharmacy; Ewha W. University; Seoul Republic of Korea
| |
Collapse
|
12
|
Cho SH, Kim SY, Tomita T, Shiraishi T, Park JS, Sato S, Kudo F, Eguchi T, Funa N, Nishiyama M, Kuzuyama T. Fosfomycin Biosynthesis via Transient Cytidylylation of 2-Hydroxyethylphosphonate by the Bifunctional Fom1 Enzyme. ACS Chem Biol 2017; 12:2209-2215. [PMID: 28727444 DOI: 10.1021/acschembio.7b00419] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fosfomycin is a wide-spectrum phosphonate antibiotic that is used clinically to treat cystitis, tympanitis, etc. Its biosynthesis starts with the formation of a carbon-phosphorus bond catalyzed by the phosphoenolpyruvate phosphomutase Fom1. We identified an additional cytidylyltransferase (CyTase) domain at the Fom1 N-terminus in addition to the phosphoenolpyruvate phosphomutase domain at the Fom1 C-terminus. Here, we demonstrate that Fom1 is bifunctional and that the Fom1 CyTase domain catalyzes the cytidylylation of the 2-hydroxyethylphosphonate (HEP) intermediate to produce cytidylyl-HEP. On the basis of this new function of Fom1, we propose a revised fosfomycin biosynthetic pathway that involves the transient CMP-conjugated intermediate. The identification of a biosynthetic mechanism via such transient cytidylylation of a biosynthetic intermediate fundamentally advances the understanding of phosphonate biosynthesis in nature. The crystal structure of the cytidylyl-HEP-bound CyTase domain provides a basis for the substrate specificity and reveals unique catalytic elements not found in other members of the CyTase family.
Collapse
Affiliation(s)
- Su-Hee Cho
- Biotechnology
Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Seung-Young Kim
- Department
of Food Science and Biotechnology, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Takeo Tomita
- Biotechnology
Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Taro Shiraishi
- Biotechnology
Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Jin-Soo Park
- Biotechnology
Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shusuke Sato
- Department
of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Fumitaka Kudo
- Department
of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Tadashi Eguchi
- Department
of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Nobutaka Funa
- Department
of Food Science and Biotechnology, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Makoto Nishiyama
- Biotechnology
Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomohisa Kuzuyama
- Biotechnology
Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
13
|
Rodrigues MV, Borges N, Santos H. Glycerol Phosphate Cytidylyltransferase Stereospecificity Is Key to Understanding the Distinct Stereochemical Compositions of Glycerophosphoinositol in Bacteria and Archaea. Appl Environ Microbiol 2017; 83:e02462-16. [PMID: 27795311 PMCID: PMC5165115 DOI: 10.1128/aem.02462-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/18/2016] [Indexed: 11/20/2022] Open
Abstract
Glycerophosphoinositol (GPI) is a compatible solute present in a few hyperthermophiles. Interestingly, different GPI stereoisomers accumulate in Bacteria and Archaea, and the basis for this domain-dependent specificity was investigated herein. The archaeon Archaeoglobus fulgidus and the bacterium Aquifex aeolicus were used as model organisms. The synthesis of GPI involves glycerol phosphate cytidylyltransferase (GCT), which catalyzes the production of CDP-glycerol from CTP and glycerol phosphate, and di-myo-inositol phosphate-phosphate synthase (DIPPS), catalyzing the formation of phosphorylated GPI from CDP-glycerol and l-myo-inositol 1-phosphate. DIPPS of A. fulgidus recognized the two CDP-glycerol stereoisomers similarly. This feature and the ability of 31P nuclear magnetic resonance (NMR) to distinguish the GPI diastereomers provided a means to study the stereospecificity of GCTs. The AF1418 gene and genes aq_185 and aq_1368 are annotated as putative GCT genes in the genomes of A. fulgidus and Aq. aeolicus, respectively. The functions of these genes were determined by assaying the activity of the respective recombinant proteins: AQ1368 and AQ185 are GCTs, while AF1418 has flavin adenine dinucleotide (FAD) synthetase activity. AQ185 is absolutely specific for sn-glycerol 3-phosphate, while AQ1368 recognizes the two enantiomers but has a 2:1 preference for sn-glycerol 3-phosphate. In contrast, the partially purified A. fulgidus GCT uses sn-glycerol 1-phosphate preferentially (4:1). Significantly, the predominant GPI stereoforms found in the bacterium and the archaeon reflect the distinct stereospecificities of the respective GCTs: i.e., A. fulgidus accumulates predominantly sn-glycero-1-phospho-3-l-myo-inositol, while Aq. aeolicus accumulates sn-glycero-3-phospho-3-l-myo-inositol. IMPORTANCE Compatible solutes of hyperthermophiles show high efficacy in thermal protection of proteins in comparison with solutes typical of mesophiles; therefore, they are potentially useful in several biotechnological applications. Glycerophosphoinositol (GPI) is synthesized from CDP-glycerol and l-myo-inositol 1-phosphate in a few hyperthermophiles. In this study, the molecular configuration of the GPI stereoisomers accumulated by members of the Bacteria and Archaea was established. The stereospecificity of glycerol phosphate cytidylyltransferase (GCT), the enzyme catalyzing the synthesis of CDP-glycerol, is crucial to the stereochemistry of GPI. However, the stereospecific properties of GCTs have not been investigated thus far. We devised a method to characterize GCT stereospecificity which does not require sn-glycerol 1-phosphate, a commercially unavailable substrate. This led us to understand the biochemical basis for the distinct GPI stereoisomer composition observed in archaea and bacteria.
Collapse
Affiliation(s)
- Marta V Rodrigues
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Nuno Borges
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Helena Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
14
|
Brault JP, Friesen JA. Characterization of cytidylyltransferase enzyme activity through high performance liquid chromatography. Anal Biochem 2016; 510:26-32. [PMID: 27443959 DOI: 10.1016/j.ab.2016.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/13/2016] [Accepted: 07/15/2016] [Indexed: 11/26/2022]
Abstract
The cytidylyltransferases are a family of enzymes that utilize cytidine 5'-triphosphate (CTP) to synthesize molecules that are typically precursors to membrane phospholipids. The most extensively studied cytidylyltransferase is CTP:phosphocholine cytidylyltransferase (CCT), which catalyzes conversion of phosphocholine and CTP to cytidine diphosphocholine (CDP-choline), a step critical for synthesis of the membrane phospholipid phosphatidylcholine (PC). The current method used to determine catalytic activity of CCT measures production of radiolabeled CDP-choline from (14)C-labeled phosphocholine. The goal of this research was to develop a CCT enzyme assay that employed separation of non-radioactive CDP-choline from CTP. A C18 reverse phase column with a mobile phase of 0.1 M ammonium bicarbonate (98%) and acetonitrile (2%) (pH 7.4) resulted in separation of solutions of the substrate CTP from the product CDP-choline. A previously characterized truncated version of rat CCTα (denoted CCTα236) was used to test the HPLC enzyme assay by measuring CDP-choline product formation. The Vmax for CCTα236 was 3850 nmol/min/mg and K0.5 values for CTP and phosphocholine were 4.07 mM and 2.49 mM, respectively. The HPLC method was applied to glycerol 3-phosphate cytidylyltransferase (GCT) and CTP:2-C-methyl-D-erythritol-4-phosphate cytidylyltransferase synthetase (CMS), members of the cytidylyltransferase family that produce CDP-glycerol and CDP-methylerythritol, respectively.
Collapse
Affiliation(s)
- James P Brault
- Department of Chemistry, Illinois State University, Normal, IL, 61790, USA
| | - Jon A Friesen
- Department of Chemistry, Illinois State University, Normal, IL, 61790, USA.
| |
Collapse
|
15
|
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are modular enzymes globally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation. Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g., in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show huge structural plasticity related to function and limited idiosyncrasies that are kingdom or even species specific (e.g., the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS). Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably between distant groups such as Gram-positive and Gram-negative Bacteria. The review focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation, and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulated in last two decades is reviewed, showing how the field moved from essentially reductionist biology towards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRS paralogs (e.g., during cell wall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointed throughout the review and distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
Affiliation(s)
- Richard Giegé
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France
| | - Mathias Springer
- Université Paris Diderot, Sorbonne Cité, UPR9073 CNRS, IBPC, 75005 Paris, France
| |
Collapse
|
16
|
Membrane lipid compositional sensing by the inducible amphipathic helix of CCT. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:847-861. [PMID: 26747646 DOI: 10.1016/j.bbalip.2015.12.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/22/2015] [Accepted: 12/29/2015] [Indexed: 11/21/2022]
Abstract
The amphipathic helical (AH) membrane binding motif is recognized as a major device for lipid compositional sensing. We explore the function and mechanism of sensing by the lipid biosynthetic enzyme, CTP:phosphocholine cytidylyltransferase (CCT). As the regulatory enzyme in phosphatidylcholine (PC) synthesis, CCT contributes to membrane PC homeostasis. CCT directly binds and inserts into the surface of bilayers that are deficient in PC and therefore enriched in lipids that enhance surface charge and/or create lipid packing voids. These two membrane physical properties induce the folding of the CCT M domain into a ≥60 residue AH. Membrane binding activates catalysis by a mechanism that has been partially deciphered. We review the evidence for CCT compositional sensing, and the membrane and protein determinants for lipid selective membrane-interactions. We consider the factors that promote the binding of CCT isoforms to the membranes of the ER, nuclear envelope, or lipid droplets, but exclude CCT from other organelles and the plasma membrane. The CCT sensing mechanism is compared with several other proteins that use an AH motif for membrane compositional sensing. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
|
17
|
Cornell RB, Ridgway ND. CTP:phosphocholine cytidylyltransferase: Function, regulation, and structure of an amphitropic enzyme required for membrane biogenesis. Prog Lipid Res 2015; 59:147-71. [PMID: 26165797 DOI: 10.1016/j.plipres.2015.07.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/07/2015] [Accepted: 07/07/2015] [Indexed: 12/12/2022]
Abstract
CTP:phosphocholine cytidylyltransferase (CCT) catalyzes a rate-limiting and regulated step in the CDP-choline pathway for the synthesis of phosphatidylcholine (PC) and PC-derived lipids. Control of CCT activity is multi-layered, and includes direct regulation by reversible membrane binding involving a built-in lipid compositional sensor. Thus CCT contributes to phospholipid compositional homeostasis. CCT also modifies the curvature of its target membrane. Knowledge of CCT structure and regulation of its catalytic function are relatively advanced compared to many lipid metabolic enzymes, and are reviewed in detail. Recently the genetic origins of two human developmental and lipogenesis disorders have been traced to mutations in the gene for CCTα.
Collapse
Affiliation(s)
- Rosemary B Cornell
- Department of Molecular Biology and Biochemistry and the Department of Chemistry, Simon Fraser University, Burnaby, B.C. V5A-1S6, Canada.
| | - Neale D Ridgway
- Departments of Pediatrics, and Biochemistry and Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia B3H-4H7, Canada
| |
Collapse
|
18
|
Marton L, Nagy GN, Ozohanics O, Lábas A, Krámos B, Oláh J, Vékey K, Vértessy BG. Molecular Mechanism for the Thermo-Sensitive Phenotype of CHO-MT58 Cell Line Harbouring a Mutant CTP:Phosphocholine Cytidylyltransferase. PLoS One 2015; 10:e0129632. [PMID: 26083347 PMCID: PMC4470507 DOI: 10.1371/journal.pone.0129632] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/10/2015] [Indexed: 01/27/2023] Open
Abstract
Control and elimination of malaria still represents a major public health challenge. Emerging parasite resistance to current therapies urges development of antimalarials with novel mechanism of action. Phospholipid biosynthesis of the Plasmodium parasite has been validated as promising candidate antimalarial target. The most prevalent de novo pathway for synthesis of phosphatidylcholine is the Kennedy pathway. Its regulatory and often also rate limiting step is catalyzed by CTP:phosphocholine cytidylyltransferase (CCT). The CHO-MT58 cell line expresses a mutant variant of CCT, and displays a thermo-sensitive phenotype. At non-permissive temperature (40°C), the endogenous CCT activity decreases dramatically, blocking membrane synthesis and ultimately leading to apoptosis. In the present study we investigated the impact of the analogous mutation in a catalytic domain construct of Plasmodium falciparum CCT in order to explore the underlying molecular mechanism that explains this phenotype. We used temperature dependent enzyme activity measurements and modeling to investigate the functionality of the mutant enzyme. Furthermore, MS measurements were performed to determine the oligomerization state of the protein, and MD simulations to assess the inter-subunit interactions in the dimer. Our results demonstrate that the R681H mutation does not directly influence enzyme catalytic activity. Instead, it provokes increased heat-sensitivity by destabilizing the CCT dimer. This can possibly explain the significance of the PfCCT pseudoheterodimer organization in ensuring proper enzymatic function. This also provide an explanation for the observed thermo-sensitive phenotype of CHO-MT58 cell line.
Collapse
Affiliation(s)
- Lívia Marton
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest Hungary
- Doctoral School of Multidisciplinary Medical Science, University of Szeged, Szeged, Hungary
| | - Gergely N. Nagy
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest Hungary
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - Olivér Ozohanics
- Institute of Organic Chemistry, Research Centre for National Sciences, HAS, Budapest, Hungary
| | - Anikó Lábas
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Budapest, Hungary
| | - Balázs Krámos
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Budapest, Hungary
| | - Julianna Oláh
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Budapest, Hungary
| | - Károly Vékey
- Institute of Organic Chemistry, Research Centre for National Sciences, HAS, Budapest, Hungary
| | - Beáta G. Vértessy
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest Hungary
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
19
|
Contet A, Pihan E, Lavigne M, Wengelnik K, Maheshwari S, Vial H, Douguet D, Cerdan R. Plasmodium falciparum CTP:phosphocholine cytidylyltransferase possesses two functional catalytic domains and is inhibited by a CDP-choline analog selected from a virtual screening. FEBS Lett 2015; 589:992-1000. [PMID: 25771858 DOI: 10.1016/j.febslet.2015.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/03/2015] [Indexed: 10/23/2022]
Abstract
Phosphatidylcholine is the major lipid component of the malaria parasite membranes and is required for parasite multiplication in human erythrocytes. Plasmodium falciparum CTP:phosphocholine cytidylyltransferase (PfCCT) is the rate-limiting enzyme of the phosphatidylcholine biosynthesis pathway and thus considered as a potential antimalarial target. In contrast to its mammalian orthologs, PfCCT contains a duplicated catalytic domain. Here, we show that both domains are catalytically active with similar kinetic parameters. A virtual screening strategy allowed the identification of a drug-size molecule competitively inhibiting the enzyme. This compound also prevented phosphatidylcholine biosynthesis in parasites and exerted an antimalarial effect. This study constitutes the first step towards a rationalized design of future new antimalarial agents targeting PfCCT.
Collapse
Affiliation(s)
- Alicia Contet
- Université Montpellier, CNRS, Dynamique des Interactions Membranaires Normales et Pathologiques, UMR 5235, Place Eugène Bataillon, 34095 Montpellier, France
| | - Emilie Pihan
- CNRS, Université Nice Sophia-Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 660, route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
| | - Marina Lavigne
- Université Montpellier, CNRS, Dynamique des Interactions Membranaires Normales et Pathologiques, UMR 5235, Place Eugène Bataillon, 34095 Montpellier, France
| | - Kai Wengelnik
- Université Montpellier, CNRS, Dynamique des Interactions Membranaires Normales et Pathologiques, UMR 5235, Place Eugène Bataillon, 34095 Montpellier, France
| | - Sweta Maheshwari
- Université Montpellier, CNRS, Dynamique des Interactions Membranaires Normales et Pathologiques, UMR 5235, Place Eugène Bataillon, 34095 Montpellier, France
| | - Henri Vial
- Université Montpellier, CNRS, Dynamique des Interactions Membranaires Normales et Pathologiques, UMR 5235, Place Eugène Bataillon, 34095 Montpellier, France
| | - Dominique Douguet
- CNRS, Université Nice Sophia-Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 660, route des Lucioles, Sophia Antipolis, 06560 Valbonne, France.
| | - Rachel Cerdan
- Université Montpellier, CNRS, Dynamique des Interactions Membranaires Normales et Pathologiques, UMR 5235, Place Eugène Bataillon, 34095 Montpellier, France.
| |
Collapse
|
20
|
Pavlovic Z, Singh RK, Bakovic M. A novel murine CTP:phosphoethanolamine cytidylyltransferase splice variant is a post-translational repressor and an indicator that both cytidylyltransferase domains are required for activity. Gene 2014; 543:58-68. [PMID: 24703999 DOI: 10.1016/j.gene.2014.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/20/2014] [Accepted: 04/01/2014] [Indexed: 11/27/2022]
Abstract
CTP:phosphoethanolamine cytidylyltransferase (Pcyt2) has an important regulatory function in biosynthesis of the membrane phospholipid phosphatidylethanolamine. We previously determined that the full-length Pcyt2α and its splice variant Pcyt2β are the main active isoforms of this enzyme. Here we report that mouse Pcyt2 could be spliced at Introns 7 and 8 to produce a unique third isoform, Pcyt2γ, in which the second cytidylyltransferase domain at the C-terminus becomes deleted. Pcyt2γ is ubiquitously expressed in embryonic and adult mouse tissues, and is the most abundant in the kidney, skeletal muscle and testis. Pcyt2γ splicing mechanism dominates over Pcyt2β exon-skipping mechanism in most examined tissues. Although Pcyt2γ maintains the N-terminal cytidylyltransferase domain as most cytidylyltransferases, the lack of the C-terminal cytidylyltransferase domain causes a complete loss of catalytic activity. However, Pcyt2γ interacts with the active isoform, Pcyt2α, and significantly reduces Pcyt2α homodimerization and activity. The inactive N-domain (H35Y, H35A) and C-domain (H244Y, H244A) mutants of Pcyt2α also reduce Pcyt2α homodimerization and activity. This study revealed the importance of both cytidylyltransferase (35)HYGH and (244)HIGH motifs for the activity of murine Pcyt2α and established that the naturally occurring splice variant Pcyt2γ has a function to restrain the enzyme activity through the formation of unproductive enzyme complexes.
Collapse
Affiliation(s)
- Zvezdan Pavlovic
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1, Canada.
| | - Ratnesh Kumar Singh
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1, Canada
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1, Canada
| |
Collapse
|
21
|
Tian S, Ohtsuka J, Wang S, Nagata K, Tanokura M, Ohta A, Horiuchi H, Fukuda R. Human CTP:phosphoethanolamine cytidylyltransferase: enzymatic properties and unequal catalytic roles of CTP-binding motifs in two cytidylyltransferase domains. Biochem Biophys Res Commun 2014; 449:26-31. [PMID: 24802409 DOI: 10.1016/j.bbrc.2014.04.131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 04/25/2014] [Indexed: 10/25/2022]
Abstract
CTP:phosphoethanolamine cytidylyltransferase (ECT) is a key enzyme in the CDP-ethanolamine branch of the Kennedy pathway, which is the primary pathway of phosphatidylethanolamine (PE) synthesis in mammalian cells. Here, the enzymatic properties of recombinant human ECT (hECT) were characterized. The catalytic reaction of hECT obeyed Michaelis-Menten kinetics with respect to both CTP and phosphoethanolamine. hECT is composed of two tandem cytidylyltransferase (CT) domains as ECTs of other organisms. The histidines, especially the first histidine, in the CTP-binding motif HxGH in the N-terminal CT domain were critical for its catalytic activity in vitro, while those in the C-terminal CT domain were not. Overexpression of the wild-type hECT and hECT mutants containing amino acid substitutions in the HxGH motif in the C-terminal CT domain suppressed the growth defect of the Saccharomyces cerevisiae mutant of ECT1 encoding ECT in the absence of a PE supply via the decarboxylation of phosphatidylserine, but overexpression of hECT mutants of the N-terminal CT domain did not. These results suggest that the N-terminal CT domain of hECT contributes to its catalytic reaction, but C-terminal CT domain does not.
Collapse
Affiliation(s)
- Siqi Tian
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Jun Ohtsuka
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shipeng Wang
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Koji Nagata
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akinori Ohta
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Hiroyuki Horiuchi
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryouichi Fukuda
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
22
|
Herrmann J, Ravilious GE, McKinney SE, Westfall CS, Lee SG, Baraniecka P, Giovannetti M, Kopriva S, Krishnan HB, Jez JM. Structure and mechanism of soybean ATP sulfurylase and the committed step in plant sulfur assimilation. J Biol Chem 2014; 289:10919-10929. [PMID: 24584934 PMCID: PMC4036203 DOI: 10.1074/jbc.m113.540401] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/27/2014] [Indexed: 11/06/2022] Open
Abstract
Enzymes of the sulfur assimilation pathway are potential targets for improving nutrient content and environmental stress responses in plants. The committed step in this pathway is catalyzed by ATP sulfurylase, which synthesizes adenosine 5'-phosphosulfate (APS) from sulfate and ATP. To better understand the molecular basis of this energetically unfavorable reaction, the x-ray crystal structure of ATP sulfurylase isoform 1 from soybean (Glycine max ATP sulfurylase) in complex with APS was determined. This structure revealed several highly conserved substrate-binding motifs in the active site and a distinct dimerization interface compared with other ATP sulfurylases but was similar to mammalian 3'-phosphoadenosine 5'-phosphosulfate synthetase. Steady-state kinetic analysis of 20 G. max ATP sulfurylase point mutants suggests a reaction mechanism in which nucleophilic attack by sulfate on the α-phosphate of ATP involves transition state stabilization by Arg-248, Asn-249, His-255, and Arg-349. The structure and kinetic analysis suggest that ATP sulfurylase overcomes the energetic barrier of APS synthesis by distorting nucleotide structure and identifies critical residues for catalysis. Mutations that alter sulfate assimilation in Arabidopsis were mapped to the structure, which provides a molecular basis for understanding their effects on the sulfur assimilation pathway.
Collapse
Affiliation(s)
- Jonathan Herrmann
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | | | - Samuel E McKinney
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Corey S Westfall
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Soon Goo Lee
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | | | - Marco Giovannetti
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom; Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, I-10125 Torino, Italy
| | - Stanislav Kopriva
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Hari B Krishnan
- Plant Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, University of Missouri, Columbia, Missouri 65211
| | - Joseph M Jez
- Department of Biology, Washington University, St. Louis, Missouri 63130.
| |
Collapse
|
23
|
Pavlovic Z, Zhu L, Pereira L, Singh RK, Cornell RB, Bakovic M. Isoform-specific and protein kinase C-mediated regulation of CTP:phosphoethanolamine cytidylyltransferase phosphorylation. J Biol Chem 2014; 289:9053-64. [PMID: 24519946 DOI: 10.1074/jbc.m113.544932] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CTP:phosphoethanolamine cytidylyltransferase (Pcyt2) is the main regulatory enzyme for de novo biosynthesis of phosphatidylethanolamine by the CDP-ethanolamine pathway. There are two isoforms of Pcyt2, -α and -β; however, very little is known about their specific roles in this important metabolic pathway. We previously demonstrated increased phosphatidylethanolamine biosynthesis subsequent to elevated activity and phosphorylation of Pcyt2α and -β in MCF-7 breast cancer cells grown under conditions of serum deficiency. Mass spectroscopy analyses of Pcyt2 provided evidence for isoform-specific as well as shared phosphorylations. Pcyt2β was specifically phosphorylated at the end of the first cytidylyltransferase domain. Pcyt2α was phosphorylated within the α-specific motif that is spliced out in Pcyt2β and on two PKC consensus serine residues, Ser-215 and Ser-223. Single and double mutations of PKC consensus sites reduced Pcyt2α phosphorylation, activity, and phosphatidylethanolamine synthesis by 50-90%. The phosphorylation and activity of endogenous Pcyt2 were dramatically increased with phorbol esters and reduced by specific PKC inhibitors. In vitro translated Pcyt2α was phosphorylated by PKCα, PKCβI, and PKCβII. Pcyt2α Ser-215 was also directly phosphorylated with PKCα. Mapping of the Pcyt2α- and -β-phosphorylated sites to the solved structure of a human Pcyt2β showed that they clustered within and flanking the central linker region that connects the two catalytic domains and is a novel regulatory segment not present in other cytidylyltransferases. This study is the first to demonstrate differences in phosphorylation between Pcyt2 isoforms and to uncover the role of the PKC-regulated phosphorylation.
Collapse
Affiliation(s)
- Zvezdan Pavlovic
- From the Department of Human Health and Nutritional Sciences, University of Guelph, Ontario N1G 2W1 and
| | | | | | | | | | | |
Collapse
|
24
|
Nagy GN, Marton L, Krámos B, Oláh J, Révész Á, Vékey K, Delsuc F, Hunyadi-Gulyás É, Medzihradszky KF, Lavigne M, Vial H, Cerdan R, Vértessy BG. Evolutionary and mechanistic insights into substrate and product accommodation of CTP:phosphocholine cytidylyltransferase from Plasmodium falciparum. FEBS J 2013; 280:3132-48. [PMID: 23578277 DOI: 10.1111/febs.12282] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 03/08/2013] [Accepted: 03/26/2013] [Indexed: 12/31/2022]
Abstract
The enzyme CTP:phosphocholine cytidylyltransferase (CCT) is essential in the lipid biosynthesis of Plasmodia (Haemosporida), presenting a promising antimalarial target. Here, we identified two independent gene duplication events of CCT within Apicomplexa and characterized a truncated construct of Plasmodium falciparum CCT that forms a dimer resembling the molecular architecture of CCT enzymes from other sources. Based on biophysical and enzyme kinetics methods, our data show that the CDP-choline product of the CCT enzymatic reaction binds to the enzyme considerably stronger than either substrate (CTP or choline phosphate). Interestingly, in the presence of Mg²⁺ , considered to be a cofactor of the enzyme, the binding of the CTP substrate is attenuated by a factor of 5. The weaker binding of CTP:Mg²⁺ , similarly to the related enzyme family of aminoacyl tRNA synthetases, suggests that, with lack of Mg²⁺ , positively charged side chain(s) of CCT may contribute to CTP accommodation. Thermodynamic investigations by isothermal titration calorimetry and fluorescent spectroscopy studies indicate that accommodation of the choline phosphate moiety in the CCT active site is different when it appears on its own as one of the substrates or when it is linked to the CDP-choline product. A tryptophan residue within the active site is identified as a useful internal fluorescence sensor of enzyme-ligand binding. Results indicate that the catalytic mechanism of Plasmodium falciparum CCT may involve conformational changes affecting the choline subsite of the enzyme.
Collapse
Affiliation(s)
- Gergely N Nagy
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mericl AN, Friesen JA. Comparative kinetic analysis of glycerol 3-phosphate cytidylyltransferase from Enterococcus faecalis and Listeria monocytogenes. Med Sci Monit 2013; 18:BR427-34. [PMID: 23111733 PMCID: PMC3560613 DOI: 10.12659/msm.883535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Glycerol 3-phosphate cytidylyltransferase (GCT) is an enzyme central to the synthesis of teichoic acids, components of the cell wall in gram positive bacteria. Catalysis by GCT from Enterococcus faecalis and Listeria monocytogenes has been investigated and catalytic properties compared. MATERIAL/METHODS The genes encoding GCT were cloned from genomic DNA and recombinant proteins expressed in E. coli and purified. Enzyme assays were used to determine kinetic constants kcat and Km. Chemical crosslinking provided a means to assess quaternary structure of each GCT. RESULTS Recombinant Enterococcus faecalis GCT had an apparent kcat value of 1.51 s⁻¹ and apparent Km values of 2.42 mM and 4.03 mM with respect to substrates cytidine 5'-triphosphate (CTP) and glycerol phosphate. Listeria monocytogenes GCT had an apparent kcat value of 4.15 s⁻¹ and apparent Km values of 1.52 mM and 6.56 mM with respect to CTP and glycerol phosphate. This resulted in kcat/Km values of 0.62 s⁻¹mM⁻¹ and 0.37 s⁻¹mM⁻¹ for E. faecalis GCT and 2.73 s⁻¹mM⁻¹ and 0.63 s⁻¹mM⁻¹ for L. monocytogenes GCT with respect to CTP and glycerol phosphate, respectively. CONCLUSIONS The genome of both Enterococcus faecalis and Listeria monocytogenes contain a gene that encodes a functional GCT. The genes are 67% identical at the nucleotide level and the encoded proteins exhibit a 63% amino acid identity. The purified, recombinant enzymes each appear to be dimeric and display similar kinetic characteristics. Studying the catalytic characteristics of GCT isoforms from pathogenic bacteria provides information important for the future development of potential antibacterial agents.
Collapse
Affiliation(s)
- Ashley N Mericl
- Department of Chemistry, Illinois State University, Normal, IL 61790-4160, USA
| | | |
Collapse
|
26
|
Biochemical characterization of Plasmodium falciparum CTP:phosphoethanolamine cytidylyltransferase shows that only one of the two cytidylyltransferase domains is active. Biochem J 2013. [DOI: 10.1042/bj20121480] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The intra-erythrocytic proliferation of the human malaria parasite Plasmodium falciparum requires massive synthesis of PE (phosphatidylethanolamine) that together with phosphatidylcholine constitute the bulk of the malaria membrane lipids. PE is mainly synthesized de novo by the CDP:ethanolamine-dependent Kennedy pathway. We previously showed that inhibition of PE biosynthesis led to parasite death. In the present study we characterized PfECT [P. falciparum CTP:phosphoethanolamine CT (cytidylyltransferase)], which we identified as the rate-limiting step of the PE metabolic pathway in the parasite. The cellular localization and expression of PfECT along the parasite life cycle were studied using polyclonal antibodies. Biochemical analyses showed that the enzyme activity follows Michaelis–Menten kinetics. PfECT is composed of two CT domains separated by a linker region. Activity assays on recombinant enzymes upon site-directed mutagenesis revealed that the N-terminal CT domain was the only catalytically active domain of PfECT. Concordantly, three-dimensional homology modelling of PfECT showed critical amino acid differences between the substrate-binding sites of the two CT domains. PfECT was predicted to fold as an intramolecular dimer suggesting that the inactive C-terminal domain is important for dimer stabilization. Given the absence of PE synthesis in red blood cells, PfECT represents a potential antimalarial target opening the way for a rational conception of bioactive compounds.
Collapse
|
27
|
Huang HKH, Taneva SG, Lee J, Silva LP, Schriemer DC, Cornell RB. The membrane-binding domain of an amphitropic enzyme suppresses catalysis by contact with an amphipathic helix flanking its active site. J Mol Biol 2012; 425:1546-64. [PMID: 23238251 DOI: 10.1016/j.jmb.2012.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 11/24/2012] [Accepted: 12/03/2012] [Indexed: 11/29/2022]
Abstract
CTP:phosphocholine cytidylyltransferase (CCT), the regulatory enzyme in the synthesis of phosphatidylcholine, is activated by binding membranes using a lipid-induced amphipathic helix (domain M). Domain M functions to silence catalysis when CCT is not membrane engaged. The silencing mechanism is unknown. We used photo-cross-linking and mass spectrometry to identify contacts between domain M and other CCT domains in its soluble form. Each of four sites in domain M forged cross-links to the same set of peptides that flank the active site and overlap at helix αE at the base of the active site. These cross-links were broken in the presence of activating lipid vesicles. Mutagenesis of domain M revealed that multiple hydrophobic residues within a putative auto-inhibitory (AI) motif contribute to the contact with helix αE and silencing. Helix αE was confirmed as the docking site for domain M by deuterium exchange analysis. We compared the dynamics and fold stability of CCT domains by site-directed fluorescence anisotropy and urea denaturation. The results suggest a bipartite structure for domain M: a disordered N-terminal portion and an ordered C-terminal AI motif with an unfolding transition identical with that of helix αE. Reduction in hydrophobicity of the AI motif decreased its order and fold stability, as did deletion of the catalytic domain. These results support a model in which catalytic silencing is mediated by the docking of an amphipathic AI motif onto the amphipathic helices αE. An unstructured leash linking αE with the AI motif may facilitate both the silencing contact and its membrane-triggered disruption.
Collapse
Affiliation(s)
- Harris K-H Huang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | | | | | | | | | | |
Collapse
|
28
|
Role of key residues at the flavin mononucleotide (FMN):adenylyltransferase catalytic site of the bifunctional riboflavin kinase/flavin adenine dinucleotide (FAD) Synthetase from Corynebacterium ammoniagenes. Int J Mol Sci 2012. [PMID: 23203077 PMCID: PMC3509593 DOI: 10.3390/ijms131114492] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In mammals and in yeast the conversion of Riboflavin (RF) into flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) is catalysed by the sequential action of two enzymes: an ATP:riboflavin kinase (RFK) and an ATP:FMN adenylyltransferase (FMNAT). However, most prokaryotes depend on a single bifunctional enzyme, FAD synthetase (FADS), which folds into two modules: the C-terminal associated with RFK activity and the N-terminal associated with FMNAT activity. Sequence and structural analysis suggest that the 28-HxGH-31, 123-Gx(D/N)-125 and 161-xxSSTxxR-168 motifs from FADS must be involved in ATP stabilisation for the adenylylation of FMN, as well as in FAD stabilisation for FAD phyrophosphorolysis. Mutants were produced at these motifs in the Corynebacterium ammoniagenes FADS (CaFADS). Their effects on the kinetic parameters of CaFADS activities (RFK, FMNAT and FAD pyrophosphorilase), and on substrates and product binding properties indicate that H28, H31, N125 and S164 contribute to the geometry of the catalytically competent complexes at the FMNAT-module of CaFADS.
Collapse
|
29
|
Abstract
Aminoacyl-tRNAsynthetases (aaRSs) are modular enzymesglobally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation.Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g.,in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show hugestructural plasticity related to function andlimited idiosyncrasies that are kingdom or even speciesspecific (e.g.,the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS).Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably betweendistant groups such as Gram-positive and Gram-negative Bacteria.Thereview focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation,and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulatedin last two decades is reviewed,showing how thefield moved from essentially reductionist biologytowards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRSparalogs (e.g., during cellwall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointedthroughout the reviewand distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
|
30
|
A detailed biochemical characterization of phosphopantothenate synthetase, a novel enzyme involved in coenzyme A biosynthesis in the Archaea. Extremophiles 2012; 16:819-28. [PMID: 22940806 DOI: 10.1007/s00792-012-0477-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 08/16/2012] [Indexed: 10/27/2022]
Abstract
We have previously reported that the majority of the archaea utilize a novel pathway for coenzyme A biosynthesis (CoA). Bacteria/eukaryotes commonly use pantothenate synthetase and pantothenate kinase to convert pantoate to 4'-phosphopantothenate. However, in the hyperthermophilic archaeon Thermococcus kodakarensis, two novel enzymes specific to the archaea, pantoate kinase and phosphopantothenate synthetase, are responsible for this conversion. Here, we examined the enzymatic properties of the archaeal phosphopantothenate synthetase, which catalyzes the ATP-dependent condensation of 4-phosphopantoate and β-alanine. The activation energy of the phosphopantothenate synthetase reaction was 82.3 kJ mol(-1). In terms of substrate specificity toward nucleoside triphosphates, the enzyme displayed a strict preference for ATP. Among several amine substrates, activity was detected with β-alanine, but not with γ-aminobutyrate, glycine nor aspartate. The phosphopantothenate synthetase reaction followed Michaelis-Menten kinetics toward β-alanine, whereas substrate inhibition was observed with 4-phosphopantoate and ATP. Feedback inhibition by CoA/acetyl-CoA and product inhibition by 4'-phosphopantothenate were not observed. By contrast, the other archaeal enzyme pantoate kinase displayed product inhibition by 4-phosphopantoate in a non-competitive manner. Based on our results, we discuss the regulation of CoA biosynthesis in the archaea.
Collapse
|
31
|
YAGO JM, SOLO CGARRIDODEL, GARCIA-MORENO M, VARON R, GARCIA-SEVILLA F, ARRIBAS E. A COMPARISON BETWEEN THE INITIAL RATE EXPRESSIONS OBTAINED UNDER STRICT CONDITIONS AND THE RAPID EQUILIBRIUM ASSUMPTION USING, AS EXAMPLE, A FOUR SUBSTRATE ENZYME REACTION. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2012. [DOI: 10.1142/s0219633611006712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The software WinStes, developed by our group, is used to derive the strict steady-state initial rate equation of the reaction mechanism of CTP:sn-glycerol-3-phosphate cytidylyltransferase [EC 2.7.7.39] from Bacillus subtilis. This enzyme catalyzes a reaction with two substrates and operates by a random ordered binding mechanism with two molecules of each substrate. The accuracy of the steady-state rate equation derived is checked by comparing the rate values it provides with those obtained from the simulated progress curves. To analyze the kinetics of this enzyme using the strict steady-state initial rate equation, several curves for different substrate concentrations and different rate constants are generated. A comparison of these curves with the curves obtained from the rapid equilibrium initial rate equation, with different substrate concentration values, serves to analyze how the strict steady-state rate equation values are closer to those of rapid equilibrium rate equations when rapid equilibrium conditions are fulfilled.
Collapse
Affiliation(s)
- J. M. YAGO
- Departamento de Química Física, Escuela de Ingenieros Industriales, Universidad de Castilla-La Mancha, Albacete, Spain
| | - C. GARRIDO-DEL SOLO
- Departamento de Química Física, Escuela de Ingenieros Industriales, Universidad de Castilla-La Mancha, Albacete, Spain
| | - M. GARCIA-MORENO
- Departamento de Química Física, Escuela de Ingenieros Industriales, Universidad de Castilla-La Mancha, Albacete, Spain
| | - R. VARON
- Departamento de Química Física, Escuela de Ingenieros Industriales, Universidad de Castilla-La Mancha, Albacete, Spain
| | - F. GARCIA-SEVILLA
- Departamento de Ingenieria Electronica, Electrica Automatica y Comunicaciones, Escuela de Ingenieros Industriales, Universidad de Castilla-La Mancha, Albacete, Spain
| | - E. ARRIBAS
- Departamento de Física Aplicada, Escuela Superior de Ingeniería, Informática, Universidad de Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
32
|
Mashhadi Z, Xu H, Grochowski LL, White RH. Archaeal RibL: a new FAD synthetase that is air sensitive. Biochemistry 2010; 49:8748-55. [PMID: 20822113 DOI: 10.1021/bi100817q] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
FAD synthetases catalyze the transfer of the AMP portion of ATP to FMN to produce FAD and pyrophosphate (PP(i)). Monofunctional FAD synthetases exist in eukaryotes, while bacteria have bifunctional enzymes that catalyze both the phosphorylation of riboflavin and adenylation of FMN to produce FAD. Analyses of archaeal genomes did not reveal the presence of genes encoding either group, yet the archaea contain FAD. Our recent identification of a CTP-dependent archaeal riboflavin kinase strongly indicated the presence of a monofunctional FAD synthetase. Here we report the identification and characterization of an archaeal FAD synthetase. Methanocaldococcus jannaschii gene MJ1179 encodes a protein that is classified in the nucleotidyl transferase protein family and was previously annotated as glycerol-3-phosphate cytidylyltransferase (GCT). The MJ1179 gene was cloned and its protein product heterologously expressed in Escherichia coli. The resulting enzyme catalyzes the adenylation of FMN with ATP to produce FAD and PP(i). The MJ1179-derived protein has been designated RibL to indicate that it follows the riboflavin kinase (RibK) step in the archaeal FAD biosynthetic pathway. Aerobically isolated RibL is active only under reducing conditions. RibL was found to require divalent metals for activity, the best activity being observed with Co(2+), where the activity was 4 times greater than that with Mg(2+). Alkylation of the two conserved cysteines in the C-terminus of the protein resulted in complete inactivation. RibL was also found to catalyze cytidylation of FMN with CTP, making the modified FAD, flavin cytidine dinucleotide (FCD). Unlike other FAD synthetases, RibL does not catalyze the reverse reaction to produce FMN and ATP from FAD and PP(i). Also in contrast to other FAD synthetases, PP(i) inhibits the activity of RibL.
Collapse
Affiliation(s)
- Zahra Mashhadi
- Department of Biochemistry (0308), Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | | | |
Collapse
|
33
|
Lee J, Johnson J, Ding Z, Paetzel M, Cornell RB. Crystal structure of a mammalian CTP: phosphocholine cytidylyltransferase catalytic domain reveals novel active site residues within a highly conserved nucleotidyltransferase fold. J Biol Chem 2009; 284:33535-48. [PMID: 19783652 PMCID: PMC2785197 DOI: 10.1074/jbc.m109.053363] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 09/11/2009] [Indexed: 11/06/2022] Open
Abstract
CTP:phosphocholine cytidylyltransferase (CCT) is the key regulatory enzyme in the synthesis of phosphatidylcholine, the most abundant phospholipid in eukaryotic cell membranes. The CCT-catalyzed transfer of a cytidylyl group from CTP to phosphocholine to form CDP-choline is regulated by a membrane lipid-dependent mechanism imparted by its C-terminal membrane binding domain. We present the first analysis of a crystal structure of a eukaryotic CCT. A deletion construct of rat CCTalpha spanning residues 1-236 (CCT236) lacks the regulatory domain and as a result displays constitutive activity. The 2.2-A structure reveals a CCT236 homodimer in complex with the reaction product, CDP-choline. Each chain is composed of a complete catalytic domain with an intimately associated N-terminal extension, which together with the catalytic domain contributes to the dimer interface. Although the CCT236 structure reveals elements involved in binding cytidine that are conserved with other members of the cytidylyltransferase superfamily, it also features nonconserved active site residues, His-168 and Tyr-173, that make key interactions with the beta-phosphate of CDP-choline. Mutagenesis and kinetic analyses confirmed their role in phosphocholine binding and catalysis. These results demonstrate structural and mechanistic differences in a broadly conserved protein fold across the cytidylyltransferase family. Comparison of the CCT236 structure with those of other nucleotidyltransferases provides evidence for substrate-induced active site loop movements and a disorder-to-order transition of a loop element in the catalytic mechanism.
Collapse
Affiliation(s)
- Jaeyong Lee
- From the Departments of Molecular Biology and Biochemistry and
| | - Joanne Johnson
- From the Departments of Molecular Biology and Biochemistry and
| | - Ziwei Ding
- From the Departments of Molecular Biology and Biochemistry and
| | - Mark Paetzel
- From the Departments of Molecular Biology and Biochemistry and
| | - Rosemary B. Cornell
- From the Departments of Molecular Biology and Biochemistry and
- Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
34
|
Braker JD, Hodel KJ, Mullins DR, Friesen JA. Identification of hydrophobic amino acids required for lipid activation of C. elegans CTP:phosphocholine cytidylyltransferase. Arch Biochem Biophys 2009; 492:10-6. [PMID: 19836342 DOI: 10.1016/j.abb.2009.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 10/09/2009] [Accepted: 10/10/2009] [Indexed: 11/18/2022]
Abstract
CTP:phosphocholine cytidylyltransferase (CCT), critical for phosphatidylcholine biosynthesis, is activated by translocation to the membrane surface. The lipid activation region of Caenorhabditis elegans CCT is between residues 246 and 266 of the 347 amino acid polypeptide, a region proposed to form an amphipathic alpha helix. When leucine 246, tryptophan 249, isoleucine 256, isoleucine 257, or phenylalanine 260, on the hydrophobic face of the helix, were changed individually to serine low activity was observed in the absence of lipid vesicles, similar to wild-type CCT, while lipid stimulated activity was reduced compared to wild-type CCT. Mutational analysis of phenylalanine 260 implicated this residue as a contributor to auto-inhibition of CCT while mutation of L246, W249, I256, and I257 simultaneously to serine resulted in significantly higher activity in the absence of lipid vesicles and an enzyme that was not lipid activated. These results support a concerted mechanism of lipid activation that requires multiple residues on the hydrophobic face of the putative amphipathic alpha helix.
Collapse
Affiliation(s)
- Jay D Braker
- Department of Chemistry, Illinois State University, Normal, IL 61790, USA
| | | | | | | |
Collapse
|
35
|
Gibellini F, Hunter WN, Smith TK. The ethanolamine branch of the Kennedy pathway is essential in the bloodstream form of Trypanosoma brucei. Mol Microbiol 2009; 73:826-43. [PMID: 19555461 PMCID: PMC2784872 DOI: 10.1111/j.1365-2958.2009.06764.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phosphatidylethanolamine (GPEtn), a major phospholipid component of trypanosome membranes, is synthesized de novo from ethanolamine through the Kennedy pathway. Here the composition of the GPEtn molecular species in the bloodstream form of Trypanosoma brucei is determined, along with new insights into phospholipid metabolism, by in vitro and in vivo characterization of a key enzyme of the Kennedy pathway, the cytosolic ethanolamine-phosphate cytidylyltransferase (TbECT). Gene knockout indicates that TbECT is essential for growth and survival, thus highlighting the importance of the Kennedy pathway for the pathogenic stage of the African trypanosome. Phosphatiylserine decarboxylation, a potential salvage pathway, does not appear to be active in cultured bloodstream form T. brucei, and it is not upregulated even when the Kennedy pathway is disrupted. In vivo metabolic labelling and phospholipid composition analysis by ESI-MS/MS of the knockout cells confirmed a significant decrease in GPEtn species, as well as changes in the relative abundance of other phospholipid species. Reduction in GPEtn levels had a profound influence on the morphology of the mutants and it compromised mitochondrial structure and function, as well as glycosylphosphatidylinositol anchor biosynthesis. TbECT is therefore genetically validated as a potential drug target against the African trypanosome.
Collapse
Affiliation(s)
- Federica Gibellini
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | | | | |
Collapse
|
36
|
Sershon VC, Santarsiero BD, Mesecar AD. Kinetic and X-ray structural evidence for negative cooperativity in substrate binding to nicotinate mononucleotide adenylyltransferase (NMAT) from Bacillus anthracis. J Mol Biol 2008; 385:867-88. [PMID: 18977360 DOI: 10.1016/j.jmb.2008.10.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 10/06/2008] [Accepted: 10/09/2008] [Indexed: 11/18/2022]
Abstract
Biosynthesis of NAD(P) in bacteria occurs either de novo or through one of the salvage pathways that converge at the point where the reaction of nicotinate mononucleotide (NaMN) with ATP is coupled to the formation of nicotinate adenine dinucleotide (NaAD) and inorganic pyrophosphate. This reaction is catalyzed by nicotinate mononucleotide adenylyltransferase (NMAT), which is essential for bacterial growth, making it an attractive drug target for the development of new antibiotics. Steady-state kinetic and direct binding studies on NMAT from Bacillus anthracis suggest a random sequential Bi-Bi kinetic mechanism. Interestingly, the interactions of NaMN and ATP with NMAT were observed to exhibit negative cooperativity, i.e. Hill coefficients <1.0. Negative cooperativity in binding is supported by the results of X-ray crystallographic studies. X-ray structures of the B. anthracis NMAT apoenzyme, and the NaMN- and NaAD-bound complexes were determined to resolutions of 2.50 A, 2.60 A and 1.75 A, respectively. The X-ray structure of the NMAT-NaMN complex revealed only one NaMN molecule bound in the biological dimer, supporting negative cooperativity in substrate binding. The kinetic, direct-binding, and X-ray structural studies support a model in which the binding affinity of substrates to the first monomer of NMAT is stronger than that to the second, and analysis of the three X-ray structures reveals significant conformational changes of NMAT along the enzymatic reaction coordinate. The negative cooperativity observed in B. anthracis NMAT substrate binding is a unique property that has not been observed in other prokaryotic NMAT enzymes. We propose that regulation of the NAD(P) biosynthetic pathway may occur, in part, at the reaction catalyzed by NMAT.
Collapse
Affiliation(s)
- Valerie C Sershon
- Department of Medicinal Chemistry and Pharmacognosy & the Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | |
Collapse
|
37
|
Tilley DM, Evans CR, Larson TM, Edwards KA, Friesen JA. Identification and Characterization of the Nuclear Isoform of Drosophila melanogaster CTP:Phosphocholine Cytidylyltransferase. Biochemistry 2008; 47:11838-46. [DOI: 10.1021/bi801161s] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dana M. Tilley
- Department of Chemistry and Department of Biological Sciences, Illinois State University, Normal, Illinois 61790
| | - Chadrick R. Evans
- Department of Chemistry and Department of Biological Sciences, Illinois State University, Normal, Illinois 61790
| | - Troy M. Larson
- Department of Chemistry and Department of Biological Sciences, Illinois State University, Normal, Illinois 61790
| | - Kevin A. Edwards
- Department of Chemistry and Department of Biological Sciences, Illinois State University, Normal, Illinois 61790
| | - Jon A. Friesen
- Department of Chemistry and Department of Biological Sciences, Illinois State University, Normal, Illinois 61790
| |
Collapse
|
38
|
Frago S, Martínez-Júlvez M, Serrano A, Medina M. Structural analysis of FAD synthetase from Corynebacterium ammoniagenes. BMC Microbiol 2008; 8:160. [PMID: 18811972 PMCID: PMC2573891 DOI: 10.1186/1471-2180-8-160] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 09/23/2008] [Indexed: 11/21/2022] Open
Abstract
Background The prokaryotic FAD synthetase family – a group of bifunctional enzymes that catalyse riboflavin phosphorylation and FMN adenylylation within a single polypeptide chain- was analysed in terms of sequence and structure. Results Sequences of nearly 800 prokaryotic species were aligned. Those related with bifunctional FAD synthetase activities showed conservation of several consensus regions and highly conserved residues. A 3D model for the FAD synthetase from Corynebacterium ammoniagenes (CaFADS) was generated. This model confirms that the N-terminal and C-terminal domains are related to nucleotydyltransferases and riboflavin kinases, respectively. Models for the interaction of CaFADS with its substrates were also produced, allowing location of all the protein substrates in their putative binding pockets. These include two independent flavin binding sites for each CaFADS activity. Conclusion For the first time, the putative presence of a flavin binding site for the adenylylation activity, independent from that related with the phosphorylation activity, is shown. Additionally, these models suggest the functional relevance of some residues putatively involved in the catalytic processes. Their relevant roles were analysed by site-directed mutagenesis. A role was confirmed for H28, H31, S164 and T165 in the stabilisation of the P groups and the adenine moiety of ATP and, the P of FMN for the adenylylation. Similarly, T208, N210 and E268 appear critical for accommodation of the P groups of ATP and the ribityl end of RF in the active site for the phosphorylation process. Finally, the C-terminal domain was shown to catalyse the phosphorylation process on its own, but no reaction at all was observed with the individually expressed N-terminal domain.
Collapse
Affiliation(s)
- Susana Frago
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias and Institute of Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Zaragoza, Spain.
| | | | | | | |
Collapse
|
39
|
Taneva S, Dennis MK, Ding Z, Smith JL, Cornell RB. Contribution of each membrane binding domain of the CTP:phosphocholine cytidylyltransferase-alpha dimer to its activation, membrane binding, and membrane cross-bridging. J Biol Chem 2008; 283:28137-48. [PMID: 18694933 DOI: 10.1074/jbc.m802595200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CTP:phosphocholine cytidylyltransferase (CCT), a rate-limiting enzyme in phosphatidylcholine synthesis, is regulated by reversible membrane interactions mediated by an amphipathic helical domain (M) that binds selectively to anionic lipids. CCT is a dimer; thus the functional unit has two M domains. To probe the functional contribution of each domain M we prepared a CCT heterodimer composed of one full-length subunit paired with a CCT subunit truncated before domain M that was also catalytically dead. We compared this heterodimer to the full-length homodimer with respect to activation by anionic vesicles, vesicle binding affinities, and promotion of vesicle aggregation. Surprisingly for all three functions the dimer with just one domain M behaved similarly to the dimer with two M domains. Full activation of the wild-type subunit was not impaired by loss of one domain M in its partner. Membrane binding affinities were the same for dimers with one versus two M domains, suggesting that the two M domains of the dimer do not engage a single bilayer simultaneously. Vesicle cross-bridging was also unhindered by loss of one domain M, suggesting that another motif couples with domain M for cross-bridging anionic membranes. Mutagenesis revealed that the positively charged nuclear localization signal sequence constitutes that second motif for membrane cross-bridging. We propose that the two M domains of the CCT dimer engage a single bilayer via an alternating binding mechanism. The tethering function involves the cooperation of domain M and the nuclear localization signal sequence, each engaging separate membranes. Membrane binding of a single M domain is sufficient to fully activate the enzymatic activity of the CCT dimer while sustaining the low affinity, reversible membrane interaction required for regulation of CCT activity.
Collapse
Affiliation(s)
- Svetla Taneva
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A-1S6, Canada
| | | | | | | | | |
Collapse
|
40
|
Characterization of the Mycobacterium tuberculosis 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase: potential for drug development. J Bacteriol 2007; 189:8922-7. [PMID: 17921290 DOI: 10.1128/jb.00925-07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis utilizes the methylerythritol phosphate (MEP) pathway for biosynthesis of isopentenyl diphosphate and its isomer, dimethylallyl diphosphate, precursors of all isoprenoid compounds. This pathway is of interest as a source of new drug targets, as it is absent from humans and disruption of the responsible genes has shown a lethal phenotype for Escherichia coli. In the MEP pathway, 4-diphosphocytidyl-2-C-methyl-D-erythritol is formed from 2-C-methyl-D-erythritol 4-phosphate (MEP) and CTP in a reaction catalyzed by a 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase (IspD). In the present work, we demonstrate that Rv3582c is essential for M. tuberculosis: Rv3582c has been cloned and expressed, and the encoded protein has been purified. The purified M. tuberculosis IspD protein was capable of catalyzing the formation of 4-diphosphocytidyl-2-C-methyl-D-erythritol in the presence of MEP and CTP. The enzyme was active over a broad pH range (pH 6.0 to 9.0), with peak activity at pH 8.0. The activity was absolutely dependent upon divalent cations, with 20 mM Mg2+ being optimal, and replacement of CTP with other nucleotide 5'-triphosphates did not support activity. Under the conditions tested, M. tuberculosis IspD had Km values of 58.5 microM for MEP and 53.2 microM for CTP. Calculated kcat and kcat/Km values were 0.72 min(-1) and 12.3 mM(-1) min(-1) for MEP and 1.0 min(-1) and 18.8 mM(-1) min(-1) for CTP, respectively.
Collapse
|
41
|
Human Dolichol Kinase, a Polytopic Endoplasmic Reticulum Membrane Protein with a Cytoplasmically Oriented CTP-binding Site. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84083-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
42
|
Ohtsuka J, Nagata K, Lee WC, Ono Y, Fukuda R, Ohta A, Tanokura M. Crystallization and preliminary X-ray analysis of CTP:phosphoethanolamine cytidylyltransferase (ECT) from Saccharomyces cerevisiae. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:1003-5. [PMID: 17012796 PMCID: PMC2225198 DOI: 10.1107/s1744309106035561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 09/03/2006] [Indexed: 11/10/2022]
Abstract
CTP:phosphoethanolamine cytidylyltransferase (ECT) is the enzyme that catalyzes the conversion of phosphoethanolamine to CDP-ethanolamine in the phosphatidylethanolamine-biosynthetic pathway (Kennedy pathway). ECT from Saccharomyces cerevisiae was crystallized by the sitting-drop vapour-diffusion method using PEG 4000 as precipitant. The crystals diffracted X-rays from a synchrotron-radiation source to 1.88 A resolution. The space group was assigned as primitive tetragonal, P4(1)2(1)2 or P4(3)2(1)2, with unit-cell parameters a = b = 66.3, c = 150.8 A. The crystals contain one ECT molecule in the asymmetric unit (V(M) = 2.2 A(3) Da(-1)), with a solvent content of 43%.
Collapse
Affiliation(s)
- Jun Ohtsuka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Koji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Woo Cheol Lee
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yusuke Ono
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryouichi Fukuda
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akinori Ohta
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
- Correspondence e-mail:
| |
Collapse
|
43
|
Shridas P, Waechter CJ. Human dolichol kinase, a polytopic endoplasmic reticulum membrane protein with a cytoplasmically oriented CTP-binding site. J Biol Chem 2006; 281:31696-704. [PMID: 16923818 DOI: 10.1074/jbc.m604087200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dolichol kinase (DK) catalyzes the CTP-dependent phosphorylation of dolichol in the biosynthesis de novo and possibly the recycling of dolichyl monophosphate in yeast and mammals. A cDNA clone from human brain encoding the mammalian homologue, hDKp, of the yeast enzyme has recently been identified. In this study hDK has been overexpressed in Chinese hamster ovary cells and shown to be a polytopic membrane protein localized in the endoplasmic reticulum with an N terminus extended into the lumen and a cytoplasmically oriented C terminus. A conserved sequence, DXXAXXXGXXXGX(8)KKTXEG, found in several enzymes utilizing CTP as substrate including DKs, phytol kinases, and several CDP-diacylglycerol synthetases has been identified, and the possibility that it is part of the CTP-binding domain of hDKp has been investigated. Topological studies indicate that the loop between transmembrane domains (TMD) 11 and TMD12 of hDKp, containing the putative CTP binding domain, faces the cytoplasm. Deletion of the loop between TMD11-12, hDK(Delta459-474), or mutation of selected conserved residues within the cytoplasmic loop results in either a partial or total loss of activity and significant reductions in the affinity for CTP. In addition, the SEC59 gene in the yeast DK mutant was sequenced, and a G420D substitution was found. Conversion of the corresponding residue Gly-443 in hDKp to aspartic acid resulted in inactivation of the mammalian enzyme. These results extend the information on the topological arrangement of hDKp and indicate that the cytoplasmic loop between TMDs 11-12, containing the critical conserved residues, lysine 470 and lysine 471 in the (470)KKTXEG(475) motif, is part of the CTP-binding site in hDK.
Collapse
Affiliation(s)
- Preetha Shridas
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA
| | | |
Collapse
|
44
|
Wang W, Kim R, Yokota H, Kim SH. Crystal structure of flavin binding to FAD synthetase of Thermotoga maritima. Proteins 2006; 58:246-8. [PMID: 15468322 DOI: 10.1002/prot.20207] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Weiru Wang
- Berkeley Structural Genomics Center, Physical Biosciences Division of the Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
45
|
Fong DH, Yim VCN, D'Elia MA, Brown ED, Berghuis AM. Crystal structure of CTP:glycerol-3-phosphate cytidylyltransferase from Staphylococcus aureus: examination of structural basis for kinetic mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1764:63-9. [PMID: 16344011 DOI: 10.1016/j.bbapap.2005.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 10/04/2005] [Accepted: 10/07/2005] [Indexed: 12/16/2022]
Abstract
Integrity of the cell wall is essential for bacterial survival, and as a consequence components involved in its biosynthesis can potentially be exploited as targets for antibiotics. One such potential target is CTP:glycerol-3-phosphate cytidylyltransferase. This enzyme (TarD(Sa) in Staphylococcus aureus and TagD(Bs) in Bacillus subtilis) catalyzes the formation of CDP-glycerol, which is used for the assembly of linkages between peptidoglycan and teichoic acid polymer in Gram-positive bacteria. Intriguingly, despite the high sequence identity between TarD(Sa) and TagD(Bs) (69% identity), kinetic studies show that these two enzymes differ markedly in their kinetic mechanism and activity. To examine the basis for the disparate enzymological properties, we have determined the crystal structure of TarD(Sa) in the apo state to 3 A resolution, and performed equilibrium sedimentation analysis. Comparison of the structure with that of CTP- and CDP-glycerol-bound TagD(Bs) crystal structures reveals that the overall structure of TarD(Sa) is essentially the same as that of TagD(Bs), except in the C-terminus, where it forms a helix in TagD(Bs) but is disordered in the apo TarD(Sa) structure. In addition, TarD(Sa) can exist both as a tetramer and as a dimer, unlike TagD(Bs), which is a dimer. These observations shed light on the structural basis for the differing kinetic characteristics between TarD(Sa) and TagD(Bs).
Collapse
Affiliation(s)
- Desiree H Fong
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | | | |
Collapse
|
46
|
Schertzer JW, Bhavsar AP, Brown ED. Two conserved histidine residues are critical to the function of the TagF-like family of enzymes. J Biol Chem 2005; 280:36683-90. [PMID: 16141206 DOI: 10.1074/jbc.m507153200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The TagF protein from Bacillus subtilis 168 is the poly(glycerol phosphate) polymerase responsible for the synthesis of wall teichoic acid and is the prototype member of a poorly understood family of similar teichoic acid synthetic enzymes. Here we describe in vitro and in vivo characterization of TagF, which localizes the active site to the carboxyl terminus of the protein and identifies residues that are critical for catalysis. We also establish the first mechanistic link among TagF and similar proteins by demonstrating that the identified residues are also critical in the function of TagB, a homologous enzyme implicated as the glycerophosphotransferase responsible for priming poly(glycerol phosphate) synthesis. We investigated the dependence of TagF activity on pH and showed that deprotonation of a residue with a pK(a) near neutral is critical for proper function. Alteration of histidine residues 474 and 612 by site-directed mutagenesis abolished TagF activity in vitro (5000-fold reduction in k(cat)/K(m)) while variants in four other conserved acidic residues showed minimal loss of activity. Complementation using H474A and H612A mutant alleles failed to suppress a lethal temperature-sensitive tagF defect in vivo despite confirmation of robust expression by Western blot. When corresponding mutations were made to the homologous tagB gene, these alleles were unable to suppress a tagB temperature-sensitive lethal phenotype. These results extend the mechanistic observations for TagF across a wider family of enzymes and provide the first biochemical evidence for the relatedness of these two enzymes.
Collapse
Affiliation(s)
- Jeffrey W Schertzer
- Antimicrobial Research Centre and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | | | |
Collapse
|
47
|
Bogan MJ, Agnes GR, Pio F, Cornell RB. Interdomain and membrane interactions of CTP:phosphocholine cytidylyltransferase revealed via limited proteolysis and mass spectrometry. J Biol Chem 2005; 280:19613-24. [PMID: 15713672 DOI: 10.1074/jbc.m414028200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CTP:phosphocholine cytidylyltransferase (CCT) is a multi-domain enzyme that regulates phosphatidylcholine synthesis. It converts to an active form upon binding cell membranes, and interdomain dissociations have been hypothesized to accompany this process. To identify these interdomain and membrane interactions, the tertiary structures of three forms of CCTalpha were probed by monitoring accessibility to proteases. Time-limited digestion with chymotrypsin or arginine C of soluble CCTalpha (CCT(sol)), phospholipid vesicle-bound CCT (CCT(mem)), and a soluble constitutively active CCT truncated at amino acid 236 generated complex mixtures of peptides that were resolved and identified by gel electrophoresis/immunoblotting and by matrix-assisted laser desorption/ionization-mass spectrometry, with or without coupling to capillary liquid chromatography. Identification of cleavage sites enabled assembly of peptide bond accessibility maps for each CCT form. Our results reveal a approximately 80-residue core within the catalytic domain (domain C) as the most inaccessible region in all three forms and the C-terminal phosphorylation domain as the most accessible. Membrane binding has little effect on the protease accessibility of these domains. To map the protease sites onto the catalytic domain, its three-dimensional structure was modeled from the atomic coordinates of glycerol-phosphate cytidylyltransferase (Protein Data Bank code 1COZ). The protease inaccessibility of most sites in domain C could be explained by burial or location within secondary structural elements. The accessibility of the N-terminal domain (domain N) was enhanced upon membrane binding. Residues Phe(234)-Leu(303) were inaccessible in CCT(mem), suggesting burial in the membrane. Surprisingly, residues Leu(274)-Leu(303) of this domain were also inaccessible in CCT(sol). We propose that this region is buried by interdomain contacts with domain N in CCT(sol). Membrane binding and burial of domain M in the lipid bilayer may disrupt this interaction, leading to increased exposure of sites in domain N.
Collapse
Affiliation(s)
- Michael J Bogan
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | | |
Collapse
|
48
|
Kamakari S, Roussou A, Jefferson A, Ragoussis I, Anagnou NP. Structural analysis and expression profile of a novel gene on chromosome 5q23 encoding a Golgi-associated protein with six splice variants, and involved within the 5q deletion of a Ph(-) CML patient. Leuk Res 2005; 29:17-31. [PMID: 15541471 DOI: 10.1016/j.leukres.2004.04.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Accepted: 04/28/2004] [Indexed: 10/26/2022]
Abstract
We have identified a novel gene, upstream of the cytokine gene cluster region in 5q23-31, residing within one of the most common deleted segments associated with MDS. The novel gene exhibits significant alternative splicing generating at least six splice variants encoding four putative proline-rich protein isoforms, one of which is Golgi-associated. The gene is ubiquitously expressed and conserved among species with the C. elegans homologue being the most interesting, since it resides within an operon with two other genes, phospholipase D and dishevelled, a member of the Wnt pathway, suggesting a functional association. In addition, the novel gene and other key regulatory genes of the region, such IL3, Ril, AF5q31 and TCF-1, were found to be deleted in an atypical CML case, thus underscoring the significance of this subregion in the leukemogenesis process.
Collapse
Affiliation(s)
- Smaragda Kamakari
- Institute of Molecular Biology and Biotechnology, University of Crete School of Medicine, FORTH, Vassilika Vouton, P.O. Box 1527, 71 110 Heraklion, Greece.
| | | | | | | | | |
Collapse
|
49
|
Kent C. Regulatory enzymes of phosphatidylcholine biosynthesis: a personal perspective. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1733:53-66. [PMID: 15749057 DOI: 10.1016/j.bbalip.2004.12.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 12/14/2004] [Accepted: 12/17/2004] [Indexed: 12/22/2022]
Abstract
Phosphatidylcholine is a prominent constituent of eukaryotic and some prokaryotic membranes. This Perspective focuses on the two enzymes that regulate its biosynthesis, choline kinase and CTP:phosphocholine cytidylyltransferase. These enzymes are discussed with respect to their molecular properties, isoforms, enzymatic activities, and structures, and the possible molecular mechanisms by which they participate in regulation of phosphatidylcholine levels in the cell.
Collapse
|
50
|
Jackowski S, Fagone P. CTP: Phosphocholine cytidylyltransferase: paving the way from gene to membrane. J Biol Chem 2004; 280:853-6. [PMID: 15536089 DOI: 10.1074/jbc.r400031200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Suzanne Jackowski
- Protein Science Division, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.
| | | |
Collapse
|