1
|
Liu J, Ge J, Kang X, Tian H. Bioaerosol-related studies in wastewater treatment plant with anaerobic-anoxic-oxic processes: Characterization, source analysis, control measures. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117760. [PMID: 37031601 DOI: 10.1016/j.jenvman.2023.117760] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/21/2023] [Accepted: 03/16/2023] [Indexed: 05/03/2023]
Abstract
Sewage in wastewater treatment plants (WWTPs) can produce fugitive bioaerosols that pose a health risk to employees and residents. This study aimed to fugitive bioaerosols from two WWTPs with anaerobic-anoxic-oxic (AAO) processes, and bioaerosols control measures were proposed based on the results of these studies. It was found that the bioaerosols were mainly composed of microorganisms from dominant genera such as Romboutsia, Rubellimicrobium, Sphingomonas, Acidea, Cryptotrichosporon and water-soluble ions dominated by SO42-. Moreover, total suspended particulate (TSP), relative humidity (RH), wind speed (WS), Ca2+, NH4+, Na+, Cl-, NO3-, and K+ had positive effects on most dominant genera, while temperature (T) and SO42- had negative effects on most dominant genera. The source analysis showed that the bioaerosols in the indoor treatment facility's fine screen room and sludge dewatering plant mainly originated from sewage or sludge, and those in the aeration tank of the outdoor treatment facility mainly originated from the background air of WWTPs . By combining the characteristics of bioaerosols and the results of source analysis, targeted control measures were proposed from three aspects: source reduction of bioaerosol fugitives, control of bioaerosol propagation, and collection and treatment systems. This study provides the theoretical basis and ideas for controlling bioaerosols in WWTPs with AAO processes.
Collapse
Affiliation(s)
- Jianwei Liu
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Jingyun Ge
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Xinyue Kang
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Hongyu Tian
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
| |
Collapse
|
2
|
Negishi N, Yamano R, Hori T, Koura S, Maekawa Y, Sato T. Development of a high-speed bioaerosol elimination system for treatment of indoor air. BUILDING AND ENVIRONMENT 2023; 227:109800. [PMID: 36407015 PMCID: PMC9651995 DOI: 10.1016/j.buildenv.2022.109800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/12/2023]
Abstract
We developed a high-speed filterless airflow multistage photocatalytic elbow aerosol removal system for the treatment of bioaerosols such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Human-generated bioaerosols that diffuse into indoor spaces are 1-10 μm in size, and their selective and rapid treatment can reduce the risk of SARS-CoV-2 infection. A high-speed airflow is necessary to treat large volumes of indoor air over a short period. The proposed system can be used to eliminate viruses in aerosols by forcibly depositing aerosols in a high-speed airflow onto a photocatalyst placed inside the system through inertial force and turbulent diffusion. Because the main component of the deposited bioaerosol is water, it evaporates after colliding with the photocatalyst, and the nonvolatile virus remains on the photocatalytic channel wall. The residual virus on the photocatalytic channel wall is mineralized via photocatalytic oxidation with UVA-LED irradiation in the channel. When this system was operated in a 4.5 m3 aerosol chamber, over 99.8% aerosols in the size range of 1-10 μm were removed within 15 min. The system continued delivering such performance with the continuous introduction of aerosols. Because this system exhibits excellent aerosol removal ability at a flow velocity of 5 m/s or higher, it is more suitable than other reactive air purification systems for treating large-volume spaces.
Collapse
Key Words
- AOP, advanced oxidation process
- Bioaerosol
- CFD, computational fluid dynamics
- COVID-19, coronavirus disease 2019
- DES, detached eddy simulation
- HEPA, high-efficiency particulate absorbing
- ISO, International Standard Organization
- Indoor air
- LES, Large eddy simulation
- RANS, Reynolds-averaged Navier–Stokes
- SARS-CoV-2
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SCDLP, soya casein-digested lecithin polysorbate
- TiO2 photocatalyst
- UV, ultraviolet
- UVA, ultraviolet-A
- UVC, ultraviolet-C
- Windspeed
Collapse
Affiliation(s)
- Nobuaki Negishi
- Environment Management Research Institute, National Institute of Advanced Industrial Science and Technology, 1-16 Onogawa, Tsukuba, 305-8569, Japan
| | - Ryo Yamano
- Department of Applied Chemistry, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, 275-0016, Japan
| | - Tomoko Hori
- Environment Management Research Institute, National Institute of Advanced Industrial Science and Technology, 1-16 Onogawa, Tsukuba, 305-8569, Japan
| | - Setsuko Koura
- Department of Applied Chemistry, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, 275-0016, Japan
| | - Yuji Maekawa
- Kamaishi Electric Machinery Factory Co. Ltd., 9-171-4 Kasshi-cho, Kamaishi, 026-0055, Japan
| | - Taro Sato
- Kamaishi Electric Machinery Factory Co. Ltd., 9-171-4 Kasshi-cho, Kamaishi, 026-0055, Japan
| |
Collapse
|
3
|
Khuong DA, Trinh KT, Nakaoka Y, Tsubota T, Tashima D, Nguyen HN, Tanaka D. The investigation of activated carbon by K 2CO 3 activation: Micropores- and macropores-dominated structure. CHEMOSPHERE 2022; 299:134365. [PMID: 35331749 DOI: 10.1016/j.chemosphere.2022.134365] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
In this study, the K2CO3 activation of bamboo was investigated in detail, and the structure and properties of the prepared activated carbons were tested for the feasibility of CO2 capture application and the potential for both ion and bacteria adsorption for use in the field of hazardous wastewater treatment. Activated carbons were produced with different activator ratios, from 0.5 to 6 according to the sample mass ratio. The ratio of H or O to C (H/C or O/C) increased with the increasing amount of K2CO3 added for the activation. The samples had a highly-porous microporous structure, in which the micropore volume was calculated to be 0.6 cm3 g-1 by the DR method of the CO2 adsorption isotherm at 298 K. The BET surface area and total pore volume estimated from the N2 adsorption isotherms at 77 K of the activated materials increased according to the increase of the K2CO3 impregnation ratio to a maximum value of 1802 m2 g-1 and 0.91 cm3 g-1, respectively. Moreover, the K2CO3-activated samples had a specific morphology, that is, macropores which are presumed to be derived from bubbles. The X-ray-CT images showed that the bubble-like structure is not only on the surface but also inside the samples. The results of gas adsorption methods, mercury porosimetry, and SEM showed the co-existence of micropores (<2 nm) and macropores (100-10,000 nm). The results highlighted the unique pore structure, that is, the coexistence of micropores and macropores that would contribute to forming solutions for carbon sequestration in the atmosphere and wastewater treatment.
Collapse
Affiliation(s)
- Duy Anh Khuong
- Department of Materials Science, Faculty of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu-shi, Fukuoka, 804-8550, Japan
| | - Kieu Trang Trinh
- Department of Materials Science, Faculty of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu-shi, Fukuoka, 804-8550, Japan
| | - Yu Nakaoka
- Department of Materials Science, Faculty of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu-shi, Fukuoka, 804-8550, Japan
| | - Toshiki Tsubota
- Department of Materials Science, Faculty of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu-shi, Fukuoka, 804-8550, Japan.
| | - Daisuke Tashima
- Department of Electrical Engineering, Fukuoka Institute of Technology, 3 Chome-30-1 Wajirohigashi, Higashi Ward, Fukuoka, 811-0295, Japan
| | - Hong Nam Nguyen
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Viet Nam
| | - Daisaku Tanaka
- Chemical and Textile Research Institute, Fukuoka Industrial Technology Center, 3-2-1 Kamikoga, Chikushino-shi, Fukuoka, 818-8540, Japan
| |
Collapse
|
4
|
Kataki S, Patowary R, Chatterjee S, Vairale MG, Sharma S, Dwivedi SK, Kamboj DV. Bioaerosolization and pathogen transmission in wastewater treatment plants: Microbial composition, emission rate, factors affecting and control measures. CHEMOSPHERE 2022; 287:132180. [PMID: 34560498 DOI: 10.1016/j.chemosphere.2021.132180] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/19/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Environmental consequences during wastewater management are vital and getting increased attention to interrupt any possible disease transmission pathways. Evidence of bioaerosolization of pathogen from wastewater to atmosphere during wastewater treatment have been highlighted previously. Understanding aerosol-based transmission in wastewater treatment plant (WWTP) is important because of the hazard it presents to the workers involved or to the population around and appears to be very significant during pandemic occurrences. This work aims to evaluate the possibility of pathogenic content of wastewater getting aerosolized during treatment by synthesizing the evidence on the potential aerosol generating treatment phases of WWTP, bioaerosol microbial composition, emission load and the factors affecting the bioaerosol formation. We also present some potential control strategies to take up in WWTP which may be useful to avoid such occurrences. Implementation of Aeration based strategies (use of diffused, submerged aeration, reduction in aeration rate), Improved ventilation based strategies (effective ventilation with adequate supply of clean air, minimizing air recirculation, supplementation with infection control measures such as filtration, irradiation), Improved protection based strategy (periodic monitoring of disinfection efficiency, pathogenic load of wastewater, improved operation policy) and other strategies (provision of buffer zone, wind shielding, water spraying on aerosol, screened surface of treatment units) could be very much relevant and significant in case of disease outbreak through aerosol formation in wastewater environment. Recent progress in sensor-based data collection, analysis, cloud-based storage, and early warning techniques in WWTP may help to reduce the risk of infectious transmission, especially during a pandemic situation.
Collapse
Affiliation(s)
- Sampriti Kataki
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India
| | - Rupam Patowary
- Foundation for Environmental and Economic Development Services, Manipur, India
| | - Soumya Chatterjee
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India.
| | - Mohan G Vairale
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India
| | - Sonika Sharma
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India
| | - Sanjai K Dwivedi
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India
| | - Dev Vrat Kamboj
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India
| |
Collapse
|
5
|
Singh NK, Sanghvi G, Yadav M, Padhiyar H, Thanki A. A state-of-the-art review on WWTP associated bioaerosols: Microbial diversity, potential emission stages, dispersion factors, and control strategies. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124686. [PMID: 33309139 DOI: 10.1016/j.jhazmat.2020.124686] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 05/13/2023]
Abstract
Wastewater treatment plants (WWTPs) associated bioaerosols have emerged as one of the critical sustainability indicators, ensuring health and well-being of societies and cities. In this context, this review summarizes the various wastewater treatment technologies which have been studied with a focus of bioaerosols emissions, potential emission stages, available sampling strategies, survival and dispersion factors, dominant microbial species in bioaerosols, and possible control approaches. Literature review revealed that most of the studies were devoted to sampling, enumerating and identifying cultivable microbial species of bioaerosols, as well as measuring their concentrations. However, the role of treatment technologies and their operational factors are investigated in limited studies only. Moreover, few studies have been reported to investigate the presence and concentrations of air borne virus and fungi in WWTP, as compared to bacterial species. The common environmental factors, affecting the survival and dispersion of bioaerosols, are observed as relative humidity, temperature, wind speed, and solar illumination. Further, research studies on recent episodes of COVID-19 (SARS-CoV-2 virus) pandemic also revealed that continuous and effective surveillance on WWTPs associated bioaerosols may led to early sign for future pandemics. The evaluation of reported data is bit complicated, due to the variation in sampling approaches, ambient conditions, and site activities of each study. Therefore, such studies need a standardized methodology and improved guidance to help informed future policies, contextual research, and support a robust health-based risk assessment process. Based on this review, an integrated sampling and analysis framework is suggested for future WWTPs to ensure their sustainability at social and/or health associated aspects.
Collapse
Affiliation(s)
- Nitin Kumar Singh
- Department of Environmental Science and Engineering, Marwadi Education Foundations Group of Institutions, Rajkot, India.
| | - Gaurav Sanghvi
- Department of Microbiology, Marwadi University, Rajkot, India.
| | - Manish Yadav
- Central Mine Planning Design Institute, Bhubaneshwar, India.
| | - Hirendrasinh Padhiyar
- Department of Environmental Science and Engineering, Marwadi Education Foundations Group of Institutions, Rajkot, India.
| | - Arti Thanki
- Department of Microbiology, Marwadi University, Rajkot, India.
| |
Collapse
|
6
|
Liu J, Kang X, Liu X, Yue P, Sun J, Lu C. Simultaneous removal of bioaerosols, odors and volatile organic compounds from a wastewater treatment plant by a full-scale integrated reactor. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION : TRANSACTIONS OF THE INSTITUTION OF CHEMICAL ENGINEERS, PART B 2020; 144:2-14. [PMID: 32834560 PMCID: PMC7341965 DOI: 10.1016/j.psep.2020.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/02/2020] [Accepted: 07/02/2020] [Indexed: 05/03/2023]
Abstract
Biological control of odors and bioaerosols in wastewater treatment plants (WWTPs) have gained more attention in recent years. The simultaneous removal of odors, volatile organic compounds (VOCs) and bioaerosols in each unit of a full-scale integrated-reactor (FIR) in a sludge dewatering room was investigated. The average removal efficiencies (REs) of odors, VOCs and bioaerosols were recorded as 98.5 %, 94.7 % and 86.4 %, respectively, at an inlet flow rate of 5760 m3/h. The RE of each unit decreased, and the activated carbon adsorption zone (AZ) played a more important role as the inlet flow rate increased. The REs of hydrophilic compounds were higher than those of hydrophobic compounds. For bioaerosols, roughly 35 % of airborne heterotrophic bacteria (HB) was removed in the low-pH zone (LPZ) while over 30 % of total fungi (TF) was removed in the neutral-pH zone (NPZ). Most bioaerosols removed by the biofilter (BF) had a particle size larger than 4.7 μm while bioaerosols with small particle size were apt to be adsorbed by AZ. The microbial community in the BF changed significantly at different units. Health risks were found to be associated with H2S rather than with bioaerosols at the FIR outlet.
Collapse
Affiliation(s)
- Jianwei Liu
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Xinyue Kang
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Xueli Liu
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Peng Yue
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Jianbin Sun
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Chen Lu
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| |
Collapse
|
7
|
Liu J, Yue P, Huang L, Zhao M, Kang X, Liu X. Styrene removal with an acidic biofilter with four packing materials: Performance and fungal bioaerosol emissions. ENVIRONMENTAL RESEARCH 2020; 191:110154. [PMID: 32877704 DOI: 10.1016/j.envres.2020.110154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/16/2020] [Accepted: 08/22/2020] [Indexed: 05/17/2023]
Abstract
The packing material used in acidic biofilters (ABFs) has a significant impact on styrene removal. The bioaerosol emission was rarely considered when evaluating the packing materials in the ABFs. Four ABFs packed with ceramsite, compost, lava and polyurethane (PU) were developed and compared for their styrene removal and fungal bioaerosol emissions characteristics over 529 days. The removal efficiencies of styrene in the ABFs were higher under the condition of longer empty bed residence time (EBRT) and lower inlet concentration. The maximum styrene elimination capacities of the ABFs with ceramsite, compost, lava and PU were 74.57, 87.81, 67.13 and 101.88 g/m3 h, respectively. A lower pressure drop and the highest fungi count were observed in the ABF packed with PU. The emissions concentrations of fungal bioaerosols at the humidity of 63.5% were lower than those at a humidity of 42.7% and it increased with the air velocity. Additionally, the concentrations of fungal bioaerosols emitted from the ABFs packed with PU were 2168 ± 145-3661 ± 257 CFU/m3, which was 33%-90% lower than those of the other three ABFs. The particle size distributions of the fungal bioaerosols emitted from the ABFs packed with PU and compost were mainly centered around large particles. Considering the removal of styrene and the fungal bioaerosols emissions, PU was the optimal packing material for ABF.
Collapse
Affiliation(s)
- Jianwei Liu
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Peng Yue
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Lihua Huang
- School of Resources and Environment, Linyi University, Linyi, 276005, China
| | - Mengfei Zhao
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Xinyue Kang
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Xueli Liu
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
8
|
Sun Y, Xue S, Li L, Ding W, Liu J, Han Y. Sulfur dioxide and o-xylene co-treatment in biofilter: Performance, bacterial populations and bioaerosols emissions. J Environ Sci (China) 2018; 69:41-51. [PMID: 29941267 DOI: 10.1016/j.jes.2017.03.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/22/2017] [Accepted: 03/31/2017] [Indexed: 05/17/2023]
Abstract
Sulfur dioxide (SO2) and benzene homologs are frequently present in the off-gas during the process of sewage sludge drying. A laboratory scale biofilter was set up to co-treat SO2 and o-xylene in the present study. SO2 and o-xylene could be removed simultaneously in a single biofilter. Their concentration ratio in the inlet stream influenced the removal efficiencies. It is worth noting that the removal of SO2 could be enhanced when low concentrations of o-xylene were introduced into the biofilter. Pseudomonas sp., Paenibacillus sp., and Bacillus sp. were the main functional bacteria groups in the biofilter. Sulfur-oxidizing bacteria (SOB) and o-xylene-degrading bacteria (XB) thrived in the biofilter and their counts as well as their growth rate increased with the increase in amount of SO2 and o-xylene supplied. The microbial populations differed in counts and species due to the properties and components of the compounds being treated in the biofilter. The presence of mixed substrates enhanced the diversity of the microbial population. During the treatment process, bioaerosols including potentially pathogenic bacteria, e.g., Acinetobacter lwoffii and Aeromonas sp., were emitted from the biofilter. Further investigation is needed to focus on the potential hazards caused by the bioaerosols emitted from waste gas treatment bioreactors.
Collapse
Affiliation(s)
- Yongli Sun
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Research Center for Urban Water & Wastewater, Tianjin 300074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Xue
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wenjie Ding
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junxin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunping Han
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Chemicals and microbes in bioaerosols from reaction tanks of six wastewater treatment plants: survival factors, generation sources, and mechanisms. Sci Rep 2018; 8:9362. [PMID: 29921977 PMCID: PMC6008454 DOI: 10.1038/s41598-018-27652-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/08/2018] [Indexed: 01/09/2023] Open
Abstract
Sampling was conducted from biochemical reaction tanks of six municipal wastewater treatment plants in the Yangtze River and Zhujiang deltas and the Jing-Jin-Ji region to assess their morphology, level, and composition. Morphological observations suggested that particles were scattered amorphously with C, O, and Si as the major elements. Bioaerosols are composed of spatially varying levels of microorganisms and chemicals. As the sampling height increased, the level of the components in the bioaerosols decreased. Wastewater in the biochemical reaction tanks was identified as an important source of bioaerosols using SourceTracker analysis. The aerosolization of film drops produced by bursting of bubbles was the main reason for the generation of bioaerosols. Increasing the aeration rate of water may promote bioaerosol generation. Relative humidity, temperature, wind speed, and solar illumination influenced the survival of bioaerosols. Large particle sedimentation and wind diffusion significantly decreased the atmospheric aerosol concentration. When the sampling point height increased from 0.1 m to 3.0 m, the concentrations of the microorganisms and total suspended particles decreased by 23.71% and 38.74%, respectively. Considerable attention should be paid to the control of total suspended particles and microorganisms in bioaerosols.
Collapse
|
10
|
Pham TD, Lee BK. Advanced removal of C. famata in bioaerosols by simultaneous adsorption and photocatalytic oxidation of Cu-doped TiO 2/PU under visible irradiation. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2016; 286:377-386. [PMID: 32288625 PMCID: PMC7108340 DOI: 10.1016/j.cej.2015.10.100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/15/2015] [Accepted: 10/30/2015] [Indexed: 05/10/2023]
Abstract
Polyurethane (PU), a honeycomb structure material, was used as a substrate onto which TiO2 and Cu-TiO2 were deposited in order to integrate the adsorption property to the photocatalysts. TiO2 deposited on PU (TiO2/PU) and Cu-doped TiO2 deposited on PU (Cu-TiO2/PU) were synthesized and applied to the removal of Candida famata (C. famata), a frequently encountered airborne yeast. The removal capacities of C. famata by PU, TiO2/PU and Cu-TiO2/PU were 1.5 × 105, 3.2 × 105 and 6.9 × 105 (CFU/cm3) under dark condition and 1.5 × 105, 3.3 × 105 and 1.8 × 106 (CFU/cm3) under visible light irradiation, respectively. PU and TiO2/PU seemed to exhibit only an adsorption ability for removing C. famata in aerosols under both dark and visible light. The C. famata removal capacity of Cu-TiO2/PU under visible light was increased 2.6-fold compared to that under dark condition. This significant increase was attributed to the Cu dopant, which enhanced the electron-hole separation efficiency and capacity of TiO2, resulting in the high photocatalytic activity of Cu-TiO2/PU under visible light.
Collapse
Affiliation(s)
| | - Byeong-Kyu Lee
- Corresponding author. Tel.: +82 52 259 2864; fax: +82 52 259 2629.
| |
Collapse
|
11
|
Pham TD, Lee BK. Novel integrated approach of adsorption and photo-oxidation using Ag-TiO 2/PU for bioaerosol removal under visible light. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2015; 275:357-365. [PMID: 32372878 PMCID: PMC7185811 DOI: 10.1016/j.cej.2015.04.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/10/2015] [Accepted: 04/10/2015] [Indexed: 05/10/2023]
Abstract
We investigated a novel approach by synthesizing an integrated material, which could act as both adsorbent and photocatalytic material, for bioaerosol purification under visible light conditions. Ag was used as a dopant agent to enhance photocatalytic activity of TiO2, leading to high photocatalytic activity of the doped TiO2 even under visible light. Under visible light, the doped TiO2 photocatalyst could produce oxy radicals, oxidative agents, that participate in oxidation reactions to decompose important organic components of bacteria, leading to death or removal of bacteria from an aerosol. Adsorption property was integrated into the enhanced TiO2 photocatalyst by using polyurethane (PU), a honeycomb structure material, as a substrate for coating process of the doped TiO2. Three materials including pristine PU, TiO2 coating on PU (TiO2/PU), and Ag-doped TiO2 coating on PU (Ag-TiO2/PU) were used to remove Escherichia coli in an aerosol under visible light. Under dark conditions, the removal capacities of E. coli in the aerosol by PU, TiO2/PU, and Ag-TiO2/PU were 1.2 × 105, 2.7 × 105, and 6.2 × 105 (CFU/cm3), respectively. Under visible light irradiation, the removal capacities of E. coli in an aerosol by PU, TiO2/PU, and Ag-TiO2/PU were 1.2 × 105, 2.7 × 105, and 1.8 × 106 (CFU/cm3), respectively. The improvement of the removal capacity by TiO2/PU and Ag-TiO2/PU, versus PU, is due to adsorption alone and the combination of adsorption plus photocatalytic activity, respectively.
Collapse
Affiliation(s)
- Thanh-Dong Pham
- Department of Civil and Environmental Engineering, University of Ulsan, Daehakro 93, Namgu, Ulsan 680-749, Republic of Korea
| | - Byeong-Kyu Lee
- Department of Civil and Environmental Engineering, University of Ulsan, Daehakro 93, Namgu, Ulsan 680-749, Republic of Korea
| |
Collapse
|
12
|
Gao M, Qiu T, Jia R, Han M, Song Y, Wang X. Concentration and size distribution of viable bioaerosols during non-haze and haze days in Beijing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:4359-68. [PMID: 25300183 DOI: 10.1007/s11356-014-3675-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 09/29/2014] [Indexed: 05/23/2023]
Abstract
Accumulation of airborne particulate matter (PM) has profoundly affected the atmospheric environment of Beijing, China. Although studies on health risks have increased, characterization of specific factors that contribute to increased health risks remains an area of needed exploration. Chemical composition studies on PM can readily be found in the literature but researches on biological composition are still limited. In this study, the concentration and size distribution of viable airborne bacteria and fungi were determined in the atmosphere from May to July 2013 in Beijing, China. Samples were collected during non-haze days and haze days based on the value of air quality index (AQI) PM2.5. Multiple linear regression results indicated that concentrations of viable bioaerosol exhibited a negative correlation with PM2.5 (AQI) ranging from 14 to 452. There was a little difference in size distribution of bioaerosol between non-haze and haze days that all airborne bacteria showed skewed trends toward larger sizes and airborne fungi followed a Gaussian distribution. Spearman's correlation analysis showed that a fraction of bioaerosol with fine and coarse particles had negative and positive relations with PM2.5 (AQI), respectively. Moreover, the temporal variation of d g (aerodynamic diameter) of bioaerosol with PM2.5 (AQI) fluctuated from 9:00 to 21:00, which suggested that their deposition pattern would vary during a day. The primary research in this study implied that aerodynamic size variation should be considered in assessing the bioaerosol exposure during haze weather.
Collapse
Affiliation(s)
- Min Gao
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Banjing, Haidian District, 100097, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
13
|
Shen JH, Wang YS, Lin JP, Wu SH, Horng JJ. Improving the indoor air quality of respiratory type of medical facility by zeolite filtering. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2014; 64:13-18. [PMID: 24620399 DOI: 10.1080/10962247.2013.831798] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
UNLABELLED This study investigated the indoor air quality (IAQ) conditions of carbon dioxide (CO2), carbon monoxide (CO), ozone (O3), formaldehyde (HCHO), total volatile organic compounds (TVOCs), and bio-aerosols (bacteria and fungi) in a respiratory type of medical facility in Chia-Yi County in southern Taiwan. Among those IAQ conditions, the concentrations of CO, O3, and HCHO exceeded the regulation values of the Taiwan Environmental Protection Administration (EPA) mostly in the morning. The concentrations of bacteria and fungi did not exceed the regulation values but still posed potential health and environment problems for workers, patients, and visitors. Therefore, self-made silver-coated zeolite (AgZ) was used as a filter material in air cleaners to remove bio-aerosols in the respiratory care ward (RCW), and the removals were still effective after 120 hr. The cumulative bio-aerosol removals for bacteria and fungi were 900 and 1,088 colony-forming units (CFU) g(-1) after 24 hr and were above 3,100 and 2,700 CFU g(-1) after 120 hr. From the research results, it is suggested that AgZ filtering could be used as a feasible engineering measure for hospitals to control their bacteria and fungi parameters in IAQ management. Hospitals should maintain their environmental management and monitoring programs and use different engineering measures to improve different IAQ parameters. IMPLICATIONS This study investigated the IAQ conditions in the field at a hospital in Chia-Yi County in southern Taiwan. Although concentrations of most parameters were still within the regulation values, the concentrations of CO, O3, and HCHO were partially exceeded. We propose a method using an air cleaner with silver-coated zeolite (AgZ) as a possible engineering measure, and there were effective reductions of bacteria and fungi to lower levels with antibacterial effects after 120 hr. Furthermore, this study implies that hospitals should continuously maintain environmental monitoring programs and adopt optimal engineering measures for different needs.
Collapse
|