1
|
Alston L, Mahieu-Williame L, Hebert M, Kantapareddy P, Meyronet D, Rousseau D, Guyotat J, Montcel B. Spectral complexity of 5-ALA induced PpIX fluorescence in guided surgery: a clinical study towards the discrimination of healthy tissue and margin boundaries in high and low grade gliomas. BIOMEDICAL OPTICS EXPRESS 2019; 10:2478-2492. [PMID: 31149380 PMCID: PMC6524587 DOI: 10.1364/boe.10.002478] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/09/2019] [Accepted: 03/21/2019] [Indexed: 05/06/2023]
Abstract
Gliomas are diffuse and hard to cure brain tumors. A major reason for their aggressive behavior is their property to infiltrate the brain. The gross appearance of the infiltrative component is comparable to normal brain, constituting an obstacle to extended surgical resection. 5-ALA induced PpIX fluorescence measurements enable gains in sensitivity to detect infiltrated cells, but still lack sensitivity to get accurate discrimination between the tumor margin and healthy tissue. In this fluorescence spectroscopic study, we assume that two states of PpIX contribute to total fluorescence to get better discrimination of healthy tissues against tumor margins. We reveal that fluorescence in low-density margins of high-grade gliomas or in low-grade gliomas is mainly influenced by the second state of PpIX centered at 620 nm. We thus conclude that consideration of the contributions of both states to total fluorescence can help to improve fluorescence-guided resection of gliomas by discriminating healthy tissues from tumor margins.
Collapse
Affiliation(s)
- L. Alston
- Univ Lyon, INSA‐Lyon, Université Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR5220, U1206, F-69616, Lyon, France
| | - L. Mahieu-Williame
- Univ Lyon, INSA‐Lyon, Université Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR5220, U1206, F-69616, Lyon, France
| | - M. Hebert
- Univ Lyon, UJM-Saint-Etienne, CNRS, Institut d Optique Graduate School, Lab. Hubert Curien UMR5516, F-42023, St Etienne, France
| | - P. Kantapareddy
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service d’anatomopathologie, 59 Bvd Pinel, 69394, Lyon, Cedex, France
| | - D. Meyronet
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service d’anatomopathologie, 59 Bvd Pinel, 69394, Lyon, Cedex, France
- Department of Cancer Cell Plasticity, Cancer Research Centre of Lyon, INSERM U1052, CNRS UMR5286, Lyon, France, Université Claude Bernard Lyon 1, Lyon, France
| | - D. Rousseau
- Univ Lyon, INSA‐Lyon, Université Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR5220, U1206, F-69616, Lyon, France
| | - J. Guyotat
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service d’anatomopathologie, 59 Bvd Pinel, 69394, Lyon, Cedex, France
| | - B. Montcel
- Univ Lyon, INSA‐Lyon, Université Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR5220, U1206, F-69616, Lyon, France
| |
Collapse
|
2
|
Benito M, Martín V, Blanco MD, Teijón JM, Gómez C. Cooperative Effect of 5-Aminolevulinic Acid and Gold Nanoparticles for Photodynamic Therapy of Cancer. J Pharm Sci 2013; 102:2760-9. [DOI: 10.1002/jps.23621] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/03/2013] [Accepted: 05/01/2013] [Indexed: 12/11/2022]
|
3
|
Gómez C, Benito M, Katime I, Teijón JM, Blanco MD. In vitrotransdermal and biological evaluation of ALA-loaded poly(N-isopropylacrylamide) and poly(N-isopropylacrylamide-co-acrylic acid) microgels for photodynamic therapy. J Microencapsul 2012; 29:626-35. [DOI: 10.3109/02652048.2012.676091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
Designing photosensitizers for photodynamic therapy: strategies, challenges and promising developments. Future Med Chem 2009; 1:667-91. [DOI: 10.4155/fmc.09.55] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Photodynamic therapy (PDT) and photodynamic antimicrobial chemotherapy (PACT) are techniques that combine the effects of visible light irradiation with subsequent biochemical events that arise from the presence of a photosensitizing drug (possessing no dark toxicity) to cause destruction of selected cells. Despite its still widespread clinical use, Photofrin® has several drawbacks that limit its general clinical use. Consequently, there has been extensive research into the design of improved alternative photosensitizers aimed at overcoming these drawbacks. While there are many review articles on the subject of PDT and PACT, these have focused on the photosensitizers that have been used clinically, with little emphasis placed on how the chemical aspects of the molecule can affect their efficacy as PDT agents. Indeed, many of the PDT/PACT agents used clinically may not even be the most appropriate within a given class. As such, this review aims to provide a better understanding of the factors that have been investigated, while aiming at improving the efficacy of a molecule intended to be used as a photosensitizer. Recent publications, spanning the last 5 years, concerning the design, synthesis and clinical usage of photosensitizers for application in PDT and PACT are reviewed, including 5-aminolevulinic acid, porphyrins, chlorins, bacteriochlorins, texaphyrins, phthalocyanines and porphycenes. It has been shown that there are many important considerations when designing a potential PDT/PACT agent, including the influence of added groups on the lipophilicity of the molecule, the positioning and nature of these added groups within the molecule, the presence of a central metal ion and the number of charges that the molecule possesses. The extensive ongoing research within the field has led to the identification of a number of potential lead molecules for application in PDT/PACT. The development of the second-generation photosensitizers, possessing shorter periods of photosensitization, longer activation wavelengths and greater selectivity for diseased tissue provides hope for attaining the ideal photosensitizer that may help PDT and PACT move from laboratory investigation to clinical practice.
Collapse
|
5
|
Donnelly RF, Morrow DI, McCarron PA, Woolfson AD, Morrissey A, Juzenas P, Juzeniene A, Iani V, McCarthy HO, Moan J. Microneedle-mediated intradermal delivery of 5-aminolevulinic acid: Potential for enhanced topical photodynamic therapy. J Control Release 2008; 129:154-62. [DOI: 10.1016/j.jconrel.2008.05.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 04/30/2008] [Accepted: 05/05/2008] [Indexed: 10/22/2022]
|
6
|
Donnelly RF, McCarron PA, Woolfson DA. Derivatives of 5-Aminolevulinic Acid for Photodynamic Therapy. PERSPECTIVES IN MEDICINAL CHEMISTRY 2007. [DOI: 10.1177/1177391x0700100005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Photodynamic therapy (PDT) is a clinical treatment that combines the effects of visible light irradiation with subsequent biochemical events that arise from the presence of a photosensitising drug (possessing no dark toxicity) to cause destruction of selected cells. Today, the most common agent used in dermatological PDT is 5-aminolevulinic acid (ALA). As a result of its hydrophilic character, ALA penetrates skin lesions poorly when applied topically. Its systemic bioavailability is limited and it is known to cause significant side effects when given orally or intravenously. Numerous chemical derivatives of ALA have been synthesised with the aims of either improving topical penetration or enhancing systemic bioavailability, while reducing side effects. In vitro cell culture experiments with ALA derivatives have yielded promising results. However, if ALA derivatives are to demonstrate meaningful clinical benefits, a rational approach to topical formulation design is required, along with a systematic study aimed at uncovering the true potential of ALA derivatives in photodynamic therapy. With respect to systemic ALA delivery, more study is required in the developing area of ALA-containing dendrons and dendrimers.
Collapse
Affiliation(s)
- Ryan F. Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, U.K
| | - Paul A. McCarron
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, U.K
| | - David A. Woolfson
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, U.K
| |
Collapse
|
7
|
Donnelly RF, Morrow DI, McCarron PA, Garland MJ, Woolfson AD. Influence of solution viscosity and injection protocol on distribution patterns of jet injectors: Application to photodynamic tumour targeting. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2007; 89:98-109. [DOI: 10.1016/j.jphotobiol.2007.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 09/17/2007] [Accepted: 09/17/2007] [Indexed: 10/22/2022]
|
8
|
Juzeniene A, Peng Q, Moan J. Milestones in the development of photodynamic therapy and fluorescence diagnosis. Photochem Photobiol Sci 2007; 6:1234-45. [PMID: 18046478 DOI: 10.1039/b705461k] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Many reviews on PDT have been published. This field is now so large, and embraces so many sub-specialties, from laser technology and optical penetration through diffusing media to a number of medical fields including dermatology, gastroenterology, ophthalmology, blood sterilization and treatment of microbial-viral diseases, that it is impossible to cover all aspects in a single review. Here, we will concentrate on a few basic aspects, all important for the route of development leading PDT to its present state: early work on hematoporphyrin and hematoporphyrin derivative, second and third generation photosensitizers, 5-aminolevulinic acid and its derivatives, oxygen and singlet oxygen, PDT effects on cell organelles, mutagenic potential, the basis for tumour selectivity, cell cooperativity, photochemical internalization, light penetration into tissue and the significance of oxygen depletion, photobleaching of photosensitizers, optimal light sources, effects on the immune system, and, finally, future trends.
Collapse
Affiliation(s)
- Asta Juzeniene
- Department of Radiation Biology, Institute for Cancer Research, Rikshospitalet-Radiumhospitalet Medical Center, The Norwegian Radium Hospital, Montebello, N-0310, Oslo, Norway.
| | | | | |
Collapse
|
9
|
McCarron PA, Donnelly RF, Woolfson AD. Autoradiographic and Scintillation Analysis of 5-Aminolevulinic Acid Permeation Through Epithelialised Tissue: Implications for Topical Photodynamic Therapy of Superficial Gynaecological Neoplasias. Pharm Res 2007; 25:812-26. [PMID: 17657596 DOI: 10.1007/s11095-007-9352-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 05/17/2007] [Indexed: 10/23/2022]
Abstract
PURPOSE Aminolevulinic acid (5-ALA) diffusion through both keratinised and non-keratinised tissue, used as a model tissue substrates, was evaluated, together with the depth of permeation and the concentration achieved following delivery from bioadhesive patch and proprietary cream formulations. MATERIALS AND METHODS Moisture-activated, bioadhesive patches loaded with 5-ALA at concentrations of 19.0, 38.0 and 50.0 mg cm(-2) and an o/w cream (20% w/w 5-ALA) were radiolabelled with C14 5-ALA and applied to excised human vaginal tissue and porcine skin. After 1, 2 and 4 h, tissue was sectioned in two orientations and the 5-ALA concentration at specific depths determined using autoradiography and liquid scintillation counting (LSC). RESULTS The stratum corneum was a significant barrier to 5-ALA permeation, with concentrations in tissue dependent on application time and drug loading. 5-ALA was detected at 6 mm using autoradiography after 2 h, with LSC showing phototoxic concentrations at 2.375 mm after 4 h of application. Inclusion of oleic acid and dimethyl sulphoxide in bioadhesive patches increased 5-ALA significantly in neonate porcine tissue, but only for patches cast from blends containing 5% w/w oleic acid. CONCLUSIONS The bioadhesive patch described delivered 5-ALA to depths of at least 2.5 mm in tissue types indicative of vulval skin, suggesting that photodynamic therapy of deep vulval intraepithelial neoplasia is feasible using this means of bioadhesive 5-ALA delivery.
Collapse
Affiliation(s)
- Paul A McCarron
- School of Pharmacy, Queens University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| | | | | |
Collapse
|
10
|
Datta A, Dube A, Jain B, Tiwari A, Gupta PK. The Effect of pH and Surfactant on the Aggregation Behavior of Chlorin p6: A Fluorescence Spectroscopic Study¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2002)0750488teopas2.0.co2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Gerscher S, Connelly JP, Griffiths J, Brown SB, MacRobert AJ, Wong G, Rhodes LE. Comparison of the Pharmacokinetics and Phototoxicity of Protoporphyrin IX Metabolized from 5-Aminolevulinic Acid and Two Derivatives in Human Skin In Vivo¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2000)0720569cotpap2.0.co2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Zimmermann A, Ritsch-Marte M, Kostron H. In Vitro Investigation on the pH Dependence of the Absorption and Fluorescence Properties of the Photosensitizer mTHPC¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2002)0750335iviotp2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Donnelly RF, McCarron PA, Woolfson AD. Drug Delivery of Aminolevulinic Acid from Topical Formulations Intended for Photodynamic Therapy¶. Photochem Photobiol 2007. [DOI: 10.1111/j.1751-1097.2005.tb01439.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Gilmore BF, McCarron PA, Morrow DIJ, Murphy DJ, Woolfson AD, Donnelly RF. In vitro phototoxicity of 5-aminolevulinic acid and its methyl ester and the influence of barrier properties on their release from a bioadhesive patch. Eur J Pharm Biopharm 2006; 63:295-309. [PMID: 16682177 DOI: 10.1016/j.ejpb.2006.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 03/10/2006] [Indexed: 11/15/2022]
Abstract
Topical administration of excess exogenous 5-aminolevulinic acid (ALA) leads to selective accumulation of the potent photosensitiser protoporphyrin IX (PpIX) in neoplastic cells, which can then be destroyed by irradiation with visible light. Due to its hydrophilicity, ALA penetrates deep lesions, such as nodular basal cell carcinomas (BCCs) poorly. As a result, more lipophilic esters of ALA have been employed to improve tissue penetration. In this study, the in vitro release of ALA and M-ALA from proprietary creams and novel patch-based systems across normal stratum corneum and a model membrane designed to mimic the abnormal stratum corneum overlying neoplastic skin lesions were investigated. Receiver compartment drug concentrations were compared with the concentrations of each drug producing high levels of PpIX production and subsequent light-induced kill in a model neoplastic cell line (LOX). LOX cells were found to be quite resistant to ALA- and M-ALA-induced phototoxicity. However, drug concentrations achieved in receiver compartments were comparable to those required to induce high levels of cell death upon irradiation in cell lines reported in the literature. Patches released significantly less drug across normal stratum corneum and significantly more across the model membrane. This is of major significance since the selectivity of PDT for neoplastic lesions will be further enhanced by the delivery system. ALA/M-ALA will only be delivered in significant amounts to the abnormal tissue. PpIX will only then accumulate in the neoplastic cells and the normal surrounding tissue will be unharmed upon irradiation.
Collapse
Affiliation(s)
- Brendan F Gilmore
- School of Pharmacy, Queens University Belfast, Medical Biology Centre, Belfast, UK
| | | | | | | | | | | |
Collapse
|
15
|
Donnelly RF, Morrow DIJ, McCarron PA, Juzenas P, Woolfson AD. Pharmaceutical analysis of 5-aminolevulinic acid in solution and in tissues. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2006; 82:59-71. [PMID: 16242952 DOI: 10.1016/j.jphotobiol.2005.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 08/10/2005] [Accepted: 08/26/2005] [Indexed: 11/28/2022]
Abstract
Quantification of 5-aminolevulinic acid (ALA) in solution, and methods used to achieve this, have been extensively reported in the literature. However, validated methods have only rarely been presented and never have methods been compared. Due to a necessity in drug delivery research for optimised and validated methods for determination of ALA in solution, this paper compares, for the first time, two such methods validated to International Conference on Harmonisation (ICH) standards. Of major importance, derivatisation of ALA with acetyl acetone and formaldehyde was found to be more suitable for routine fluorimetric HPLC analysis of ALA than derivatisation with o-phthaldialdehyde and 2-mercaptoethanol. This former method was successfully utilised in the comparison of in vitro drug release from a proprietary ALA cream and a novel bioadhesive patch-based system. In addition, determination of ALA in tissue is necessary to compare different topical formulations, in terms of their ability to deliver the drug successfully, and different tissue types, to assess their barrier properties to penetration of the drug. Consequently, this paper also describes the use of liquid scintillation spectroscopy as an analytical tool for rapid, convenient and routine quantification of ALA in tissue and determination of penetration depth following topical application of creams and patches.
Collapse
Affiliation(s)
- Ryan F Donnelly
- School of Pharmacy, Queens University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | | | | | | | | |
Collapse
|
16
|
McCarron PA, Donnelly RF, Gilmore BF, Woolfson AD, McClelland R, Zawislak A, Price JH. Phototoxicity of 5-aminolevulinic acid in the HeLa cell line as an indicative measure of photodynamic effect after topical administration to gynecological lesions of intraepithelial form. Pharm Res 2005; 21:1871-9. [PMID: 15553235 DOI: 10.1023/b:pham.0000045242.98628.0b] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE The depth-resolved pattern of aminolevulinic acid (ALA) concentration in excised vaginal tissue was determined after in vitro application of an ALA-loaded bioadhesive patch. From this data, the tissue concentration of ALA achievable at a specified depth from the surface could be related to the concentration needed to elicit a photodynamic effect in a model gynecological tumor cell line (HeLa). METHODS Excised vaginal tissue was mounted in a modified Franz diffusion cell and exposed to a water-soluble, ALA-loaded, bioadhesive patch. After a period of time, the tissue was cryostatically sectioned and the stratal concentration of radiolabeled ALA determined using scintillation spectroscopy. HeLa cells were cultured in media containing specific concentrations of ALA and exposed to standard photodynamic protocols of light exposure. RESULTS An ALA concentration of 65.6 mM was achievable at 2.375 mm from the tissue surface after application of ALA-loaded patch. The photodynamic effectiveness of this concentration was demonstrated in HeLa with exposure to concentrations exceeding 1.0 mM ALA bringing about reductions in viable cell numbers by 90%. An enhancement of PpIX production using adjunctive EDTA over the clinically relevant 4 h application time interval was shown to be minimal in HeLa. Instead, PpIX production was more closely correlated with ALA concentration, with 100 mM ALA producing approximately 3100 ng PpIX mg(-1) protein in the same time period. CONCLUSIONS Given that vaginal intraepithelial neoplasias can extend to 2.0 mm from the lesion surface, the ALA permeability derived from a bioadhesive patch is sufficient to induce photosensitization suitable for light induced destruction at deep sites of this type of lesion.
Collapse
Affiliation(s)
- Paul A McCarron
- School of Pharmacy, Queens University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK.
| | | | | | | | | | | | | |
Collapse
|
17
|
Donnelly RF, McCarron PA, Woolfson AD. Drug Delivery of Aminolevulinic Acid from Topical Formulations Intended for Photodynamic Therapy¶. Photochem Photobiol 2005. [DOI: 10.1562/2004-08-23-ir-283r1.1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Datta A, Dube A, Jain B, Tiwari A, Gupta PK. The effect of pH and surfactant on the aggregation behavior of chlorin p6: a fluorescence spectroscopic study. Photochem Photobiol 2002; 75:488-94. [PMID: 12017474 DOI: 10.1562/0031-8655(2002)075<0488:teopas>2.0.co;2] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Steady state and time-resolved fluorescence properties of chlorin P6, a potential drug for photodynamic therapy, have been investigated as functions of pH. A decrease in pH of the medium has been shown to cause protonation of the ionizable carboxylic acid side chain, leading to an increase in hydrophobicity and consequent aggregation. The aggregates dissociate on further protonation. The dissociation is explained in terms of formation of cations and their mutual repulsion. A synchronous fluorescence spectroscopic study revealed the presence of two anionic forms in equilibrium at physiological pH, with a shift in the equilibrium on slight decrease in the pH. The anionic nature of chlorin P6 in aqueous solutions at physiological pH has been confirmed by complexation with surfactants. The nature of the charge on the headgroups of the surfactants has been found to govern the formation of chlorin-surfactant complexes.
Collapse
Affiliation(s)
- Anindya Datta
- Biomedical Applications Section, Centre for Advanced Technology, Indore, India.
| | | | | | | | | |
Collapse
|
19
|
Wyld L, Tomlinson M, Reed MWR, Brown NJ. Aminolaevulinic acid-induced photodynamic therapy: cellular responses to glucose starvation. Br J Cancer 2002; 86:1343-7. [PMID: 11953896 PMCID: PMC2375344 DOI: 10.1038/sj.bjc.6600234] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2001] [Revised: 02/13/2002] [Accepted: 02/13/2002] [Indexed: 12/26/2022] Open
Abstract
Photodynamic therapy is a cancer treatment based on the interaction of light, oxygen and a photosensitiser. Protoporphyrin. IX is an endogenous photosensitiser derived from the pro-drug aminolaevulinic acid. Tumours contain areas of hypoxia and hypoglycaemia. Tumour cells adapt to these conditions by stress protein induction which may induce resistance to cancer therapies. The effect of chronic hypoglycaemia on sensitivity to aminolaevulinic acid-induced photodynamic therapy in vitro was studied in MCF-7, human breast cancer cells. Following chronic exposure to 0, 1 or 25 mM, glucose, cells were treated with aminolaevulinic acid and the generation of intracellular protoporphyrin. IX measured by spectrofluorimetry. Aminolaevulinic acid-induced photodynamic therapy sensitivity was compared between cells following chronic exposure to 0, 1 or 25 mM glucose. Percentage cell survival was determined by clonogenic assay. Cells cultured in low glucose generated higher levels of protoporphyrin IX compared to standard glucose medium (0 mM glucose: 0.88 x 10(-5) ng cell(-1), 1 mM: 0.86 x 10(-5) ng cell(-1), 25 mM: 0.60 5x 10(-5) ng cell(-1), P<0.05). However, photodynamic therapy sensitivity was reduced in glucose deprived cells (0 mM glucose: 61% survival, 1 mM: 80.5% and 25 mM: 39.6%, P<0.05). Chronic exposure to low glucose induces photodynamic therapy resistance despite increased intracellular concentrations of protoporphyrin IX and may reflect cellular adaptation to chronic glucose deprivation.
Collapse
Affiliation(s)
- L Wyld
- Section of Surgical and Anaesthetic Sciences, Division of Clinical Sciences, University of Sheffield, Floor K, Royal Hallamshire Hospital, Sheffield S10 2JF, UK
| | | | | | | |
Collapse
|
20
|
Zimmermann A, Ritsch-Marte M, Kostron H. In vitro investigation on the pH dependence of the absorption and fluorescence properties of the photosensitizer mTHPC. Photochem Photobiol 2002; 75:335-8. [PMID: 12003121 DOI: 10.1562/0031-8655(2002)075<0335:iviotp>2.0.co;2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fluorescence excitation efficiency is of great importance for photodynamic diagnosis. Because usually a difference in the interstitial pH between normal and tumor tissue occurs, it is necessary to assess the impact of pH on the fluorescence emission intensity of the photosensitizer meta-tetrahydroxyphenylchlorin (mTHPC) in this context. The results obtained by in vitro fluorescence measurements clearly indicate that pH values below 6 lead to a significant decrease in the fluorescence intensity. In the physiological range of pH 6.5-7.2, however, no pH dependence was found. Besides the decrease in the fluorescence intensity of mTHPC for pH < 6, changes in the spectral shape of the absorption were found. These changes can be utilized for "dual-wavelength ratio imaging," using mTHPC as a pH-sensitive indicator with the excitation pair 405 nm/436 nm in the range of pH 3.5-6.
Collapse
|
21
|
Piot B, Rousset N, Lenz P, Eléouet S, Carré J, Vonarx V, Bourré L, Patrice T. Enhancement of delta aminolevulinic acid-photodynamic therapy in vivo by decreasing tumor pH with glucose and amiloride. Laryngoscope 2001; 111:2205-13. [PMID: 11802027 DOI: 10.1097/00005537-200112000-00026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES/HYPOTHESIS Delta aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) is a fluorescent sensitizer that permits detection and treatment of squamous cell carcinoma of the oral cavity. An exogenously induced decrease in tissue pH was evaluated for its effect in enhancing cellular uptake of ALA and facilitating its transformation into PpIX. STUDY DESIGN Mice grafted with HT29 colonic cancers had been given glucose and amiloride to modify the pH of tissues. Influence of pH changes has been evaluated on ALA-induced PPIX fluorescence by optic fiber spectrofluorimetry as well as on tumor growth. METHODS RESULTS The pH in HT 29 tumor decreased from 7.1 to 6.67 (P < .05) after intraperitoneal injection of glucose and amiloride. The PpIX fluorescence ratios in tumor or muscle before, between, and 2 hours after glucose and amiloride injection were not higher than control ratios. Aminolevulinic acid-photodynamic therapy was more efficient on HT 29 tumor-bearing mice when the pH value was decreased with glucose and amiloride, showing a difference in the tumor growth index ratio from the 1st to 14th day of 22% between amiloride-glucose aminolevulinic acid-photodynamic therapy and aminolevulinic acid-photodynamic therapy alone (P < .05). CONCLUSIONS Glucose and amiloride did not change PpIX fluorescence in HT 29 tumor after intraperitoneal injection of aminolevulinic acid but enhanced aminolevulinic acid-photodynamic therapy efficacy. This was probably a result of mechanisms other than an increase in aminolevulinic acid cellular penetration and PpIX production, such as susceptibility to free radical toxicity or alteration of cellular repair enzymes under acidotic conditions. If a decrease of pH induces a more efficient photodynamic therapy as suggested by our results, an easier way to obtain this decrease than glucose and amiloride would be necessary for clinical applications.
Collapse
Affiliation(s)
- B Piot
- Laboratoire de Photobiologie des Cancers, Centre Hospitalier Régional et Universitaire de Nantes, Nantes, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Lange N, Vaucher L, Marti A, Etter AL, Gerber P, van Den Bergh H, Jichlinski P, Kucera P. Routine experimental system for defining conditions used in photodynamic therapy and fluorescence photodetection of (non-) neoplastic epithelia. JOURNAL OF BIOMEDICAL OPTICS 2001; 6:151-159. [PMID: 11375724 DOI: 10.1117/1.1352751] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2000] [Revised: 01/12/2001] [Accepted: 01/12/2001] [Indexed: 05/23/2023]
Abstract
A common method to induce enhanced short-term endogenous porphyrin synthesis and accumulation in cell is the topical, systemic application of 5-aminolevulinic acid or one of its derivatives. This circumvents the intravenous administration of photosensitizers normally used for photodynamic therapy (PDT) of fluorescence photodetection. However, in the majority of potential medical indications, optimal conditions with respect to the porphyrin precursor or its pharmaceutical formulation have not yet been found. Due to ethical restrictions and animal right directives, the number of available test objects is limited. Hence, definition and use of nonanimal test methods are needed. Tissue and organ cultures are a promising approach in replacing cost intensive animal models in early stages of drug development. In this paper, we present a tissue culture, which can among others be used routinely to answer specific questions emerging in the field of photodynamic therapy and fluorescence photodetection. This technique uses mucosae excised from sheep paranasal sinuses or pig bladder, which is cultured under controlled conditions. It allows quasiquantitative testing of different protoporphyrin IX precursors with respect to dose-response curves and pharmacokinetics, as well as the evaluation of different incubation conditions and/or different drug formulations. Furthermore, this approach, when combined with the use of electron microscopy and fluorescence-based methods, can be used to quantitatively determine the therapeutic outcome following protoporphyrin IX-mediated PDT.
Collapse
Affiliation(s)
- N Lange
- Swiss Federal Institute of Technology Lausanne, Institute of Environmental Engineering, DGR-LPAS, CH-1015 Lausanne, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Berg K. Chapter 8 Basic principles of 5-aminolevulinic acid-based photodynamic therapy. COMPREHENSIVE SERIES IN PHOTOSCIENCES 2001. [DOI: 10.1016/s1568-461x(01)80112-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
24
|
Gerscher S, Connelly JP, Griffiths J, Brown SB, MacRobert AJ, Wong G, Rhodes LE. Comparison of the pharmacokinetics and phototoxicity of protoporphyrin IX metabolized from 5-aminolevulinic acid and two derivatives in human skin in vivo. Photochem Photobiol 2000; 72:569-74. [PMID: 11045731 DOI: 10.1562/0031-8655(2000)072<0569:cotpap>2.0.co;2] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Our novel approach was to compare the pharmacokinetics of 5-aminolevulinic acid (ALA), ALA-n-butyl and ALA-n-hexylester induced protoporphyrin IX (PpIX), together with the phototoxicity after photodynamic therapy (PDT) in human skin in vivo, using iontophoresis as a dose-control system. A series of four increasing doses of each compound was iontophoresed into healthy skin of 10 volunteers. The kinetics of PpIX metabolism (n = 4) and the response to PDT (n = 6) performed 5 h after iontophoresis, were assessed by surface PpIX fluorescence and post-irradiation erythema. Whilst ALA-induced PpIX peaked at 7.5 h, highest PpIX fluorescence induced by ALA-n-hexylester was observed at 3-6 h and no clear peak was seen with ALA-n-butylester. With ALA-n-hexylester, more PpIX was formed after 3 (P < 0.05) and 4.5 h, than with ALA or ALA-n-butylester. All compounds showed a linear correlation between logarithm of dose and PpIX fluorescence/phototoxicity at 5 h, with R-values ranging from 0.87 to 1. In addition, the ALA-n-hexylester showed the tendency to cause greater erythema than ALA and ALA-n-butylester. Fluorescence microscopy (n = 2) showed similar PpIX distributions and penetration depths for the three drugs, although both ALA esters led to a more homogeneous PpIX localization. Hence, ALA-n-hexylester appears to have slightly more favorable characteristics for PDT than ALA or ALA-n-butylester.
Collapse
Affiliation(s)
- S Gerscher
- Department of Medicine, University of Liverpool, UK.
| | | | | | | | | | | | | |
Collapse
|
25
|
Uehlinger P, Zellweger M, Wagnières G, Juillerat-Jeanneret L, van den Bergh H, Lange N. 5-Aminolevulinic acid and its derivatives: physical chemical properties and protoporphyrin IX formation in cultured cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2000; 54:72-80. [PMID: 10739146 DOI: 10.1016/s1011-1344(99)00159-1] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protoporphyrin IX (PpIX) is used as a fluorescence marker and photosensitizing agent in photodynamic therapy (PDT). A temporary increase of PpIX in tissues can be obtained by administration of 5-aminolevulinic acid (ALA). Lipophilicity is one of the key parameters defining the bioavailability of a topically applied drug. In the present work, octanol-water partition coefficients of ALA and several of its esters have been determined to obtain a parameter related to their lipophilicity. The influence of parameters such as lipophilicity, concentration, time, and pH value on PpIX formation induced by ALA and its esters is then investigated in human cell lines originating from the lung and bladder. ALA esters are found to be more lipophilic than the free acid. The optimal concentration (c(opt), precursor concentration at which maximal PpIX accumulation is observed) is then measured for each precursor. Long-chained ALA esters are found to decrease the c(opt) value by up to two orders of magnitude as compared to ALA. The reduction of PpIX formation observed at higher concentrations than c(opt) is correlated to reduced cell viability as determined by measuring the mitochondrial activity. Under optimal conditions, the PpIX formation rate induced by the longer-chained esters is higher than that of ALA or the shorter-chained esters. A biphasic pH dependence on PpIX generation is observed for ALA and its derivatives. Maximal PpIX formation is measured under physiological conditions (pH 7.0-7.6), indicating that further enhancement of intracellular PpIX content may be achieved by adjusting the pharmaceutical formulation of ALA or its derivatives to these pH levels.
Collapse
Affiliation(s)
- P Uehlinger
- Institute of Environmental Engineering, Swiss Federal Institute of Technology (EPFL), Lausanne
| | | | | | | | | | | |
Collapse
|
26
|
Fontanellas A, Mazurier F, Belloc F, Taine L, Dumain P, Morel C, Ged C, de Verneuil H, Moreau-Gaudry F. Fluorescence-based selection of retrovirally transduced cells in congenital erythropoietic porphyria: direct selection based on the expression of the therapeutic gene. J Gene Med 1999; 1:322-30. [PMID: 10738549 DOI: 10.1002/(sici)1521-2254(199909/10)1:5<322::aid-jgm53>3.0.co;2-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Congenital erythropoietic porphyria (CEP) is an inherited disease caused by a deficiency of uroporphyrinogen III synthase, the fourth enzyme of the haem biosynthesis pathway. It is characterized by accumulation of uroporphyrin I in the bone marrow, peripheral blood and other organs. The prognosis of CEP is poor with death occurring in early adult life and available treatments are only symptomatic and unsatisfactory. In vitro gene transfer experiments have documented the feasibility of gene therapy via haematopoietic stem cells to treat this disease. To facilitate future ex vivo gene therapy in humans, the design of efficient selection procedures to increase the frequency of genetically corrected cells prior to autologous transplantation is a critical step. METHODS An alternative selection procedure based upon expression of a transferred gene was performed on a lymphoblastoid (LB) cell line from a patient with congenital erythropoietic porphyria to obtain high frequencies of genetically modified cells. The presence of exogeneous delta-aminolevulinic acid (ALA), a haem precursor, induces an increase in porphyrin accumulation in LB deficient cells. Porphyrins exhibit a specific fluorescent emission and can be detected by cytofluorimetry under ultraviolet excitation. RESULTS In genetically modified cells, the restored metabolic flow from ALA to haem led to a lesser accumulation of porphyrins in the cells, which were easily separated from the deficient cells by flow cytometry cell sorting. CONCLUSION This selection process represents a rapid and efficient procedure and an excellent alternative to the use of potentially harmful gene markers in retroviral vectors.
Collapse
Affiliation(s)
- A Fontanellas
- Laboratoire de Pathologie Moléculaire et Thérapie Génique, Formation INSERM CRI 9508, Université Victor Segalen Bordeaux 2, France
| | | | | | | | | | | | | | | | | |
Collapse
|