1
|
Schneckenburger H. Lasers in Live Cell Microscopy. Int J Mol Sci 2022; 23:ijms23095015. [PMID: 35563406 PMCID: PMC9102032 DOI: 10.3390/ijms23095015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Due to their unique properties—coherent radiation, diffraction limited focusing, low spectral bandwidth and in many cases short light pulses—lasers play an increasing role in live cell microscopy. Lasers are indispensable tools in 3D microscopy, e.g., confocal, light sheet or total internal reflection microscopy, as well as in super-resolution microscopy using wide-field or confocal methods. Further techniques, e.g., spectral imaging or fluorescence lifetime imaging (FLIM) often depend on the well-defined spectral or temporal properties of lasers. Furthermore, laser microbeams are used increasingly for optical tweezers or micromanipulation of cells. Three exemplary laser applications in live cell biology are outlined. They include fluorescence diagnosis, in particular in combination with Förster Resonance Energy Transfer (FRET), photodynamic therapy as well as laser-assisted optoporation, and demonstrate the potential of lasers in cell biology and—more generally—in biomedicine.
Collapse
|
2
|
Zhang T, Abdelaziz MM, Cai S, Yang X, Aires DJ, Forrest ML. Hyaluronic acid carrier-based photodynamic therapy for head and neck squamous cell carcinoma. Photodiagnosis Photodyn Ther 2022; 37:102706. [PMID: 34954388 PMCID: PMC8898305 DOI: 10.1016/j.pdpdt.2021.102706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE Conventional photosensitizers for photodynamic therapy (PDT) typically have wide tissue distribution and poor water solubility. A hyaluronic acid (HA) polymeric nanoparticle with specific lymphatic uptake and highly water solubility was developed to deliver pyropheophorbide-a (PPa) for locally advanced head and neck squamous cell carcinoma (HNSCC) treatment. METHODS AND RESULTS PPa was chemically conjugated to the HA polymeric nanoparticle via an adipic acid dihydrazide (ADH) linker. The conjugates were injected subcutaneously in a region near the tumor. Near-infrared (NIR) imaging was used to monitor distribution, and diode laser was used to activate PPa. The singlet oxygen generation efficiency of PPa was not affected by conjugation to HA nanoparticles at a PPa loading degree of 1.89 w.t.%. HA-ADH-PPa inhibited human HNSCC MDA-1986 cell growth only when photo-irradiation was applied. After HA-ADH-PPa treatment and radiation, NU/NU mice bearing human HNSCC MDA-1986 tumors showed reduced tumor growth and significantly enhanced survival time compared with an untreated group (p < 0.05). CONCLUSIONS These results demonstrate that HA-ADH-PPa could be useful for in vivo locoregional photodynamic therapy of HNSCC.
Collapse
Affiliation(s)
- Ti Zhang
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Ave., Lawrence, KS 66047, USA
| | | | - Shuang Cai
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Ave., Lawrence, KS 66047, USA,HylaPharm LLC, Lawrence, KS 66047, USA
| | - Xinmai Yang
- Department of Bioengineering, The University of Kansas, Lawrence, KS 66045, USA
| | - Daniel J. Aires
- Division of Dermatology, Department of Internal Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA,HylaPharm LLC, Lawrence, KS 66047, USA
| | - M. Laird Forrest
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Ave., Lawrence, KS 66047, USA,Author for correspondence Phone: 1-785-864-4388,
| |
Collapse
|
3
|
Shen Y, Li M, Sun F, Zhang Y, Qu C, Zhou M, Shen F, Xu L. Low-dose photodynamic therapy-induced increase in the metastatic potential of pancreatic tumor cells and its blockade by simvastatin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 207:111889. [DOI: 10.1016/j.jphotobiol.2020.111889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 04/03/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
|
4
|
Theodoraki MN, Yerneni SS, Brunner C, Theodorakis J, Hoffmann TK, Whiteside TL. Plasma-derived Exosomes Reverse Epithelial-to-Mesenchymal Transition after Photodynamic Therapy of Patients with Head and Neck Cancer. Oncoscience 2018; 5:75-87. [PMID: 29854876 PMCID: PMC5978437 DOI: 10.18632/oncoscience.410] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 04/21/2018] [Indexed: 12/19/2022] Open
Abstract
Photodynamic therapy (PDT) is a palliative treatment option for head and neck squamous cell carcinoma (HNSCC) patients which induces local inflammation and alters tumor cell morphology. We show that exosomes in plasma of HNSCC patients undergoing PDT reprogram tumor cells towards an epithelial phenotype. Nine HNSCC patients were treated with PDT and plasma was collected prior to and at three timepoints after therapy. Exosome levels of E-Cadherin, N-Cadherin and TGF-β1 were tested by flow cytometry. Exosomes were co-incubated with cancer cells, and changes in expression of EMT markers were evaluated as were proliferation, migration, chemotaxis and invasiveness of tumor cells. Exosomes harvested pre- and 24h after PDT were enriched in N-Cadherin and TGF-β1. They induced the mesenchymal phenotype and up-regulated Vimentin and transcripts for Snail, Twist, α-SMA, Slug and ZEB1 in epithelial tumor cells. These exosomes also enhanced tumor proliferation, migration and invasion. In contrast, exosomes obtained on day 7 or 4-6 weeks after PDT carried E-cadherin, restored epithelial morphology and EpCAM expression in tumor cells, down-regulated expression of mesenchymal genes and inhibited proliferation, migration and invasion. The PDT-mediated conversion from the mesenchymal to epithelial tumor phenotype was mediated by exosomes, which also served as non-invasive biomarkers of this transition.
Collapse
Affiliation(s)
- Marie-Nicole Theodoraki
- Department of Pathology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA.,Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, Germany
| | - Saigopalakrishna S Yerneni
- Department of Biomedical Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA 15217, USA
| | - Cornelia Brunner
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, Germany
| | | | - Thomas K Hoffmann
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, Germany
| | - Theresa L Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA.,Departments of Immunology and Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
5
|
Photodynamic therapy with TMPyP – Porphyrine induces mitotic catastrophe and microtubule disorganization in HeLa and G361 cells, a comprehensive view of the action of the photosensitizer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 173:522-537. [DOI: 10.1016/j.jphotobiol.2017.06.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 06/16/2017] [Accepted: 06/23/2017] [Indexed: 01/30/2023]
|
6
|
Kawczyk-Krupka A, Czuba ZP, Kwiatek B, Kwiatek S, Krupka M, Sieroń K. The effect of ALA-PDT under normoxia and cobalt chloride (CoCl 2)-induced hypoxia on adhesion molecules (ICAM-1, VCAM-1) secretion by colorectal cancer cells. Photodiagnosis Photodyn Ther 2017; 19:103-115. [PMID: 28495508 DOI: 10.1016/j.pdpdt.2017.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND The most fundamental problem in cancer biology research is to understand the mechanisms of cancer cell resistance to oncological therapies. Literature reports emphasize the important role of adhesion molecules: intercellular adhesion molecule 1 and vascular cell adhesion molecule 1 (ICAM-1 and VCAM-1) in cancer progression and resistance to treatment. Photodynamic therapy (PDT) could become the component of a personalized approach to colorectal cancer, therefore we examined the effects of ALA (δ-aminolevulinic) acid PDT in normoxia and under cobalt chloride (CoCl2)-induced hypoxia on ICAM-1 and VCAM-1 secretion by colorectal cancer cells. METHODS Human colorectal cancer cells of different malignant potential SW480 and SW620 were used in the experiment. Cell lines were treated ALA, in order to achieve conditions comparable to in vivo hypoxia, CoCl2 was added, then cells were irradiated both in normoxia and in hypoxia-like conditions. Cell viability was assessed using the LDH and MTT assays and apoptosis. ICAM-1 and VCAM-1 concentrations were determined with the Bio - Plex ProTM Assay and System. RESULTS The experiment revealed that ALA PDT under normoxia and CoCl2-induced hypoxia had no significant effect on ICAM-1 and VCAM-1-dependent adhesion of colorectal cancer cells. The secretion of ICAM-1 by SW480 ell line was more pronounced compared to ICAM-1 secretion by SW620 cells. CONCLUSION Determination of tumor marker levels and especially adhesion molecules involved in metastatic spread is necessary. Our experiment reveals, that ALA PDT in normoxia and CoCl2-induced hypoxia has no effect on adhesion molecules secretion by colon cancer cells in vitro.
Collapse
Affiliation(s)
- Aleksandra Kawczyk-Krupka
- School of Medicine with the Division of Dentistry in Zabrze, Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego Street 15, 41-902 Bytom, Poland.
| | - Zenon Pawel Czuba
- School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Department of Microbiology and Immunology, 19 Jordana St., 41-808 Zabrze, Poland.
| | - Beata Kwiatek
- Specialist Hospital N(o)2, Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Batorego Street 15, 41-902 Bytom, Poland.
| | - Sebastian Kwiatek
- Specialist Hospital N(o)2, Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Batorego Street 15, 41-902 Bytom, Poland.
| | - Magdalena Krupka
- School of Medicine with the Division of Dentistry in Zabrze, Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego Street 15, 41-902 Bytom, Poland.
| | - Karolina Sieroń
- School of Health Sciences in Katowice, Department of Physical Medicine, Chair of Physiotherapy, Medical University of Silesia, Medykow Street 12, 40-752 Katowice, Poland.
| |
Collapse
|
7
|
Kralova J, Kolar M, Kahle M, Truksa J, Lettlova S, Balusikova K, Bartunek P. Glycol porphyrin derivatives and temoporfin elicit resistance to photodynamic therapy by different mechanisms. Sci Rep 2017; 7:44497. [PMID: 28295025 PMCID: PMC5353759 DOI: 10.1038/srep44497] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/08/2017] [Indexed: 12/14/2022] Open
Abstract
The development of drug resistance is a major problem which often occurs during anticancer chemotherapies. Photodynamic therapy (PDT) has been studied as an alternative treatment modality for drug-resistant tumors, however the question of resistance to PDT and potential cross-resistance with chemotherapy has yet to be fully answered. To investigate the mechanism of resistance to PDT, we developed an in vitro experimental model system in a mouse mammary carcinoma cell line 4T1. We used two ethylene glycol derivatives of tetraphenylporphyrin, and tetraphenylchlorin derivative, temoporfin, as photosensitizers (PS). PDT-resistant clones were obtained by exposure to a set concentration of PS followed by irradiation with increasing light doses. PDT resistance to soluble glycol porphyrins was mediated mainly by increased drug efflux through ABCB1 (P-glycoprotein) as we demonstrated by specific ABCB1 knockdown experiments, which in turn rescued the sensitivity of resistant cells to PDT. In contrast, resistance raised to temoporfin, which is generally more lipophilic than glycol porphyrins, elicited mechanism based on sequestration of the drug to lysosomes. The resistance that is acquired from a particular PS could be overcome by using a different PS, which is not susceptible to the same mechanism(s) of resistance. Elucidation of the underlying mechanisms in various types of resistance might facilitate improvements in PDT treatment design.
Collapse
Affiliation(s)
- Jarmila Kralova
- CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| | - Michal Kolar
- CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| | - Michal Kahle
- CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| | - Jaroslav Truksa
- CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
- Laboratory of Tumor Resistance, Institute of Biotechnology of the ASCR, v. v. i., BIOCEV, Vestec, Prague-West, Czech Republic
| | - Sandra Lettlova
- CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
- Laboratory of Tumor Resistance, Institute of Biotechnology of the ASCR, v. v. i., BIOCEV, Vestec, Prague-West, Czech Republic
| | - Kamila Balusikova
- CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
- Division of Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Petr Bartunek
- CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| |
Collapse
|
8
|
Pinto GP, Lopes KAR, Salles NG, Pacheco-Soares C. N-acetyl Glucosamine Distribution and Mitochondrial Activity of Tumor Cell Exposed to Photodynamic Therapy. J Fluoresc 2016; 26:1923-1926. [PMID: 27596233 DOI: 10.1007/s10895-016-1914-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 08/26/2016] [Indexed: 01/24/2023]
Abstract
The use of lectins can play an important role for tracking modification on cell surface components, since lectins can be easily complexed with radioisotopes, biotin or fluorescein, facilitating the evaluation of carbohydrates distribution in the cell and mitochondrial activity. The aim of this study was to evaluate photodynamic therapy effects on indirect distribution of N-acetyl-glucosamine terminal glycoproteins, in human laryngeal carcinoma HEp-2 cell line surface, using lectin wheat germ agglutinin (WGA) and on mitochondrial activity, for the same cell line, using MitoTracker. The photosensitizer Aluminum Phthalocyanine Tetrasulfonate (AlPcS4) was administrated at 10 μM/mL, followed by an incubation period for its accumulation in the tumor cells, which were irradiated with laser diode λ = 685 nm and energy density of 4.5 J/cm2. Our results indicated that, after Photodynamic Therapy (PDT), it was observed N-acetyl glucosamine terminal glycoprotein expression and mitochondrial O2 production, compared to the control group. Based on these results, we suggest that PDT influences the O2 mitochondrial production and the presence of surface glycoproteins N-acetyl glucosamine terminals.
Collapse
Affiliation(s)
- G P Pinto
- Faculdade de Ciências da Saúde, Universidade do Vale do Paraíba (Univap), Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, São Paulo, Brazil
| | - K A R Lopes
- Instituto de Pesquisa & Desenvolvimento (IP&D) - Laboratório Dinâmica de Compartimentos Celulares, Universidade do Vale do Paraíba (Univap), Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, São Paulo, Brazil
| | - N G Salles
- Instituto de Pesquisa & Desenvolvimento (IP&D) - Laboratório Dinâmica de Compartimentos Celulares, Universidade do Vale do Paraíba (Univap), Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, São Paulo, Brazil.,Instituto de Pesquisa & Desenvolvimento (IP&D) - Laboratório de Nanotecnologia Biomédica (NANOBIO), Universidade do Vale do Paraíba (Univap), Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, São Paulo, Brazil
| | - C Pacheco-Soares
- Instituto de Pesquisa & Desenvolvimento (IP&D) - Laboratório Dinâmica de Compartimentos Celulares, Universidade do Vale do Paraíba (Univap), Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, São Paulo, Brazil.
| |
Collapse
|
9
|
Photodynamic therapy in colorectal cancer treatment--The state of the art in preclinical research. Photodiagnosis Photodyn Ther 2015; 13:158-174. [PMID: 26238625 DOI: 10.1016/j.pdpdt.2015.07.175] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/31/2015] [Accepted: 07/23/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Photodynamic therapy (PDT) is used in many different oncologic fields. Also in gastroenterology, where have been a few attempts to treat both the premalignant lesion and advanced colorectal cancer (CRC). This review aims to give a general overview of preclinical photodynamic studies related to CRC cells and animal studies of photodynamic effects related to CRC treatment to emphasize their potential in study of PDT mechanism, safety and efficiency to translate these results into clinical benefit in CRC treatment. MATERIALS AND METHOD Literature on in vitro preclinical photodynamic studies related to CRC cells and animal studies of photodynamic effects related to CRC treatment with the fallowing medical subject headings search terms: colorectal cancer, photodynamic therapy, photosensitizer(s), in vitro, cell culture(s), in vivo, animal experiment(s). The articles were selected by their relevance to the topic. RESULTS The majority of preclinical studies concerning possibility of PDT application in colon and rectal cancer is focused on phototoxic action of photosensitizers toward cultured colorectal tumor cells in vitro. The purposes of animal experiments are usually elucidation of mechanisms of observed photodynamic effects in scale of organism, estimation of PDT safety and efficiency and translation of these results into clinical benefit. CONCLUDING REMARKS In vitro photodynamic studies and animal experiments can be useful for studies of mechanisms and efficiency of photodynamic method as a start point on PDT clinical research. The primary disadvantage of in vitro experiments is a risk of over-interpretation of their results during extrapolation to the entire CRC.
Collapse
|
10
|
Glycolytic inhibitors 2-deoxyglucose and 3-bromopyruvate synergize with photodynamic therapy respectively to inhibit cell migration. J Bioenerg Biomembr 2015; 47:189-97. [PMID: 25631472 DOI: 10.1007/s10863-015-9604-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 01/19/2015] [Indexed: 01/06/2023]
Abstract
Most cancer cells have the specially increased glycolytic phenotype, which makes this pathway become an attractive therapeutic target. Although glycolytic inhibitor 2-deoxyglucose (2-DG) has been demonstrated to potentiate the cytotoxicity of photodynamic therapy (PDT), the impacts on cell migration after the combined treatment has never been reported yet. The present study aimed to analyze the influence of glycolytic inhibitors 2-DG and 3-bromopyruvate (3-BP) combined with Ce6-PDT on cell motility of Triple Negative Breast Cancer MDA-MB-231 cells. As determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltertrazolium-bromide-Tetraz-olium (MTT) assay, more decreased cell viability was observed in 2-DG + PDT and 3-BP + PDT groups when compared with either monotherapy. Under optimal conditions, synergistic potentiation on cell membrane destruction and the decline of cell adhesion and cells migratory ability were observed in both 2-DG + PDT and 3-BP + PDT by electron microscope observation (SEM), wound healing and trans-well assays. Besides, serious microfilament network collapses as well as impairment of matrix metalloproteinases-9 (MMP-9) were notably improved after the combined treatments by immunofluorescent staining. These results suggest that 2-DG and 3-BP can both significantly potentiated Ce6-PDT efficacy of cell migration inhibition.
Collapse
|
11
|
Di Venosa G, Perotti C, Batlle A, Casas A. The role of cytoskeleton and adhesion proteins in the resistance to photodynamic therapy. Possible therapeutic interventions. Photochem Photobiol Sci 2015; 14:1451-64. [PMID: 25832889 DOI: 10.1039/c4pp00445k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
It is known that Photodynamic Therapy (PDT) induces changes in the cytoskeleton, the cell shape, and the adhesion properties of tumour cells. In addition, these targets have also been demonstrated to be involved in the development of PDT resistance. The reversal of PDT resistance by manipulating the cell adhesion process to substrata has been out of reach. Even though the existence of cell adhesion-mediated PDT resistance has not been reported so far, it cannot be ruled out. In addition to its impact on the apoptotic response to photodamage, the cytoskeleton alterations are thought to be associated with the processes of metastasis and invasion after PDT. In this review, we will address the impact of photodamage on the microfilament and microtubule cytoskeleton components and its regulators on PDT-treated cells as well as on cell adhesion. We will also summarise the impact of PDT on the surviving and resistant cells and their metastatic potential. Possible strategies aimed at taking advantage of the changes induced by PDT on actin, tubulin and cell adhesion proteins by targeting these molecules will also be discussed.
Collapse
Affiliation(s)
- Gabriela Di Venosa
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP). CONICET and Hospital de Clínicas José de San Martín, University of Buenos Aires, Córdoba 2351 1er subsuelo, Ciudad Autónoma de Buenos Aires, CP1120AAF, Argentina.
| | | | | | | |
Collapse
|
12
|
Della Pietra E, Simonella F, Bonavida B, Xodo LE, Rapozzi V. Repeated sub-optimal photodynamic treatments with pheophorbide a induce an epithelial mesenchymal transition in prostate cancer cells via nitric oxide. Nitric Oxide 2015; 45:43-53. [PMID: 25700664 DOI: 10.1016/j.niox.2015.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/31/2014] [Accepted: 02/12/2015] [Indexed: 12/28/2022]
Abstract
Photodynamic therapy (PDT) is a clinically approved treatment that causes a selective cytotoxic effect in cancer cells. In addition to the production of singlet oxygen and reactive oxygen species, PDT can induce the release of nitric oxide (NO) by up-regulating nitric oxide synthases (NOS). Since non-optimal PDT often causes tumor recurrence, understanding the molecular pathways involved in the photoprocess is a challenging task for scientists. The present study has examined the response of the PC3 human metastatic prostate cancer cell line following repeated low-dose pheophorbide a treatments, mimicking non-optimal PDT treatment. The analysis was focused on the NF-kB/YY1/RKIP circuitry as it is (i) dysregulated in cancer cells, (ii) modulated by NO and (iii) correlated with the epithelial to mesenchymal transition (EMT). We hypothesized that a repeated treatment of non-optimal PDT induces low levels of NO that lead to cell growth and EMT via the regulation of the above circuitry. The expressions of gene products involved in the circuitry and in EMT were analyzed by western blot. The findings demonstrate the cytoprotective role of NO following non-optimal PDT treatments that was corroborated by the use of L-NAME, an inhibitor of NOS.
Collapse
Affiliation(s)
- Emilia Della Pietra
- Department of Medical and Biological Sciences, School of Medicine, University of Udine, Udine, Italy
| | - Francesca Simonella
- Department of Medical and Biological Sciences, School of Medicine, University of Udine, Udine, Italy
| | - Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Luigi Emilio Xodo
- Department of Medical and Biological Sciences, School of Medicine, University of Udine, Udine, Italy
| | - Valentina Rapozzi
- Department of Medical and Biological Sciences, School of Medicine, University of Udine, Udine, Italy.
| |
Collapse
|
13
|
Piette J. Signalling pathway activation by photodynamic therapy: NF-κB at the crossroad between oncology and immunology. Photochem Photobiol Sci 2015; 14:1510-7. [DOI: 10.1039/c4pp00465e] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The response of tumors to photodynamic therapy (PDT) largely depend on signaling pathways among which the pathway leading to NF-κB activation is of high importance.
Collapse
Affiliation(s)
- Jacques Piette
- Laboratory of Virology & Immunology
- GIGA-Signal Transduction
- GIGA B34
- University of Liège
- B-4000 Liège
| |
Collapse
|
14
|
Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part two-cellular signaling, cell metabolism and modes of cell death. Photodiagnosis Photodyn Ther 2014; 2:1-23. [PMID: 25048553 DOI: 10.1016/s1572-1000(05)00030-x] [Citation(s) in RCA: 512] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 03/09/2005] [Accepted: 03/09/2005] [Indexed: 12/29/2022]
Abstract
Photodynamic therapy (PDT) has been known for over a hundred years, but is only now becoming widely used. Originally developed as a tumor therapy, some of its most successful applications are for non-malignant disease. In the second of a series of three reviews, we will discuss the mechanisms that operate in PDT on a cellular level. In Part I [Castano AP, Demidova TN, Hamblin MR. Mechanism in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization. Photodiagn Photodyn Ther 2004;1:279-93] it was shown that one of the most important factors governing the outcome of PDT, is how the photosensitizer (PS) interacts with cells in the target tissue or tumor, and the key aspect of this interaction is the subcellular localization of the PS. PS can localize in mitochondria, lysosomes, endoplasmic reticulum, Golgi apparatus and plasma membranes. An explosion of investigation and explorations in the field of cell biology have elucidated many of the pathways that mammalian cells undergo when PS are delivered in tissue culture and subsequently illuminated. There is an acute stress response leading to changes in calcium and lipid metabolism and production of cytokines and stress proteins. Enzymes particularly, protein kinases, are activated and transcription factors are expressed. Many of the cellular responses are centered on mitochondria. These effects frequently lead to induction of apoptosis either by the mitochondrial pathway involving caspases and release of cytochrome c, or by pathways involving ceramide or death receptors. However, under certain circumstances cells subjected to PDT die by necrosis. Although there have been many reports of DNA damage caused by PDT, this is not thought to be an important cell-death pathway. This mechanistic research is expected to lead to optimization of PDT as a tumor treatment, and to rational selection of combination therapies that include PDT as a component.
Collapse
Affiliation(s)
- Ana P Castano
- BAR314B, Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom Street, Bartlett 3, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, USA
| | - Tatiana N Demidova
- BAR314B, Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom Street, Bartlett 3, Boston, MA 02114, USA; Department of Cellular, Molecular and Developmental Biology, Tufts University, USA
| | - Michael R Hamblin
- BAR314B, Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom Street, Bartlett 3, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, USA
| |
Collapse
|
15
|
van Noort V, Schölch S, Iskar M, Zeller G, Ostertag K, Schweitzer C, Werner K, Weitz J, Koch M, Bork P. Novel drug candidates for the treatment of metastatic colorectal cancer through global inverse gene-expression profiling. Cancer Res 2014; 74:5690-9. [PMID: 25038229 DOI: 10.1158/0008-5472.can-13-3540] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Drug-induced gene-expression profiles that invert disease profiles have recently been illustrated to be a starting point for drug repositioning. In this study, we validate this approach and focus on prediction of novel drugs for colorectal cancer, for which there is a pressing need to find novel antimetastatic compounds. We computationally predicted three novel and still unknown compounds against colorectal cancer: citalopram (an antidepressant), troglitazone (an antidiabetic), and enilconazole (a fungicide). We verified the compounds by in vitro assays of clonogenic survival, proliferation, and migration and in a subcutaneous mouse model. We found evidence that the mode of action of these compounds may be through inhibition of TGFβ signaling. Furthermore, one compound, citalopram, reduced tumor size as well as the number of circulating tumor cells and metastases in an orthotopic mouse model of colorectal cancer. This study proposes citalopram as a potential therapeutic option for patients with colorectal cancer, illustrating the potential of systems pharmacology.
Collapse
Affiliation(s)
- Vera van Noort
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse, Heidelberg, Germany. Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg, Leuven, Belgium
| | - Sebastian Schölch
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Murat Iskar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse, Heidelberg, Germany
| | - Georg Zeller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse, Heidelberg, Germany
| | - Kristina Ostertag
- Department of General, Gastrointestinal and Transplant Surgery, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Christine Schweitzer
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Kristin Werner
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jürgen Weitz
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Moritz Koch
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany. Moritz.Koch@uniklinikum
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse, Heidelberg, Germany. Max-Delbrück-Centre (MDC) for Molecular Medicine, Berlin, Germany. Moritz.Koch@uniklinikum
| |
Collapse
|
16
|
Gándara L, Sandes E, Di Venosa G, Prack Mc Cormick B, Rodriguez L, Mamone L, Batlle A, Eiján AM, Casas A. The natural flavonoid silybin improves the response to Photodynamic Therapy of bladder cancer cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2014; 133:55-64. [PMID: 24705371 DOI: 10.1016/j.jphotobiol.2014.03.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/07/2014] [Accepted: 03/10/2014] [Indexed: 11/27/2022]
Abstract
Photodynamic Therapy (PDT) is an anticancer treatment based on photosensitisation of malignant cells. The precursor of the photosensitiser Protoporphyrin IX, 5-aminolevulinic acid (ALA), has been used for PDT of bladder cancer. Silybin is a flavonoid extracted from Silybum marianum, and it has been reported to increase the efficacy of several anticancer treatments. In the present work, we evaluated the cytotoxicity of the combination of ALA-PDT and silybin in the T24 and MB49 bladder cancer cell lines. MB49 cells were more sensitive to PDT damage, which was correlated with a higher Protoporphyrin IX production from ALA. Employing lethal light doses 50% (LD50) and 75% (LD75) and additional silybin treatment, there was a further increase of toxicity driven by PDT in both cell lines. Using the Chou-Talalay model for drug combination derived from the mass-action law principle, it was possible to identify the effect of the combination as synergic when using LD75, whilst the use of LD50 led to an additive effect on MB49 cells. On the other hand, the drug combination turned out to be nearly additive on T24 cells. Apoptotic cell death is involved both in silybin and PDT cytotoxicity in the MB49 line but there is no apparent correlation with the additive or synergic effect observed on cell viability. On the other hand, we found an enhancement of the PDT-driven impairment of cell migration on both cell lines as a consequence of silybin treatment. Overall, our results suggest that the combination of silybin and ALA-PDT would increase PDT outcome, leading to additive or synergistic effects and possibly impairing the occurrence of metastases.
Collapse
Affiliation(s)
- L Gándara
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, University of Buenos Aires, Córdoba 2351 1er subsuelo, Ciudad de Buenos Aires CP1120AAF, Argentina
| | - E Sandes
- Area Investigaciones, Instituto de Oncología Ángel H. Roffo, Argentina
| | - G Di Venosa
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, University of Buenos Aires, Córdoba 2351 1er subsuelo, Ciudad de Buenos Aires CP1120AAF, Argentina
| | | | - L Rodriguez
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, University of Buenos Aires, Córdoba 2351 1er subsuelo, Ciudad de Buenos Aires CP1120AAF, Argentina
| | - L Mamone
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, University of Buenos Aires, Córdoba 2351 1er subsuelo, Ciudad de Buenos Aires CP1120AAF, Argentina
| | - A Batlle
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, University of Buenos Aires, Córdoba 2351 1er subsuelo, Ciudad de Buenos Aires CP1120AAF, Argentina
| | - A M Eiján
- Area Investigaciones, Instituto de Oncología Ángel H. Roffo, Argentina
| | - A Casas
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, University of Buenos Aires, Córdoba 2351 1er subsuelo, Ciudad de Buenos Aires CP1120AAF, Argentina.
| |
Collapse
|
17
|
Wang CP, Lou PJ, Lo FY, Shieh MJ. Meta-tetrahydroxyphenyl chlorine mediated photodynamic therapy inhibits the migration and invasion of a nasopharyngeal carcinoma KJ-1 cell line. J Formos Med Assoc 2014; 113:173-8. [DOI: 10.1016/j.jfma.2012.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/18/2012] [Accepted: 05/11/2012] [Indexed: 10/27/2022] Open
|
18
|
Chiang PC, Chou RH, Chien HF, Tsai T, Chen CT. Chloride intracellular channel 4 involves in the reduced invasiveness of cancer cells treated by photodynamic therapy. Lasers Surg Med 2013; 45:38-47. [DOI: 10.1002/lsm.22112] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2012] [Indexed: 02/02/2023]
|
19
|
Milla Sanabria L, Rodríguez ME, Cogno IS, Rumie Vittar NB, Pansa MF, Lamberti MJ, Rivarola VA. Direct and indirect photodynamic therapy effects on the cellular and molecular components of the tumor microenvironment. Biochim Biophys Acta Rev Cancer 2012; 1835:36-45. [PMID: 23046998 DOI: 10.1016/j.bbcan.2012.10.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/28/2012] [Accepted: 10/01/2012] [Indexed: 12/31/2022]
Abstract
Photodynamic therapy (PDT) is a novel cancer treatment. It involves the activation of a photosensitizer (PS) with light of specific wavelength, which interacts with molecular oxygen to generate singlet oxygen and other reactive oxygen species (ROS) that lead to tumor cell death. When a tumor is treated with PDT, in addition to affect cancer cells, the extracellular matrix and the other cellular components of the microenvironment are altered and finally this had effects on the tumor cells survival. Furthermore, the heterogeneity in the availability of nutrients and oxygen in the different regions of a tridimensional tumor has a strong impact on the sensitivity of cells to PDT. In this review, we summarize how PDT affects indirectly to the tumor cells, by the alterations on the extracellular matrix, the cell adhesion and the effects over the immune response. Also, we describe direct PDT effects on cancer cells, considering the intratumoral role that autophagy mediated by hypoxia-inducible factor 1 (HIF-1) has on the efficiency of the treatment.
Collapse
Affiliation(s)
- Laura Milla Sanabria
- Department of Molecular Biology, National University of Río Cuarto, Río Cuarto (5800), Córdoba, Argentina
| | | | | | | | | | | | | |
Collapse
|
20
|
Sanz-Rodríguez F, Casas A, González S, Espada J, Jaén P, Regadera J, Blázquez-Castro A, Zamarrón A, Bagazgoitia L, Iglesias de la Cruz C, Juarranz Á. Preclinical photodynamic therapy research in Spain 4: Cytoskeleton and adhesion complexes of cultured tumor cells as targets of photosensitizers. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424609000565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tumor cell death induced by photodynamic therapy (PDT) with different photosensitizers (PSs) is due to the selective damage of several membranous organelles including mitochondria, lysosomes and Golgi apparatus. Other cell structures such as the cytoskeleton (CSK) (microtubules, actin microfilaments and cytokeratin intermediate filaments) and the cell adhesion components (cadherins and integrins) are also implicated in cell death induced by PSs. CSK and adhesion components are responsible for many cellular functions such as the maintenance of morphology, motility, division and adhesion, all of them of fundamental importance for growth and dissemination of tumors. Therefore, they are considered very important targets for anticancer therapies, including PDT. In addition, similarly to the rest of the anticancer therapies, PDT often leaves a significant number of surviving tumor cells. The reorganization of CSK as well as the adhesion proteins in the PDT resistant cells affect their invasive migratory capabilities. Taking into account all these features, both CSK and adhesion proteins are crucial targets of PDT.
Collapse
Affiliation(s)
- Francisco Sanz-Rodríguez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Adriana Casas
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP) y Hospital de Clínicas José San Martín, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
| | - Salvador González
- Servicio de Dermatología, Hospital Ramón Cajal, Madrid, Spain
- Dermatology Unit, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Jesús Espada
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arturo Duperier 4, 28029 Madrid, Spain
| | - Pedro Jaén
- Servicio de Dermatología, Hospital Ramón Cajal, Madrid, Spain
| | - Javier Regadera
- Departamento de Anatomía, Facultad de Medicina, Universidad Autónoma de Madrid, c/ Arzobispo Morcillo, 28029 Madrid, Spain
| | - Alfonso Blázquez-Castro
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Alicia Zamarrón
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | - Ángeles Juarranz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
21
|
Di Venosa G, Rodriguez L, Mamone L, Gándara L, Rossetti M, Batlle A, Casas A. Changes in actin and E-cadherin expression induced by 5-aminolevulinic acid photodynamic therapy in normal and Ras-transfected human mammary cell lines. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 106:47-52. [DOI: 10.1016/j.jphotobiol.2011.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/06/2011] [Accepted: 10/08/2011] [Indexed: 10/16/2022]
|
22
|
Milla LN, Cogno IS, Rodríguez ME, Sanz-Rodríguez F, Zamarrón A, Gilaberte Y, Carrasco E, Rivarola VA, Juarranz Á. Isolation and characterization of squamous carcinoma cells resistant to photodynamic therapy. J Cell Biochem 2011; 112:2266-78. [DOI: 10.1002/jcb.23145] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Chiaviello A, Postiglione I, Palumbo G. Targets and mechanisms of photodynamic therapy in lung cancer cells: a brief overview. Cancers (Basel) 2011; 3:1014-41. [PMID: 24212652 PMCID: PMC3756402 DOI: 10.3390/cancers3011014] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 02/20/2011] [Accepted: 03/01/2011] [Indexed: 01/09/2023] Open
Abstract
Lung cancer remains one of the most common cancer-related causes of death. This type of cancer typically develops over a period of many years, and if detected at an early enough stage can be eliminated by a variety of treatments including photodynamic therapy (PDT). A critical discussion on the clinical applications of PDT in lung cancer is well outside the scope of the present report, which, in turn focuses on mechanistic and other aspects of the photodynamic action at a molecular and cellular level. The knowledge of these issues at pre-clinical levels is necessary to develop, check and adopt appropriate clinical protocols in the future. This report, besides providing general information, includes a brief overview of present experimental PDT and provides some non-exhaustive information on current strategies aimed at further improving the efficacy, especially in regard to lung cancer cells.
Collapse
Affiliation(s)
- Angela Chiaviello
- Department of Biologia e Patologia Cellulare e Molecolare "L. Califano" - Università Federico II, Via S. Pansini, 5 80131 Naples, Italy.
| | | | | |
Collapse
|
24
|
Casas A, Di Venosa G, Hasan T, Al Batlle. Mechanisms of resistance to photodynamic therapy. Curr Med Chem 2011; 18:2486-515. [PMID: 21568910 PMCID: PMC3780570 DOI: 10.2174/092986711795843272] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 05/11/2011] [Indexed: 01/25/2023]
Abstract
Photodynamic therapy (PDT) involves the administration of a photosensitizer (PS) followed by illumination with visible light, leading to generation of reactive oxygen species. The mechanisms of resistance to PDT ascribed to the PS may be shared with the general mechanisms of drug resistance, and are related to altered drug uptake and efflux rates or altered intracellular trafficking. As a second step, an increased inactivation of oxygen reactive species is also associated to PDT resistance via antioxidant detoxifying enzymes and activation of heat shock proteins. Induction of stress response genes also occurs after PDT, resulting in modulation of proliferation, cell detachment and inducing survival pathways among other multiple extracellular signalling events. In addition, an increased repair of induced damage to proteins, membranes and occasionally to DNA may happen. PDT-induced tissue hypoxia as a result of vascular damage and photochemical oxygen consumption may also contribute to the appearance of resistant cells. The structure of the PS is believed to be a key point in the development of resistance, being probably related to its particular subcellular localization. Although most of the features have already been described for chemoresistance, in many cases, no cross-resistance between PDT and chemotherapy has been reported. These findings are in line with the enhancement of PDT efficacy by combination with chemotherapy. The study of cross resistance in cells with developed resistance against a particular PS challenged against other PS is also highly complex and comprises different mechanisms. In this review we will classify the different features observed in PDT resistance, leading to a comparison with the mechanisms most commonly found in chemo resistant cells.
Collapse
Affiliation(s)
- A Casas
- Centro de Invesigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clinicas José de San Martin, University of Buenos Aires Córdoba 2351 ler subsuelo, Argentina.
| | | | | | | |
Collapse
|
25
|
Tsai T, Ji HT, Chiang PC, Chou RH, Chang WSW, Chen CT. ALA-PDT results in phenotypic changes and decreased cellular invasion in surviving cancer cells. Lasers Surg Med 2009; 41:305-15. [DOI: 10.1002/lsm.20761] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Casas A, Di Venosa G, Vanzulli S, Perotti C, Mamome L, Rodriguez L, Simian M, Juarranz A, Pontiggia O, Hasan T, Batlle A. Decreased metastatic phenotype in cells resistant to aminolevulinic acid-photodynamic therapy. Cancer Lett 2008; 271:342-51. [PMID: 18662847 PMCID: PMC2602948 DOI: 10.1016/j.canlet.2008.06.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 04/30/2008] [Accepted: 06/23/2008] [Indexed: 10/21/2022]
Abstract
Photodynamic therapy (PDT) is a novel cancer treatment utilising a photosensitiser, visible light and oxygen. PDT often leaves a significant number of surviving tumour cells. In a previous work, we isolated and studied two PDT resistant clones derived from the mammary adenocarcinoma LM3 line (Int. J. Oncol. 29 (2006) 397-405). The isolated Clon 4 and Clon 8 exhibited a more fibroblastic, dendritic pattern and were larger than the parentals. In the present work we studied the metastatic potential of the two clones in comparison with LM3. We found that 100% of LM3 invaded Matrigel, whereas only 19+/-6% and 24+/-7% of Clon 4 and Clon 8 cells invaded. In addition, 100% of LM3 cells migrated towards a chemotactic stimulus whereas 38+/-8% and 73+/-10% of Clones 4 and 8, respectively, were able to migrate. In vivo, 100% of the LM3 injected mice developed spontaneous lung metastasis, whereas none of the Clon 8 did, and only one of the mice injected with Clon 4 did. No differences were found in the proteolytic enzyme profiles among the cells. Anchorage-dependent adhesion was also impaired in vivo in the resistant clones, evidenced by the lower tumour take, latency time and growth rates, although both clones showed in vitro higher binding to collagen I without overexpression of beta1 integrin. This is the first work where the metastatic potential of cells surviving to PDT has been studied. PDT strongly affects the invasive phenotype of these cells, probably related to a higher binding to collagen. These findings may be crucial for the outcome of ALA-PDT of metastatic tumours, although further studies are needed to extrapolate the results to the clinic employing another photosensitisers and cell types.
Collapse
Affiliation(s)
- Adriana Casas
- Centro de Investigaciones sobre Porfirinas y Porfirias, CONICET and Hospital de Clínicas José de San Martín, University of Buenos Aires, 1056 Ciudad de Buenos Aires, Córdoba 2351 1er subsuelo, CP 1120AAF, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kushibiki T, Sakai M, Awazu K. Differential effects of photodynamic therapy on morphologically distinct tumor cells derived from a single precursor cell. Cancer Lett 2008; 268:244-51. [DOI: 10.1016/j.canlet.2008.03.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 03/30/2008] [Accepted: 03/31/2008] [Indexed: 10/22/2022]
|
28
|
Abstract
The technique of variable-angle total internal reflection fluorescence microscopy (TIRFM) and its application to nanotomography of cell surfaces are described. Present applications include (1) 3D imaging of chromosomes in their metaphase to demonstrate axial resolution in the nanometre range, (2) measurements of cell-substrate topology, which upon cholesterol depletion shows some loosening of cell-substrate contacts, and (3) measurements of cell topology upon photodynamic therapy (PDT), which demonstrate cell swelling and maintenance of focal contacts. The potential of the method for in vitro diagnostics, but also some requirements and limitations are discussed.
Collapse
|
29
|
The history of PDT in Norway. Photodiagnosis Photodyn Ther 2007; 4:80-7. [DOI: 10.1016/j.pdpdt.2006.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Accepted: 11/08/2006] [Indexed: 11/18/2022]
|
30
|
Sacková V, Fedorocko P, Szilárdiová B, Mikes J, Kleban J. Hypericin-induced photocytotoxicity is connected with G2/M arrest in HT-29 and S-phase arrest in U937 cells. Photochem Photobiol 2007; 82:1285-91. [PMID: 16740057 DOI: 10.1562/2006-02-22-ra-806] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Susceptibility of the HT-29 human colon adenocarcinoma cell line and human myeloid leukemia cell line U937 to hypericin-mediated photocytotoxicity was investigated and compared in this study. Cellular parameters as viability, cell number, metabolic activity and total protein amount were monitored in screening experiments with subsequent cell-cycle analysis and apoptosis detection to determine the cellular response of the different tumor types to various concentrations of photoactivated hypericin. The results show concentration dependence of the photosensitizer's cytotoxicity on the studied cell lines, with higher sensitivity of U937 cells. Whereas the two extreme hypericin concentrations (1 x 10(-9) M and 1 x 10(-6) M) resulted in similar changes in all tested cellular parameters on the two studied cell lines, 1 x 10(-8) M and 1 x 10(-7) M hypericin treatment resulted in different responses of the cell lines in all monitored parameters except for viability. Although leukemic cells proved sensitive to both 1 x 10(-8) M and 1 x 10(-7) M hypericin, significant changes on HT-29 cells were detected only after the 1 x 10(-7) M hypericin concentration. Cell-cycle arrest was related to simultaneously occurring apoptosis in colon cancer. Remarkable is the difference in cell-cycle profile where G2/M arrest in colon cancer cells versus accumulation of leukemic cells in the S phase appears. This suggests that hypericin treatment affecting the cell-cycle machinery of different cancer cells is not universal in effect.
Collapse
Affiliation(s)
- Veronika Sacková
- Institute of Biology and Ecology, Faculty of Sciences, P. J. Safárik University, Kosice, Slovakia
| | | | | | | | | |
Collapse
|
31
|
Juarranz A, Espada J, Carlos Stockert J, Villanueva A, Polo S, Domínguez V, Cañete M. Photodamage Induced by Zinc(II)-phthalocyanine to Microtubules, Actin, α-Actinin and Keratin of HeLa Cells¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0730283pibzip2.0.co2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Pazos MDC, Ricci R, Simioni AR, Lopes CC, Tedesco AC, Nader HB. Putative role of heparan sulfate proteoglycan expression and shedding on the proliferation and survival of cells after photodynamic therapy. Int J Biochem Cell Biol 2007; 39:1130-41. [PMID: 17416540 DOI: 10.1016/j.biocel.2007.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 01/22/2007] [Accepted: 02/08/2007] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Photodynamic therapy is based on the selective retention of a photosensitizer by highly proliferating cells and its activation with light at the appropriate wavelength. This combination generates reactive oxygen species that ultimately kill the cells. Some cells, however, may survive photodynamic therapy and the interaction of these cells with the extracellular matrix has profound effect in tumor biology. The knowledge of photodynamic therapy action on the extracellular matrix has not been fully explored. It has been focused mainly on integrins, matrix metalloproteinases and on growth factors and immunological mediators. Other important molecules involved in the regulation of many cell processes are the glycosaminoglycans, polymers of disaccharide units, present on the cell surface and in the extracellular matrix. In most cases, the glycosaminoglycans occur as proteoglycans. AIMS The purpose of the present investigation is to evaluate heparan sulfate proteoglycan expression and shedding, and its relation to the survival of the remaining cells, after a liposomal-AlClPc based photodynamic treatment. MATERIALS A wild-type endothelial cell derived from rabbit aorta and its counterpart transfected with EJ-ras oncogene were used. RESULTS Both cell lines presented augmented heparan sulfate proteoglycan syndecan-4 mRNA expression, augmented synthesis of heparan sulfate chains and increased shedding. Also, the formation of stress fibers on the border of the cells and the arrest in G(1) phase of the cell cycle was observed. CONCLUSIONS These results show that surviving cells after photodynamic therapy exhibit changes in their morphology and cell processes that differ from that of non-treated cells, and these changes are probably hindering the cells from resuming normal proliferation.
Collapse
|
33
|
Solban N, Selbo PK, Pål SK, Sinha AK, Alok SK, Chang SK, Sung CK, Hasan T. Mechanistic Investigation and Implications of Photodynamic Therapy Induction of Vascular Endothelial Growth Factor in Prostate Cancer. Cancer Res 2006; 66:5633-40. [PMID: 16740700 DOI: 10.1158/0008-5472.can-06-0604] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Photodynamic therapy (PDT) is now an approved therapeutic modality, and induction of vascular endothelial growth factor (VEGF) following subcurative PDT is of concern as VEGF may provide a survival stimulus to tumors. The processes that limit the efficacy of PDT warrant investigation so that mechanism-based interventions may be developed. This study investigates VEGF increase following subcurative PDT using the photosensitizer benzoporphyrin derivative (BPD) both in an in vitro and in an orthotopic model of prostate cancer using the human prostate cancer cell line LNCaP. The two subcurative doses used, 0.25 and 0.5 J/cm(2), mimicked subcurative PDT and elicited a 1.6- and 2.1-fold increase, respectively, in secreted VEGF 24 hours following PDT. Intracellular VEGF protein measurement and VEGF mRNA showed a 1.4- and 1.6-fold increase only at 0.5 J/cm(2). In vivo subcurative PDT showed an increase in VEGF by both immunohistochemistry and ELISA. In vitro analysis showed no activation of hypoxia-inducible factor-1alpha (HIF-1alpha) or cyclooxygenase-2 (COX-2) following subcurative PDT; furthermore, small interfering RNA inhibition of HIF-1alpha and COX-2 inhibitor treatment had no effect on PDT induction of VEGF. PDT in the presence of phosphatidylinositol 3-kinase/AKT inhibitor or mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase inhibitor still induced VEGF. However, subcurative PDT increased phosphorylated p38 and stress-activated protein kinase/c-Jun NH(2)-terminal kinase. The p38 MAPK inhibitor abolished PDT induction of VEGF. The results establish the importance of VEGF in subcurative BPD-PDT of prostate cancer and suggest possible molecular pathways for its induction. These findings should provide the basis for the development of molecular-based interventions for enhancing PDT and merit further studies.
Collapse
Affiliation(s)
- Nicolas Solban
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Uzdensky A, Kolpakova E, Juzeniene A, Juzenas P, Moan J. The effect of sub-lethal ALA-PDT on the cytoskeleton and adhesion of cultured human cancer cells. Biochim Biophys Acta Gen Subj 2005; 1722:43-50. [PMID: 15716135 DOI: 10.1016/j.bbagen.2004.11.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 11/09/2004] [Accepted: 11/16/2004] [Indexed: 11/26/2022]
Abstract
5-Aminolevulinic acid (ALA), a precursor of the endogenous photosensitizer protoporphyrin IX, is used in the photodynamic therapy (PDT) of cancer. Sub-lethal ALA-PDT (1-min irradiation with 370-450 nm blue light, 0.6 mW/cm(2) after 2-h incubation with 1 mM ALA) has been earlier shown to change cell morphology and to inhibit both trypsin-induced detachment of cultured cancer cells from the plastic substrata and cell attachment to the bottom of the plastic well plates. In the present study, we found that such treatment of human adenocarcinoma WiDr cells grown in dense colonies stimulated the formation of actin cortex between cells in the colonies and increased the number of actin stress fibres in some, but not in all, cells. However, ALA-PDT did not change the microtubular cytoskeleton in these cells. A similar treatment of glioblastoma D54Mg cells, which grow separately and communicate by protrusions, caused loss of fibrillar actin structures in growth cones, retraction of protrusions, and surface blebbing in some cells. The application of the cytoskeleton inhibitors cytochalasin D, colchicine or taxol showed that the inhibition of trypsin-induced detachment of photosensitized WiDr cells was related to ALA-PDT-induced changes in actin and microtubular cytoskeleton. Some signal transduction processes are suggested to be involved in ALA-PDT-induced changes in cytoskeleton, cell shape, and adhesion.
Collapse
|
35
|
Galaz S, Espada J, Stockert JC, Pacheco M, Sanz-Rodríguez F, Arranz R, Rello S, Cañete M, Villanueva A, Esteller M, Juarranz A. Loss of E-cadherin mediated cell-cell adhesion as an early trigger of apoptosis induced by photodynamic treatment. J Cell Physiol 2005; 205:86-96. [PMID: 15880654 DOI: 10.1002/jcp.20374] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Photodynamic treatment with different photosensitizers (PSs) can result in the specific induction of apoptosis in many cell types. It is commonly accepted that this apoptotic response depends on the mitochondrial accumulation of the PS. Accumulation in other cellular organelles, such as lysosomes or the Golgi complex, and subsequent photodamage resulting in an apoptotic process has been also described. However, the role played by cell adhesion in apoptosis induced in epithelial cells after photodynamic treatment is not well characterized. Here, we have used a murine keratinocyte line, showing a strong dependence on E-cadherin for cell-cell adhesion and survival, to analyze the relevance of this adhesion complex in the context of zinc(II)-phthalocyanine (ZnPc) photodynamic treatment. We report that under apoptotic conditions, ZnPc phototreatment induces a rapid disorganization of the E-cadherin mediated cell-cell adhesion, which largely preceded both the detachment of cells from the substrate, via beta-1 integrins and the induction of apoptotic mitochondrial markers. Therefore, the alteration in E-cadherin, alpha- and beta-catenins adhesion proteins preceded the release of cytochrome c (cyt c) from mitochondria to the cytosol and the activation of caspase 3. In addition, blocking E-cadherin function with a specific antibody (Decma-1) induced apoptosis in this cell system. These results strongly suggest that the E-cadherin adhesion complex could be the primary target of ZnPc phototreatment, and that loss of E-cadherin mediated cell adhesion after early photodamage triggers an apoptotic response.
Collapse
Affiliation(s)
- Sergio Galaz
- Department of Biology and Health, Faculty of Sciences, University of Tarapacá, Arica, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Eljamel MS. Brain PDD and PDT unlocking the mystery of malignant gliomas. Photodiagnosis Photodyn Ther 2004; 1:303-10. [DOI: 10.1016/s1572-1000(05)00008-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 11/15/2004] [Accepted: 01/29/2005] [Indexed: 11/24/2022]
|
37
|
Volanti C, Gloire G, Vanderplasschen A, Jacobs N, Habraken Y, Piette J. Downregulation of ICAM-1 and VCAM-1 expression in endothelial cells treated by photodynamic therapy. Oncogene 2004; 23:8649-58. [PMID: 15467759 DOI: 10.1038/sj.onc.1207871] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Photodynamic therapy (PDT) is a treatment for cancer and several noncancerous proliferating cell diseases that depends on the uptake of a photosensitizing compound followed by selective irradiation with visible light. In the presence of oxygen, irradiation leads to the production of reactive oxygen species (ROS). A large production of ROS induces the death of cancer cells by apoptosis or necrosis. A small ROS production can activate various cellular pathways. Here, we show that PDT by pyropheophorbide-a methyl ester (PPME) induces the activation of nuclear factor kappa B (NF-kappaB) in HMEC-1 cells. NF-kappaB is active since it binds to the NF-kappaB sites of both ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1) promoters and induces the transcription of several NF-kappaB target genes such as those of IL-6, ICAM-1, VCAM-1. In contrast, expression of ICAM-1 and VCAM-1 at the protein level was not observed, although we measured an IL-6 secretion. Using specific chemical inhibitors, we showed that the lack of ICAM-1 and VCAM-1 expression is the consequence of their degradation by lysosomal proteases. The proteasome and calpain pathways were not involved. All these observations were consistent with the fact that no adhesion of granulocytes was observed in these conditions.
Collapse
Affiliation(s)
- Cédric Volanti
- Laboratory of Virology and Immunology, Institute of Pathology B23, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | | | |
Collapse
|
38
|
Uzdensky AB, Juzeniene A, Kolpakova E, Hjortland GO, Juzenas P, Moan J. Photosensitization with protoporphyrin IX inhibits attachment of cancer cells to a substratum. Biochem Biophys Res Commun 2004; 322:452-7. [PMID: 15325251 DOI: 10.1016/j.bbrc.2004.07.132] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Indexed: 12/27/2022]
Abstract
Effects of photodynamic therapy (PDT) on adhesion of human adenocarcinoma cells of the line WiDr to a plastic substratum were investigated. Protoporphyrin IX induced by 5-aminolevulinic acid (ALA) was used as a photosensitizer. Light exposure inhibited attachment of suspended cells to a substratum. The adhesion was most strongly pronounced for light exposures around 200 mJ/cm(2) causing cell death. However, sub-lethal exposures (42 mJ/cm(2), 97% survival) inhibited cell adhesion as well. Sub-lethal ALA-PDT increased the intracellular space in dense colonies of WiDr cells. This was attributed to formation of lamellipodia between the cells and to increased numbers of focal contacts containing alpha(V)beta(3) integrin in some of the cells. The E-cadherin distribution was not changed by the treatment. Complex processes, including changes in cellular shape and reorganization of the cytoskeleton, are suggested to participate in the observed ALA-PDT effect on the cell adhesion.
Collapse
Affiliation(s)
- A B Uzdensky
- Institute for Cancer Research, 0310 Montebello, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
39
|
Eljamel MS. New light on the brain: The role of photosensitizing agents and laser light in the management of invasive intracranial tumors. Technol Cancer Res Treat 2003; 2:303-9. [PMID: 12892512 DOI: 10.1177/153303460300200404] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Invasive intracranial tumors, particularly malignant gliomas, are very difficult to eradicate surgically and carry a dismal prognosis. The vast majority relapse locally indicating that their cure is dependent on radical and complete local excision. However, their ability to invade and hide among normal brain tissue, our inability to visualize and detect them, the low tolerance of brain tissue to ionizing radiation and the presence of the blood brain barrier are the main causes of our failure to eradicate them. Photodynamic detection with 100% specificity and more than 80% sensitivity offers an excellent chance of visualizing camouflaged tumor nests. Also, photodynamic therapy offers a very good chance of targeted destruction of the remaining tumor cells safely following surgical excision and may double the survival of patients harboring these awful tumors. More work needs to be done to refine this promising technology to exploit it to its full potential.
Collapse
Affiliation(s)
- M Sam Eljamel
- Department of Neurosurgery, South Block, Level 6, Ninewells Hospital & Medical School, Dundee DD1 9SY, UK.
| |
Collapse
|
40
|
Gollnick SO, Evans SS, Baumann H, Owczarczak B, Maier P, Vaughan L, Wang WC, Unger E, Henderson BW. Role of cytokines in photodynamic therapy-induced local and systemic inflammation. Br J Cancer 2003; 88:1772-9. [PMID: 12771994 PMCID: PMC2377133 DOI: 10.1038/sj.bjc.6600864] [Citation(s) in RCA: 259] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Photodynamic therapy (PDT) of tumour results in the rapid induction of an inflammatory response that is considered important for the activation of antitumour immunity, but may be detrimental if excessive. The response is characterised by the infiltration of leucocytes, predominantly neutrophils, into the treated tumour. Several preclinical studies have suggested that suppression of long-term tumour growth following PDT using Photofrin((R)) is dependent upon the presence of neutrophils. The inflammatory pathways leading to the PDT-induced neutrophil migration into the treated tumour are unknown. In the following study, we examined, in mice, the ability of PDT using the second-generation photosensitiser 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH) to induce proinflammatory cytokines and chemokines, as well as adhesion molecules, known to be involved in neutrophil migration. We also examined the role that these mediators play in PDT-induced neutrophil migration. Our studies show that HPPH-PDT induced neutrophil migration into the treated tumour, which was associated with a transient, local increase in the expression of the chemokines macrophage inflammatory protein (MIP)-2 and KC. A similar increase was detected in functional expression of adhesion molecules, that is, E-selectin and intracellular adhesion molecule (ICAM)-1, and both local and systemic expression of interleukin (IL)-6 was detected. The kinetics of neutrophil immigration mirrored those observed for the enhanced production of chemokines, IL-6 and adhesion molecules. Subsequent studies showed that PDT-induced neutrophil recruitment is dependent upon the presence of MIP-2 and E-selectin, but not on IL-6 or KC. These results demonstrate a PDT-induced inflammatory response similar to, but less severe than obtained with Photofrin((R)) PDT. They also lay the mechanistic groundwork for further ongoing studies that attempt to optimise PDT through the modulation of the critical inflammatory mediators.
Collapse
Affiliation(s)
- S O Gollnick
- PDT Center, Roswell Park Cancer Institute, Elm and Carlton St, Buffalo, NY 14263, USA
| | - S S Evans
- Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton St, Buffalo, NY 14263, USA
| | - H Baumann
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Elm and Carlton St, Buffalo, NY 14263, USA
| | - B Owczarczak
- PDT Center, Roswell Park Cancer Institute, Elm and Carlton St, Buffalo, NY 14263, USA
| | - P Maier
- PDT Center, Roswell Park Cancer Institute, Elm and Carlton St, Buffalo, NY 14263, USA
| | - L Vaughan
- PDT Center, Roswell Park Cancer Institute, Elm and Carlton St, Buffalo, NY 14263, USA
| | - W C Wang
- Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton St, Buffalo, NY 14263, USA
| | - E Unger
- Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton St, Buffalo, NY 14263, USA
| | - B W Henderson
- PDT Center, Roswell Park Cancer Institute, Elm and Carlton St, Buffalo, NY 14263, USA
- PDT Center, Roswell Park Cancer Institute, Elm and Carlton St, Buffalo, NY 14263, USA. E-mail:
| |
Collapse
|
41
|
Schreiber S, Gross S, Brandis A, Harmelin A, Rosenbach-Belkin V, Scherz A, Salomon Y. Local photodynamic therapy (PDT) of rat C6 glioma xenografts with Pd-bacteriopheophorbide leads to decreased metastases and increase of animal cure compared with surgery. Int J Cancer 2002; 99:279-85. [PMID: 11979445 DOI: 10.1002/ijc.10299] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Photodynamic therapy (PDT), locally applied to solid C6 rat glioma tumors in the foot of CD1 nude mice, eradicated the primary tumor and also decreased the rate of groin and lung metastases. Pd-Bacteriopheophorbide (Pd-Bpheid), a novel photosensitizer synthesized in our laboratory, was used in our study. The primary lesion in the hind leg was treated by an i.v. injection of 5 mg/kg of Pd-Bpheid and immediate illumination (650-800 nm, 360 J/cm(2)). This protocol and the surgical amputation of the leg were compared for local and metastasis responses. Following PDT, hemorrhage, inflammation with tumor necrosis and flattening were observed and histologically verified in the photodynamically treated tumor. Whereas local tumor control rates were up to 64% following PDT, in surgically treated animals, local tumor control was absolute. The rates of metastases in the groin and the lungs were at least 12-fold lower in the photodynamically treated animals compared with untreated or surgery-treated groups. The overall cure rates after PDT or surgery were 36% and 6%, respectively, at 8 weeks. These findings suggest that local PDT with Pd-Bpheid, which acts primarily on the tumor vasculature, efficiently eradicates the solid C6 tumors. In addition, the local PDT of the primary lesion has beneficial therapeutic effects on remote C6 metastasis, which is not obtained with surgery. It is therefore suggested, that although surgery is highly efficient for the immediate removal of the primary tumor, it lacks such systemic, therapeutic effects on distant metastases. Pd-Bpheid-PDT may thus offer a potentially superior curative therapy for C6 glioma tumors in the limb by eradicating the target tumor and by reducing the rate of metastasis in the groin and lung, possibly due to innate immunity.
Collapse
Affiliation(s)
- Smadar Schreiber
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | |
Collapse
|