1
|
Li C, Meng X, Li S, Wang C. Therapeutic Advances in Peripheral Nerve Injuries: Nerve-Guided Conduit and Beyond. TISSUE ENGINEERING. PART B, REVIEWS 2025. [PMID: 40195945 DOI: 10.1089/ten.teb.2024.0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Peripheral nerve injury (PNI), a challenging neurosurgery issue, often leads to partial or complete loss of neuronal functions and even neuropathic pain. Thus far, the gold standard for treating peripheral nerve deficit remains autografts. While numerous reviews have explored PNI and regeneration, this work distinctively synthesizes recent advancements in tissue engineering-particularly four-dimensional (4D) bioprinting and exosome therapies-with an emphasis on their clinical translation. By consolidating findings spanning molecular mechanisms to therapeutic applications, this review proposes an actionable framework for advancing experimental strategies toward clinically viable solutions. Our work critically evaluates emerging innovations such as dynamically adaptive 4D-printed nerve conduits and exosome-based therapies, underscoring their potential to match conventional autografts in achieving functional restoration. Impact Statement Although several previous reviews have been made on describing with great detail the degenerative and regenerative mechanisms of the peripheral nervous systems, as well as the several existing and exploratory treatment strategies, we focus more on the latest advancements of each of those topics.
Collapse
Affiliation(s)
- Changqing Li
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xianyu Meng
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shengji Li
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chengjing Wang
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Tian R, Zhou Y, Ren Y, Zhang Y, Tang W. Wallerian degeneration: From mechanism to disease to imaging. Heliyon 2025; 11:e40729. [PMID: 39811315 PMCID: PMC11730939 DOI: 10.1016/j.heliyon.2024.e40729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/12/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Wallerian degeneration (WD) was first discovered by Augustus Waller in 1850 in a transection of the glossopharyngeal and hypoglossal nerves in frogs. Initial studies suggested that the formation mechanism of WD is related to the nutrition of neuronal cell bodies to axons. However, with the wide application of transgenic mice in experiments, the latest studies have found that the mechanism of WD is related to axonal degeneration, myelin clearance and extracellular matrix. This review summarizes the discovery and research progress of WD and discusses the mechanism of WD from the perspective of molecular biology. In addition, this review combines the etiology, symptoms and imaging results of WD patients, and analyzes the clinical and imaging characteristics of WD, to provide the best perspective for future clinical research.
Collapse
Affiliation(s)
- Ruiqi Tian
- Department of Neurology, Xinhua Hospital Affiliated with Dalian University, Dalian, Liaoning Province, China
| | - Yingying Zhou
- Department of Neurology, Xinhua Hospital Affiliated with Dalian University, Dalian, Liaoning Province, China
| | - Yuan Ren
- Department of Neurology, Xinhua Hospital Affiliated with Dalian University, Dalian, Liaoning Province, China
| | - Yisen Zhang
- Department of Neurology, Xinhua Hospital Affiliated with Dalian University, Dalian, Liaoning Province, China
| | - Wei Tang
- Department of Neurology, Xinhua Hospital Affiliated with Dalian University, Dalian, Liaoning Province, China
| |
Collapse
|
3
|
Oxenkrug G. Anthranilic Acid-G-Protein Coupled Receptor109A-Cytosolic Phospholipase A2-Myelin-Cognition Cascade: A New Target for the Treatment/Prevention of Cognitive Impairment in Schizophrenia, Dementia, and Aging. Int J Mol Sci 2024; 25:13269. [PMID: 39769034 PMCID: PMC11675959 DOI: 10.3390/ijms252413269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Cognitive impairment is a core feature of neurodevelopmental (schizophrenia) and aging-associated (mild cognitive impairment and Alzheimer's dementia) neurodegenerative diseases. Limited efficacy of current pharmacological treatments warrants further search for new targets for nootropic interventions. The breakdown of myelin, a phospholipids axonal sheath that protects the conduction of nerve impulse between neurons, was proposed as a neuropathological abnormality that precedes and promotes the deposition of amyloid-β in neuritic plaques. The present review of the recent literature and our own pre- and clinical data suggest (for the first time) that the anthranilic acid (AA)-induced activation of microglial-expressed G-protein coupled receptor (GPR109A) inhibits cytosolic phospholipase A2 (cPLA2), an enzyme that triggers the degradation of myelin and consequently attenuates cognitive impairment. The present review suggests that the up-regulation of AA formation is a sex-specific compensatory (adaptive) reaction aimed to prevent/treat cognitive impairment. The AA-GPR109A-cPLA2-myelin-cognition cascade suggests new nootropic interventions, e.g., the administration of pegylated kynureninase, an enzyme that catalyzes AA formation from Kynurenine (Kyn), a tryptophane catabolite; pegylated interferon-alpha; central and peripheral Kyn aminotransferase inhibitors that increase availability of Kyn as a substrate for AA formation; and vagus nerve stimulation. The cascade predicts nootropic activity of exogenous GPR109A agonists that were designed and underwent clinical trials (unsuccessful) as anti-dyslipidemia agents. The proposed cascade might contribute to the pathogenesis of cognitive impairment. Data on AA in neurodegenerative disorders are scarce, and the proposed cascade needs further exploration in pre- and clinical studies.
Collapse
Affiliation(s)
- Gregory Oxenkrug
- Department of Psychiatry, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
4
|
Siavoshi F, Ladakis DC, Muller A, Nourbakhsh B, Bhargava P. Ocrelizumab alters the circulating metabolome in people with relapsing-remitting multiple sclerosis. Ann Clin Transl Neurol 2024; 11:2485-2498. [PMID: 39185939 PMCID: PMC11537130 DOI: 10.1002/acn3.52167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Circulating metabolite levels are altered in multiple sclerosis (MS) and are associated with MS severity. However, how metabolic profiles shift following highly efficacious therapies, like ocrelizumab remains unclear. OBJECTIVE Circulating metabolite levels are altered in multiple sclerosis (MS) and are associated with MS severity. However, how metabolic profiles shift following highly efficacious therapies, like ocrelizumab remains unclear. To assess changes in the circulating metabolome produced by ocrelizumab treatment in people with relapsing-remitting MS (RRMS). METHODS Thirty-one individuals with RRMS eligible for beginning treatment with ocrelizumab were recruited and followed with demographic, clinical, quality-of-life, and global metabolomics data collected at each visit. Modules of highly correlated metabolites were identified using the weighted correlation network analysis approach. Changes in each module's eigenmetabolite values and individual metabolites during the study were evaluated using linear mixed-effects models. RESULTS Patients with a mean age of 40.8 (SD = 10.30) years, and median disease duration of 4.0 (IQR = 8.5) years, were monitored for a median of 3.36 (IQR = 1.43) years. Two out of twelve identified sets of metabolites were altered significantly. The first module mainly contained androgenic and pregnenolone steroids (p-value <0.001, coefficient: -0.10). The second module primarily consisted of several lysophospholipids, arachidonic acid, some endocannabinoids, and monohydroxy fatty acid metabolites (p-value = 0.016, coefficient: -0.12), which its reduction was significantly associated with improvement based on overall disability response score (OR 3.09e-01, 95% CI: 6.83e-02, 9.09e-01, p-value = 3.15E-02). INTERPRETATION In this longitudinal observational study, using a global untargeted metabolomics approach, we showed significant alteration in circulating metabolome in RRMS patients undergoing ocrelizumab treatment. In particular, we observed a significant reduction in metabolites involved in the lysophospholipid pathway, which was associated with patients' improvement.
Collapse
Affiliation(s)
- Fatemeh Siavoshi
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Dimitrios C. Ladakis
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Ashley Muller
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Bardia Nourbakhsh
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Pavan Bhargava
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
5
|
Izhiman Y, Esfandiari L. Emerging role of extracellular vesicles and exogenous stimuli in molecular mechanisms of peripheral nerve regeneration. Front Cell Neurosci 2024; 18:1368630. [PMID: 38572074 PMCID: PMC10989355 DOI: 10.3389/fncel.2024.1368630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/29/2024] [Indexed: 04/05/2024] Open
Abstract
Peripheral nerve injuries lead to significant morbidity and adversely affect quality of life. The peripheral nervous system harbors the unique trait of autonomous regeneration; however, achieving successful regeneration remains uncertain. Research continues to augment and expedite successful peripheral nerve recovery, offering promising strategies for promoting peripheral nerve regeneration (PNR). These include leveraging extracellular vesicle (EV) communication and harnessing cellular activation through electrical and mechanical stimulation. Small extracellular vesicles (sEVs), 30-150 nm in diameter, play a pivotal role in regulating intercellular communication within the regenerative cascade, specifically among nerve cells, Schwann cells, macrophages, and fibroblasts. Furthermore, the utilization of exogenous stimuli, including electrical stimulation (ES), ultrasound stimulation (US), and extracorporeal shock wave therapy (ESWT), offers remarkable advantages in accelerating and augmenting PNR. Moreover, the application of mechanical and electrical stimuli can potentially affect the biogenesis and secretion of sEVs, consequently leading to potential improvements in PNR. In this review article, we comprehensively delve into the intricacies of cell-to-cell communication facilitated by sEVs and the key regulatory signaling pathways governing PNR. Additionally, we investigated the broad-ranging impacts of ES, US, and ESWT on PNR.
Collapse
Affiliation(s)
- Yara Izhiman
- Esfandiari Laboratory, Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Leyla Esfandiari
- Esfandiari Laboratory, Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, United States
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
- Department of Electrical and Computer Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
6
|
Gordon T. Brief Electrical Stimulation Promotes Recovery after Surgical Repair of Injured Peripheral Nerves. Int J Mol Sci 2024; 25:665. [PMID: 38203836 PMCID: PMC10779324 DOI: 10.3390/ijms25010665] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
Injured peripheral nerves regenerate their axons in contrast to those in the central nervous system. Yet, functional recovery after surgical repair is often disappointing. The basis for poor recovery is progressive deterioration with time and distance of the growth capacity of the neurons that lose their contact with targets (chronic axotomy) and the growth support of the chronically denervated Schwann cells (SC) in the distal nerve stumps. Nonetheless, chronically denervated atrophic muscle retains the capacity for reinnervation. Declining electrical activity of motoneurons accompanies the progressive fall in axotomized neuronal and denervated SC expression of regeneration-associated-genes and declining regenerative success. Reduced motoneuronal activity is due to the withdrawal of synaptic contacts from the soma. Exogenous neurotrophic factors that promote nerve regeneration can replace the endogenous factors whose expression declines with time. But the profuse axonal outgrowth they provoke and the difficulties in their delivery hinder their efficacy. Brief (1 h) low-frequency (20 Hz) electrical stimulation (ES) proximal to the injury site promotes the expression of endogenous growth factors and, in turn, dramatically accelerates axon outgrowth and target reinnervation. The latter ES effect has been demonstrated in both rats and humans. A conditioning ES of intact nerve days prior to nerve injury increases axonal outgrowth and regeneration rate. Thereby, this form of ES is amenable for nerve transfer surgeries and end-to-side neurorrhaphies. However, additional surgery for applying the required electrodes may be a hurdle. ES is applicable in all surgeries with excellent outcomes.
Collapse
Affiliation(s)
- Tessa Gordon
- Division of Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, ON M4G 1X8, Canada
| |
Collapse
|
7
|
Krishnan A, Verge VMK, Zochodne DW. Hallmarks of peripheral nerve injury and regeneration. HANDBOOK OF CLINICAL NEUROLOGY 2024; 201:1-17. [PMID: 38697733 DOI: 10.1016/b978-0-323-90108-6.00014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Peripheral nerves are functional networks in the body. Disruption of these networks induces varied functional consequences depending on the types of nerves and organs affected. Despite the advances in microsurgical repair and understanding of nerve regeneration biology, restoring full functions after severe traumatic nerve injuries is still far from achieved. While a blunted growth response from axons and errors in axon guidance due to physical barriers may surface as the major hurdles in repairing nerves, critical additional cellular and molecular aspects challenge the orderly healing of injured nerves. Understanding the systematic reprogramming of injured nerves at the cellular and molecular levels, referred to here as "hallmarks of nerve injury regeneration," will offer better ideas. This chapter discusses the hallmarks of nerve injury and regeneration and critical points of failures in the natural healing process. Potential pharmacological and nonpharmacological intervention points for repairing nerves are also discussed.
Collapse
Affiliation(s)
- Anand Krishnan
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada; Cameco MS Neuroscience Research Centre (CMSNRC), Saskatoon, SK, Canada.
| | - Valerie M K Verge
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada; Cameco MS Neuroscience Research Centre (CMSNRC), Saskatoon, SK, Canada.
| | - Douglas W Zochodne
- Neuroscience and Mental Health Institute and Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
8
|
Er-Rouassi H, Bakour M, Touzani S, Vilas-Boas M, Falcão S, Vidal C, Lyoussi B. Beneficial Effect of Bee Venom and Its Major Components on Facial Nerve Injury Induced in Mice. Biomolecules 2023; 13:680. [PMID: 37189427 PMCID: PMC10135545 DOI: 10.3390/biom13040680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 05/17/2023] Open
Abstract
Peripheral nerve injury (PNI) is a health problem that affects many people worldwide. This study is the first to evaluate the potential effect of bee venom (BV) and its major components in a model of PNI in the mouse. For that, the BV used in this study was analyzed using UHPLC. All animals underwent a distal section-suture of facial nerve branches, and they were randomly divided into five groups. Group 1: injured facial nerve branches without any treatment. Group 2: the facial nerve branches were injured, and the normal saline was injected similarly as in the BV-treated group. Group 3: injured facial nerve branches with local injections of BV solution. Group 4: injured facial nerve branches with local injections of a mixture of PLA2 and melittin. Group 5: injured facial nerve branches with local injection of betamethasone. The treatment was performed three times a week for 4 weeks. The animals were submitted to functional analysis (observation of whisker movement and quantification of nasal deviation). The vibrissae muscle re-innervation was evaluated by retrograde labeling of facial motoneurons in all experimental groups. UHPLC data showed 76.90 ± 0.13%, 11.73 ± 0.13%, and 2.01 ± 0.01%, respectively, for melittin, phospholipase A2, and apamin in the studied BV sample. The obtained results showed that BV treatment was more potent than the mixture of PLA2 and melittin or betamethasone in behavioral recovery. The whisker movement occurred faster in BV-treated mice than in the other groups, with a complete disappearance of nasal deviation two weeks after surgery. Morphologically, a normal fluorogold labeling of the facial motoneurons was restored 4 weeks after surgery in the BV-treated group, but no such restoration was ever observed in other groups. Our findings indicate the potential of the use of BV injections to enhance appropriate functional and neuronal outcomes after PNI.
Collapse
Affiliation(s)
- Hafsa Er-Rouassi
- Centre Borelli, Université de Paris Cité, National Centre for Scientific Research UMR 9010, 75006 Paris, France
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Department of Biology, Faculty of Sciences Dhar Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Meryem Bakour
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Department of Biology, Faculty of Sciences Dhar Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
- The Higher Institute of Nursing Professions and Health Techniques, Fez 30000, Morocco
| | - Soumaya Touzani
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Department of Biology, Faculty of Sciences Dhar Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Miguel Vilas-Boas
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal
| | - Soraia Falcão
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal
| | - Catherine Vidal
- Centre Borelli, Université de Paris Cité, National Centre for Scientific Research UMR 9010, 75006 Paris, France
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Department of Biology, Faculty of Sciences Dhar Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| |
Collapse
|
9
|
Bittner GD, Bushman JS, Ghergherehchi CL, Roballo KCS, Shores JT, Smith TA. Typical and atypical properties of peripheral nerve allografts enable novel strategies to repair segmental-loss injuries. J Neuroinflammation 2022; 19:60. [PMID: 35227261 PMCID: PMC8886977 DOI: 10.1186/s12974-022-02395-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/19/2022] [Indexed: 12/20/2022] Open
Abstract
We review data showing that peripheral nerve injuries (PNIs) that involve the loss of a nerve segment are the most common type of traumatic injury to nervous systems. Segmental-loss PNIs have a poor prognosis compared to other injuries, especially when one or more mixed motor/sensory nerves are involved and are typically the major source of disability associated with extremities that have sustained other injuries. Relatively little progress has been made, since the treatment of segmental loss PNIs with cable autografts that are currently the gold standard for repair has slow and incomplete (often non-existent) functional recovery. Viable peripheral nerve allografts (PNAs) to repair segmental-loss PNIs have not been experimentally or clinically useful due to their immunological rejection, Wallerian degeneration (WD) of anucleate donor graft and distal host axons, and slow regeneration of host axons, leading to delayed re-innervation and producing atrophy or degeneration of distal target tissues. However, two significant advances have recently been made using viable PNAs to repair segmental-loss PNIs: (1) hydrogel release of Treg cells that reduce the immunological response and (2) PEG-fusion of donor PNAs that reduce the immune response, reduce and/or suppress much WD, immediately restore axonal conduction across the donor graft and re-innervate many target tissues, and restore much voluntary behavioral functions within weeks, sometimes to levels approaching that of uninjured nerves. We review the rather sparse cellular/biochemical data for rejection of conventional PNAs and their acceptance following Treg hydrogel and PEG-fusion of PNAs, as well as cellular and systemic data for their acceptance and remarkable behavioral recovery in the absence of tissue matching or immune suppression. We also review typical and atypical characteristics of PNAs compared with other types of tissue or organ allografts, problems and potential solutions for PNA use and storage, clinical implications and commercial availability of PNAs, and future possibilities for PNAs to repair segmental-loss PNIs.
Collapse
Affiliation(s)
- George D Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, TX, 78712, USA.
| | - Jared S Bushman
- School of Pharmacy, University of Wyoming, Laramie, WY, 82072, USA
| | - Cameron L Ghergherehchi
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Jaimie T Shores
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Tyler A Smith
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
10
|
Yamazaki R, Osanai Y, Kouki T, Shinohara Y, Huang JK, Ohno N. Macroscopic detection of demyelinated lesions in mouse PNS with neutral red dye. Sci Rep 2021; 11:16906. [PMID: 34413421 PMCID: PMC8377033 DOI: 10.1038/s41598-021-96395-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/10/2021] [Indexed: 11/24/2022] Open
Abstract
Lysophosphatidylcholine (LPC)-induced demyelination is a versatile animal model that is frequently used to identify and examine molecular pathways of demyelination and remyelination in the central (CNS) and peripheral nervous system (PNS). However, identification of focally demyelinated lesion had been difficult and usually required tissue fixation, sectioning and histological analysis. Recently, a method for labeling and identification of demyelinated lesions in the CNS by intraperitoneal injection of neutral red (NR) dye was developed. However, it remained unknown whether NR can be used to label demyelinated lesions in PNS. In this study, we generated LPC-induced demyelination in sciatic nerve of mice, and demonstrated that the demyelinated lesions at the site of LPC injection were readily detectable at 7 days postlesion (dpl) by macroscopic observation of NR labeling. Moreover, NR staining gradually decreased from 7 to 21 dpl over the course of remyelination. Electron microscopy analysis of NR-labeled sciatic nerves at 7 dpl confirmed demyelination and myelin debris in lesions. Furthermore, fluorescence microscopy showed NR co-labeling with activated macrophages and Schwann cells in the PNS lesions. Together, NR labeling is a straightforward method that allows the macroscopic detection of demyelinated lesions in sciatic nerves after LPC injection.
Collapse
Affiliation(s)
- Reiji Yamazaki
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan.
| | - Yasuyuki Osanai
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Tom Kouki
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Yoshiaki Shinohara
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Jeffrey K Huang
- Department of Biology and Center for Cell Reprogramming, Georgetown University, Washington, DC, 20057, USA
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
11
|
Kopper TJ, Zhang B, Bailey WM, Bethel KE, Gensel JC. The effects of myelin on macrophage activation are phenotypic specific via cPLA 2 in the context of spinal cord injury inflammation. Sci Rep 2021; 11:6341. [PMID: 33737707 PMCID: PMC7973514 DOI: 10.1038/s41598-021-85863-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/05/2021] [Indexed: 01/31/2023] Open
Abstract
Spinal cord injury (SCI) produces chronic, pro-inflammatory macrophage activation that impairs recovery. The mechanisms driving this chronic inflammation are not well understood. Here, we detail the effects of myelin debris on macrophage physiology and demonstrate a novel, activation state-dependent role for cytosolic phospholipase-A2 (cPLA2) in myelin-mediated potentiation of pro-inflammatory macrophage activation. We hypothesized that cPLA2 and myelin debris are key mediators of persistent pro-inflammatory macrophage responses after SCI. To test this, we examined spinal cord tissue 28-days after thoracic contusion SCI in 3-month-old female mice and observed both cPLA2 activation and intracellular accumulation of lipid-rich myelin debris in macrophages. In vitro, we utilized bone marrow-derived macrophages to determine myelin's effects across a spectrum of activation states. We observed phenotype-specific responses with myelin potentiating only pro-inflammatory (LPS + INF-γ; M1) macrophage activation, whereas myelin did not induce pro-inflammatory responses in unstimulated or anti-inflammatory (IL-4; M2) macrophages. Specifically, myelin increased levels of pro-inflammatory cytokines, reactive oxygen species, and nitric oxide production in M1 macrophages as well as M1-mediated neurotoxicity. PACOCF3 (cPLA2 inhibitor) blocked myelin's detrimental effects. Collectively, we provide novel spatiotemporal evidence that myelin and cPLA2 play an important role in the pathophysiology of SCI inflammation and the phenotype-specific response to myelin implicate diverse roles of myelin in neuroinflammatory conditions.
Collapse
Affiliation(s)
- Timothy J Kopper
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Bei Zhang
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - William M Bailey
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Kara E Bethel
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - John C Gensel
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
| |
Collapse
|
12
|
Bolandghamat S, Behnam-Rassouli M. Recent Findings on the Effects of Pharmacological Agents on the Nerve Regeneration after Peripheral Nerve Injury. Curr Neuropharmacol 2020; 18:1154-1163. [PMID: 32379588 PMCID: PMC7709152 DOI: 10.2174/1570159x18666200507084024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/27/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
Peripheral nerve injuries (PNIs) are accompanied with neuropathic pain and functional disability. Despite improvements in surgical repair techniques in recent years, the functional recovery is yet unsatisfied. Indeed a successful nerve repair depends not only on the surgical strategy but also on the cellular and molecular mechanisms involved in traumatic nerve injury. In contrast to all strategies suggested for nerve repair, pharmacotherapy is a cheap, accessible and non-invasive treatment that can be used immediately after nerve injury. This study aimed to review the effects of some pharmacological agents on the nerve regeneration after traumatic PNI evaluated by functional, histological and electrophysiological assessments. In addition, some cellular and molecular mechanisms responsible for their therapeutic actions, restricted to neural tissue, are suggested. These findings can not only help to find better strategies for peripheral nerve repair, but also to identify the neuropathic effects of various medications and their mechanisms of action.
Collapse
Affiliation(s)
- Samira Bolandghamat
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran
| | | |
Collapse
|
13
|
Miletić Vukajlović J, Drakulić D, Pejić S, Ilić TV, Stefanović A, Petković M, Schiller J. Increased plasma phosphatidylcholine/lysophosphatidylcholine ratios in patients with Parkinson's disease. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8595. [PMID: 31519070 DOI: 10.1002/rcm.8595] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/03/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Changes in lipid composition might be associated with the onset and progression of various neurodegenerative diseases. Herein, we investigated the changes in the plasma phosphatidylcholine (PC)/lysophosphatidylcholine (LPC) ratios in patients with Parkinson's disease (PD) in comparison with healthy subjects and their correlation with clinico-pathological features. METHODS The study included 10 controls and 25 patients with PD. All patients were assigned to groups based on clinico-pathological characteristics (gender, age at examination, duration of disease and Hoehn and Yahr (H&Y) stage). The analysis of the PC/LPC intensity ratios in plasma lipid extracts was performed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. RESULTS PD patients exhibited an increased PC/LPC intensity ratio in comparison with the control group of healthy subjects. Furthermore, the investigated ratio was shown to be correlated with clinico-pathological parameters, in particular with H&Y stage and disease duration. The PC/LPC intensity ratio in plasma samples of PD patients was found to be elevated in all examined H&Y stages and throughout the disease duration. CONCLUSIONS To our knowledge, this is the first study examining the PC/LPC ratios in plasma of patients with PD and illustrating their correlation with clinico-pathological features. Although the presented results may be considered as preliminary due to the limited number of participants, the observed alterations of PC/LPC ratios in plasma might be a first step in the characterization of plasma lipid changes in PD patients and an indicator of lipid reconfiguration.
Collapse
Affiliation(s)
- Jadranka Miletić Vukajlović
- Department of Physical Chemistry, VINČA Institute of Nuclear Sciences - University of Belgrade, Belgrade, Republic of Serbia
| | - Dunja Drakulić
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences - University of Belgrade, Belgrade, Republic of Serbia
| | - Snežana Pejić
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences - University of Belgrade, Belgrade, Republic of Serbia
| | - Tihomir V Ilić
- Medical Faculty of Medical Military Academy, Clinic of Neurology, University of Defense, Belgrade, Republic of Serbia
| | - Aleksandra Stefanović
- Department of Medical Biochemistry, Faculty of Pharmacy - University of Belgrade, Belgrade, Republic of Serbia
| | - Marijana Petković
- Madeira Chemistry Research Centre, University of Madeira, Funchal, Portugal
- Department of Atomic Physics, VINČA Institute of Nuclear Sciences - University of Belgrade, Belgrade, Republic of Serbia
| | - Jürgen Schiller
- Institute of Medical Physics and Biophysics, Medical Department, University of Leipzig, Leipzig, Germany
| |
Collapse
|
14
|
Abstract
Toxic peripheral neuropathies are an important form of acquired polyneuropathy produced by a variety of xenobiotics and different exposure scenarios. Delineating the mechanisms of neurotoxicants and determining the degenerative biological pathways triggered by peripheral neurotoxicants will facilitate the development of sensitive and specific biochemical-based methods for identifying neurotoxicants, designing therapeutic interventions, and developing structure-activity relationships for predicting potential neurotoxicants. This review presents an overview of the general concepts of toxic peripheral neuropathies with the goal of providing insight into why certain agents target the peripheral nervous system and produce their associated lesions. Experimental data and the main hypotheses for the mechanisms of selected agents that produce neuronopathies, axonopathies, or myelinopathies including covalent or noncovalent modifications, compromised energy or protein biosynthesis, and oxidative injury and disruption of ionic gradients across membranes are presented. The relevance of signaling between the main components of peripheral nerve, that is, glia, neuronal perikaryon, and axon, as a target for neurotoxicants and the contribution of active programmed degenerative pathways to the lesions observed in toxic peripheral neuropathies is also discussed.
Collapse
|
15
|
Richardson RJ, Fink JK, Glynn P, Hufnagel RB, Makhaeva GF, Wijeyesakere SJ. Neuropathy target esterase (NTE/PNPLA6) and organophosphorus compound-induced delayed neurotoxicity (OPIDN). ADVANCES IN NEUROTOXICOLOGY 2020; 4:1-78. [PMID: 32518884 PMCID: PMC7271139 DOI: 10.1016/bs.ant.2020.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Systemic inhibition of neuropathy target esterase (NTE) with certain organophosphorus (OP) compounds produces OP compound-induced delayed neurotoxicity (OPIDN), a distal degeneration of axons in the central nervous system (CNS) and peripheral nervous system (PNS), thereby providing a powerful model for studying a spectrum of neurodegenerative diseases. Axonopathies are important medical entities in their own right, but in addition, illnesses once considered primary neuronopathies are now thought to begin with axonal degeneration. These disorders include Alzheimer's disease, Parkinson's disease, and motor neuron diseases such as amyotrophic lateral sclerosis (ALS). Moreover, conditional knockout of NTE in the mouse CNS produces vacuolation and other degenerative changes in large neurons in the hippocampus, thalamus, and cerebellum, along with degeneration and swelling of axons in ascending and descending spinal cord tracts. In humans, NTE mutations cause a variety of neurodegenerative conditions resulting in a range of deficits including spastic paraplegia and blindness. Mutations in the Drosophila NTE orthologue SwissCheese (SWS) produce neurodegeneration characterized by vacuolization that can be partially rescued by expression of wild-type human NTE, suggesting a potential therapeutic approach for certain human neurological disorders. This chapter defines NTE and OPIDN, presents an overview of OP compounds, provides a rationale for NTE research, and traces the history of discovery of NTE and its relationship to OPIDN. It then briefly describes subsequent studies of NTE, including practical applications of the assay; aspects of its domain structure, subcellular localization, and tissue expression; abnormalities associated with NTE mutations, knockdown, and conventional or conditional knockout; and hypothetical models to help guide future research on elucidating the role of NTE in OPIDN.
Collapse
Affiliation(s)
- Rudy J. Richardson
- Molecular Simulations Laboratory, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States,Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States,Center for Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, United States,Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI, United States,Corresponding author:
| | - John K. Fink
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States,Ann Arbor Veterans Affairs Medical Center, Ann Arbor, MI, United States
| | - Paul Glynn
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Robert B. Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Galina F. Makhaeva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, Russia
| | - Sanjeeva J. Wijeyesakere
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
16
|
Manoukian OS, Baker JT, Rudraiah S, Arul MR, Vella AT, Domb AJ, Kumbar SG. Functional polymeric nerve guidance conduits and drug delivery strategies for peripheral nerve repair and regeneration. J Control Release 2019; 317:78-95. [PMID: 31756394 DOI: 10.1016/j.jconrel.2019.11.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/16/2019] [Accepted: 11/18/2019] [Indexed: 12/25/2022]
Abstract
Peripheral nerve injuries can be extremely debilitating, resulting in sensory and motor loss-of-function. Endogenous repair is limited to non-severe injuries in which transection of nerves necessitates surgical intervention. Traditional treatment approaches include the use of biological grafts and alternative engineering approaches have made progress. The current article serves as a comprehensive, in-depth perspective on peripheral nerve regeneration, particularly nerve guidance conduits and drug delivery strategies. A detailed background of peripheral nerve injury and repair pathology, and an in-depth look into augmented nerve regeneration, nerve guidance conduits, and drug delivery strategies provide a state-of-the-art perspective on the field.
Collapse
Affiliation(s)
- Ohan S Manoukian
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA; Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Jiana T Baker
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Swetha Rudraiah
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA; Department of Pharmaceutical Sciences, University of Saint Joseph, Hartford, CT, USA
| | - Michael R Arul
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Anthony T Vella
- Department of Department of Immunology, University of Connecticut Health, Farmington, CT, USA
| | - Abraham J Domb
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Sangamesh G Kumbar
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA; Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA.
| |
Collapse
|
17
|
Kuffler DP. Injury-Induced Effectors of Neuropathic Pain. Mol Neurobiol 2019; 57:51-66. [PMID: 31701439 DOI: 10.1007/s12035-019-01756-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Injuries typically result in the development of neuropathic pain, which decreases in parallel with wound healing. However, the pain may remain after the injury appears to have healed, which is generally associated with an ongoing underlying pro-inflammatory state. Injury induces many cells to release factors that contribute to the development of a pro-inflammatory state, which is considered an essential first step towards wound healing. However, pain elimination requires a transition of the injury site from pro- to anti-inflammatory. Therefore, developing techniques that eliminate chronic pain require an understanding of the cells resident at and recruited to injury sites, the factors they release, that promote a pro-inflammatory state, and promote the subsequent transition of that site to be anti-inflammatory. Although a relatively large number of cells, factors, and gene expression changes are involved in these processes, it may be possible to control a relatively small number of them leading to the reduction and elimination of chronic neuropathic pain. This first of two papers examines the roles of the most salient cells and mediators associated with the development and maintenance of chronic neuropathic pain. The following paper examines the cells and mediators involved in reducing and eliminating chronic neuropathic pain.
Collapse
Affiliation(s)
- Damien P Kuffler
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, 201 Blvd. del Valle, San Juan, PR, 00901, USA.
| |
Collapse
|
18
|
Guo K, Elzinga S, Eid S, Figueroa-Romero C, Hinder LM, Pacut C, Feldman EL, Hur J. Genome-wide DNA methylation profiling of human diabetic peripheral neuropathy in subjects with type 2 diabetes mellitus. Epigenetics 2019; 14:766-779. [PMID: 31132961 PMCID: PMC6615525 DOI: 10.1080/15592294.2019.1615352] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
DNA methylation is an epigenetic mechanism important for the regulation of gene expression, which plays a vital role in the interaction between genetic and environmental factors. Aberrant epigenetic changes are implicated in the pathogenesis of diabetes and diabetic complications, but the role of DNA methylation in diabetic peripheral neuropathy (DPN) is not well understood. Therefore, our aim in this study was to explore the role of DNA methylation in the progression of DPN in type 2 diabetes. We compared genome-wide DNA methylation profiles of human sural nerve biopsies from subjects with stable or improving nerve fibre counts to biopsies from subjects with progressive loss of nerve fibres. Nerve fibre counts were determined by comparing myelinated nerve fibre densities between an initial and repeat biopsy separated by 52 weeks. Subjects with significant nerve regeneration (regenerators) and subjects with significant nerve degeneration (degenerators) represent the two extreme DPN phenotypes. Using reduced representation bisulfite sequencing, we identified 3,460 differentially methylated CpG dinucleotides between the two groups. The genes associated with differentially methylated CpGs were highly enriched in biological processes that have previously been implicated in DPN such as nervous system development, neuron development, and axon guidance, as well as glycerophospholipid metabolism and mitogen-activated protein kinase (MAPK) signalling. These findings are the first to provide a comprehensive analysis of DNA methylation profiling in human sural nerves of subjects with DPN and suggest that epigenetic regulation has an important role in the progression of this prevalent diabetic complication.
Collapse
Affiliation(s)
- Kai Guo
- a Department of Biomedical Sciences, School of Medicine and Health Sciences , University of North Dakota , Grand Forks , ND , USA
| | - Sarah Elzinga
- b Department of Neurology, School of Medicine , University of Michigan , Ann Arbor , MI , USA
| | - Stephanie Eid
- b Department of Neurology, School of Medicine , University of Michigan , Ann Arbor , MI , USA
| | - Claudia Figueroa-Romero
- b Department of Neurology, School of Medicine , University of Michigan , Ann Arbor , MI , USA
| | - Lucy M Hinder
- b Department of Neurology, School of Medicine , University of Michigan , Ann Arbor , MI , USA
| | - Crystal Pacut
- b Department of Neurology, School of Medicine , University of Michigan , Ann Arbor , MI , USA
| | - Eva L Feldman
- b Department of Neurology, School of Medicine , University of Michigan , Ann Arbor , MI , USA
| | - Junguk Hur
- a Department of Biomedical Sciences, School of Medicine and Health Sciences , University of North Dakota , Grand Forks , ND , USA
| |
Collapse
|
19
|
Jessen KR, Arthur-Farraj P. Repair Schwann cell update: Adaptive reprogramming, EMT, and stemness in regenerating nerves. Glia 2019; 67:421-437. [PMID: 30632639 DOI: 10.1002/glia.23532] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/20/2018] [Accepted: 09/05/2018] [Indexed: 12/16/2022]
Abstract
Schwann cells respond to nerve injury by cellular reprogramming that generates cells specialized for promoting regeneration and repair. These repair cells clear redundant myelin, attract macrophages, support survival of damaged neurons, encourage axonal growth, and guide axons back to their targets. There are interesting parallels between this response and that found in other tissues. At the cellular level, many other tissues also react to injury by cellular reprogramming, generating cells specialized to promote tissue homeostasis and repair. And at the molecular level, a common feature possessed by Schwann cells and many other cells is the injury-induced activation of genes associated with epithelial-mesenchymal transitions and stemness, differentiation states that are linked to cellular plasticity and that help injury-induced tissue remodeling. The number of signaling systems regulating Schwann cell plasticity is rapidly increasing. Importantly, this includes mechanisms that are crucial for the generation of functional repair Schwann cells and nerve regeneration, although they have no or a minor role elsewhere in the Schwann cell lineage. This encourages the view that selective tools can be developed to control these particular cells, amplify their repair supportive functions and prevent their deterioration. In this review, we discuss the emerging similarities between the injury response seen in nerves and in other tissues and survey the transcription factors, epigenetic mechanisms, and signaling cascades that control repair Schwann cells, with emphasis on systems that selectively regulate the Schwann cell injury response.
Collapse
Affiliation(s)
- Kristjan R Jessen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Peter Arthur-Farraj
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
20
|
Korimová A, Klusáková I, Hradilová-Svíženská I, Kohoutková M, Joukal M, Dubový P. Mitochondrial Damage-Associated Molecular Patterns of Injured Axons Induce Outgrowth of Schwann Cell Processes. Front Cell Neurosci 2018; 12:457. [PMID: 30542268 PMCID: PMC6277938 DOI: 10.3389/fncel.2018.00457] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/12/2018] [Indexed: 01/13/2023] Open
Abstract
Activated Schwann cells put out cytoplasmic processes that play a significant role in cell migration and axon regeneration. Following nerve injury, axonal mitochondria release mitochondrial damage-associated molecular patterns (mtDAMPs), including formylated peptides and mitochondrial DNA (mtDNA). We hypothesize that mtDAMPs released from disintegrated axonal mitochondria may stimulate Schwann cells to put out cytoplasmic processes. We investigated RT4-D6P2T schwannoma cells (RT4) in vitro treated with N-formyl-L-methionyl-L-leucyl-phenylalanine (fMLP) or cytosine-phospho-guanine oligodeoxynucleotide (CpG ODN) for 1, 6 and 24 h. We also used immunohistochemical detection to monitor the expression of formylpeptide receptor 2 (FPR2) and toll-like receptor 9 (TLR9), the canonical receptors for formylated peptides and mtDNA, in RT4 cells and Schwann cells distal to nerve injury. RT4 cells treated with fMLP put out a significantly higher number of cytoplasmic processes compared to control cells. Preincubation with PBP10, a selective inhibitor of FPR2 resulted in a significant reduction of cytoplasmic process outgrowth. A significantly higher number of cytoplasmic processes was also found after treatment with CpG ODN compared to control cells. Pretreatment with inhibitory ODN (INH ODN) resulted in a reduced number of cytoplasmic processes after subsequent treatment with CpG ODN only at 6 h, but 1 and 24 h treatment with CpG ODN demonstrated an additive effect of INH ODN on the development of cytoplasmic processes. Immunohistochemistry and western blot detected increased levels of tyrosine-phosphorylated paxillin in RT4 cells associated with cytoplasmic process outgrowth after fMLP or CpG ODN treatment. We found increased immunofluorescence of FPR2 and TLR9 in RT4 cells treated with fMLP or CpG ODN as well as in activated Schwann cells distal to the nerve injury. In addition, activated Schwann cells displayed FPR2 and TLR9 immunostaining close to GAP43-immunopositive regenerated axons and their growth cones after nerve crush. Increased FPR2 and TLR9 immunoreaction was associated with activation of p38 and NFkB, respectively. Surprisingly, the growth cones displayed also FPR2 and TLR9 immunostaining. These results present the first evidence that potential mtDAMPs may play a key role in the induction of Schwann cell processes. This reaction of Schwann cells can be mediated via FPR2 and TLR9 that are canonical receptors for formylated peptides and mtDNA. The possible role for FPR2 and TLR9 in growth cones is also discussed.
Collapse
Affiliation(s)
- Andrea Korimová
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Ilona Klusáková
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Ivana Hradilová-Svíženská
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Marcela Kohoutková
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Marek Joukal
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petr Dubový
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
21
|
Park HT, Kim JK, Tricaud N. The conceptual introduction of the “demyelinating Schwann cell” in peripheral demyelinating neuropathies. Glia 2018; 67:571-581. [DOI: 10.1002/glia.23509] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Hwan Tae Park
- Department of Molecular Neuroscience; Peripheral Neuropathy Research Center, College of Medicine, Dong-A University; Busan South Korea
| | - Jong Kuk Kim
- Department of Neurology; Peripheral Neuropathy Research Center, College of Medicine, Dong-A University; Busan South Korea
| | - Nicolas Tricaud
- INSERM U1051, Institut des Neurosciences de Montpellier (INM); Université de Montpellier; Montpellier France
| |
Collapse
|
22
|
Trotter A, Anstadt E, Clark RB, Nichols F, Dwivedi A, Aung K, Cervantes JL. The role of phospholipase A2 in multiple Sclerosis: A systematic review and meta-analysis. Mult Scler Relat Disord 2018; 27:206-213. [PMID: 30412818 DOI: 10.1016/j.msard.2018.10.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/21/2018] [Accepted: 10/29/2018] [Indexed: 01/25/2023]
Abstract
Phospholipases A2 (PLA2) are a diverse group of enzymes that cleave the fatty acids of membrane phospholipids. They play critical roles in pathogenesis of neurodegenerative diseases such as multiple sclerosis by enhancing oxidative stress and initiating inflammation. The levels of PLA2 activity in MS patients compared to controls and role of inhibiting PLA2 activity on severity scores in different experimental models are not comprehensively assessed in the light of varying evidence from published studies. The objective of this systematic review is to determine the association between PLA2 activity and multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). We performed a systematic review of six studies that assessed PLA2 activity in MS patients compared to controls and nine studies that assessed PLA2 activity in EAE. sPLA2 nor Lp-PLA2 activity were not increased in MS compared to controls in five of those six studies. A difference in sPLA2 activity was only found in a study that measured the enzyme activity in urine. However, inhibiting cPLA2 or sPLA2 led to lower clinical severity or no signs of EAE in mice, and a lower incidence of EAE lesions compared to animals without cPLA2 inhibition. These findings indicate that PLA2 appears to play a role in the pathogenesis of EAE.
Collapse
Affiliation(s)
- Austin Trotter
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Emily Anstadt
- Department of Immunology, and Department of Medicine, Farmington, CT, USA
| | - Robert B Clark
- Department of Immunology, and Department of Medicine, Farmington, CT, USA; University of Connecticut School of Medicine, Farmington, CT, USA
| | - Frank Nichols
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, CT, USA
| | - Alok Dwivedi
- Department of Biomedical Sciences, Division of Biostatistics and Epidemiology, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Koko Aung
- Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Jorge L Cervantes
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA; Department of Medical Education, Texas Tech University Health Sciences Center, El Paso, TX, USA.
| |
Collapse
|
23
|
Abstract
Axonal degeneration is a pivotal feature of many neurodegenerative conditions and substantially accounts for neurological morbidity. A widely used experimental model to study the mechanisms of axonal degeneration is Wallerian degeneration (WD), which occurs after acute axonal injury. In the peripheral nervous system (PNS), WD is characterized by swift dismantling and clearance of injured axons with their myelin sheaths. This is a prerequisite for successful axonal regeneration. In the central nervous system (CNS), WD is much slower, which significantly contributes to failed axonal regeneration. Although it is well-documented that Schwann cells (SCs) have a critical role in the regenerative potential of the PNS, to date we have only scarce knowledge as to how SCs ‘sense’ axonal injury and immediately respond to it. In this regard, it remains unknown as to whether SCs play the role of a passive bystander or an active director during the execution of the highly orchestrated disintegration program of axons. Older reports, together with more recent studies, suggest that SCs mount dynamic injury responses minutes after axonal injury, long before axonal breakdown occurs. The swift SC response to axonal injury could play either a pro-degenerative role, or alternatively a supportive role, to the integrity of distressed axons that have not yet committed to degenerate. Indeed, supporting the latter concept, recent findings in a chronic PNS neurodegeneration model indicate that deactivation of a key molecule promoting SC injury responses exacerbates axonal loss. If this holds true in a broader spectrum of conditions, it may provide the grounds for the development of new glia-centric therapeutic approaches to counteract axonal loss.
Collapse
Affiliation(s)
- Keit Men Wong
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Elisabetta Babetto
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.,Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Bogdan Beirowski
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
24
|
Law V, Dong S, Rosales JL, Jeong MY, Zochodne D, Lee KY. Enhancement of Peripheral Nerve Regrowth by the Purine Nucleoside Analog and Cell Cycle Inhibitor, Roscovitine. Front Cell Neurosci 2016; 10:238. [PMID: 27799897 PMCID: PMC5066473 DOI: 10.3389/fncel.2016.00238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/30/2016] [Indexed: 02/03/2023] Open
Abstract
Peripheral nerve regeneration is a slow process that can be associated with limited outcomes and thus a search for novel and effective therapy for peripheral nerve injury and disease is crucial. Here, we found that roscovitine, a synthetic purine nucleoside analog, enhances neurite outgrowth in neuronal-like PC12 cells. Furthermore, ex vivo analysis of pre-injured adult rat dorsal root ganglion (DRG) neurons showed that roscovitine enhances neurite regrowth in these cells. Likewise, in vivo transected sciatic nerves in rats locally perfused with roscovitine had augmented repopulation of new myelinated axons beyond the transection zone. By mass spectrometry, we found that roscovitine interacts with tubulin and actin. It interacts directly with tubulin and causes a dose-dependent induction of tubulin polymerization as well as enhances Guanosine-5′-triphosphate (GTP)-dependent tubulin polymerization. Conversely, roscovitine interacts indirectly with actin and counteracts the inhibitory effect of cyclin-dependent kinases 5 (Cdk5) on Actin-Related Proteins 2/3 (Arp2/3)-dependent actin polymerization, and thus, causes actin polymerization. Moreover, in the presence of neurotrophic factors such as nerve growth factor (NGF), roscovitine-enhanced neurite outgrowth is mediated by increased activation of the extracellular signal-regulated kinases 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) pathways. Since microtubule and F-actin dynamics are critical for axonal regrowth, the ability of roscovitine to activate the ERK1/2 and p38 MAPK pathways and support polymerization of tubulin and actin indicate a major role for this purine nucleoside analog in the promotion of axonal regeneration. Together, our findings demonstrate a therapeutic potential for the purine nucleoside analog, roscovitine, in peripheral nerve injury.
Collapse
Affiliation(s)
- Vincent Law
- Department of Cell Biology and Anatomy, Arnie Charbonneau Cancer Institute, Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| | - Sophie Dong
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| | - Jesusa L Rosales
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, University of Calgary Calgary, AB, Canada
| | - Myung-Yung Jeong
- Department of Cogno-Mechatronics Engineering, Pusan National University Pusan, South Korea
| | - Douglas Zochodne
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| | - Ki-Young Lee
- Department of Cell Biology and Anatomy, Arnie Charbonneau Cancer Institute, Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| |
Collapse
|
25
|
Yunes Quartino PJ, Pusterla JM, Galván Josa VM, Fidelio GD, Oliveira RG. CNS myelin structural modification induced in vitro by phospholipases A2. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1858:123-9. [PMID: 26514604 DOI: 10.1016/j.bbamem.2015.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 12/13/2022]
Abstract
Myelin is the self-stacked membrane surrounding axons; it is also the target of several pathological and/or neurodegenerative processes like multiple sclerosis. These processes involve, among others, the hydrolytic attack by phospholipases. In this work we describe the changes in isolated myelin structure after treatment with several secreted PLA2 (sPLA2), by using small angle x-ray scattering (SAXS) measurements. It was observed that myelin treated with all the tested sPLA2s (from cobra and bee venoms and from pig pancreas) preserved the lamellar structure but displayed an enlarged separation between membranes in certain zones. Additionally, the peak due to membrane asymmetry was clearly enhanced. The coherence length was also lower than the non-treated myelin, indicating increased disorder. These SAXS results were complemented by Langmuir film experiments to follow myelin monolayer hydrolysis at the air/water interface by a decrease in electric surface potential at different surface pressures. All enzymes produced hydrolysis with no major qualitative difference between the isoforms tested.
Collapse
Affiliation(s)
- Pablo J Yunes Quartino
- Departamento de Química Biológica-CIQUIBIC (CONICET), Facultad de Ciencias Químicas, Universidad de Nacional de Córdoba, Haya de la Torre S/N, X5000HUA, Córdoba, Argentina
| | - Julio M Pusterla
- Departamento de Química Biológica-CIQUIBIC (CONICET), Facultad de Ciencias Químicas, Universidad de Nacional de Córdoba, Haya de la Torre S/N, X5000HUA, Córdoba, Argentina
| | - Victor M Galván Josa
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), FaMAF, Universidad Nacional de Córdoba, Argentina
| | - Gerardo D Fidelio
- Departamento de Química Biológica-CIQUIBIC (CONICET), Facultad de Ciencias Químicas, Universidad de Nacional de Córdoba, Haya de la Torre S/N, X5000HUA, Córdoba, Argentina
| | - Rafael G Oliveira
- Departamento de Química Biológica-CIQUIBIC (CONICET), Facultad de Ciencias Químicas, Universidad de Nacional de Córdoba, Haya de la Torre S/N, X5000HUA, Córdoba, Argentina.
| |
Collapse
|
26
|
DeFrancesco-Lisowitz A, Lindborg JA, Niemi JP, Zigmond RE. The neuroimmunology of degeneration and regeneration in the peripheral nervous system. Neuroscience 2015; 302:174-203. [PMID: 25242643 PMCID: PMC4366367 DOI: 10.1016/j.neuroscience.2014.09.027] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/08/2014] [Accepted: 09/10/2014] [Indexed: 12/25/2022]
Abstract
Peripheral nerves regenerate following injury due to the effective activation of the intrinsic growth capacity of the neurons and the formation of a permissive pathway for outgrowth due to Wallerian degeneration (WD). WD and subsequent regeneration are significantly influenced by various immune cells and the cytokines they secrete. Although macrophages have long been known to play a vital role in the degenerative process, recent work has pointed to their importance in influencing the regenerative capacity of peripheral neurons. In this review, we focus on the various immune cells, cytokines, and chemokines that make regeneration possible in the peripheral nervous system, with specific attention placed on the role macrophages play in this process.
Collapse
Affiliation(s)
| | - J A Lindborg
- Department of Neurosciences, Case Western Reserve University, Cleveland OH 44106-4975
| | - J P Niemi
- Department of Neurosciences, Case Western Reserve University, Cleveland OH 44106-4975
| | - R E Zigmond
- Department of Neurosciences, Case Western Reserve University, Cleveland OH 44106-4975
| |
Collapse
|
27
|
Mietto BS, Mostacada K, Martinez AMB. Neurotrauma and inflammation: CNS and PNS responses. Mediators Inflamm 2015; 2015:251204. [PMID: 25918475 PMCID: PMC4397002 DOI: 10.1155/2015/251204] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/24/2015] [Accepted: 03/09/2015] [Indexed: 01/09/2023] Open
Abstract
Traumatic injury to the central nervous system (CNS) or the peripheral nervous system (PNS) triggers a cascade of events which culminate in a robust inflammatory reaction. The role played by inflammation in the course of degeneration and regeneration is not completely elucidated. While, in peripheral nerves, the inflammatory response is assumed to be essential for normal progression of Wallerian degeneration and regeneration, CNS trauma inflammation is often associated with poor recovery. In this review, we discuss key mechanisms that trigger the inflammatory reaction after nervous system trauma, emphasizing how inflammations in both CNS and PNS differ from each other, in terms of magnitude, cell types involved, and effector molecules. Knowledge of the precise mechanisms that elicit and maintain inflammation after CNS and PNS tissue trauma and their effect on axon degeneration and regeneration is crucial for the identification of possible pharmacological drugs that can positively affect the tissue regenerative capacity.
Collapse
Affiliation(s)
- Bruno Siqueira Mietto
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Faculdade de Medicina, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, 21941-550 Rio de Janeiro, RJ, Brazil
| | - Klauss Mostacada
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Faculdade de Medicina, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, 21941-550 Rio de Janeiro, RJ, Brazil
| | - Ana Maria Blanco Martinez
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Faculdade de Medicina, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, 21941-550 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
28
|
Gong L, Zhu Y, Xu X, Li H, Guo W, Zhao Q, Yao D. The effects of claudin 14 during early Wallerian degeneration after sciatic nerve injury. Neural Regen Res 2014; 9:2151-8. [PMID: 25657736 PMCID: PMC4316448 DOI: 10.4103/1673-5374.147946] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2014] [Indexed: 12/16/2022] Open
Abstract
Claudin 14 has been shown to promote nerve repair and regeneration in the early stages of Wallerian degeneration (0-4 days) in rats with sciatic nerve injury, but the mechanism underlying this process remains poorly understood. This study reported the effects of claudin 14 on nerve degeneration and regeneration during early Wallerian degeneration. Claudin 14 expression was up-regulated in sciatic nerve 4 days after Wallerian degeneration. The altered expression of claudin 14 in Schwann cells resulted in expression changes of cytokines in vitro. Expression of claudin 14 affected c-Jun, but not Akt and ERK1/2 pathways. Further studies revealed that enhanced expression of claudin 14 could promote Schwann cell proliferation and migration. Silencing of claudin 14 expression resulted in Schwann cell apoptosis and reduction in Schwann cell proliferation. Our data revealed the role of claudin 14 in early Wallerian degeneration, which may provide new insights into the molecular mechanisms of Wallerian degeneration.
Collapse
Affiliation(s)
- Leilei Gong
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu Province, China
| | - Yun Zhu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu Province, China
| | - Xi Xu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu Province, China
| | - Huaiqin Li
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu Province, China
| | - Weimin Guo
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu Province, China
| | - Qin Zhao
- Key Laboratory of People's Liberation Army, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Dengbing Yao
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu Province, China
- School of Life Sciences, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
29
|
Liu NK, Titsworth WL, Zhang YP, Xhafa AI, Shields CB, Xu XM. Characterizing phospholipase A2-induced spinal cord injury-a comparison with contusive spinal cord injury in adult rats. Transl Stroke Res 2013; 2:608-18. [PMID: 23585818 DOI: 10.1007/s12975-011-0089-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To assess whether phospholipase A2 (PLA2) plays a role in the pathogenesis of spinal cord injury (SCI), we compared lesions either induced by PLA2 alone or by a contusive SCI. At 24-h post-injury, both methods induced a focal hemorrhagic pathology. The PLA2 injury was mainly confined within the ventrolateral white matter, whereas the contusion injury widely affected both the gray and white matter. A prominent difference between the two models was that PLA2 induced a massive demyelination with axons remaining in the lesion area, whereas the contusion injury induced axonal damage and myelin breakdown. At 4 weeks, no cavitation was found within the PLA2 lesion, and numerous axons were myelinated by host-migrated Schwann cells. Among them, 45% of animals had early transcranial magnetic motor-evoked potential (tcMMEP) responses. In contrast, the contusive SCI induced a typical centralized cavity with reactive astrocytes forming a glial border. Only 15% of rats had early tcMMEP responses after the contusion. BBB scores were similarly reduced in both models. Our study indicates that PLA2 may play a unique role in mediating secondary SCI likely by targeting glial cells, particularly those of oligodendrocytes. This lesion model could also be used for studying demyelination and remyelination in the injured spinal cord associated with PLA2-mediated secondary SCI.
Collapse
Affiliation(s)
- Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, 950 W Walnut St, R2 Building, Room 402, Indianapolis, IN 46202, USA. Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY 40292, USA. Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | | | | | | | | | | |
Collapse
|
30
|
Yao D, Li M, Shen D, Ding F, Lu S, Zhao Q, Gu X. Expression changes and bioinformatic analysis of Wallerian degeneration after sciatic nerve injury in rat. Neurosci Bull 2013; 29:321-32. [PMID: 23700281 PMCID: PMC5561847 DOI: 10.1007/s12264-013-1340-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/21/2012] [Indexed: 12/22/2022] Open
Abstract
Wallerian degeneration (WD) remains an important research topic. Many genes are differentially expressed during the process of WD, but the precise mechanisms responsible for these differentiations are not completely understood. In this study, we used microarrays to analyze the expression changes of the distal nerve stump at 0, 1, 4, 7, 14, 21 and 28 days after sciatic nerve injury in rats. The data revealed 6 076 differentially-expressed genes, with 23 types of expression, specifically enriched in genes associated with nerve development and axonogenesis, cytokine biosynthesis, cell differentiation, cytokine/chemokine production, neuron differentiation, cytokinesis, phosphorylation and axon regeneration. Kyoto Encyclopedia of Genes and Genomes pathway analysis gave findings related mainly to the MAPK signaling pathway, the Jak-STAT signaling pathway, the cell cycle, cytokine-cytokine receptor interaction, the p53 signaling pathway and the Wnt signaling pathway. Some key factors were NGF, MAG, CNTF, CTNNA2, p53, JAK2, PLCB1, STAT3, BDNF, PRKC, collagen II, FGF, THBS4, TNC and c-Src, which were further validated by real-time quantitative PCR, Western blot, and immunohistochemistry. Our findings contribute to a better understanding of the functional analysis of differentially-expressed genes in WD and may shed light on the molecular mechanisms of nerve degeneration and regeneration.
Collapse
Affiliation(s)
- Dengbing Yao
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226019 China
- School of Life Sciences, Nantong University, Nantong, 226019 China
| | - Meiyuan Li
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226019 China
| | - Dingding Shen
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226019 China
| | - Fei Ding
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226019 China
| | - Shibi Lu
- Key Laboratory of the People’s Liberation Army, Institute of Orthopaedics, Chinese PLA General Hospital, Beijing, 100853 China
| | - Qing Zhao
- Key Laboratory of the People’s Liberation Army, Institute of Orthopaedics, Chinese PLA General Hospital, Beijing, 100853 China
| | - Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226019 China
| |
Collapse
|
31
|
Li M, Guo W, Zhang P, Li H, Gu X, Yao D. Signal flow and pathways in response to early Wallerian degeneration after rat sciatic nerve injury. Neurosci Lett 2013; 536:56-63. [DOI: 10.1016/j.neulet.2013.01.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 01/02/2013] [Indexed: 10/27/2022]
|
32
|
Camara-Lemarroy CR, Gonzalez-Moreno EI, Guzman-de la Garza FJ, Fernandez-Garza NE. Arachidonic acid derivatives and their role in peripheral nerve degeneration and regeneration. ScientificWorldJournal 2012; 2012:168953. [PMID: 22997489 PMCID: PMC3446639 DOI: 10.1100/2012/168953] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 08/10/2012] [Indexed: 01/23/2023] Open
Abstract
After peripheral nerve injury, a process of axonal degradation, debris clearance, and subsequent regeneration is initiated by complex local signaling, called Wallerian degeneration (WD). This process is in part mediated by neuroglia as well as infiltrating inflammatory cells and regulated by inflammatory mediators such as cytokines, chemokines, and the activation of transcription factors also related to the inflammatory response. Part of this neuroimmune signaling is mediated by the innate immune system, including arachidonic acid (AA) derivatives such as prostaglandins and leukotrienes. The enzymes responsible for their production, cyclooxygenases and lipooxygenases, also participate in nerve degeneration and regeneration. The interactions between signals for nerve regeneration and neuroinflammation go all the way down to the molecular level. In this paper, we discuss the role that AA derivatives might play during WD and nerve regeneration, and the therapeutic possibilities that arise.
Collapse
Affiliation(s)
- Carlos Rodrigo Camara-Lemarroy
- Departamento de Medicina Interna, Hospital Universitario "José Eleuterio González", Universidad Autónoma de Nuevo León, School of Medicine, Colonia Mitras Centro, 64460 Monterrey, Nuevo León, Mexico.
| | | | | | | |
Collapse
|
33
|
Yao D, Li M, Shen D, Ding F, Lu S, Zhao Q, Gu X. Gene expression profiling of the rat sciatic nerve in early Wallerian degeneration after injury. Neural Regen Res 2012; 7:1285-92. [PMID: 25657657 PMCID: PMC4308797 DOI: 10.3969/j.issn.1673-5374.2012.17.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/23/2012] [Indexed: 11/18/2022] Open
Abstract
Wallerian degeneration is an important area of research in modern neuroscience. A large number of genes are differentially regulated in the various stages of Wallerian degeneration, especially during the early response. In this study, we analyzed gene expression in early Wallerian degeneration of the distal nerve stump at 0, 0.5, 1, 6, 12 and 24 hours after rat sciatic nerve injury using gene chip microarrays. We screened for differentially-expressed genes and gene expression patterns. We examined the data for Gene Ontology, and explored the Kyoto Encyclopedia of Genes and Genomes Pathway. This allowed us to identify key regulatory factors and recurrent network motifs. We identified 1 546 differentially-expressed genes and 21 distinct patterns of gene expression in early Wallerian degeneration, and an enrichment of genes associated with the immune response, acute inflammation, apoptosis, cell adhesion, ion transport and the extracellular matrix. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed components involved in the Jak-STAT, ErbB, transforming growth factor-β, T cell receptor and calcium signaling pathways. Key factors included interleukin-6, interleukin-1, integrin, c-sarcoma, carcinoembryonic antigen-related cell adhesion molecules, chemokine (C-C motif) ligand, matrix metalloproteinase, BH3 interacting domain death agonist, baculoviral IAP repeat-containing 3 and Rac. The data were validated with real-time quantitative PCR. This study provides a global view of gene expression profiles in early Wallerian degeneration of the rat sciatic nerve. Our findings provide insight into the molecular mechanisms underlying early Wallerian degeneration, and the regulation of nerve degeneration and regeneration.
Collapse
Affiliation(s)
- Dengbing Yao
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226019, Jiangsu Province, China
- School of Life Sciences, Nantong University, Nantong 226019, Jiangsu Province, China
| | - Meiyuan Li
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226019, Jiangsu Province, China
| | - Dingding Shen
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226019, Jiangsu Province, China
| | - Fei Ding
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226019, Jiangsu Province, China
| | - Shibi Lu
- Key Laboratory of People's Liberation Army, Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Qin Zhao
- Key Laboratory of People's Liberation Army, Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226019, Jiangsu Province, China
| |
Collapse
|
34
|
David S, Greenhalgh AD, López-Vales R. Role of phospholipase A2s and lipid mediators in secondary damage after spinal cord injury. Cell Tissue Res 2012; 349:249-67. [PMID: 22581384 DOI: 10.1007/s00441-012-1430-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 04/05/2012] [Indexed: 11/26/2022]
Abstract
Inflammation is considered to be an important contributor to secondary damage after spinal cord injury (SCI). This secondary damage leads to further exacerbation of tissue loss and functional impairments. The immune responses that are triggered by injury are complex and are mediated by a variety of factors that have both detrimental and beneficial effects. In this review, we focus on the diverse effects of the phospholipase A(2) (PLA(2)) superfamily and the downstream pathways that generate a large number of bioactive lipid mediators, some of which have pro-inflammatory and demyelinating effects, whereas others have anti-inflammatory and pro-resolution properties. For each of these lipid mediators, we provide an overview followed by a discussion of their expression and role in SCI. Where appropriate, we have compared the latter with their role in other neurological conditions. The PLA(2) pathway provides a number of targets for therapeutic intervention for the treatment of SCI and other neurological conditions.
Collapse
Affiliation(s)
- Samuel David
- Center for Research in Neuroscience, The Research Institute of the McGill University Health Center, Livingston Hall, Room L7-210, 1650 Cedar Ave., Montreal, Quebec, Canada, H3G 1A4,
| | | | | |
Collapse
|
35
|
Extrinsic cellular and molecular mediators of peripheral axonal regeneration. Cell Tissue Res 2012; 349:5-14. [PMID: 22476657 DOI: 10.1007/s00441-012-1389-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 02/23/2012] [Indexed: 12/11/2022]
Abstract
The ability of injured peripheral nerves to regenerate and reinnervate their original targets is a characteristic feature of the peripheral nervous system (PNS). On the other hand, neurons of the central nervous system (CNS), including retinal ganglion cell (RGC) axons, are incapable of spontaneous regeneration. In the adult PNS, axonal regeneration after injury depends on well-orchestrated cellular and molecular processes that comprise a highly reproducible series of degenerative reactions distal to the site of injury. During this fine-tuned process, named Wallerian degeneration, a remodeling of the distal nerve fragment prepares a permissive microenvironment that permits successful axonal regrowth originating from the proximal nerve fragment. Therefore, a multitude of adjusted intrinsic and extrinsic factors are important for surviving neurons, Schwann cells, macrophages and fibroblasts as well as endothelial cells in order to achieve successful regeneration. The aim of this review is to summarize relevant extrinsic cellular and molecular determinants of successful axonal regeneration in rodents that contribute to the regenerative microenvironment of the PNS.
Collapse
|
36
|
Gaudet AD, Popovich PG, Ramer MS. Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflammation 2011; 8:110. [PMID: 21878126 PMCID: PMC3180276 DOI: 10.1186/1742-2094-8-110] [Citation(s) in RCA: 616] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 08/30/2011] [Indexed: 01/15/2023] Open
Abstract
In this review, we first provide a brief historical perspective, discussing how peripheral nerve injury (PNI) may have caused World War I. We then consider the initiation, progression, and resolution of the cellular inflammatory response after PNI, before comparing the PNI inflammatory response with that induced by spinal cord injury (SCI).In contrast with central nervous system (CNS) axons, those in the periphery have the remarkable ability to regenerate after injury. Nevertheless, peripheral nervous system (PNS) axon regrowth is hampered by nerve gaps created by injury. In addition, the growth-supportive milieu of PNS axons is not sustained over time, precluding long-distance regeneration. Therefore, studying PNI could be instructive for both improving PNS regeneration and recovery after CNS injury. In addition to requiring a robust regenerative response from the injured neuron itself, successful axon regeneration is dependent on the coordinated efforts of non-neuronal cells which release extracellular matrix molecules, cytokines, and growth factors that support axon regrowth. The inflammatory response is initiated by axonal disintegration in the distal nerve stump: this causes blood-nerve barrier permeabilization and activates nearby Schwann cells and resident macrophages via receptors sensitive to tissue damage. Denervated Schwann cells respond to injury by shedding myelin, proliferating, phagocytosing debris, and releasing cytokines that recruit blood-borne monocytes/macrophages. Macrophages take over the bulk of phagocytosis within days of PNI, before exiting the nerve by the circulation once remyelination has occurred. The efficacy of the PNS inflammatory response (although transient) stands in stark contrast with that of the CNS, where the response of nearby cells is associated with inhibitory scar formation, quiescence, and degeneration/apoptosis. Rather than efficiently removing debris before resolving the inflammatory response as in other tissues, macrophages infiltrating the CNS exacerbate cell death and damage by releasing toxic pro-inflammatory mediators over an extended period of time. Future research will help determine how to manipulate PNS and CNS inflammatory responses in order to improve tissue repair and functional recovery.
Collapse
Affiliation(s)
- Andrew D Gaudet
- Department of Neuroscience and Center for Brain and Spinal Cord Repair, College of Medicine, The Ohio State University, 770 Biomedical Research Tower, 460 West 12th Ave, Columbus, OH, 43210, USA
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, and Department of Zoology, University of British Columbia, 818 West 10th Ave, Vancouver, BC, V5T 1M9, Canada
| | - Phillip G Popovich
- Department of Neuroscience and Center for Brain and Spinal Cord Repair, College of Medicine, The Ohio State University, 770 Biomedical Research Tower, 460 West 12th Ave, Columbus, OH, 43210, USA
| | - Matt S Ramer
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, and Department of Zoology, University of British Columbia, 818 West 10th Ave, Vancouver, BC, V5T 1M9, Canada
| |
Collapse
|
37
|
López-Vales R, Ghasemlou N, Redensek A, Kerr BJ, Barbayianni E, Antonopoulou G, Baskakis C, Rathore KI, Constantinou-Kokotou V, Stephens D, Shimizu T, Dennis EA, Kokotos G, David S. Phospholipase A2 superfamily members play divergent roles after spinal cord injury. FASEB J 2011; 25:4240-52. [PMID: 21868473 DOI: 10.1096/fj.11-183186] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Spinal cord injury (SCI) results in permanent loss of motor functions. A significant aspect of the tissue damage and functional loss may be preventable as it occurs, secondary to the trauma. We show that the phospholipase A(2) (PLA(2)) superfamily plays important roles in SCI. PLA(2) enzymes hydrolyze membrane glycerophospholipids to yield a free fatty acid and lysophospholipid. Some free fatty acids (arachidonic acid) give rise to eicosanoids that promote inflammation, while some lysophospholipids (lysophosphatidylcholine) cause demyelination. We show in a mouse model of SCI that two cytosolic forms [calcium-dependent PLA(2) group IVA (cPLA(2) GIVA) and calcium-independent PLA(2) group VIA (iPLA(2) GVIA)], and a secreted form [secreted PLA(2) group IIA (sPLA(2) GIIA)] are up-regulated. Using selective inhibitors and null mice, we show that these PLA(2)s play differing roles. cPLA(2) GIVA mediates protection, whereas sPLA(2) GIIA and, to a lesser extent, iPLA(2) GVIA are detrimental. Furthermore, completely blocking all three PLA(2)s worsens outcome, while the most beneficial effects are seen by partial inhibition of all three. The partial inhibitor enhances expression of cPLA(2) and mediates its beneficial effects via the prostaglandin EP1 receptor. These findings indicate that drugs that inhibit detrimental forms of PLA(2) (sPLA(2) and iPLA2) and up-regulate the protective form (cPLA2) may be useful for the treatment of SCI.
Collapse
Affiliation(s)
- Rubèn López-Vales
- Center for Research in Neuroscience, McGill University Health Center Research Institute, Livingston Hall, 1650 Cedar Ave., Montreal, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Takada H, Yuasa S, Araki T. Demyelination can proceed independently of axonal degradation during Wallerian degeneration in wlds mice. Eur J Neurosci 2011; 34:531-7. [DOI: 10.1111/j.1460-9568.2011.07783.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Ganfornina MD, Do Carmo S, Martínez E, Tolivia J, Navarro A, Rassart E, Sanchez D. ApoD, a glia-derived apolipoprotein, is required for peripheral nerve functional integrity and a timely response to injury. Glia 2011; 58:1320-34. [PMID: 20607718 PMCID: PMC7165554 DOI: 10.1002/glia.21010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Glial cells are a key element to the process of axonal regeneration, either promoting or inhibiting axonal growth. The study of glial derived factors induced by injury is important to understand the processes that allow or preclude regeneration, and can explain why the PNS has a remarkable ability to regenerate, while the CNS does not. In this work we focus on Apolipoprotein D (ApoD), a Lipocalin expressed by glial cells in the PNS and CNS. ApoD expression is strongly induced upon PNS injury, but its role has not been elucidated. Here we show that ApoD is required for: (1) the maintenance of peripheral nerve function and tissue homeostasis with age, and (2) an adequate and timely response to injury. We study crushed sciatic nerves at two ages using ApoD knock‐out and transgenic mice over‐expressing human ApoD. The lack of ApoD decreases motor nerve conduction velocity and the thickness of myelin sheath in intact nerves. Following injury, we analyze the functional recovery, the cellular processes, and the protein and mRNA expression profiles of a group of injury‐induced genes. ApoD helps to recover locomotor function after injury, promoting myelin clearance, and regulating the extent of angiogenesis and the number of macrophages recruited to the injury site. Axon regeneration and remyelination are delayed without ApoD and stimulated by excess ApoD. The mRNA and protein expression profiles reveal that ApoD is functionally connected in an age‐dependent manner to specific molecular programs triggered by injury. © 2010 Wiley‐Liss, Inc.
Collapse
Affiliation(s)
- Maria D Ganfornina
- Instituto de Biología y Genética Molecular-Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid-CSIC, Valladolid, Spain
| | | | | | | | | | | | | |
Collapse
|
40
|
Zhu Z, Ni B, Yin G, Zhou F, Liu J, Guo Q, Guo X. NgR expression in macrophages promotes nerve regeneration after spinal cord injury in rats. Arch Orthop Trauma Surg 2010; 130:945-51. [PMID: 20179954 DOI: 10.1007/s00402-010-1065-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Indexed: 10/19/2022]
Abstract
OBJECTIVE This study aimed to investigate the expression of Nogo-66 receptor (NgR) in macrophages after SCI and clarify its role in neuron regeneration. METHODS Macrophages harvested from injured spine cord of rats were stained by double immunofluorescence labeling technique to observe the expression of NgR at histological and cellular levels. Macrophages which expressed NgR were constructed in vitro, and then the effects of NgR on macrophage phagocytosis and neuraxon regeneration in three groups (NgR-macrophages group, mock group and normal macrophages group) were studied using Western blot, micro-MTT colorimetry, and LDH assay separately. RESULTS The results showed that CD68-positive macrophages in injured tissue of spine cord expressed NgR after double immunofluorescence staining on day 7 after SCI, and so did macrophages isolated and cultured from the injured spine cord. The results of Western blot showed that phagocytosis of macrophages in NgR-macrophages group was much better than that in mock group and normal macrophage group (p < 0.05). And the results of Micro-MTT colorimetry and LDH assay indicated that the capacity of neuraxon regeneration in NgR-macrophages group was significantly higher than that in the other two groups (p < 0.05). CONCLUSIONS The results suggested that there was NgR expressing in the infiltrated macrophages following SCI, which increased phagocytosis of the macrophages, and promoted post-SCI CNS regeneration in vitro.
Collapse
Affiliation(s)
- Zhuangchen Zhu
- Department of Orthopedics, Changzheng Hospital, The Second Military Medical University, Huangpu District, Shanghai, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
41
|
Liu NK, Xu XM. Phospholipase A2 and its molecular mechanism after spinal cord injury. Mol Neurobiol 2010; 41:197-205. [PMID: 20127525 PMCID: PMC9169014 DOI: 10.1007/s12035-010-8101-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 01/08/2010] [Indexed: 12/11/2022]
Abstract
Phospholipases A(2) (PLA(2)s) are a diverse family of lipolytic enzymes which hydrolyze the acyl bond at the sn-2 position of glycerophospholipids to produce free fatty acids and lysophospholipids. These products are precursors of bioactive eicosanoids and platelet-activating factor which have been implicated in pathological states of numerous acute and chronic neurological disorders. To date, more than 27 isoforms of PLA(2) have been found in the mammalian system which can be classified into four major categories: secretory PLA(2), cytosolic PLA(2), Ca(2+)-independent PLA(2), and platelet-activating factor acetylhydrolases. Multiple isoforms of PLA(2) are found in the mammalian spinal cord. Under physiological conditions, PLA(2)s are involved in diverse cellular responses, including phospholipid digestion and metabolism, host defense, and signal transduction. However, under pathological situations, increased PLA(2) activity, excessive production of free fatty acids and their metabolites may lead to the loss of membrane integrity, inflammation, oxidative stress, and subsequent neuronal injury. There is emerging evidence that PLA(2) plays a key role in the secondary injury process after traumatic spinal cord injury. This review outlines the current knowledge of the PLA(2) in the spinal cord with an emphasis being placed on the possible roles of PLA(2) in mediating the secondary SCI.
Collapse
Affiliation(s)
- Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, 950 W. Walnut St., R-2 Building, Room 402, Indianapolis, IN 46202, USA
| | | |
Collapse
|
42
|
Adibhatla RM, Hatcher JF. Lipid oxidation and peroxidation in CNS health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2010; 12:125-69. [PMID: 19624272 DOI: 10.1089/ars.2009.2668] [Citation(s) in RCA: 332] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Reactive oxygen species (ROS) are produced at low levels in mammalian cells by various metabolic processes, such as oxidative phosphorylation by the mitochondrial respiratory chain, NAD(P)H oxidases, and arachidonic acid oxidative metabolism. To maintain physiological redox balance, cells have endogenous antioxidant defenses regulated at the transcriptional level by Nrf2/ARE. Oxidative stress results when ROS production exceeds the cell's ability to detoxify ROS. Overproduction of ROS damages cellular components, including lipids, leading to decline in physiological function and cell death. Reaction of ROS with lipids produces oxidized phospholipids, which give rise to 4-hydroxynonenal, 4-oxo-2-nonenal, and acrolein. The brain is susceptible to oxidative damage due to its high lipid content and oxygen consumption. Neurodegenerative diseases (AD, ALS, bipolar disorder, epilepsy, Friedreich's ataxia, HD, MS, NBIA, NPC, PD, peroxisomal disorders, schizophrenia, Wallerian degeneration, Zellweger syndrome) and CNS traumas (stroke, TBI, SCI) are problems of vast clinical importance. Free iron can react with H(2)O(2) via the Fenton reaction, a primary cause of lipid peroxidation, and may be of particular importance for these CNS injuries and disorders. Cholesterol is an important regulator of lipid organization and the precursor for neurosteroid biosynthesis. Atherosclerosis, the major risk factor for ischemic stroke, involves accumulation of oxidized LDL in the arteries, leading to foam cell formation and plaque development. This review will discuss the role of lipid oxidation/peroxidation in various CNS injuries/disorders.
Collapse
Affiliation(s)
- Rao Muralikrishna Adibhatla
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792-3232, USA.
| | | |
Collapse
|
43
|
Mills E, Dong XP, Wang F, Xu H. Mechanisms of brain iron transport: insight into neurodegeneration and CNS disorders. Future Med Chem 2010; 2:51-64. [PMID: 20161623 PMCID: PMC2812924 DOI: 10.4155/fmc.09.140] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Trace metals such as iron, copper, zinc, manganese, and cobalt are essential cofactors for many cellular enzymes. Extensive research on iron, the most abundant transition metal in biology, has contributed to an increased understanding of the molecular machinery involved in maintaining its homeostasis in mammalian peripheral tissues. However, the cellular and intercellular iron transport mechanisms in the central nervous system (CNS) are still poorly understood. Accumulating evidence suggests that impaired iron metabolism is an initial cause of neurodegeneration, and several common genetic and sporadic neurodegenerative disorders have been proposed to be associated with dysregulated CNS iron homeostasis. This review aims to provide a summary of the molecular mechanisms of brain iron transport. Our discussion is focused on iron transport across endothelial cells of the blood-brain barrier and within the neuro- and glial-vascular units of the brain, with the aim of revealing novel therapeutic targets for neurodegenerative and CNS disorders.
Collapse
Affiliation(s)
- Eric Mills
- The Department of Molecular, Cellular, and Developmental Biology, the University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, MI 48109, USA
| | - Xian-ping Dong
- The Department of Molecular, Cellular, and Developmental Biology, the University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, MI 48109, USA
| | - Fudi Wang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Haoxing Xu
- The Department of Molecular, Cellular, and Developmental Biology, the University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, MI 48109, USA
| |
Collapse
|
44
|
|
45
|
The Expression Patterns of Nogo-A and NgR in the Neonatal Rat Visual Nervous System. Neurochem Res 2009; 34:1204-8. [DOI: 10.1007/s11064-008-9896-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2008] [Indexed: 10/21/2022]
|
46
|
Martini R, Fischer S, López-Vales R, David S. Interactions between Schwann cells and macrophages in injury and inherited demyelinating disease. Glia 2008; 56:1566-1577. [DOI: 10.1002/glia.20766] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
47
|
Abstract
The importance of lipids in cell signaling and tissue physiology is demonstrated by the many CNS pathologies involving deregulated lipid metabolism. One such critical metabolic event is the activation of phospholipase A(2) (PLA(2)), which results in the hydrolysis of membrane phospholipids and the release of free fatty acids, including arachidonic acid, a precursor for essential cell-signaling eicosanoids. Reactive oxygen species (ROS, a product of arachidonic acid metabolism) react with cellular lipids to generate lipid peroxides, which are degraded to reactive aldehydes (oxidized phospholipid, 4-hydroxynonenal, and acrolein) that bind covalently to proteins, thereby altering their function and inducing cellular damage. Dissecting the contribution of PLA(2) to lipid peroxidation in CNS injury and disorders is a challenging proposition due to the multiple forms of PLA(2), the diverse sources of ROS, and the lack of specific PLA(2) inhibitors. In this review, we summarize the role of PLA(2) in CNS pathologies, including stroke, spinal cord injury, Alzheimer's, Parkinson's, Multiple sclerosis-Experimental autoimmune encephalomyelitis and Wallerian degeneration.
Collapse
Affiliation(s)
- Rao Muralikrishna Adibhatla
- Department of Neurological Surgery, Cardiovascular Research Center, Neuroscience Training Program, University of Wisconsin, Madison, WI, USA.
| | | |
Collapse
|
48
|
López-Vales R, Navarro X, Shimizu T, Baskakis C, Kokotos G, Constantinou-Kokotou V, Stephens D, Dennis EA, David S. Intracellular phospholipase A(2) group IVA and group VIA play important roles in Wallerian degeneration and axon regeneration after peripheral nerve injury. Brain 2008; 131:2620-31. [PMID: 18718965 DOI: 10.1093/brain/awn188] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We provide evidence that two members of the intracellular phospholipase A(2) family, namely calcium-dependent group IVA (cPLA(2) GIVA) and calcium-independent group VIA (iPLA(2) GVIA) may play important roles in Wallerian degeneration in the mouse sciatic nerve. We assessed the roles of these PLA(2)s in cPLA(2) GIVA(-/-) mice, and mice treated with a selective inhibitor of iPLA(2) GVIA (FKGK11). Additionally, the effects of both these PLA(2)s were assessed by treating cPLA(2) GIVA(-/-) mice with the iPLA(2) inhibitor. Our data suggest that iPLA(2) GVIA may play more of a role in the early stages of myelin breakdown, while cPLA(2) GIVA may play a greater role in myelin clearance by macrophages. Our results also show that the delayed myelin clearance and Wallerian degeneration after sciatic nerve crush injury in mice lacking cPLA(2) and iPLA(2) activities is accompanied by a delay in axon regeneration, target re-innervation and functional recovery. These results indicate that the intracellular PLA(2)s (cPLA(2) GIVA and iPLA(2) GVIA) contribute significantly to various aspects of Wallerian degeneration in injured peripheral nerves, which is then essential for successful axon regeneration. This work has implications for injury responses and recovery after peripheral nerve injuries in humans, as well as for understanding the slow clearance of myelin after CNS injury and its potential consequences for axon regeneration.
Collapse
Affiliation(s)
- Rubèn López-Vales
- Center for Research in Neuroscience, Research Institute of the McGill University Health Center, Montreal, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Although multiple sclerosis is considered the prototype of a primary autoimmune disease in the central nervous system, there is emerging evidence that primary oligodendrocyte dysfunctions can suffice to trigger a secondary immune response in the nervous system. This short review focuses on the possible primary role of oligodendrocytes in axon loss and inflammatory demyelination. RECENT FINDINGS The analysis of natural and engineered mouse mutants has provided unexpected insight into oligodendrocyte function beyond that of axonal myelination for rapid impulse propagation. Specifically, mutations in some genes thought to be required for myelin assembly revealed an additional role of oligodendrocytes in supporting long-term axonal function and survival. Other mutations have been reported that cause both central nervous system demyelination and neuroinflammation, with pathological features known from human leukodystrophy patients. In human multiple sclerosis, demyelination leads invariably to axon loss, but the underling pathomechanisms may not be restricted to that of a primary immune-mediated disorder. SUMMARY Collectively, experimental and pathological findings point to a primary role of myelinating glia in long-term axonal support and suggest that defects of lipid metabolism in oligodendrocytes contribute to inflammatory myelin diseases.
Collapse
|
50
|
Mirsky R, Woodhoo A, Parkinson DB, Arthur-Farraj P, Bhaskaran A, Jessen KR. Novel signals controlling embryonic Schwann cell development, myelination and dedifferentiation. J Peripher Nerv Syst 2008; 13:122-35. [PMID: 18601657 DOI: 10.1111/j.1529-8027.2008.00168.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Immature Schwann cells found in perinatal rodent nerves are generated from Schwann cell precursors (SCPs) that originate from the neural crest. Immature Schwann cells generate the myelinating and non-myelinating Schwann cells of adult nerves. When axons degenerate following injury, Schwann cells demyelinate, proliferate and dedifferentiate to assume a molecular phenotype similar to that of immature cells, a process essential for successful nerve regeneration. Increasing evidence indicates that Schwann cell dedifferentiation involves activation of specific receptors, intracellular signalling pathways and transcription factors in a manner analogous to myelination. We have investigated the roles of Notch and the transcription factor c-Jun in development and after nerve transection. In vivo, Notch signalling regulates the transition from SCP to Schwann cell, times Schwann cell generation, controls Schwann cell proliferation and acts as a brake on myelination. Notch is elevated in injured nerves where it accelerates the rate of dedifferentiation. Likewise, the transcription factor c-Jun is required for Schwann cell proliferation and death and is down-regulated by Krox-20 on myelination. Forced expression of c-Jun in Schwann cells prevents myelination, and in injured nerves, c-Jun is required for appropriate dedifferentiation, the re-emergence of the immature Schwann cell state and nerve regeneration. Thus, both Notch and c-Jun are negative regulators of myelination. The growing realisation that myelination is subject to negative as well as positive controls and progress in molecular identification of negative regulators is likely to impact on our understanding of demyelinating disease and mechanisms that control nerve repair.
Collapse
Affiliation(s)
- Rhona Mirsky
- Department of Cell and Developmental Biology, University College London, London, UK.
| | | | | | | | | | | |
Collapse
|