1
|
Fierro-Marrero J, González-Iglesias M, Melis-Romeu A, López-Vidal JA, Paris-Alemany A, La Touche R. Exploring the impact of aging on motor imagery abilities: a systematic review with meta-analysis. Front Public Health 2025; 12:1405791. [PMID: 39917530 PMCID: PMC11801019 DOI: 10.3389/fpubh.2024.1405791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 12/30/2024] [Indexed: 02/09/2025] Open
Abstract
Objective Explore motor imagery (MI) abilities in healthy older adults compared with healthy younger adults. Methods A systematic review with meta-analysis. Results Twenty-seven cross-sectional studies were included. Meta-analyses explored MI abilities between healthy older and younger adults for the ability to generate kinesthetic (60-70 years: g = -0.24, 95%CI = -1.61, 1.13; 70-80 years: g = -1.29, 95%CI = -2.75, 0.17), and visual modality (g = -0.08, 95%CI = -0.71, 0.86); vividness in kinesthetic (g = 0.14, 95%CI = -0.13, 0.41), IV (g = 0.11, 95%CI = -0.16, 0.38), and EV modalities (g = 0.05, 95%CI = -0.15, 0.24); mental chronometry in timed-up and go (seconds = 0.63, 95%CI = -0.02, 1.27), and linear walk (seconds = 0.75, 95%CI = -0.55, 2.06); and MI-execution time congruence (performance overestimation) in linear walk (g = -0.02, 95%CI = -0.73, 0.69). Mental chronometry in upper limb movements was analyzed visually in forest plot indicating tendencies of greater time in older adults. Hand recognition in hand laterality judgment task visual analysis revealed a poorer accuracy, greater response time and lower efficiency in older adults. Conclusion Vividness of MI in kinesthetic and visual modalities appears to be preserved in older adults. Tendencies for greater time in mental chronometry were observed in older adults in TUG, linear walk and upper limb tasks. Implicit MI assessed with hand laterality showed older adults have lower accuracy, longer response times and lower efficiency. The ability to generate MI in kinesthetic and visual modalities presented imprecise results, and no clear conclusions could be drawn on MI-execution temporal congruence due to imprecision. Further research is needed to potentially clarify these findings. Systematic review registration PROSPERO: CRD42023384916.
Collapse
Affiliation(s)
- José Fierro-Marrero
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain
- Motion in Brains Research Group, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain
- PhD Program in Medicine and Surgery, Doctoral School, Universidad Autónoma de Madrid, Madrid, Spain
| | - Mario González-Iglesias
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Melis-Romeu
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain
| | - Javier Andrés López-Vidal
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alba Paris-Alemany
- Motion in Brains Research Group, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Radiology, Rehabilitation and Physiotherapy, Faculty of Nursery, Physiotherapy and Podiatry, Complutense University of Madrid, Madrid, Spain
- Instituto de Dolor Craneofacial y Neuromusculoesquelético (INDCRAN), Madrid, Spain
| | - Roy La Touche
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain
- Motion in Brains Research Group, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Dolor Craneofacial y Neuromusculoesquelético (INDCRAN), Madrid, Spain
| |
Collapse
|
2
|
Alsakhawi RS, Elshafey MA, Alkhouli MN. Utilization of Motor Imagery Training for Improvement of Balance of Ataxic Children after Medulloblastoma Resection. Sci Rep 2024; 14:29500. [PMID: 39604382 PMCID: PMC11603029 DOI: 10.1038/s41598-024-78900-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
This study investigated the effects of training using motor imagery on balance, gait parameters, and ataxia severity in children after they underwent medulloblastoma tumour resection. Fifty participated children, aged seven-nine years and diagnosed with cerebellar ataxia after medulloblastoma resection were selected from the Tumor Hospital of Cairo University. Two groups of patients were randomly divided: the study group and the control group. The control group received a physical therapy program, whereas the study group received training in motor imagery along with a traditional physical therapy program. Each group was assessed using the Scale for the Assessment and Rating of Ataxia (SARA), Pediatric Berg Balance Scale (PBBS), and kinematic gait analysis using the Kinovea software. Significant improvements were noted in balance, ataxia, and spatial and temporal gait parameters in both groups, which favoured the study group (P > 0.05). Training in motor imagery is an effective rehabilitation treatment for medulloblastoma resection and may be applied in combination with an appropriate physical therapy.Trial registration: ClinicalTrials.gov identifier, NCT05992207, 08-07-2023.
Collapse
Affiliation(s)
- Reham Saeed Alsakhawi
- The Department of Physical Therapy for Pediatrics, Faculty of Physical Therapy, Cairo University, Giza, Egypt.
- The Department of Rehabilitation Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
| | - Mohamed Ali Elshafey
- The Department of Physical Therapy for Pediatrics, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Mohamed Nader Alkhouli
- The Department of Physical Therapy for Pediatrics, Faculty of Physical Therapy, Delta University for Science and Technology, International Coastal Road, Gamsa, Egypt
| |
Collapse
|
3
|
Modi HN, Osborne-Grinter M, Patel R, Darzi A, Leff DR, Singh H. Investigating the impact of mental rehearsal on prefrontal and motor cortical haemodynamic responses in surgeons using optical neuroimaging. Front Hum Neurosci 2024; 18:1386005. [PMID: 39497796 PMCID: PMC11532121 DOI: 10.3389/fnhum.2024.1386005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 10/03/2024] [Indexed: 11/07/2024] Open
Abstract
Introduction Inadequate exposure to real-life operating can impede timely acquisition of technical competence among surgical residents, and is a major challenge faced in the current training climate. Mental rehearsal (MR)-the cognitive rehearsal of a motor task without overt physical movement-has been shown to accelerate surgical skills learning. However, the neuroplastic effect of MR of a complex bimanual surgical task is unknown. The aim of this study is to use functional near-infrared spectroscopy (fNIRS) to assess the impact of MR on prefrontal and motor cortical activation during a laparoscopic knot tying task. Methods Twelve surgical residents performed a laparoscopic knot tying task before and after either mental rehearsal (MR, intervention group) or textbook reading (TR, control group). In both groups, fNIRS was used to measure changes in oxygenated hemoglobin concentration (HbO2) in the prefrontal (24 channels) and motor cortices (22 channels). Technical performance was measured using leak volume, objective performance score and task progression score. Results MR led to a decrease in HbO2 (reduced activation) in the bilateral prefrontal cortex (PFC), and an increase in HbO2 (increased activation) in the left middle frontal gyrus, left precentral gyrus, and left postcentral gyrus. No discernible changes in activation were observed after TR in either the PFC or motor cortex. Moreover, smaller ΔHbO2 responses in the right PFC and greater ΔHbO2 responses in the left motor cortex were observed in the MR group compared with the TR group. Leak volume was significantly less following MR (p = 0.019), but not after TR (p = 0.347). Mean objective performance score was significantly higher following MR compared with TR (p = 0.043). Conclusion Mental rehearsal may enhance surgical skill acquisition and technical proficiency by reducing utilization of attentional resources in the prefrontal cortex and improving neural efficiency in motor areas during a laparoscopic surgical task.
Collapse
Affiliation(s)
- Hemel N. Modi
- Neuroergonomics and Perception Laboratory, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Maia Osborne-Grinter
- Neuroergonomics and Perception Laboratory, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Ronak Patel
- Neuroergonomics and Perception Laboratory, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- The Hamlyn Centre, Imperial College London, London, United Kingdom
| | - Ara Darzi
- Neuroergonomics and Perception Laboratory, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- The Hamlyn Centre, Imperial College London, London, United Kingdom
| | - Daniel R. Leff
- Neuroergonomics and Perception Laboratory, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- The Hamlyn Centre, Imperial College London, London, United Kingdom
| | - Harsimrat Singh
- Neuroergonomics and Perception Laboratory, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- The Hamlyn Centre, Imperial College London, London, United Kingdom
| |
Collapse
|
4
|
Bizen H, Kimura D. Classifying Learning Speed Using Brain Networks and Psychological States: Unraveling the Interdependence Between Learning Performance, Psychological States, and Brain Functions. Cureus 2024; 16:e70133. [PMID: 39463610 PMCID: PMC11506145 DOI: 10.7759/cureus.70133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction The progression of performance learning (PL) may have complex relationships beyond mere concurrent occurrences and may influence each other. This study aimed to classify the speed of PL using a random forest based on brain network and stress state information and to identify the factors necessary for PL. In addition, this study also aimed to clarify the complex interdependent relationships between PL, psychological state, and brain function through these factors, using covariance structure analysis. Methods A total of 20 healthy individuals participated in a choice reaction time task, and brain function was measured using near-infrared spectroscopy (NIRS). Participants were divided into high-PL and low-PL groups based on the median difference in correct responses. Results Random forest analysis identified the left orbitofrontal area, right premotor cortex, right frontal pole, left frontal pole, left dorsolateral prefrontal cortex, and depression and anxiety as key factors. Covariance structure analysis revealed that depression and anxiety affected PL through the frontal pole and prefrontal cortex, suggesting a complex interplay between psychological state, brain function, and learning. Conclusions These findings suggest that psychological states influence brain networks, thereby affecting learning performance. Tailoring rehabilitation programs to address psychological states and providing targeted feedback may improve learning outcomes. The study provides insights into the theoretical and practical applications of understanding the brain's role in PL, as well as the importance of addressing psychological factors to optimize learning and rehabilitation strategies.
Collapse
Affiliation(s)
- Hiroki Bizen
- Department of Occupational Therapy, Faculty of Health Sciences, Kansai University of Health Sciences, Osaka, JPN
| | - Daisuke Kimura
- Department of Occupational Therapy, Faculty of Medical Sciences, Nagoya Women's University, Nagoya, JPN
| |
Collapse
|
5
|
Frank C, Kraeutner SN, Rieger M, Boe SG. Learning motor actions via imagery-perceptual or motor learning? PSYCHOLOGICAL RESEARCH 2024; 88:1820-1832. [PMID: 36680584 PMCID: PMC11315805 DOI: 10.1007/s00426-022-01787-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/22/2022] [Indexed: 01/22/2023]
Abstract
It is well accepted that repeatedly imagining oneself acting without any overt behavior can lead to learning. The prominent theory accounting for why imagery practice is effective, motor simulation theory, posits that imagined action and overt action are functionally equivalent, the exception being activation of the end effector. If, as motor simulation theory states, one can compile the goal, plan, motor program and outcome of an action during imagined action similar to overt action, then learning of novel skills via imagery should proceed in a manner equivalent to that of overt action. While the evidence on motor simulation theory is both plentiful and diverse, it does not explicitly account for differences in neural and behavioural findings between imagined and overt action. In this position paper, we briefly review theoretical accounts to date and present a perceptual-cognitive theory that accounts for often observed outcomes of imagery practice. We suggest that learning by way of imagery reflects perceptual-cognitive scaffolding, and that this 'perceptual' learning transfers into 'motor' learning (or not) depending on various factors. Based on this theory, we characterize consistently reported learning effects that occur with imagery practice, against the background of well-known physical practice effects and show that perceptual-cognitive scaffolding is well-suited to explain what is being learnt during imagery practice.
Collapse
Affiliation(s)
- Cornelia Frank
- Department of Sports and Movement Science, School of Educational and Cultural Studies, Osnabrück University, Osnabrück, Germany.
| | - Sarah N Kraeutner
- Department of Psychology, University of British Columbia, Okanagan, Kelowna, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Martina Rieger
- Institute for Psychology, UMIT Tirol - Private University for Health Sciences and Health Technology, Hall in Tyrol, Austria
| | - Shaun G Boe
- Laboratory for Brain Recovery and Function, School of Physiotherapy, Department of Psychology and Neuroscience, School of Health and Human Performance, Dalhousie University, Nova Scotia, Canada
| |
Collapse
|
6
|
Saruco E, Saimpont A, Di Rienzo F, De Witte B, Laroyenne I, Matéo F, Lapenderie M, Solard SG, Perretant I, Frenot C, Jackson PL, Guillot A. Towards efficient motor imagery interventions after lower-limb amputation. J Neuroeng Rehabil 2024; 21:55. [PMID: 38622634 PMCID: PMC11017566 DOI: 10.1186/s12984-024-01348-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND The therapeutic benefits of motor imagery (MI) are now well-established in different populations of persons suffering from central nervous system impairments. However, research on similar efficacy of MI interventions after amputation remains scarce, and experimental studies were primarily designed to explore the effects of MI after upper-limb amputations. OBJECTIVES The present comparative study therefore aimed to assess the effects of MI on locomotion recovery following unilateral lower-limb amputation. METHODS Nineteen participants were assigned either to a MI group (n = 9) or a control group (n = 10). In addition to the course of physical therapy, they respectively performed 10 min per day of locomotor MI training or neutral cognitive exercises, five days per week. Participants' locomotion functions were assessed through two functional tasks: 10 m walking and the Timed Up and Go Test. Force of the amputated limb and functional level score reflecting the required assistance for walking were also measured. Evaluations were scheduled at the arrival at the rehabilitation center (right after amputation), after prosthesis fitting (three weeks later), and at the end of the rehabilitation program. A retention test was also programed after 6 weeks. RESULTS While there was no additional effect of MI on pain management, data revealed an early positive impact of MI for the 10 m walking task during the pre-prosthetic phase, and greater performance during the Timed Up and Go Test during the prosthetic phase. Also, a lower proportion of participants still needed a walking aid after MI training. Finally, the force of the amputated limb was greater at the end of rehabilitation for the MI group. CONCLUSION Taken together, these data support the integration of MI within the course of physical therapy in persons suffering from lower-limb amputations.
Collapse
Affiliation(s)
- Elodie Saruco
- Universite Lyon 1, LIBM, Laboratoire Interuniversitaire de Biologie de la Motricité, UR 7424, Villeurbanne, F-69622, France
| | - Arnaud Saimpont
- Universite Lyon 1, LIBM, Laboratoire Interuniversitaire de Biologie de la Motricité, UR 7424, Villeurbanne, F-69622, France
| | - Franck Di Rienzo
- Universite Lyon 1, LIBM, Laboratoire Interuniversitaire de Biologie de la Motricité, UR 7424, Villeurbanne, F-69622, France
| | - Benjamin De Witte
- Universite Lyon 1, LIBM, Laboratoire Interuniversitaire de Biologie de la Motricité, UR 7424, Villeurbanne, F-69622, France
| | - Isabelle Laroyenne
- Centre Médico-Chirurgical de Réadaptation des Massues - Croix-Rouge française, 92 rue Dr. Edmond Locard, Lyon Cedex 05, 69322, France
| | - Fanny Matéo
- Centre Médico-Chirurgical de Réadaptation des Massues - Croix-Rouge française, 92 rue Dr. Edmond Locard, Lyon Cedex 05, 69322, France
| | - Marion Lapenderie
- Centre Médico-Chirurgical de Réadaptation des Massues - Croix-Rouge française, 92 rue Dr. Edmond Locard, Lyon Cedex 05, 69322, France
| | - Sarah Goutte Solard
- Centre Médico-Chirurgical de Réadaptation des Massues - Croix-Rouge française, 92 rue Dr. Edmond Locard, Lyon Cedex 05, 69322, France
| | - Isabelle Perretant
- Centre Médico-Chirurgical de Réadaptation des Massues - Croix-Rouge française, 92 rue Dr. Edmond Locard, Lyon Cedex 05, 69322, France
| | - Charlotte Frenot
- Centre Médico-Chirurgical de Réadaptation des Massues - Croix-Rouge française, 92 rue Dr. Edmond Locard, Lyon Cedex 05, 69322, France
| | - Philip L Jackson
- École de Psychologie, Université Laval, Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (CIRRIS), Quebec, Canada
| | - Aymeric Guillot
- Universite Lyon 1, LIBM, Laboratoire Interuniversitaire de Biologie de la Motricité, UR 7424, Villeurbanne, F-69622, France.
| |
Collapse
|
7
|
Muller CO, Metais A, Boublay N, Breuil C, Deligault S, Di Rienzo F, Guillot A, Collet C, Krolak-Salmon P, Saimpont A. Anodal transcranial direct current stimulation does not enhance the effects of motor imagery training of a sequential finger-tapping task in young adults. J Sports Sci 2024:1-12. [PMID: 38574326 DOI: 10.1080/02640414.2024.2328418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/01/2024] [Indexed: 04/06/2024]
Abstract
When applied over the primary motor cortex (M1), anodal transcranial direct current stimulation (a-tDCS) could enhance the effects of a single motor imagery training (MIt) session on the learning of a sequential finger-tapping task (SFTT). This study aimed to investigate the effect of a-tDCS on the learning of an SFTT during multiple MIt sessions. Two groups of 16 healthy young adults participated in three consecutive MIt sessions over 3 days, followed by a retention test 1 week later. They received active or sham a-tDCS during a MIt session in which they mentally rehearsed an eight-item complex finger sequence with their left hand. Before and after each session, and during the retention test, they physically repeated the sequence as quickly and accurately as possible. Both groups (i) improved their performance during the first two sessions, showing online learning; (ii) stabilised the level they reached during all training sessions, reflecting offline consolidation; and (iii) maintained their performance level one week later, showing retention. However, no significant difference was found between the groups, regardless of the MSL stage. These results emphasise the importance of performing several MIt sessions to maximise performance gains, but they do not support the additional effects of a-tDCS.
Collapse
Affiliation(s)
- Camille O Muller
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Alès, Montpellier, France
| | - Angèle Metais
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
| | - Nawale Boublay
- Centre de Recherche Clinique Vieillissement Cerveau - Fragilité, Hospices Civils de Lyon, Lyon, France
| | - Caroline Breuil
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
| | - Sébastien Deligault
- Centre d'Etude et de Recherche Multimodal et Pluridisciplinaire en Imagerie du Vivant (CERMEP), Département de MagnétoEncéphalographie, Bron, France
| | - Franck Di Rienzo
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
| | - Aymeric Guillot
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
| | - Christian Collet
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
| | - Pierre Krolak-Salmon
- Centre de Recherche Clinique Vieillissement Cerveau - Fragilité, Hospices Civils de Lyon, Lyon, France
| | - Arnaud Saimpont
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
| |
Collapse
|
8
|
Sengupta P, Lakshminarayanan K. Cortical activation and BCI performance during brief tactile imagery: A comparative study with motor imagery. Behav Brain Res 2024; 459:114760. [PMID: 37979923 DOI: 10.1016/j.bbr.2023.114760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
Brain-computer interfaces (BCIs) rely heavily on motor imagery (MI) for operation, yet tactile imagery (TI) presents a novel approach that may be advantageous in situations where visual feedback is impractical. The current study aimed to compare the cortical activity and digit classification performance induced by TI and MI to assess the viability of TI for use in BCIs. Twelve right-handed participants engaged in trials of TI and MI, focusing on their left and right index digits. Event-related desynchronization (ERD) in the mu and beta bands was analyzed, and classification accuracy was determined through an artificial neural network (ANN). Comparable ERD patterns were observed in both TI and MI, with significant decreases in ERD during imagery tasks. The ANN demonstrated high classification accuracy, with TI achieving a mean±SD of 79.30 ± 3.91 % and MI achieving 81.10 ± 2.96 %, with no significant difference between the two (p = 0.11). The study found that TI induces substantial ERD comparable to MI and maintains high classification accuracy, supporting its potential as an effective mental strategy for BCIs. This suggests that TI could be a valuable alternative in BCI applications, particularly for individuals unable to rely on visual cues.
Collapse
Affiliation(s)
- Puja Sengupta
- Neuro-Rehabilitation Lab, Department of Sensors and Biomedical Technology, School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Kishor Lakshminarayanan
- Neuro-Rehabilitation Lab, Department of Sensors and Biomedical Technology, School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
9
|
Brusa F, Erden MS, Sedda A. More implicit and more explicit motor imagery tasks for exploring the mental representation of hands and feet in action. Exp Brain Res 2023; 241:2765-2778. [PMID: 37855915 PMCID: PMC10635989 DOI: 10.1007/s00221-023-06718-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
The mental representation of the body in action can be explored using motor imagery (MI) tasks. MI tasks can be allocated along a continuum going from more implicit to more explicit tasks, where the discriminant is the degree of action monitoring required to solve the tasks (which is the awareness of using the mental representation of our own body to monitor our motor imagery). Tasks based on laterality judgments, such as the Hand Laterality Task (HLT) and the Foot Laterality Task (FLT), provide an example of more implicit tasks (i.e., less action monitoring is required). While, an example of a more explicit task is the Mental Motor Chronometry task (MMC) for hands and feet, where individuals are asked to perform or imagine performing movements with their limbs (i.e., more action monitoring is required). In our study, we directly compared hands and feet at all these tasks for the first time, as these body districts have different physical features as well as functions. Fifty-five participants were asked to complete an online version of the HLT and FLT (more implicit measure), and an online version of the MMC task for hands and feet (more explicit measure). The mental representation of hands and feet in action differed only when the degree of action monitoring decreased (HLT ≠ FLT); we observed the presence of biomechanical constraints only for hands. Differently, when the degree of action monitoring increased hands and feet did not show any difference (MMC hands = MMC feet). Our results show the presence of a difference in the mental representation of hands and feet in action that specifically depends on the degree of action monitoring.
Collapse
Affiliation(s)
- Federico Brusa
- Psychology Department, School of Social Sciences, Heriot-Watt University, Edinburgh, UK.
- Centre for Applied Behavioural Sciences, School of Social Sciences, Heriot-Watt University, Edinburgh, UK.
| | - Mustafa Suphi Erden
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
- Edinburgh Centre for Robotics, Edinburgh, UK
| | - Anna Sedda
- Psychology Department, School of Social Sciences, Heriot-Watt University, Edinburgh, UK
- Centre for Applied Behavioural Sciences, School of Social Sciences, Heriot-Watt University, Edinburgh, UK
| |
Collapse
|
10
|
Di Rienzo F, Debarnot U, Daligault S, Delpuech C, Doyon J, Guillot A. Brain plasticity underlying sleep-dependent motor consolidation after motor imagery. Cereb Cortex 2023; 33:11431-11445. [PMID: 37814365 DOI: 10.1093/cercor/bhad379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/11/2023] Open
Abstract
Motor imagery can, similarly to physical practice, improve motor performance through experience-based plasticity. Using magnetoencephalography, we investigated changes in brain activity associated with offline consolidation of motor sequence learning through physical practice or motor imagery. After an initial training session with either physical practice or motor imagery, participants underwent overnight consolidation. As control condition, participants underwent wake-related consolidation after training with motor imagery. Behavioral analyses revealed that overnight consolidation of motor learning through motor imagery outperformed wake-related consolidation (95% CI [0.02, 0.07], P < 0.001, RP2 = 0.05). As regions of interest, we selected the generators of event-related synchronization/desynchronization of alpha (8-12 Hz) and beta (15-30 Hz) oscillations, which predicted the level of performance on the motor sequence. This yielded a primary sensorimotor-premotor network for alpha oscillations and a cortico-cerebellar network for beta oscillations. The alpha network exhibited increased neural desynchronization after overnight consolidation compared to wake-related consolidation. By contrast, the beta network exhibited an increase in neural synchronization after wake-related consolidation compared to overnight consolidation. We provide the first evidence of parallel brain plasticity underlying behavioral changes associated with sleep-dependent consolidation of motor skill learning through motor imagery and physical practice.
Collapse
Affiliation(s)
- Franck Di Rienzo
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France
| | - Ursula Debarnot
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France
- Institut Universitaire de France, 1 Rue Descartes 75005 Paris, France
| | | | - Claude Delpuech
- CERMEP - Imagerie du Vivant, MEG Departement, Lyon, Bron 69677, France
| | - Julien Doyon
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Aymeric Guillot
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France
- Institut Universitaire de France, 1 Rue Descartes 75005 Paris, France
| |
Collapse
|
11
|
German JS, Cui G, Xu C, Jacobs RA. Rapid runtime learning by curating small datasets of high-quality items obtained from memory. PLoS Comput Biol 2023; 19:e1011445. [PMID: 37792896 PMCID: PMC10578607 DOI: 10.1371/journal.pcbi.1011445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/16/2023] [Accepted: 08/19/2023] [Indexed: 10/06/2023] Open
Abstract
We propose the "runtime learning" hypothesis which states that people quickly learn to perform unfamiliar tasks as the tasks arise by using task-relevant instances of concepts stored in memory during mental training. To make learning rapid, the hypothesis claims that only a few class instances are used, but these instances are especially valuable for training. The paper motivates the hypothesis by describing related ideas from the cognitive science and machine learning literatures. Using computer simulation, we show that deep neural networks (DNNs) can learn effectively from small, curated training sets, and that valuable training items tend to lie toward the centers of data item clusters in an abstract feature space. In a series of three behavioral experiments, we show that people can also learn effectively from small, curated training sets. Critically, we find that participant reaction times and fitted drift rates are best accounted for by the confidences of DNNs trained on small datasets of highly valuable items. We conclude that the runtime learning hypothesis is a novel conjecture about the relationship between learning and memory with the potential for explaining a wide variety of cognitive phenomena.
Collapse
Affiliation(s)
- Joseph Scott German
- Institute for Psychology and Centre for Cognitive Science, Technical University of Darmstadt, Darmstadt, Germany
| | - Guofeng Cui
- Department of Computer Science, Rutgers University, Piscataway, New Jersey, United States of America
| | - Chenliang Xu
- Department of Computer Science, University of Rochester, Rochester, New York, United States of America
| | - Robert A. Jacobs
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, New York, United States of America
| |
Collapse
|
12
|
Binks JA, Wilson CJ, Van Schaik P, Eaves DL. Motor learning without physical practice: The effects of combined action observation and motor imagery practice on cup-stacking speed. PSYCHOLOGY OF SPORT AND EXERCISE 2023; 68:102468. [PMID: 37665909 DOI: 10.1016/j.psychsport.2023.102468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 09/06/2023]
Abstract
In this study we explored training effects for combined action observation and motor imagery (AO + MI) instructions on a complex cup-stacking task, without physical practice. Using a Graeco-Latin Square design, we randomly assigned twenty-six participants into four groups. This counterbalanced the within-participant factor of practice condition (AO + MI, AO, MI, Control) across four cup-stacking tasks, which varied in their complexity. On each of the three consecutive practice days participants experienced twenty trials under each of the three mental practice conditions. On each trial, a first-person perspective video depicted bilateral cup-stacking performed by an experienced model. During AO, participants passively observed this action, responding only to occasional colour cues. For AO + MI, participants imagined performing the observed action and synchronised their concurrent MI with the display. For MI, a sequence of pictures cued imagery of each stage of the task. Analyses revealed a significant main effect of practice condition both at the 'surprise' post-test (Day 3) and at the one-week retention test. At both time points movement execution times were significantly shorter for AO + MI compared with AO, MI and the Control. Execution times were also shorter overall at the retention compared with the post-test. These results demonstrate that a complex novel motor task can be acquired without physical training. Practitioners can therefore use AO + MI practice to supplement physical practice and optimise skill learning.
Collapse
Affiliation(s)
- J A Binks
- Department of Psychology, School of Social Sciences, Humanities & Law, Teesside University, Middlesbrough, UK.
| | - C J Wilson
- Department of Psychology, School of Social Sciences, Humanities & Law, Teesside University, Middlesbrough, UK
| | - P Van Schaik
- Department of Psychology, School of Social Sciences, Humanities & Law, Teesside University, Middlesbrough, UK
| | - D L Eaves
- Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| |
Collapse
|
13
|
Liu C, You J, Wang K, Zhang S, Huang Y, Xu M, Ming D. Decoding the EEG patterns induced by sequential finger movement for brain-computer interfaces. Front Neurosci 2023; 17:1180471. [PMID: 37706155 PMCID: PMC10495835 DOI: 10.3389/fnins.2023.1180471] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/26/2023] [Indexed: 09/15/2023] Open
Abstract
Objective In recent years, motor imagery-based brain-computer interfaces (MI-BCIs) have developed rapidly due to their great potential in neurological rehabilitation. However, the controllable instruction set limits its application in daily life. To extend the instruction set, we proposed a novel movement-intention encoding paradigm based on sequential finger movement. Approach Ten subjects participated in the offline experiment. During the experiment, they were required to press a key sequentially [i.e., Left→Left (LL), Right→Right (RR), Left→Right (LR), and Right→Left (RL)] using the left or right index finger at about 1 s intervals under an auditory prompt of 1 Hz. The movement-related cortical potential (MRCP) and event-related desynchronization (ERD) features were used to investigate the electroencephalography (EEG) variation induced by the sequential finger movement tasks. Twelve subjects participated in an online experiment to verify the feasibility of the proposed paradigm. Main results As a result, both the MRCP and ERD features showed the specific temporal-spatial EEG patterns of different sequential finger movement tasks. For the offline experiment, the average classification accuracy of the four tasks was 71.69%, with the highest accuracy of 79.26%. For the online experiment, the average accuracies were 83.33% and 82.71% for LL-versus-RR and LR-versus-RL, respectively. Significance This paper demonstrated the feasibility of the proposed sequential finger movement paradigm through offline and online experiments. This study would be helpful for optimizing the encoding method of motor-related EEG information and providing a promising approach to extending the instruction set of the movement intention-based BCIs.
Collapse
Affiliation(s)
- Chang Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Jia You
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Kun Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Shanshan Zhang
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Yining Huang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Minpeng Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
14
|
Lakshminarayanan K, Shah R, Daulat SR, Moodley V, Yao Y, Madathil D. The effect of combining action observation in virtual reality with kinesthetic motor imagery on cortical activity. Front Neurosci 2023; 17:1201865. [PMID: 37383098 PMCID: PMC10299830 DOI: 10.3389/fnins.2023.1201865] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction In the past, various techniques have been used to improve motor imagery (MI), such as immersive virtual-reality (VR) and kinesthetic rehearsal. While electroencephalography (EEG) has been used to study the differences in brain activity between VR-based action observation and kinesthetic motor imagery (KMI), there has been no investigation into their combined effect. Prior research has demonstrated that VR-based action observation can enhance MI by providing both visual information and embodiment, which is the perception of oneself as part of the observed entity. Additionally, KMI has been found to produce similar brain activity to physically performing a task. Therefore, we hypothesized that utilizing VR to offer an immersive visual scenario for action observation while participants performed kinesthetic motor imagery would significantly improve cortical activity related to MI. Methods In this study, 15 participants (9 male, 6 female) performed kinesthetic motor imagery of three hand tasks (drinking, wrist flexion-extension, and grabbing) both with and without VR-based action observation. Results Our results indicate that combining VR-based action observation with KMI enhances brain rhythmic patterns and provides better task differentiation compared to KMI without action observation. Discussion These findings suggest that using VR-based action observation alongside kinesthetic motor imagery can improve motor imagery performance.
Collapse
Affiliation(s)
- Kishor Lakshminarayanan
- Neuro-Rehabilitation Lab, School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Rakshit Shah
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, United States
| | - Sohail R. Daulat
- Department of Physiology, University of Arizona College of Medicine – Tucson, Tucson, AZ, United States
| | - Viashen Moodley
- Arizona Center for Hand to Shoulder Surgery, Phoenix, AZ, United States
| | - Yifei Yao
- Soft Tissue Biomechanics Laboratory, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Deepa Madathil
- Jindal Institute of Behavioural Sciences, O.P. Jindal Global University, Sonipat, Haryana, India
| |
Collapse
|
15
|
Ramu V, Lakshminarayanan K. Enhanced motor imagery of digits within the same hand via vibrotactile stimulation. Front Neurosci 2023; 17:1152563. [PMID: 37360173 PMCID: PMC10289883 DOI: 10.3389/fnins.2023.1152563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Purpose The aim of the present study is to evaluate the effect of vibrotactile stimulation prior to repeated complex motor imagery of finger movements using the non-dominant hand on motor imagery (MI) performance. Methods Ten healthy right-handed adults (4 females and 6 males) participated in the study. The subjects performed motor imagery tasks with and without a brief vibrotactile sensory stimulation prior to performing motor imagery using either their left-hand index, middle, or thumb digits. Mu- and beta-band event-related desynchronization (ERD) at the sensorimotor cortex and an artificial neural network-based digit classification was evaluated. Results The ERD and digit discrimination results from our study showed that ERD was significantly different between the vibration conditions for the index, middle, and thumb. It was also found that digit classification accuracy with-vibration (mean ± SD = 66.31 ± 3.79%) was significantly higher than without-vibration (mean ± SD = 62.68 ± 6.58%). Conclusion The results showed that a brief vibration was more effective at improving MI-based brain-computer interface classification of digits within a single limb through increased ERD compared to performing MI without vibrotactile stimulation.
Collapse
|
16
|
Hatchi V, Guillot A, Robin N. Revisiting Motor Imagery Guidelines in a Tropical Climate: The Time-of-Day Effect. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20105855. [PMID: 37239581 DOI: 10.3390/ijerph20105855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
(1) Background: Motor imagery (MI) is relevantly used to improve motor performance and promote rehabilitation. As MI ability and vividness can be affected by circadian modulation, it has been proposed that MI should ideally be performed between 2 p.m. and 8 p.m. Whether such a recommendation remains effective in a hot and humid environment, such as a tropical climate, remains unknown. (2) Methods: A total of 35 acclimatized participants completed a MI questionnaire and a mental chronometry test at 7 a.m., 11 a.m., 2 p.m., and 6 p.m. Visual (VI) and kinesthetic imagery (KI) abilities, as well as temporal congruence between actual walking and MI, were collected. Ambient temperature, chronotypes, thermal comfort, affect, and fatigue were also measured. (3) Results: VI scores were higher at 6 p.m. than at 7 a.m., 11 a.m., and 2 p.m., and temporal congruence was higher at 6 p.m. than at 7 a.m. Comfort, thermal sensation, and positive affect scores were higher at 7 a.m. and 6 p.m. (4) Conclusion: Data support greater imagery ability and accuracy when participants perceive the environment as more pleasant and comfortable. MI guidelines typically provided in neutral climates should therefore be adapted to tropical climates, with MI training sessions ideally scheduled in the late afternoon.
Collapse
Affiliation(s)
- Vanessa Hatchi
- Laboratory "Adaptation au Climat Tropical, Exercice & Santé" (UPRES EA 3596), Faculté des Sciences du Sport de Pointe-à-Pitre, Campus Fouillole, Université des Antilles, BP 592, CEDEX, 97159 Pointe-à-Pitre, France
| | - Aymeric Guillot
- Inter-University Laboratory of Human Movement Biology-EA 7424, University of Lyon, University Claude Bernard Lyon 1, 69622 Villeurbanne, France
| | - Nicolas Robin
- Laboratory "Adaptation au Climat Tropical, Exercice & Santé" (UPRES EA 3596), Faculté des Sciences du Sport de Pointe-à-Pitre, Campus Fouillole, Université des Antilles, BP 592, CEDEX, 97159 Pointe-à-Pitre, France
| |
Collapse
|
17
|
Lindsay R, Spittle S, Spittle M. Considering the need for movement variability in motor imagery training: implications for sport and rehabilitation. Front Psychol 2023; 14:1178632. [PMID: 37251018 PMCID: PMC10213205 DOI: 10.3389/fpsyg.2023.1178632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Affiliation(s)
- Riki Lindsay
- Institute of Education, Arts and Community, Federation University Australia, Ballarat, VIC, Australia
| | - Sharna Spittle
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- La Trobe University, Melbourne, VIC, Australia
| | - Michael Spittle
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| |
Collapse
|
18
|
Andrushko JW, Levenstein JM, Zich C, Edmond EC, Campbell J, Clarke WT, Emir U, Farthing JP, Stagg CJ. Repeated unilateral handgrip contractions alter functional connectivity and improve contralateral limb response times. Sci Rep 2023; 13:6437. [PMID: 37081073 PMCID: PMC10119116 DOI: 10.1038/s41598-023-33106-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 04/07/2023] [Indexed: 04/22/2023] Open
Abstract
In humans, motor learning is underpinned by changes in sensorimotor network functional connectivity (FC). Unilateral contractions increase FC in the ipsilateral primary motor cortex (M1) and supplementary motor area (SMA); areas involved in motor planning and execution of the contralateral hand. Therefore, unilateral contractions are a promising approach to augment motor performance in the contralateral hand. In a within-participant, randomized, cross-over design, 15 right-handed adults had two magnetic resonance imaging (MRI) sessions, where functional-MRI and MR-Spectroscopic Imaging were acquired before and after repeated right-hand contractions at either 5% or 50% maximum voluntary contraction (MVC). Before and after scanning, response times (RTs) were determined in both hands. Nine minutes of 50% MVC contractions resulted in decreased handgrip force in the contracting hand, and decreased RTs and increased handgrip force in the contralateral hand. This improved motor performance in the contralateral hand was supported by significant neural changes: increased FC between SMA-SMA and increased FC between right M1 and right Orbitofrontal Cortex. At a neurochemical level, the degree of GABA decline in left M1, left and right SMA correlated with subsequent behavioural improvements in the left-hand. These results support the use of repeated handgrip contractions as a potential modality for improving motor performance in the contralateral hand.
Collapse
Affiliation(s)
- Justin W Andrushko
- College of Kinesiology, University of Saskatchewan, Saskatoon, Canada.
- FMRIB, Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
| | - Jacob M Levenstein
- FMRIB, Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Section on Functional Imaging Methods, National Institutes of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Thompson Institute, University of the Sunshine Coast, Sippy Downs, Australia
| | - Catharina Zich
- FMRIB, Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Department of Clinical and Movement Neurosciences, University College London, London, UK
| | - Evan C Edmond
- FMRIB, Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Jon Campbell
- FMRIB, Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - William T Clarke
- FMRIB, Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Uzay Emir
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, USA
| | | | - Charlotte J Stagg
- FMRIB, Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
Lakshminarayanan K, Shah R, Daulat SR, Moodley V, Yao Y, Sengupta P, Ramu V, Madathil D. Evaluation of EEG Oscillatory Patterns and Classification of Compound Limb Tactile Imagery. Brain Sci 2023; 13:brainsci13040656. [PMID: 37190621 DOI: 10.3390/brainsci13040656] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Objective: The purpose of this study was to investigate the cortical activity and digit classification performance during tactile imagery (TI) of a vibratory stimulus at the index, middle, and thumb digits within the left hand in healthy individuals. Furthermore, the cortical activities and classification performance of the compound TI were compared with similar compound motor imagery (MI) with the same digits as TI in the same subjects. Methods: Twelve healthy right-handed adults with no history of upper limb injury, musculoskeletal condition, or neurological disorder participated in the study. The study evaluated the event-related desynchronization (ERD) response and brain-computer interface (BCI) classification performance on discriminating between the digits in the left-hand during the imagery of vibrotactile stimuli to either the index, middle, or thumb finger pads for TI and while performing a motor activity with the same digits for MI. A supervised machine learning technique was applied to discriminate between the digits within the same given limb for both imagery conditions. Results: Both TI and MI exhibited similar patterns of ERD in the alpha and beta bands at the index, middle, and thumb digits within the left hand. While TI had significantly lower ERD for all three digits in both bands, the classification performance of TI-based BCI (77.74 ± 6.98%) was found to be similar to the MI-based BCI (78.36 ± 5.38%). Conclusions: The results of this study suggest that compound tactile imagery can be a viable alternative to MI for BCI classification. The study contributes to the growing body of evidence supporting the use of TI in BCI applications, and future research can build on this work to explore the potential of TI-based BCI for motor rehabilitation and the control of external devices.
Collapse
Affiliation(s)
- Kishor Lakshminarayanan
- Neuro-Rehabilitation Lab, Department of Sensors and Biomedical Engineering, School of Electronics Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Rakshit Shah
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH 44115, USA
| | - Sohail R Daulat
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Viashen Moodley
- Arizona Center for Hand to Shoulder Surgery, Phoenix, AZ 85004, USA
| | - Yifei Yao
- Soft Tissue Biomechanics Laboratory, Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Puja Sengupta
- Neuro-Rehabilitation Lab, Department of Sensors and Biomedical Engineering, School of Electronics Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Vadivelan Ramu
- Neuro-Rehabilitation Lab, Department of Sensors and Biomedical Engineering, School of Electronics Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Deepa Madathil
- Jindal Institute of Behavioral Sciences, O. P. Jindal Global University, Sonipat 131001, Haryana, India
| |
Collapse
|
20
|
Binks JA, Emerson JR, Scott MW, Wilson C, van Schaik P, Eaves DL. Enhancing upper-limb neurorehabilitation in chronic stroke survivors using combined action observation and motor imagery therapy. Front Neurol 2023; 14:1097422. [PMID: 36937513 PMCID: PMC10017546 DOI: 10.3389/fneur.2023.1097422] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction For people who have had a stroke, recovering upper-limb function is a barrier to independence. When movement is difficult, mental practice can be used to complement physical therapy. In this within-participants study we investigated the effects of combined action observation and motor imagery (AO + MI) therapy on upper-limb recovery in chronic stroke survivors. Methods A Graeco-Latin Square design was used to counterbalance four mental practice conditions (AO + MI, AO, MI, Control) across four cup-stacking tasks of increasing complexity. Once a week, for five consecutive weeks, participants (n = 10) performed 16 mental practice trials under each condition. Each trial displayed a 1st person perspective of a cup-stacking task performed by an experienced model. For AO, participants watched each video and responded to an occasional color cue. For MI, participants imagined the effort and sensation of performing the action; cued by a series of still-images. For combined AO + MI, participants observed a video of the action while they simultaneously imagined performing the same action in real-time. At three time points (baseline; post-test; two-week retention test) participants physically executed the three mentally practiced cup-stacking tasks, plus a fourth unpractised sequence (Control), as quickly and accurately as possible. Results Mean movement execution times were significantly reduced overall in the post-test and the retention test compared to baseline. At retention, movement execution times were significantly shorter for combined AO + MI compared to both MI and the Control. Individual participants reported clinically important changes in quality of life (Stroke Impact Scale) and positive qualitative experiences of AO + MI (social validation). Discussion These results indicate that when physical practice is unsuitable, combined AO + MI therapy could offer an effective adjunct for neurorehabilitation in chronic stroke survivors.
Collapse
Affiliation(s)
- Jack Aaron Binks
- Department of Psychology, School of Social Sciences, Humanities and Law, Teesside University, Middlesbrough, United Kingdom
| | - Jonathan Reyes Emerson
- School of Health and Life Sciences, Allied Health Professions, Teesside University, Middlesbrough, United Kingdom
| | | | - Christopher Wilson
- Department of Psychology, School of Social Sciences, Humanities and Law, Teesside University, Middlesbrough, United Kingdom
| | - Paul van Schaik
- Department of Psychology, School of Social Sciences, Humanities and Law, Teesside University, Middlesbrough, United Kingdom
| | - Daniel Lloyd Eaves
- Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
21
|
Polskaia N, St-Amant G, Fraser S, Lajoie Y. Involvement of the prefrontal cortex in motor sequence learning: A functional near-infrared spectroscopy (fNIRS) study. Brain Cogn 2023; 166:105940. [PMID: 36621187 DOI: 10.1016/j.bandc.2022.105940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023]
Abstract
Our previous functional near-infrared spectroscopy (fNIRS) study on motor sequence learning (Polskaia et al., 2020) did not detect the same decrease in activity in the left dorsolateral prefrontal cortex (DLPFC) associated with movement automaticity, as reported by Wu et al. (2004). This was partly attributed to insufficient practice time to reach neural efficiency. Therefore, we sought to expand on our previous work to better understand the contribution of the prefrontal cortex (PFC) to motor sequence learning by examining learning across a longer period of time. Participants were randomly assigned to one of two groups: control or trained. fNIRS was acquired at three time points: pre-test, post-test, and retention. Participants performed four sequences (S1, S2, S3, and S4) of right-hand finger tapping. The trained group also underwent four days of practice of S1 and S2. No group differences in the left DLPFC and ventrolateral (VLPFC) were found between sessions for S1 and S2. Our findings revealed increased contribution from the right VLPFC in post-test for the trained group, which may reflect the active retrieval of explicit information from long-term memory. Our results suggest that despite additional practice time, explicit motor sequence learning requires the continued involvement of the PFC.
Collapse
Affiliation(s)
- Nadia Polskaia
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Canada.
| | - Gabrielle St-Amant
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Canada.
| | - Sarah Fraser
- Interdisciplinary School of Health Sciences, Faculty of Health Science, University of Ottawa, Canada.
| | - Yves Lajoie
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Canada.
| |
Collapse
|
22
|
Dos Anjos T, Guillot A, Kerautret Y, Daligault S, Di Rienzo F. Corticomotor Plasticity Underlying Priming Effects of Motor Imagery on Force Performance. Brain Sci 2022; 12:brainsci12111537. [PMID: 36421861 PMCID: PMC9688534 DOI: 10.3390/brainsci12111537] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
The neurophysiological processes underlying the priming effects of motor imagery (MI) on force performance remain poorly understood. Here, we tested whether the priming effects of embedded MI practice involved short-term changes in corticomotor connectivity. In a within-subjects counterbalanced experimental design, participants (n = 20) underwent a series of experimental sessions consisting of successive maximal isometric contractions of elbow flexor muscles. During inter-trial rest periods, we administered MI, action observation (AO), and a control passive recovery condition. We collected electromyograms (EMG) from both agonists and antagonists of the force task, in addition to electroencephalographic (EEG) brain potentials during force trials. Force output was higher during MI compared to AO and control conditions (both p < 0.01), although fatigability was similar across experimental conditions. We also found a weaker relationship between triceps brachii activation and force output during MI and AO compared to the control condition. Imaginary coherence topographies of alpha (8−12 Hz) oscillations revealed increased connectivity between EEG sensors from central scalp regions and EMG signals from agonists during MI, compared to AO and control. Present results suggest that the priming effects of MI on force performance are mediated by a more efficient cortical drive to motor units yielding reduced agonist/antagonist coactivation.
Collapse
Affiliation(s)
- Typhanie Dos Anjos
- Laboratoire Interuniversitaire de Biologie de la Motricité, Univ Lyon, Université de Lyon, Université Claude Bernard Lyon 1, EA 7424, CEDEX, F-69622 Villeurbanne, France
- Allyane, 84 quai Joseph Gillet, 69004 Lyon, France
| | - Aymeric Guillot
- Laboratoire Interuniversitaire de Biologie de la Motricité, Univ Lyon, Université de Lyon, Université Claude Bernard Lyon 1, EA 7424, CEDEX, F-69622 Villeurbanne, France
- Institut Universitaire de France, F-75000 Paris, France
| | - Yann Kerautret
- Laboratoire Interuniversitaire de Biologie de la Motricité, Univ Lyon, Université de Lyon, Université Claude Bernard Lyon 1, EA 7424, CEDEX, F-69622 Villeurbanne, France
- CAPSIX, 69100 Villeurbanne, France
| | - Sébastien Daligault
- Centre de Recherche Multimodal et Pluridisciplinaire en Imagerie du Vivant (CERMEP), Department of Magnetoencephalography, F-69500 Bron, France
| | - Franck Di Rienzo
- Laboratoire Interuniversitaire de Biologie de la Motricité, Univ Lyon, Université de Lyon, Université Claude Bernard Lyon 1, EA 7424, CEDEX, F-69622 Villeurbanne, France
- Correspondence: ; Tel.: +33-(0)4-7243-1625
| |
Collapse
|
23
|
Polskaia N, St-Amant G, Fraser S, Lajoie Y. Neural Correlates of Dual-Task Processing following Motor Sequence Learning: A Functional Near-Infrared Spectroscopy (fNIRS) Study. J Mot Behav 2022; 55:92-101. [PMID: 36210346 DOI: 10.1080/00222895.2022.2131706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The current study used functional near-infrared spectroscopy (fNIRS) to examine cerebral oxygenation changes in the prefrontal cortex (PFC) associated with dual-task processing before and after motor sequence learning. Participants performed self-initiated sequential finger movements that were 4 and 12 units in length with a visual letter-counting task. After practice, dual-task sequence-4 performance revealed decreased activity in the right dorsolateral PFC, medial PFC, and orbitofrontal cortex. However, dual-task sequence-12 performance revealed increased activity in the right ventrolateral PFC when compared to the left hemisphere. The findings suggest that dual-task interference was reduced following practice for dual-task sequence-4. The results also suggest that increased right hemisphere activation is needed to maintain performance when the primary sequential task (e.g., dual-task sequence-12) has a high level of difficulty.
Collapse
Affiliation(s)
- Nadia Polskaia
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Gabrielle St-Amant
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Sarah Fraser
- Interdisciplinary School of Health Sciences, Faculty of Health Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Yves Lajoie
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
24
|
Abstract
Studies conducted in healthy subjects have clearly shown that different hypnotic susceptibility, which is measured by scales, is associated with different functional equivalence between imagery and perception/action (FE), cortical excitability, and information processing. Of note, physiological differences among individuals with high (highs), medium (mediums), and low hypnotizability scores (lows) have been observed in the ordinary state of consciousness, thus independently from the induction of the hypnotic state, and in the absence of specific suggestions. The potential role of hypnotic assessment and its relevance to neurological diseases have not been fully explored. While current knowledge and therapies allow a better survival rate, there is a constant need to optimize rehabilitation treatments and quality of life. The aim of this paper is to provide an overview of hypnotizability-related features and, specifically, to discuss the hypothesis that the stronger FE, the different mode of information processing, and the greater proneness to control pain and the activity of the immune system observed in individuals with medium-to-high hypnotizability scores have potential applications to neurology. Current evidence of the outcome of treatments based on hypnotic induction and suggestions administration is not consistent, mainly owing to the small sample size in clinical trials and inadequate control groups. We propose that hypnotic assessment may be feasible in clinical routine and give additional cues into the treatment and rehabilitation of neurological diseases.
Collapse
|
25
|
EEG Oscillations in Specific Frequency Bands Are Differently Coupled with Angular Joint Angle Kinematics during Rhythmic Passive Elbow Movement. Brain Sci 2022; 12:brainsci12050647. [PMID: 35625033 PMCID: PMC9139522 DOI: 10.3390/brainsci12050647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/29/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022] Open
Abstract
Rhythmic passive movements are often used during rehabilitation to improve physical functions. Previous studies have explored oscillatory activities in the sensorimotor cortex during active movements; however, the relationship between movement rhythms and oscillatory activities during passive movements has not been substantially tested. Therefore, we aimed to quantitatively identify changes in cortical oscillations during rhythmic passive movements. Twenty healthy young adults participated in our study. We placed electroencephalography electrodes over a nine-position grid; the center was oriented on the transcranial magnetic stimulation hotspot of the biceps brachii muscle. Passive movements included elbow flexion and extension; the participants were instructed to perform rhythmic elbow flexion and extension in response to the blinking of 0.67 Hz light-emitting diode lamps. The coherence between high-beta and low-gamma oscillations near the hotspot of the biceps brachii muscle and passive movement rhythms was higher than that between alpha oscillation and passive movement rhythm. These results imply that alpha, beta, and gamma oscillations of the primary motor cortex are differently related to passive movement rhythm.
Collapse
|
26
|
de Souza RFL, Mendes TMAS, Lima LABDA, Brandão DS, Laplagne DA, de Sousa MBC. Effect of the Menstrual Cycle on Electroencephalogram Alpha and Beta Bands During Motor Imagery and Action Observation. Front Hum Neurosci 2022; 16:878887. [PMID: 35601901 PMCID: PMC9119141 DOI: 10.3389/fnhum.2022.878887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Female sex steroids (FSS) can affect the motor system, modulating motor cortex excitability as well as performance in dexterity and coordination tasks. However, it has not yet been explored whether FSS affects the cognitive components of motor behavior. Mu is a sensorimotor rhythm observed by electroencephalography (EEG) in alpha (8–12 Hz) and beta (15–30 Hz) frequency bands in practices such as motor imagery (MI) and action observation (AO). This rhythm represents a window for studying the activity of neural circuits involved in motor cognition. Herein we investigated whether the alpha-mu and beta-mu power in the sensorimotor region (C3 and C4, hypothesis-driven approach) and the alpha and beta power over frontal, parietal, and occipital regions (data-driven approach) are modulated differently in the menstrual, follicular, and luteal phases of menstrual cycles in right-handed dominant women. To do so, these women underwent MI and AO in the three menstrual cycle phases. The spectral activity of the cortical regions for the alpha and beta bands were compared between phases of the menstrual cycle and a correlation analysis was also performed in relation to estrogen and progesterone levels. For the hypothesis-based approach, beta-mu event-related desynchronization (ERD) was significantly stronger in the C3 channel in the follicular phase than in the menstrual and luteal phases. For the data-driven approach, beta ERD during MI was higher in the follicular phase than in the menstrual and luteal phases in the frontal region. These findings suggest the effect of FSS on executive movement control. No effect of menstrual cycle phases was observed in cortical areas investigated during OA, but alpha and beta bands correlated positively with the follicular phase plasma estradiol level. Thus, the attenuation of alpha and beta bands referring to mirror neuron activities appears to be associated with inhibition of cortical activity when estradiol levels are lower, improving cognitive processing of motor action.
Collapse
Affiliation(s)
- Rafaela Faustino Lacerda de Souza
- Behavioral Endocrinology Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
- *Correspondence: Rafaela Faustino Lacerda de Souza,
| | | | | | - Daniel Soares Brandão
- Electroencephalography Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Diego Andrés Laplagne
- Behavioral Neurophysiology, Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Maria Bernardete Cordeiro de Sousa
- Behavioral Endocrinology Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
- Graduate Program in Psychobiology, Federal University of Rio Grande do Norte, Rio Grande do Norte, Brazil
- Maria Bernardete Cordeiro de Sousa,
| |
Collapse
|
27
|
Tofani M, Santecchia L, Conte A, Berardi A, Galeoto G, Sogos C, Petrarca M, Panuccio F, Castelli E. Effects of Mirror Neurons-Based Rehabilitation Techniques in Hand Injuries: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5526. [PMID: 35564920 PMCID: PMC9104298 DOI: 10.3390/ijerph19095526] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023]
Abstract
Background: Hand trauma requires specific rehabilitation protocol depending on the different structures involved. According to type of surgical intervention, and for monitoring pain and edema, post-operative rehabilitation of a hand that has experienced trauma involves different timings for immobilization. Several protocols have been used to reduce immobilization time, and various techniques and methods are adopted, depending on the structures involved. Objective: To measure the effects of mirror neurons-based rehabilitation techniques in hand injuries throughout a systematic review and meta-analysis. Methods: The protocol was accepted in PROSPERO database. A literature search was conducted in Cinahl, Scopus, Medline, PEDro, OTseeker. Two authors independently identified eligible studies, based on predefined inclusion criteria, and extracted the data. RCT quality was assessed using the JADAD scale. Results: Seventy-nine suitable studies were screened, and only eleven were included for qualitative synthesis, while four studies were selected for quantitative analysis. Four studies were case reports/series, and seven were RCTs. Nine investigate the effect of Mirror Therapy and two the effect of Motor Imagery. Quantitative analyses revealed Mirror Therapy as effective for hand function recovery (mean difference = −14.80 95% Confidence Interval (CI) = −17.22, −12.38) (p < 0.00001) in the short term, as well as in long follow-up groups (mean difference = −13.11 95% Confidence Interval (CI) = −17.53, −8.69) (p < 0.00001). Clinical, but not statistical, efficacy was found for manual dexterity (p = 0.15), while no benefit was reported for range of motion. Conclusions: Mirror neurons-based rehabilitation techniques, combined with conventional occupational and physical therapy, can be a useful approach in hand trauma. Mirror therapy seems to be effective for hand function recovery, but, for motor imagery and action observation, there is not sufficient evidence to recommend its use. Further research on the efficacy of the mirror neurons-based technique in hand injury is recommended.
Collapse
Affiliation(s)
- Marco Tofani
- Professional Development, Continuous Education and Research Service, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (A.C.); (A.B.); (G.G.); (C.S.)
| | - Luigino Santecchia
- Orthopedic Unit, Department of Surgery, Bambino Gesù Children’s Hospital, 00100 Rome, Italy;
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (A.C.); (A.B.); (G.G.); (C.S.)
- Neuromed IRCCS, 86077 Pozzili, Italy
| | - Anna Berardi
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (A.C.); (A.B.); (G.G.); (C.S.)
| | - Giovanni Galeoto
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (A.C.); (A.B.); (G.G.); (C.S.)
- Neuromed IRCCS, 86077 Pozzili, Italy
| | - Carla Sogos
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (A.C.); (A.B.); (G.G.); (C.S.)
| | - Maurizio Petrarca
- Department of Intensive Neurorehabilitation and Robotics, Bambino Gesù Children’s Hospital, 00100 Rome, Italy; (M.P.); (E.C.)
| | | | - Enrico Castelli
- Department of Intensive Neurorehabilitation and Robotics, Bambino Gesù Children’s Hospital, 00100 Rome, Italy; (M.P.); (E.C.)
| |
Collapse
|
28
|
Mental training is crucial to preparedness for athletes, special forces, musicians… and surgeons. J Visc Surg 2022; 159:87-88. [DOI: 10.1016/j.jviscsurg.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Cuenca-Martínez F, Angulo-Díaz-Parreño S, Feijóo-Rubio X, Fernández-Solís MM, León-Hernández JV, LA Touche R, Suso-Martí L. Motor effects of movement representation techniques and cross-education: a systematic review and meta-analysis. Eur J Phys Rehabil Med 2022; 58:94-107. [PMID: 34105921 PMCID: PMC9987463 DOI: 10.23736/s1973-9087.21.06893-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION The objective was to assess the impact of movement representation techniques (MRT) through motor imagery (MI), action observation (AO) and visual mirror feedback (VMF) and cross-education training (CE) on strength, range of motion (ROM), speed, functional state and balance during experimental immobilization processes in healthy individuals, in patients with injuries that did not require surgery and in those with surgical processes that did or did not require immobilization. EVIDENCE ACQUISITION MEDLINE, EMBASE, CINAHL and Google Scholar were searched. Thirteen meta-analyses were conducted. EVIDENCE SYNTHESIS Regarding the immobilized participants, in the healthy individuals, MI showed significant results regarding maintenance of strength and ROM, with low-quality evidence. Regarding the process with no immobilization, VMF and MI techniques showed significant changes in maintaining ROM in patients with injury without surgery, with very low-quality evidence. Results had shown that MI demonstrated significantly higher maintenance of strength and speed in patients undergoing surgery, with low-quality evidence. No significant results were found in ROM. Low-quality evidence showed better results in AO plus usual care compared with usual treatment in isolation with respect to maintenance of functional state and balance. CE training demonstrated maintenance of strength in patients undergoing surgery, with moderate evidence; however, not in healthy experimentally immobilized individuals. VMF did not show significant results in maintaining ROM after surgery without immobilization, nor did MI in maintaining strength after surgery and immobilization. CONCLUSIONS MRT and CE training have been shown to have a significant impact on the improvement of various motor variables and on physical maintenance in general.
Collapse
Affiliation(s)
- Ferran Cuenca-Martínez
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain.,Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), La Salle Higher Center for University Studies, Autonomous University of Madrid, Madrid, Spain
| | - Santiago Angulo-Díaz-Parreño
- Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), La Salle Higher Center for University Studies, Autonomous University of Madrid, Madrid, Spain.,Faculty of Medicine, CEU San Pablo University, Madrid, Spain
| | - Xosé Feijóo-Rubio
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta M Fernández-Solís
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain
| | - José V León-Hernández
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain.,Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), La Salle Higher Center for University Studies, Autonomous University of Madrid, Madrid, Spain
| | - Roy LA Touche
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain - .,Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), La Salle Higher Center for University Studies, Autonomous University of Madrid, Madrid, Spain.,Institute of Neurosciences and Craniofacial Pain (INDCRAN), Madrid, Spain
| | - Luis Suso-Martí
- Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), La Salle Higher Center for University Studies, Autonomous University of Madrid, Madrid, Spain.,Department of Physiotherapy, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain
| |
Collapse
|
30
|
Sharini H, Zolghadriha S, Riyahi Alam N, Jalalvandi M, Khabiri H, Arabalibeik H, Nadimi M. Assessment of Motor Cortex in Active, Passive and Imagery Wrist Movement Using Functional MRI. J Biomed Phys Eng 2021; 11:515-526. [PMID: 34458199 PMCID: PMC8385213 DOI: 10.31661/jbpe.v0i0.1034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/17/2018] [Indexed: 11/28/2022]
Abstract
Background: Functional Magnetic resonance imaging (fMRI) measures the small fluctuation of blood flow happening during task-fMRI in brain regions. Objective: This research investigated these active, imagery and passive movements in volunteers design to permit a comparison of their capabilities in activating the brain areas. Material and Methods: In this applied research, the activity of the motor cortex during the right-wrist movement was evaluated in 10 normal volunteers under active, passive, and imagery conditions.
T2* weighted, three-dimensional functional images were acquired using a BOLD sensitive gradient-echo EPI (echo planar imaging) sequence with echo time (TE)
of 30 ms and repetition time (TR) of 2000 ms. The functional data, which included 248 volumes per subject and condition, were acquired using the blocked design paradigm.
The images were analyzed by the SPM12 toolbox, MATLAB software. Results: The findings determined a significant increase in signal intensity of the motor cortex while performing the test compared to the rest time (p< 0.05).
It was also observed that the active areas in hand representation of the motor cortex are different in terms of locations and the number of voxels in different wrist directions.
Moreover, the findings showed that the position of active centers in the brain is different in active, passive, and imagery conditions. Conclusion: Results confirm that primary motor cortex neurons play an essential role in the processing of complex information and are designed to control the direction of movement.
It seems that the findings of this study can be applied for rehabilitation studies.
Collapse
Affiliation(s)
- Hamid Sharini
- PhD, Department of Medical Physics and Biomedical Engineering, School of Medicine, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Shokufeh Zolghadriha
- MSc, Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Nader Riyahi Alam
- PhD, Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- PhD, PERFORM Center, Preventive Medicine and Personal Health Care Center, Concordia University, Montreal, Quebec, Canada
- PhD, Medical Pharmaceutical Sciences Research Center (MPRC), the institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Maziar Jalalvandi
- MSc, Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hamid Khabiri
- PhD, Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hossein Arabalibeik
- PhD, Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- PhD, Research Center for Science and Technology in Medicine (RCSTM), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohadeseh Nadimi
- MSc, Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
31
|
Abstract
Abstract
Neurofeedback (NF) is a versatile non-invasive neuromodulation technique. In combination with motor imagery (MI), NF has considerable potential for enhancing motor performance or supplementing motor rehabilitation. However, not all users achieve reliable NF control. While research has focused on various brain signal properties and the optimisation of signal processing to solve this issue, the impact of context, i.e. the conditions in which NF motor tasks occur, is comparatively unknown. We review current research on the impact of context on MI NF and related motor domains. We identify long-term factors that act at the level of the individual or of the intervention, and short-term factors, with levels before/after and during a session. The reviewed literature indicates that context plays a significant role. We propose considering context factors as well as within-level and across-level interactions when studying MI NF.
Collapse
|
32
|
Dylan RM, Charalambos P, Aymeric G, Florent L. Motor imagery and action observation following immobilization-induced hypoactivity: a narrative review. Ann Phys Rehabil Med 2021; 65:101541. [PMID: 34023499 DOI: 10.1016/j.rehab.2021.101541] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND In sports, the risk of pathology or event that leads to an injury, a cessation of practice or even to an immobilization is high. The subsequent reduction of physical activity, or hypoactivity, induces neural and muscular changes that adversely affect motor skills and functional motor rehabilitation. Because the implementation of physical practice is difficult, if not impossible, during and immediately following injury or immobilization, complementary techniques have been proposed to minimize the deleterious impact of hypoactivity on neuromuscular function. OBJECTIVE The current narrative review aimed to discuss the contributions of motor imagery and action observation, which enhance motor (re)learning and induce neural adaptations in both healthy individuals and injured athletes. METHODS Online literature research for studies of the effects of motor imagery, action observation and their combination on hypoactivity, extracting relevant publications within the last decade (2009-2020). RESULTS From published studies and the authors' knowledge of both motor imagery and action observation, some elements are provided for developing applied protocols during and after the immobilization period. Such interventions consist of associating congruent action observation with kinesthetic motor imagery of different movements, organized in increasing difficulty. The aim is to maintain motor functions and promote motor relearning by activating sensorimotor cortical areas and corticomotor pathways of the injured effector. CONCLUSION This narrative review supports the implementation of combined motor imagery and action observation protocols in the context of sports rehabilitation.
Collapse
Affiliation(s)
- Rannaud Monany Dylan
- Cognition, Action et Plasticité Sensorimotrice (CAPS), INSERM UMR1093, UFR STAPS, Université de Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Papaxanthis Charalambos
- Cognition, Action et Plasticité Sensorimotrice (CAPS), INSERM UMR1093, UFR STAPS, Université de Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Guillot Aymeric
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité EA 7424, F-69622 Villeurbanne Cedex, France
| | - Lebon Florent
- Cognition, Action et Plasticité Sensorimotrice (CAPS), INSERM UMR1093, UFR STAPS, Université de Bourgogne Franche-Comté, F-21000 Dijon, France.
| |
Collapse
|
33
|
Abstract
Automatic behaviour is supposedly underlain by the unintentional retrieval of processing episodes, which are stored during the repeated overt practice of a task or activity. In the present study, we investigated whether covertly practicing a task (e.g., repeatedly imagining responding to a stimulus) also leads to the storage of processing episodes and thus to automatic behaviour. Participants first either responded overtly or covertly to stimuli according to a first categorization task in a practice phase. We then measured the presence of automatic response-congruency effects in a subsequent test phase that involved a different categorization task but the same stimuli and responses. Our results indicate that covert practice can lead to a response-congruency effect. We conclude that covert practice can lead to automatic behaviour and discuss the different components of covert practice, such as motor imagery, visual imagery, and inner speech, that contribute to the formation of processing episodes in memory.
Collapse
Affiliation(s)
- Baptist Liefooghe
- Department of Psychology, Utrecht University, Utrecht, The Netherlands
- Baptist Liefooghe, Department of Psychology, Utrecht University, PO BOX 80140, 3508 TC Utrecht, The Netherlands.
| | - Ariane Jim
- Department of Psychology, Utrecht University, Utrecht, The Netherlands
| | - Jan De Houwer
- Department of Experimental Clinical and Health Psychology, Ghent University, Gent, Belgium
| |
Collapse
|
34
|
Using motor imagery practice for improving motor performance - A review. Brain Cogn 2021; 150:105705. [PMID: 33652364 DOI: 10.1016/j.bandc.2021.105705] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 12/19/2022]
Abstract
Motor imagery practice is a current trend, but there is a need for a systematic integration of neuroscientific advances in the field. In this review, we describe the technique of motor imagery practice and its neural representation, considering different fields of application. The current practice of individualized motor imagery practice schemes often lacks systematization and is mostly based on experience. We review literature related to motor imagery practice in order to identify relevant modulators of practice effects like previous experience in motor training and motor imagery practice, the type of motor task to be trained, and strategies to increase sensory feedback during physical practice. Relevant discrepancies are identified between neuroscientific findings and practical consideration of these findings. To bridge these gaps, more effort should be directed at analyzing the brain network activities related to practically relevant motor imagery practice interventions.
Collapse
|
35
|
Matsuda D, Moriuchi T, Ikio Y, Mitsunaga W, Fujiwara K, Matsuo M, Nakamura J, Suzuki T, Sugawara K, Higashi T. A Study on the Effect of Mental Practice Using Motor Evoked Potential-Based Neurofeedback. Front Hum Neurosci 2021; 15:637401. [PMID: 33643014 PMCID: PMC7907172 DOI: 10.3389/fnhum.2021.637401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/11/2021] [Indexed: 01/10/2023] Open
Abstract
This study aimed to investigate whether the effect of mental practice (motor imagery training) can be enhanced by providing neurofeedback based on transcranial magnetic stimulation (TMS)-induced motor evoked potentials (MEP). Twenty-four healthy, right-handed subjects were enrolled in this study. The subjects were randomly allocated into two groups: a group that was given correct TMS feedback (Real-FB group) and a group that was given randomized false TMS feedback (Sham-FB group). The subjects imagined pushing the switch with just timing, when the target circle overlapped a cross at the center of the computer monitor. In the Real-FB group, feedback was provided to the subjects based on the MEP amplitude measured in the trial immediately preceding motor imagery. In contrast, the subjects of the Sham-FB group were provided with a feedback value that was independent of the MEP amplitude. TMS was applied when the target, moving from right to left, overlapped the cross at the center of the screen, and the MEP amplitude was measured. The MEP was recorded in the right first dorsal interosseous muscle. We evaluated the pre-mental practice and post-mental practice motor performance in both groups. As a result, a significant difference was observed in the percentage change of error values between the Real-FB group and the Sham-FB group. Furthermore, the MEP was significantly different between the groups in the 4th and 5th sets. Therefore, it was suggested that TMS-induced MEP-based neurofeedback might enhance the effect of mental practice.
Collapse
Affiliation(s)
- Daiki Matsuda
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takefumi Moriuchi
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yuta Ikio
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Wataru Mitsunaga
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kengo Fujiwara
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Moemi Matsuo
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Jiro Nakamura
- Department of Occupational Therapy, Nagasaki Memorial Hospital, Nagasaki, Japan
| | - Tomotaka Suzuki
- Faculty of Health and Social Work, Division of Physical Therapy, Kanagawa University of Human Services, Yokosuka, Japan
| | - Kenichi Sugawara
- Faculty of Health and Social Work, Division of Physical Therapy, Kanagawa University of Human Services, Yokosuka, Japan
| | - Toshio Higashi
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
36
|
Practice modality of motor sequences impacts the neural signature of motor imagery. Sci Rep 2020; 10:19176. [PMID: 33154478 PMCID: PMC7645615 DOI: 10.1038/s41598-020-76214-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/30/2020] [Indexed: 01/12/2023] Open
Abstract
Motor imagery is conceptualized as an internal simulation that uses motor-related parts of the brain as its substrate. Many studies have investigated this sharing of common neural resources between the two modalities of motor imagery and motor execution. They have shown overlapping but not identical activation patterns that thereby result in a modality-specific neural signature. However, it is not clear how far this neural signature depends on whether the imagined action has previously been practiced physically or only imagined. The present study aims to disentangle whether the neural imprint of an imagined manual pointing sequence within cortical and subcortical motor areas is determined by the nature of this prior practice modality. Each participant practiced two sequences physically, practiced two other sequences mentally, and did a behavioural pre-test without any further practice on a third pair of sequences. After a two-week practice intervention, participants underwent fMRI scans while imagining all six sequences. Behavioural data demonstrated practice-related effects as well as very good compliance with instructions. Functional MRI data confirmed the previously known motor imagery network. Crucially, we found that mental and physical practice left a modality-specific footprint during mental motor imagery. In particular, activation within the right posterior cerebellum was stronger when the imagined sequence had previously been practiced physically. We conclude that cerebellar activity is shaped specifically by the nature of the prior practice modality.
Collapse
|
37
|
Gao F, Guo Y, Chu H, Yu W, Chen Z, Chen L, Li J, Yang D, Yang M, Du L, Li J, Chan CCH. Lower-Limb Sensorimotor Deprivation-Related Brain Activation in Patients With Chronic Complete Spinal Cord Injury. Front Neurol 2020; 11:555733. [PMID: 33123075 PMCID: PMC7573128 DOI: 10.3389/fneur.2020.555733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/21/2020] [Indexed: 01/10/2023] Open
Abstract
This study aims to investigate functional brain reorganization brought about by the loss of physical movement and sensory feedback in lower limbs in chronic spinal cord injury (SCI). Eleven paraplegia patients with SCI and 13 healthy controls (HCs) were recruited. The experimental task used was a visuomotor imagery task requiring subjects to engage in visualization of repetitive tapping movements of the upper or lower limbs. Blood oxygen level-dependent (BOLD) responses were captured during the experimental task, along with the accuracy rate and the response time. The SCI patients performed worse in the Rey Auditory Verbal Learning Test (RAVLT) and the Trail Making Test. SCI patients had a larger BOLD signal in the left lingual gyrus and right external globus pallidus (GPe) when imagining lower-limb movements. For the upper-limb task, SCI patients showed stronger BOLD responses than the HCs in extensive areas over the brain, including the bilateral precentral gyrus (preCG), bilateral inferior parietal gyrus, right GPe, right thalamus, left postcentral gyrus, and right superior temporal gyrus. In contrast, the HCs displayed stronger BOLD responses in the medial frontal gyrus and anterior cingulate gyrus for both upper- and lower-limb tasks than the SCI patients. In the SCI group, for the upper-limb condition, the amplitudes of BOLD responses in the left preCG were negatively correlated with the time since injury (r = -0.72, p = 0.012). For the lower-limb condition, the amplitudes of BOLD responses in the left lingual gyrus were negatively correlated with the scores on the Short Delay task of the RAVLT (r = -0.73, p = 0.011). Our study provided imaging evidence for abnormal changes in brain function and worsened cognitive test performance in SCI patients. These findings suggested possible compensatory strategies adopted by the SCI patients for the loss of sensorimotor function from the lower limbs when performing a limb imagery task.
Collapse
Affiliation(s)
- Feng Gao
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,SCI Unit, China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yun Guo
- Department of Rehabilitation Medicine, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Hongyu Chu
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Comprehensive Rehabilitation, China Rehabilitation Research Center, Beijing, China
| | - Weiyong Yu
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Radiology, China Rehabilitation Research Center, Beijing, China
| | - Zhenbo Chen
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Radiology, China Rehabilitation Research Center, Beijing, China
| | - Liang Chen
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,SCI Unit, China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jun Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,SCI Unit, China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Degang Yang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,SCI Unit, China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Mingliang Yang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,SCI Unit, China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liangjie Du
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,SCI Unit, China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jianjun Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,SCI Unit, China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Chetwyn C H Chan
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
38
|
Kraeutner SN, Stratas A, McArthur JL, Helmick CA, Westwood DA, Boe SG. Neural and Behavioral Outcomes Differ Following Equivalent Bouts of Motor Imagery or Physical Practice. J Cogn Neurosci 2020; 32:1590-1606. [PMID: 32420839 DOI: 10.1162/jocn_a_01575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Despite its reported effectiveness for the acquisition of motor skills, we know little about how motor imagery (MI)-based brain activation and performance evolves when MI (the imagined performance of a motor task) is used to learn a complex motor skill compared to physical practice (PP). The current study examined changes in MI-related brain activity and performance driven by an equivalent bout of MI- or PP-based training. Participants engaged in 5 days of either MI or PP of a dart-throwing task. Brain activity (via fMRI) and performance-related outcomes were obtained using a pre/post/retention design. Relative to PP, MI-based training did not drive robust changes in brain activation and was inferior for realizing improvements in performance: Greater activation in regions critical to refining the motor program was observed in the PP versus MI group posttraining, and relative to those driven via PP, MI led only to marginal improvements in performance. Findings indicate that the modality of practice (i.e., MI vs. PP) used to learn a complex motor skill manifests as differences in both resultant patterns of brain activity and performance. Ultimately, by directly comparing brain activity and behavioral outcomes after equivalent training through MI versus PP, this work provides unique knowledge regarding the neural mechanisms underlying learning through MI.
Collapse
|
39
|
Souto DO, Cruz TKF, Coutinho K, Julio-Costa A, Fontes PLB, Haase VG. Effect of motor imagery combined with physical practice on upper limb rehabilitation in children with hemiplegic cerebral palsy. NeuroRehabilitation 2020; 46:53-63. [DOI: 10.3233/nre-192931] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Deisiane Oliveira Souto
- Graduate Program in Neurosciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Psychology, Developmental Neuropsychology Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thalita Karla Flores Cruz
- Graduate Program in Neurosciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Psychology, Developmental Neuropsychology Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Kênia Coutinho
- Department of Psychology, Developmental Neuropsychology Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Annelise Julio-Costa
- Department of Psychology, Developmental Neuropsychology Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Vitor Geraldi Haase
- Graduate Program in Neurosciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Psychology, Developmental Neuropsychology Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- National Institute of Science and Technology on Behavior, CNPq, Brazil
| |
Collapse
|
40
|
Juliano JM, Spicer RP, Vourvopoulos A, Lefebvre S, Jann K, Ard T, Santarnecchi E, Krum DM, Liew SL. Embodiment Is Related to Better Performance on a Brain-Computer Interface in Immersive Virtual Reality: A Pilot Study. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1204. [PMID: 32098317 PMCID: PMC7070491 DOI: 10.3390/s20041204] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 01/25/2023]
Abstract
Electroencephalography (EEG)-based brain-computer interfaces (BCIs) for motor rehabilitation aim to "close the loop" between attempted motor commands and sensory feedback by providing supplemental information when individuals successfully achieve specific brain patterns. Existing EEG-based BCIs use various displays to provide feedback, ranging from displays considered more immersive (e.g., head-mounted display virtual reality (HMD-VR)) to displays considered less immersive (e.g., computer screens). However, it is not clear whether more immersive displays improve neurofeedback performance and whether there are individual performance differences in HMD-VR versus screen-based neurofeedback. In this pilot study, we compared neurofeedback performance in HMD-VR versus a computer screen in 12 healthy individuals and examined whether individual differences on two measures (i.e., presence, embodiment) were related to neurofeedback performance in either environment. We found that, while participants' performance on the BCI was similar between display conditions, the participants' reported levels of embodiment were significantly different. Specifically, participants experienced higher levels of embodiment in HMD-VR compared to a computer screen. We further found that reported levels of embodiment positively correlated with neurofeedback performance only in HMD-VR. Overall, these preliminary results suggest that embodiment may relate to better performance on EEG-based BCIs and that HMD-VR may increase embodiment compared to computer screens.
Collapse
Affiliation(s)
- Julia M. Juliano
- Neural Plasticity and Neurorehabilitation Laboratory, Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA;
| | - Ryan P. Spicer
- Institute for Creative Technologies, University of Southern California, Playa Vista, CA 90094, USA; (R.P.S.); (D.M.K.)
| | - Athanasios Vourvopoulos
- Neural Plasticity and Neurorehabilitation Laboratory, Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA 90089, USA; (A.V.); (S.L.)
| | - Stephanie Lefebvre
- Neural Plasticity and Neurorehabilitation Laboratory, Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA 90089, USA; (A.V.); (S.L.)
| | - Kay Jann
- USC Stevens Neuroimaging and Informatics Institute, Department of Neurology, University of Southern California, Los Angeles, CA 90033, USA; (K.J.); (T.A.)
| | - Tyler Ard
- USC Stevens Neuroimaging and Informatics Institute, Department of Neurology, University of Southern California, Los Angeles, CA 90033, USA; (K.J.); (T.A.)
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Non-Invasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - David M. Krum
- Institute for Creative Technologies, University of Southern California, Playa Vista, CA 90094, USA; (R.P.S.); (D.M.K.)
| | - Sook-Lei Liew
- Neural Plasticity and Neurorehabilitation Laboratory, Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA 90089, USA; (A.V.); (S.L.)
- USC Stevens Neuroimaging and Informatics Institute, Department of Neurology, University of Southern California, Los Angeles, CA 90033, USA; (K.J.); (T.A.)
| |
Collapse
|
41
|
Daeglau M, Zich C, Emkes R, Welzel J, Debener S, Kranczioch C. Investigating Priming Effects of Physical Practice on Motor Imagery-Induced Event-Related Desynchronization. Front Psychol 2020; 11:57. [PMID: 32116896 PMCID: PMC7012900 DOI: 10.3389/fpsyg.2020.00057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/09/2020] [Indexed: 01/27/2023] Open
Abstract
For motor imagery (MI) to be effective, an internal representation of the to-be-imagined movement may be required. A representation can be achieved through prior motor execution (ME), but the neural correlates of MI that are primed by ME practice are currently unknown. In this study, young healthy adults performed MI practice of a unimanual visuo-motor task (Group MI, n = 19) or ME practice combined with subsequent MI practice (Group ME&MI, n = 18) while electroencephalography (EEG) was recorded. Data analysis focused on the MI-induced event-related desynchronization (ERD). Specifically, changes in the ERD and movement times (MT) between a short familiarization block of ME (Block pre-ME), conducted before the MI or the ME combined with MI practice phase, and a short block of ME conducted after the practice phase (Block post-ME) were analyzed. Neither priming effects of ME practice on MI-induced ERD were found nor performance-enhancing effects of MI practice in general. We found enhancements of the ERD and MT in Block post-ME compared to Block pre-ME, but only for Group ME&MI. A comparison of ME performance measures before and after the MI phase indicated however that these changes could not be attributed to the combination of ME and MI practice. The mixed results of this study may be a consequence of the considerable intra- and inter-individual differences in the ERD, introduced by specifics of the experimental setup, in particular the individual and variable task duration, and suggest that task and experimental setup can affect the interplay of ME and MI.
Collapse
Affiliation(s)
- Mareike Daeglau
- Neuropsychology Laboratory, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.,Neurocognition and Functional Neurorehabilitation Group, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Catharina Zich
- Neuropsychology Laboratory, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.,Neurocognition and Functional Neurorehabilitation Group, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.,Department of Psychiatry, Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom
| | - Reiner Emkes
- Neuropsychology Laboratory, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Julius Welzel
- Neuropsychology Laboratory, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.,Neurocognition and Functional Neurorehabilitation Group, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.,Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Stefan Debener
- Neuropsychology Laboratory, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.,Cluster of Excellence Hearing4All, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Cornelia Kranczioch
- Neuropsychology Laboratory, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.,Neurocognition and Functional Neurorehabilitation Group, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
42
|
Saruco E, Guillot A, Multari L, Saimpont A. Effects of Different Ratios of Physical and Mental Practice on Postural Control Improvement. J Mot Behav 2019; 52:723-733. [PMID: 31813332 DOI: 10.1080/00222895.2019.1689908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mental practice (MP) is a reliable alternative or complement to physical practice (PP) for the training of postural control. We address how MP should ideally be combined with PP. Participants were assigned to four experimental groups where MP/PP ratios during training varied from 0 to 100%. Performance improved only for demanding postural adjustments, regardless of MP/PP ratio, and learning was partially consolidated after a night of sleep. Findings reinforce the relevance of MP for the training of weight shifting and further suggest that MP alone can be as efficient as PP for the learning of certain complex postural adjustments.
Collapse
Affiliation(s)
- Elodie Saruco
- Laboratoire Interuniversitaire de Biologie de la Motricité, University of Lyon Villeurbanne, France.,Neurologische Universitätsklinik, Bergmannsheil gGmbH, Forschungsgruppe Plastizität. Bürkle-de-la-Camp-Platz, Bochum, Germany
| | - Aymeric Guillot
- Laboratoire Interuniversitaire de Biologie de la Motricité, University of Lyon Villeurbanne, France
| | - Léa Multari
- Laboratoire Interuniversitaire de Biologie de la Motricité, University of Lyon Villeurbanne, France
| | - Arnaud Saimpont
- Laboratoire Interuniversitaire de Biologie de la Motricité, University of Lyon Villeurbanne, France
| |
Collapse
|
43
|
Lee WH, Kim E, Seo HG, Oh BM, Nam HS, Kim YJ, Lee HH, Kang MG, Kim S, Bang MS. Target-oriented motor imagery for grasping action: different characteristics of brain activation between kinesthetic and visual imagery. Sci Rep 2019; 9:12770. [PMID: 31484971 PMCID: PMC6726765 DOI: 10.1038/s41598-019-49254-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/21/2019] [Indexed: 02/05/2023] Open
Abstract
Motor imagery (MI) for target-oriented movements, which is a basis for functional activities of daily living, can be more appropriate than non-target-oriented MI as tasks to promote motor recovery or brain-computer interface (BCI) applications. This study aimed to explore different characteristics of brain activation among target-oriented kinesthetic imagery (KI) and visual imagery (VI) in the first-person (VI-1) and third-person (VI-3) perspectives. Eighteen healthy volunteers were evaluated for MI ability, trained for the three types of target-oriented MIs, and scanned using 3 T functional magnetic resonance imaging (fMRI) under MI and perceptual control conditions, presented in a block design. Post-experimental questionnaires were administered after fMRI. Common brain regions activated during the three types of MI were the left premotor area and inferior parietal lobule, irrespective of the MI modalities or perspectives. Contrast analyses showed significantly increased brain activation only in the contrast of KI versus VI-1 and KI versus VI-3 for considerably extensive brain regions, including the supplementary motor area and insula. Neural activity in the orbitofrontal cortex and cerebellum during VI-1 and KI was significantly correlated with MI ability measured by mental chronometry and a self-reported questionnaire, respectively. These results can provide a basis in developing MI-based protocols for neurorehabilitation to improve motor recovery and BCI training in severely paralyzed individuals.
Collapse
Affiliation(s)
- Woo Hyung Lee
- Department of Biomedical Engineering, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Eunkyung Kim
- Department of Rehabilitation Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Han Gil Seo
- Department of Rehabilitation Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Hyung Seok Nam
- Department of Rehabilitation Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Yoon Jae Kim
- Department of Biomedical Engineering, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Hyun Haeng Lee
- Department of Rehabilitation Medicine, Konkuk University Hospital, 120-1 Hwayang-dong, Gwangjin-gu, Seoul, 05030, Republic of Korea
| | - Min-Gu Kang
- Department of Rehabilitation Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Sungwan Kim
- Department of Biomedical Engineering, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Institute of Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Moon Suk Bang
- Department of Rehabilitation Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
44
|
The effect of motor imagery and mirror therapy on upper extremity function according to the level of cognition in stroke patients. Int J Rehabil Res 2019; 42:330-336. [PMID: 31425348 DOI: 10.1097/mrr.0000000000000366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This study was conducted to investigate the effects of motor imagery (MI) and mirror therapy (MT) on upper extremity function according to the level of cognition in stroke patients. Twenty-four participants who were diagnosed with stroke were divided into a mild cognitive group (n = 12) and a severe cognitive group (n = 12). Then, the two groups were again divided into MI group (n = 6) and MT group (n = 6). The participants were evaluated for function of upper extremity using the Box and Block Test (BBT), the Jebsen-Taylor Hand Function Test (JTHFT), and Manual Function Test (MFT). There were significant differences between the two groups of cognitive function of mild level in the post-test of JTHFT (p < 0.05). In the MI group, significant differences were found in the pre- and post-test scores for all variance (p < 0.05). In the MT group, significant differences were found in the pre- and post-test scores for JTHFT and MFT (p < 0.05). There were significant differences between the two groups of cognitive function of severe level in the post-test of all variances (p < 0.05). Furthermore, in the MT group, significant differences were found in the pre- and post-test scores for all variances (P < 0.05). The results of this study suggest that applying MI to the mild cognitive group is effective and that applying MT to the severe cognitive group is effective.
Collapse
|
45
|
Debarnot U, Neveu R, Samaha Y, Saruco E, Macintyre T, Guillot A. Acquisition and consolidation of implicit motor learning with physical and mental practice across multiple days of anodal tDCS. Neurobiol Learn Mem 2019; 164:107062. [PMID: 31377178 DOI: 10.1016/j.nlm.2019.107062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 07/16/2019] [Accepted: 07/30/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Acquisition and consolidation of a new motor skill occurs gradually over long time span. Motor imagery (MI) and brain stimulation have been showed as beneficial approaches that boost motor learning, but little is known about the extent of their combined effects. OBJECTIVE Here, we aimed to investigate, for the first time, whether delivering multiple sessions of transcranial direct current stimulation (tDCS) over primary motor cortex during physical and MI practice might improve implicit motor sequence learning in a young population. METHODS Participants practiced a serial reaction time task (SRTT) either physically or through MI, and concomitantly received either an anodal (excitatory) or sham stimulation over the primary motor cortex during three successive days. The effect of anodal tDCS on the general motor skill and sequence specific learning were assessed on both acquisition (within-day) and consolidation (between-day) processes. We further compared the magnitude of motor learning reached after a single and three daily sessions of tDCS. RESULTS The main finding showed that anodal tDCS boosted MI practice, but not physical practice, during the first acquisition session. A second major result showed that compared to sham stimulation, multiple daily session of anodal tDCS, for both types of practice, resulted in greater implicit motor sequence learning rather than a single session of stimulation. CONCLUSIONS The present study is of particular importance in the context of rehabilitation, where we postulate that scheduling mental training when patients are not able to perform physical movement might beneficiate from concomitant and consecutive brain stimulation sessions over M1 to promote functional recovery.
Collapse
Affiliation(s)
- Ursula Debarnot
- Inter-University Laboratory of Human Movement Biology-EA 7424, University of Lyon, University Claude Bernard Lyon 1, 69 622 Villeurbanne, France.
| | - Rémi Neveu
- Division of Child and Adolescent Psychiatry, University of Geneva, 1200 Geneva, Switzerland
| | - Yvette Samaha
- Inter-University Laboratory of Human Movement Biology-EA 7424, University of Lyon, University Claude Bernard Lyon 1, 69 622 Villeurbanne, France
| | - Elodie Saruco
- Inter-University Laboratory of Human Movement Biology-EA 7424, University of Lyon, University Claude Bernard Lyon 1, 69 622 Villeurbanne, France; Neurologische Universitätsklinik, Bergmannsheil gGmbH, Forschungsgruppe Plastizität, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Tadhg Macintyre
- Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Aymeric Guillot
- Inter-University Laboratory of Human Movement Biology-EA 7424, University of Lyon, University Claude Bernard Lyon 1, 69 622 Villeurbanne, France
| |
Collapse
|
46
|
Hand motor learning in a musical context and prefrontal cortex hemodynamic response: a functional near-infrared spectroscopy (fNIRS) study. Cogn Process 2019; 20:507-513. [DOI: 10.1007/s10339-019-00925-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/24/2019] [Indexed: 01/08/2023]
|
47
|
Gandola M, Zapparoli L, Saetta G, De Santis A, Zerbi A, Banfi G, Sansone V, Bruno M, Paulesu E. Thumbs up: Imagined hand movements counteract the adverse effects of post-surgical hand immobilization. Clinical, behavioral, and fMRI longitudinal observations. NEUROIMAGE-CLINICAL 2019; 23:101838. [PMID: 31071593 PMCID: PMC6506638 DOI: 10.1016/j.nicl.2019.101838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 04/08/2019] [Accepted: 04/24/2019] [Indexed: 01/05/2023]
Abstract
Motor imagery (M.I.) training has been widely used to enhance motor behavior. To characterize the neural foundations of its rehabilitative effects in a pathological population we studied twenty-two patients with rhizarthrosis, a chronic degenerative articular disease in which thumb-to-fingers opposition becomes difficult due to increasing pain while the brain is typically intact. Before and after surgery, patients underwent behavioral tests to measure pain and motor performance and fMRI measurements of brain motor activity. After surgery, the affected hand was immobilized, and patients were enrolled in a M.I. training. The sample was split in those who had a high compliance with the program of scheduled exercises (T+, average compliance: 84%) and those with low compliance (T−, average compliance: 20%; cut-off point: 55%). We found that more intense M.I. training counteracts the adverse effects of immobilization reducing pain and expediting motor recovery. fMRI data from the post-surgery session showed that T+ patients had decreased brain activation in the premotor cortex and the supplementary motor area (SMA); meanwhile, for the same movements, the T− patients exhibited a reversed pattern. Furthermore, in the post-surgery fMRI session, pain intensity was correlated with activity in the ipsilateral precentral gyrus and, notably, in the insular cortex, a node of the pain matrix. These findings indicate that the motor simulations of M.I. have a facilitative effect on recovery by cortical plasticity mechanisms and optimization of motor control, thereby establishing the rationale for incorporating the systematic use of M.I. into standard rehabilitation for the management of post-immobilization syndromes characteristic of hand surgery. Motor imagery training counteracts the effects of post-surgical hand immobilization. It also reduces pain and expedites motor recovery after immobilization. These effects were accompanied by significant fMRI signs of brain plasticity. The clinical-fMRI evidence advocates for the use of motor imagery in rehabilitation.
Collapse
Affiliation(s)
- Martina Gandola
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
| | | | - Gianluca Saetta
- Neuropsychology Unit, Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | | | | | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Valerio Sansone
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy; University of Milano-Statale, Milan, Italy
| | | | - Eraldo Paulesu
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy; Department of Psychology and Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy.
| |
Collapse
|
48
|
Guillot A, Debarnot U. Benefits of Motor Imagery for Human Space Flight: A Brief Review of Current Knowledge and Future Applications. Front Physiol 2019; 10:396. [PMID: 31031635 PMCID: PMC6470189 DOI: 10.3389/fphys.2019.00396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/21/2019] [Indexed: 12/12/2022] Open
Abstract
Motor imagery (MI) is arguably one of the most remarkable capacities of the human mind. There is now strong experimental evidence that MI contributes to substantial improvements in motor learning and performance. The therapeutic benefits of MI in promoting motor recovery among patients with motor impairments have also been reported. Despite promising theoretical and experimental findings, the utility of MI in adapting to unusual conditions, such as weightlessness during space flight, has received far less attention. In this review, we consider how, why, where, and when MI might be used by astronauts, and further evaluate the optimum MI content. Practically, we suggest that MI might be performed before, during, and after exposure to microgravity, respectively, to prepare for the rapid changes in gravitational forces after launch and to reduce the adverse effects of weightlessness exposition. Moreover, MI has potential role in facilitating re-adaptation when returning to Earth after long exposure to microgravity. Suggestions for further research include a focus on the multi-sensory aspects of MI, the requirement to use temporal characteristics as a measurement tool, and to account for the knowledge-base or metacognitive processes underlying optimal MI implementation.
Collapse
Affiliation(s)
- Aymeric Guillot
- Inter-University Laboratory of Human Movement Biology-EA 7424, University of Lyon, University Claude Bernard Lyon 1, Villeurbanne, France.,Institut Universitaire de France, Paris, France
| | - Ursula Debarnot
- Inter-University Laboratory of Human Movement Biology-EA 7424, University of Lyon, University Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
49
|
Bernardi G, Betta M, Cataldi J, Leo A, Haba-Rubio J, Heinzer R, Cirelli C, Tononi G, Pietrini P, Ricciardi E, Siclari F. Visual imagery and visual perception induce similar changes in occipital slow waves of sleep. J Neurophysiol 2019; 121:2140-2152. [PMID: 30943100 DOI: 10.1152/jn.00085.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Previous studies have shown that regional slow-wave activity (SWA) during non-rapid eye movement (NREM) sleep is modulated by prior experience and learning. Although this effect has been convincingly demonstrated for the sensorimotor domain, attempts to extend these findings to the visual system have provided mixed results. In this study we asked whether depriving subjects of external visual stimuli during daytime would lead to regional changes in slow waves during sleep and whether the degree of "internal visual stimulation" (spontaneous imagery) would influence such changes. In two 8-h sessions spaced 1 wk apart, 12 healthy volunteers either were blindfolded while listening to audiobooks or watched movies (control condition), after which their sleep was recorded with high-density EEG. We found that during NREM sleep, the number of small, local slow waves in the occipital cortex decreased after listening with blindfolding relative to movie watching in a way that depended on the degree of visual imagery subjects reported during blindfolding: subjects with low visual imagery showed a significant reduction of occipital sleep slow waves, whereas those who reported a high degree of visual imagery did not. We also found a positive relationship between the reliance on visual imagery during blindfolding and audiobook listening and the degree of correlation in sleep SWA between visual areas and language-related areas. These preliminary results demonstrate that short-term alterations in visual experience may trigger slow-wave changes in cortical visual areas. Furthermore, they suggest that plasticity-related EEG changes during sleep may reflect externally induced ("bottom up") visual experiences, as well as internally generated ("top down") processes. NEW & NOTEWORTHY Previous work has shown that slow-wave activity, a marker of sleep depth, is linked to neural plasticity in the sensorimotor cortex. We show that after short-term visual deprivation, subjects who reported little visual imagery had a reduced incidence of occipital slow waves. This effect was absent in subjects who reported strong spontaneous visual imagery. These findings suggest that visual imagery may "substitute" for visual perception and induce similar changes in non-rapid eye movement slow waves.
Collapse
Affiliation(s)
- Giulio Bernardi
- Center for Investigation and Research on Sleep, Lausanne University Hospital , Lausanne , Switzerland.,IMT School for Advanced Studies Lucca, Lucca , Italy
| | - Monica Betta
- IMT School for Advanced Studies Lucca, Lucca , Italy
| | - Jacinthe Cataldi
- Center for Investigation and Research on Sleep, Lausanne University Hospital , Lausanne , Switzerland
| | - Andrea Leo
- IMT School for Advanced Studies Lucca, Lucca , Italy
| | - José Haba-Rubio
- Center for Investigation and Research on Sleep, Lausanne University Hospital , Lausanne , Switzerland
| | - Raphaël Heinzer
- Center for Investigation and Research on Sleep, Lausanne University Hospital , Lausanne , Switzerland.,Pulmonary Department, Lausanne University Hospital , Lausanne , Switzerland
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison , Madison, Wisconsin
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison , Madison, Wisconsin
| | | | | | - Francesca Siclari
- Center for Investigation and Research on Sleep, Lausanne University Hospital , Lausanne , Switzerland
| |
Collapse
|
50
|
Geiger DE, Behrendt F, Schuster-Amft C. EMG Muscle Activation Pattern of Four Lower Extremity Muscles during Stair Climbing, Motor Imagery, and Robot-Assisted Stepping: A Cross-Sectional Study in Healthy Individuals. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9351689. [PMID: 31019976 PMCID: PMC6452562 DOI: 10.1155/2019/9351689] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/18/2019] [Accepted: 03/06/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND Stair climbing can be a challenging part of daily life and a limiting factor for social participation, in particular for patients after stroke. In order to promote motor relearning of stair climbing, different therapeutical measures can be applied such as motor imagery and robot-assisted stepping therapy. Both are common therapy measures and a positive influence on the rehabilitation process has been reported. However, there are contradictory results regarding the neuromuscular effect of motor imagery, and the effect of robot-assisted tilt table stepping on the EMG activation compared to stair climbing itself is not known. Thus, we investigated the EMG activity during (1) a stepping task on the robot-assisted tilt table Erigo, (2) motor imagery of stair climbing, and (3) real stair climbing in healthy individuals for a subsequent study on patients with lower limb motor impairment. The aim was to assess potential amplitude independent changes of the EMG activation as a function of the different conditions. METHODS EMG data of four muscles of the dominant leg were recorded in m. rectus femoris, m. biceps femoris, m. tibialis anterior, and m. gastrocnemius medialis. The cross-correlation analysis was performed to measure similarity/dissimilarity of the EMG curves. RESULTS The data of the study participants revealed high cross-correlation coefficients comparing the EMG activation modulation of stair climbing and robot-assisted tilt table stepping in three muscles except for the m. gastrocnemius medialis. As the EMG activation amplitude did not differ between motor imagery and the resting phase the according EMG data of the motor imagery condition were not subjected to a further analysis. CONCLUSION Robot-assisted tilt table stepping, but rather not motor imagery, evokes a similar activation in certain leg muscles compared to real stair climbing.
Collapse
Affiliation(s)
- Damaris E. Geiger
- Institute of Physiotherapy, Zurich University of Applied Sciences, Winterthur, Switzerland
| | - Frank Behrendt
- Research Department, Reha Rheinfelden, Rheinfelden, Switzerland
| | - Corina Schuster-Amft
- Research Department, Reha Rheinfelden, Rheinfelden, Switzerland
- Institute for Rehabilitation and Performance Technology, Bern University of Applied Sciences, Burgdorf, Switzerland
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| |
Collapse
|