1
|
Carvalho M, Mehta S, Singh J, Lal V. Myoclonus dystonia as a predominant manifestation in ataxia telangiectasia. Neurol Sci 2025; 46:2325-2327. [PMID: 39661310 DOI: 10.1007/s10072-024-07923-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Affiliation(s)
- Mitosha Carvalho
- Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Sahil Mehta
- Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Jagdeep Singh
- Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Vivek Lal
- Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| |
Collapse
|
2
|
Torices L, Nunes‐Xavier CE, Pulido R. Therapeutic Potential of Translational Readthrough at Disease-Associated Premature Termination Codons From Tumor Suppressor Genes. IUBMB Life 2025; 77:e70018. [PMID: 40317855 PMCID: PMC12046619 DOI: 10.1002/iub.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/27/2025] [Accepted: 04/14/2025] [Indexed: 05/07/2025]
Abstract
Tumor suppressor genes are frequently targeted by mutations introducing premature termination codons (PTC) in the protein coding sequence, both in sporadic cancers and in the germline of patients with cancer predisposition syndromes. These mutations have a high pathogenic impact since they generate C-terminal truncated proteins with altered stability and function. In addition, PTC mutations trigger transcript degradation by nonsense-mediated mRNA decay. Suppression of PTC by translational readthrough restores protein biosynthesis and stabilizes the PTC-targeted mRNA, making a suitable therapeutic approach the reconstitution of active full-length tumor suppressor proteins by pharmacologically-induced translational readthrough. Here, we review the recent advances in small molecule pharmacological induction of translational readthrough of disease-associated PTC from tumor suppressor genes, and discuss the therapeutic potential of translational readthrough in specific groups of patients with hereditary syndromic cancers.
Collapse
Affiliation(s)
| | - Caroline E. Nunes‐Xavier
- Biobizkaia Health Research InstituteBarakaldoSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERERISCIIISpain
- Institute for Cancer ResearchOslo University HospitalOsloNorway
| | - Rafael Pulido
- Biobizkaia Health Research InstituteBarakaldoSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERERISCIIISpain
- IkerbasqueThe Basque Foundation for ScienceBilbaoSpain
| |
Collapse
|
3
|
Salami F, Shad TM, Fathi N, Mojtahedi H, Esmaeili M, Shahkarami S, Afrakoti LGMP, Amirifar P, Delavari S, Nosrati H, Razavi A, Ranjouri MR, Yousefpour M, Esfahani ZH, Azizi G, Ashrafi M, Rezaei N, Yazdani R, Abolhassani H. ATM Expression and Activation in Ataxia Telangiectasia Patients with and without Class Switch Recombination Defects. J Clin Immunol 2025; 45:67. [PMID: 39853455 PMCID: PMC11762072 DOI: 10.1007/s10875-025-01857-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 01/18/2025] [Indexed: 01/26/2025]
Abstract
BACKGROUND Ataxia telangiectasia mutated (ATM) kinase plays a critical role in DNA double-strand break (DSB) repair. Ataxia telangiectasia (A-T) patients exhibit abnormalities in immunoglobulin isotype expression and class switch recombination (CSR). This study investigates the role of residual ATM kinase expression and activity in the severity of A-T disease. METHODS A-T patients with defined genetic diagnoses were classified based on CSR and based on the severity of their medical complications. Isolated peripheral blood mononuclear cells from any patient were evaluated before and after exposure to 0.5 Gy ionizing radiation for one minute. Western blotting was performed to identify the expression of ATM and phosphorylated ATM (p-ATM) proteins compared to age-sex-matched healthy controls. RESULTS In severe A-T patients (n = 6), the majority (66.7%) had frameshift mutations, while 33.3% had nonsense mutations in the ATM gene. The mild group (n = 3) had two cases of splice errors and one missense mutation. All patients with CSR defect had elevated IgM serum levels, whereas all switched immunoglobulins were reduced in them. Expression of ATM and p-ATM proteins was significantly lower (p = 0.01) in all patients compared to healthy controls, both pre-and post- and post-radiation. Additionally, low ATM and p-ATM protein expression levels were linked with the clinical severity of patients but were not correlated with CSR defects. CONCLUSION Expression and activation of ATM protein were defective in A-T patients compared to healthy controls. Altered expression of ATM and p-ATM proteins may have potential clinical implications for prognostic evaluation and symptom severity assessment in individuals with A-T.
Collapse
Affiliation(s)
- Fereshte Salami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Tannaz Moeini Shad
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nazanin Fathi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hanieh Mojtahedi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Marzie Esmaeili
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sepideh Shahkarami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians- Universität München (LMU), Munich, Germany
- Medical Genetics Network (Megene), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Parisa Amirifar
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Nosrati
- Department of Radiotherapy Oncology, Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadehsadat Razavi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
| | - Mohammad Reza Ranjouri
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Yousefpour
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Hamidi Esfahani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gholamreza Azizi
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahmoudreza Ashrafi
- Department of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran.
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran.
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Biomedicum, Karolinska Institute, Solnavägen 9, floor 9D, Stockholm, 17165, Sweden.
| |
Collapse
|
4
|
Zhou Q, Chen M, Tao E. Novel pathogenic ATM mutation with ataxia-telangiectasia in a Chinese family. Front Genet 2024; 15:1491649. [PMID: 39678378 PMCID: PMC11638744 DOI: 10.3389/fgene.2024.1491649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/28/2024] [Indexed: 12/17/2024] Open
Abstract
Ataxia-Telangiectasia (A-T) is a rare, autosomal recessive disorder characterized by progressive cerebellar ataxia, oculocutaneous telangiectasia, immunodeficiency, and increased cancer risk. Mutations in the ATM gene, which is essential for DNA damage repair, underlie this condition. This study reports a novel homozygous frameshift mutation (ATM_ex20 c.3062delT, p. Val1021fs) in a Chinese family with two affected siblings. The mutation, located in exon 20, has not been previously documented, expanding the spectrum of ATM mutations. The proband and her older sister presented with classic A-T symptoms, including gait instability and conjunctival telangiectasia. Both siblings presented with immunodeficiency, characterized by low immunoglobulin A (IgA) levels, slightly elevated IgM levels, and elevated alpha-fetoprotein (AFP). Cranial magnetic resonance imaging (MRI) findings revealed cerebellar atrophy and cerebral white matter lesions in both sisters. Interestingly, while both sisters shared the same mutation, their clinical severity differed, highlighting the complexity of genotype-phenotype correlations in A-T. The parents and an unaffected sister were heterozygous carriers, consistent with autosomal recessive inheritance. This study underscores the importance of genetic testing in A-T diagnosis and provides new insights into the genetic diversity of ATM-related diseases. Further research is needed to understand the broader implications of this mutation.
Collapse
Affiliation(s)
- Qiaomin Zhou
- Department of Eugenic Genetics, Wenling Maternal and Child Healthcare Hospital, Wenling, Zhejiang, China
| | - Minling Chen
- Department of Maternity, Wenling Maternal and Child Healthcare Hospital, Wenling, Zhejiang, China
| | - Enfu Tao
- Department of Neonatology and NICU, Wenling Maternal and Child Healthcare Hospital, Wenling, Zhejiang, China
| |
Collapse
|
5
|
Salari M, Etemadifar M, Rashedi R, Mardani S. A Review of Ocular Movement Abnormalities in Hereditary Cerebellar Ataxias. CEREBELLUM (LONDON, ENGLAND) 2024; 23:702-721. [PMID: 37000369 DOI: 10.1007/s12311-023-01554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 04/01/2023]
Abstract
Cerebellar ataxias are a wide heterogeneous group of disorders that may present with fine motor deficits as well as gait and balance disturbances that have a significant influence on everyday activities. To review the ocular movements in cerebellar ataxias in order to improve the clinical knowledge of cerebellar ataxias and related subtypes. English papers published from January 1990 to May 2022 were selected by searching PubMed services. The main search keywords were ocular motor, oculomotor, eye movement, eye motility, and ocular motility, along with each ataxia subtype. The eligible papers were analyzed for clinical presentation, involved mutations, the underlying pathology, and ocular movement alterations. Forty-three subtypes of spinocerebellar ataxias and a number of autosomal dominant and autosomal recessive ataxias were discussed in terms of pathology, clinical manifestations, involved mutations, and with a focus on the ocular abnormalities. A flowchart has been made using ocular movement manifestations to differentiate different ataxia subtypes. And underlying pathology of each subtype is reviewed in form of illustrated models to reach a better understanding of each disorder.
Collapse
Affiliation(s)
- Mehri Salari
- Neurology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Etemadifar
- Department of Functional Neurosurgery, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ronak Rashedi
- Neurology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sayna Mardani
- Neurology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Kioutchoukova I, Foster D, Thakkar R, Ciesla C, Cabassa JS, Strouse J, Kurz H, Lucke-Wold B. Neurocutaneous Diseases: Diagnosis, Management, and Treatment. J Clin Med 2024; 13:1648. [PMID: 38541874 PMCID: PMC10971194 DOI: 10.3390/jcm13061648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 01/05/2025] Open
Abstract
Neurocutaneous disorders, also known as phakomatoses, are congenital and acquired syndromes resulting in simultaneous neurologic and cutaneous involvement. In several of these conditions, the genetic phenomenon is understood, providing a pivotal role in the development of therapeutic options. This review encompasses the discussion of the genetic and clinical involvement of neurocutaneous disorders, and examines clinical management and treatment options. With the current advances in genetics, the role of precision medicine and targeted therapy play a substantial role in addressing the management of these conditions. The interconnectedness between therapeutic options highlights the importance of precision medicine in treating each disorder's unique molecular pathway. This review provides an extensive synthesis of ongoing and current therapeutics in the management of such clinically unique and challenging conditions.
Collapse
Affiliation(s)
- Ivelina Kioutchoukova
- College of Medicine, University of Florida, Gainsville, FL 32610, USA; (I.K.); (R.T.); (H.K.)
| | - Devon Foster
- Herbert Wertheim College of Medicine, Miami, FL 33199, USA; (D.F.); (C.C.); (J.S.C.); (J.S.)
| | - Rajvi Thakkar
- College of Medicine, University of Florida, Gainsville, FL 32610, USA; (I.K.); (R.T.); (H.K.)
| | - Christopher Ciesla
- Herbert Wertheim College of Medicine, Miami, FL 33199, USA; (D.F.); (C.C.); (J.S.C.); (J.S.)
| | - Jake Salvatore Cabassa
- Herbert Wertheim College of Medicine, Miami, FL 33199, USA; (D.F.); (C.C.); (J.S.C.); (J.S.)
| | - Jacob Strouse
- Herbert Wertheim College of Medicine, Miami, FL 33199, USA; (D.F.); (C.C.); (J.S.C.); (J.S.)
| | - Hayley Kurz
- College of Medicine, University of Florida, Gainsville, FL 32610, USA; (I.K.); (R.T.); (H.K.)
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
7
|
Chakraborty U, Chandra A, Dasgupta S. Eye in ataxia telangiectasia. BMJ Case Rep 2023; 16:e256865. [PMID: 37798038 PMCID: PMC10565231 DOI: 10.1136/bcr-2023-256865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Affiliation(s)
- Uddalak Chakraborty
- Neurology, Institute of Postgraduate Medical Education and Research Bangur Institute of Neurology, Kolkata, India
| | - Atanu Chandra
- Internal Medicine, RG Kar Medical College and Hospital, Kolkata, West Bengal, India
| | - Sugata Dasgupta
- Critical Care Medicine, RG Kar Medical College and Hospital, Kolkata, West Bengal, India
| |
Collapse
|
8
|
Ataxia with Ocular Apraxia Type 1 (AOA1) (APTX, W279* Mutation): Neurological, Neuropsychological, and Molecular Outlining of a Heterogenous Phenotype in Four Colombian Siblings. Mol Neurobiol 2022; 59:3845-3858. [PMID: 35420381 DOI: 10.1007/s12035-022-02821-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/30/2022] [Indexed: 10/18/2022]
Abstract
Hereditary ataxias are a group of devastating neurological disorders that affect coordination of gait and are often associated with poor coordination of hands, speech, and eye movements. Ataxia with ocular apraxia type 1 (AOA1) (OMIM: 606,350.0006) is characterized by slowly progressive symptoms of childhood-onset and pathogenic mutations in APTX; the only known cause underpinning AOA1. APTX encodes the protein aprataxin, composed of three domains sharing homology with proteins involved in DNA damage, signaling, and repair. We present four siblings from an endogamic family in a rural, isolated town of Colombia with ataxia and ocular apraxia of childhood-onset and confirmed molecular diagnosis of AOA1, homozygous for the W279* p.Trp279Ter mutation. We predicted the mutated APTX with AlphaFold to demonstrate the effects of this stop-gain mutation that deletes three beta helices encoded by amino acid 270 to 339 rescinding the C2H2-type zinc fingers (Znf) (C2H2 Znf) DNA-binding, the DNA-repair domain, and the whole 3D structure of APTX. All siblings exhibited different ages of onset (4, 6, 8, and 11 years old) and heterogeneous patterns of dysarthria (ranging from absence to mild-moderate dysarthria). Neuropsychological evaluation showed no neurocognitive impairment in three siblings, but one sibling showed temporospatial disorientation, semantic and phonologic fluency impairment, episodic memory affection, constructional apraxia, moderate anomia, low executive function, and symptoms of depression. To our knowledge, this report represents the most extensive series of siblings affected with AOA1 in Latin America, and the genetic analysis completed adds important knowledge to outline this family's disease and general complex phenotype of hereditary ataxias.
Collapse
|
9
|
Kassavetis P, Kaski D, Anderson T, Hallett M. Eye Movement Disorders in Movement Disorders. Mov Disord Clin Pract 2022; 9:284-295. [PMID: 35402641 PMCID: PMC8974874 DOI: 10.1002/mdc3.13413] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 11/05/2022] Open
Abstract
Oculomotor assessment is an essential element of the neurological clinical examination and is particularly important when evaluating patients with movements disorders. Most of the brain is involved in oculomotor control, and thus many neurological conditions present with oculomotor abnormalities. Each of the different classes of eye movements and their features can provide important information that can facilitate differential diagnosis. This educational review presents a clinical approach to eye movement abnormalities that are commonly seen in parkinsonism, ataxia, dystonia, myoclonus, tremor, and chorea. In parkinsonism, subtle signs such as prominent square wave jerks, impaired vertical optokinetic nystagmus, and/or the "round the houses" sign suggest early progressive supranuclear gaze palsy before vertical gaze is restricted. In ataxia, nystagmus is common, but other findings such as oculomotor apraxia, supranuclear gaze palsy, impaired fixation, or saccadic pursuit can contribute to diagnoses such as ataxia with oculomotor apraxia, Niemann-Pick type C, or ataxia telangiectasia. Opsoclonus myoclonus and oculopalatal myoclonus present with characteristic phenomenology and are usually easy to identify. The oculomotor exam is usually unremarkable in isolated dystonia, but oculogyric crisis is a medical emergency and should be recognized and treated in a timely manner. Gaze impersistence in a patient with chorea suggests Huntington's disease, but in a patient with dystonia or tremor, Wilson's disease is more likely. Finally, functional eye movements can reinforce the clinical impression of a functional movement disorder.
Collapse
Affiliation(s)
- Panagiotis Kassavetis
- National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
- Department of NeurologyUniversity of UtahSalt Lake CityUtahUSA
| | - Diego Kaski
- Centre for Vestibular and Behavioural Neurosciences, Department of Clinical and Movement NeurosciencesUniversity College London, Institute of NeurologyLondonUK
| | - Tim Anderson
- New Zealand Brain Research InstituteChristchurchNew Zealand
- Department of MedicineUniversity of OtagoChristchurchNew Zealand
| | - Mark Hallett
- National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
10
|
Practical Genetics for the Neuroradiologist: Adding Value in Neurogenetic Disease. Acad Radiol 2022; 29 Suppl 3:S1-S27. [PMID: 33495073 DOI: 10.1016/j.acra.2020.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/19/2020] [Accepted: 12/27/2020] [Indexed: 11/23/2022]
Abstract
Genetic discoveries have transformed our understanding of many neurologic diseases. Identification of specific causal pathogenic variants has improved understanding of pathophysiology and enabled replacement of many confusing eponyms and acronyms with more meaningful and clinically relevant genetics-based terminology. In this era of rapid scientific advancement, multidisciplinary collaboration among pediatricians, neurologists, geneticists, radiologists, and other members of the health care team is increasingly important in the care of patients with genetic neurologic diseases. Radiologists familiar with neurogenetic disease add value by (1) recognizing constellations of characteristic imaging findings that are associated with a genetic disease before one is clinically suspected; (2) predicting the most likely genotypes for a given imaging phenotype in clinically suspected genetic disease; and (3) providing detailed and accurate descriptions of the imaging phenotype in challenging cases with unknown or uncertain genotypes. This review aims to increase awareness and understanding of pathogenic variants relating to neurologic disease by (1) briefly reviewing foundational knowledge of chromosomes, inheritance patterns, and mutagenesis; (2) providing concrete examples of and detailed information about specific neurologic diseases resulting from pathogenic variants; and (3) highlighting clinical and imaging features that are of greatest relevance for the radiologist.
Collapse
|
11
|
Rasool R, Ullah I, Mubeen B, Alshehri S, Imam SS, Ghoneim MM, Alzarea SI, Al-Abbasi FA, Murtaza BN, Kazmi I, Nadeem MS. Theranostic Interpolation of Genomic Instability in Breast Cancer. Int J Mol Sci 2022; 23:ijms23031861. [PMID: 35163783 PMCID: PMC8836911 DOI: 10.3390/ijms23031861] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is a diverse disease caused by mutations in multiple genes accompanying epigenetic aberrations of hazardous genes and protein pathways, which distress tumor-suppressor genes and the expression of oncogenes. Alteration in any of the several physiological mechanisms such as cell cycle checkpoints, DNA repair machinery, mitotic checkpoints, and telomere maintenance results in genomic instability. Theranostic has the potential to foretell and estimate therapy response, contributing a valuable opportunity to modify the ongoing treatments and has developed new treatment strategies in a personalized manner. “Omics” technologies play a key role while studying genomic instability in breast cancer, and broadly include various aspects of proteomics, genomics, metabolomics, and tumor grading. Certain computational techniques have been designed to facilitate the early diagnosis of cancer and predict disease-specific therapies, which can produce many effective results. Several diverse tools are used to investigate genomic instability and underlying mechanisms. The current review aimed to explore the genomic landscape, tumor heterogeneity, and possible mechanisms of genomic instability involved in initiating breast cancer. We also discuss the implications of computational biology regarding mutational and pathway analyses, identification of prognostic markers, and the development of strategies for precision medicine. We also review different technologies required for the investigation of genomic instability in breast cancer cells, including recent therapeutic and preventive advances in breast cancer.
Collapse
Affiliation(s)
- Rabia Rasool
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (R.R.); (I.U.); (B.M.)
| | - Inam Ullah
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (R.R.); (I.U.); (B.M.)
| | - Bismillah Mubeen
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (R.R.); (I.U.); (B.M.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.)
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology (AUST), Abbottabad 22310, Pakistan;
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Correspondence: (I.K.); (M.S.N.)
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Correspondence: (I.K.); (M.S.N.)
| |
Collapse
|
12
|
Hassan W, Noreen H, Rehman S, Kamal MA, Teixeira da Rocha JB. Association of Oxidative Stress with Neurological Disorders. Curr Neuropharmacol 2022; 20:1046-1072. [PMID: 34781871 PMCID: PMC9886831 DOI: 10.2174/1570159x19666211111141246] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/05/2021] [Accepted: 10/06/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGORUND Oxidative stress is one of the main contributing factors involved in cerebral biochemical impairment. The higher susceptibility of the central nervous system to reactive oxygen species mediated damage could be attributed to several factors. For example, neurons use a greater quantity of oxygen, many parts of the brain have higher concentraton of iron, and neuronal mitochondria produce huge content of hydrogen peroxide. In addition, neuronal membranes have polyunsaturated fatty acids, which are predominantly vulnerable to oxidative stress (OS). OS is the imbalance between reactive oxygen species generation and cellular antioxidant potential. This may lead to various pathological conditions and diseases, especially neurodegenerative diseases such as, Parkinson's, Alzheimer's, and Huntington's diseases. OBJECTIVES In this study, we explored the involvement of OS in neurodegenerative diseases. METHODS We used different search terms like "oxidative stress and neurological disorders" "free radicals and neurodegenerative disorders" "oxidative stress, free radicals, and neurological disorders" and "association of oxidative stress with the name of disorders taken from the list of neurological disorders. We tried to summarize the source, biological effects, and physiologic functions of ROS. RESULTS Finally, it was noted that more than 190 neurological disorders are associated with oxidative stress. CONCLUSION More elaborated studies in the future will certainly help in understanding the exact mechanism involved in neurological diseases and provide insight into revelation of therapeutic targets.
Collapse
Affiliation(s)
- Waseem Hassan
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan
| | - Hamsa Noreen
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan
| | - Shakila Rehman
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia
| | - Joao Batista Teixeira da Rocha
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-Graduação em Bioquímica, Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil
| |
Collapse
|
13
|
Ye Z, Shi Y, Lees-Miller SP, Tainer JA. Function and Molecular Mechanism of the DNA Damage Response in Immunity and Cancer Immunotherapy. Front Immunol 2021; 12:797880. [PMID: 34970273 PMCID: PMC8712645 DOI: 10.3389/fimmu.2021.797880] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
The DNA damage response (DDR) is an organized network of multiple interwoven components evolved to repair damaged DNA and maintain genome fidelity. Conceptually the DDR includes damage sensors, transducer kinases, and effectors to maintain genomic stability and accurate transmission of genetic information. We have recently gained a substantially improved molecular and mechanistic understanding of how DDR components are interconnected to inflammatory and immune responses to stress. DDR shapes both innate and adaptive immune pathways: (i) in the context of innate immunity, DDR components mainly enhance cytosolic DNA sensing and its downstream STimulator of INterferon Genes (STING)-dependent signaling; (ii) in the context of adaptive immunity, the DDR is needed for the assembly and diversification of antigen receptor genes that is requisite for T and B lymphocyte development. Imbalances between DNA damage and repair impair tissue homeostasis and lead to replication and transcription stress, mutation accumulation, and even cell death. These impacts from DDR defects can then drive tumorigenesis, secretion of inflammatory cytokines, and aberrant immune responses. Yet, DDR deficiency or inhibition can also directly enhance innate immune responses. Furthermore, DDR defects plus the higher mutation load in tumor cells synergistically produce primarily tumor-specific neoantigens, which are powerfully targeted in cancer immunotherapy by employing immune checkpoint inhibitors to amplify immune responses. Thus, elucidating DDR-immune response interplay may provide critical connections for harnessing immunomodulatory effects plus targeted inhibition to improve efficacy of radiation and chemotherapies, of immune checkpoint blockade, and of combined therapeutic strategies.
Collapse
Affiliation(s)
- Zu Ye
- Department of Molecular and Cellular Oncology, and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yin Shi
- Department of Immunology, Zhejiang University School of Medicine, Hangzhou, China
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Susan P. Lees-Miller
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - John A. Tainer
- Department of Molecular and Cellular Oncology, and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
14
|
Merighi A, Gionchiglia N, Granato A, Lossi L. The Phosphorylated Form of the Histone H2AX (γH2AX) in the Brain from Embryonic Life to Old Age. Molecules 2021; 26:7198. [PMID: 34885784 PMCID: PMC8659122 DOI: 10.3390/molecules26237198] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
The γ phosphorylated form of the histone H2AX (γH2AX) was described more than 40 years ago and it was demonstrated that phosphorylation of H2AX was one of the first cellular responses to DNA damage. Since then, γH2AX has been implicated in diverse cellular functions in normal and pathological cells. In the first part of this review, we will briefly describe the intervention of H2AX in the DNA damage response (DDR) and its role in some pivotal cellular events, such as regulation of cell cycle checkpoints, genomic instability, cell growth, mitosis, embryogenesis, and apoptosis. Then, in the main part of this contribution, we will discuss the involvement of γH2AX in the normal and pathological central nervous system, with particular attention to the differences in the DDR between immature and mature neurons, and to the significance of H2AX phosphorylation in neurogenesis and neuronal cell death. The emerging picture is that H2AX is a pleiotropic molecule with an array of yet not fully understood functions in the brain, from embryonic life to old age.
Collapse
Affiliation(s)
| | | | | | - Laura Lossi
- Department of Veterinary Sciences, University of Turin, I-10095 Grugliasco, Italy; (A.M.); (N.G.); (A.G.)
| |
Collapse
|
15
|
Raslan IR, de Assis Pereira Matos PCA, Boaratti Ciarlariello V, Daghastanli KH, Rosa ABR, Arita JH, Aranda CS, Barsottini OGP, Pedroso JL. Beyond Typical Ataxia Telangiectasia: How to Identify the Ataxia Telangiectasia-Like Disorders. Mov Disord Clin Pract 2021; 8:118-125. [PMID: 33426167 PMCID: PMC7780949 DOI: 10.1002/mdc3.13110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/31/2020] [Accepted: 10/18/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Ataxia telangiectasia is one of the most common causes of autosomal recessive cerebellar ataxias. However, absence of telangiectasia, normal levels of alpha-fetoprotein and negative genetic test may direct to alternative diagnosis with similar phenotypes such as ataxia telangiectasia-like disorders (ATLD). CASES We report two instructive cases of ATLD: the first case with ataxia telangiectasia-like disorder type 1 related to MRE11A gene, and the second case with ataxia telangiectasia-like disorder type 2 related to PCNA gene. LITERATURE REVIEW ATLD is an unusual group of autosomal recessive diseases that share some clinical features and pathophysiological mechanisms with ataxia telangiectasia (AT). ATLD may be associated with mutations in the MRE11A (ATLD type 1) and PCNA (ATLD type 2) genes. ATLD belongs to the group of chromosomal instability syndromes. The reason for the term ATLD is related to the similar pathophysiological mechanisms observed in AT, which is characterized by chromosomal instability and radiosensitivity. CONCLUSIONS In this review, the main clinical features, biomarkers, brain imaging and genetics of ATLD are discussed. Mutations in the MRE11A and PCNA genes should be included in the differential diagnosis for early onset cerebellar ataxia with absence of telangiectasia and normal levels of alpha-fetoprotein.
Collapse
Affiliation(s)
- Ivana Rocha Raslan
- Department of Neurology, Ataxia UnitUniversidade Federal de São PauloSão PauloBrazil
| | | | | | | | | | | | | | | | - José Luiz Pedroso
- Department of Neurology, Ataxia UnitUniversidade Federal de São PauloSão PauloBrazil
| |
Collapse
|
16
|
Bucher M, Endesfelder D, Roessler U, Borkhardt A, Dückers G, Kirlum HJ, Lankisch P, Oommen PT, Niehues T, Rübe CE, Baumgartner I, Bunk F, Moertl S, Hornhardt S, Gomolka M. Analysis of chromosomal aberrations and γH2A.X foci to identify radiation-sensitive ataxia-telangiectasia patients. Mutat Res 2020; 861-862:503301. [PMID: 33551102 DOI: 10.1016/j.mrgentox.2020.503301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 01/08/2023]
Abstract
Ataxia-telangiectasia (AT) is a rare inherited recessive disorder which is caused by a mutated Ataxia-telangiectasia mutated (ATM) gene. Hallmarks include chromosomal instability, cancer predisposition and increased sensitivity to ionizing radiation. The ATM protein plays an important role in signaling of DNA double-strand breaks (DSB), thereby phosphorylating the histone H2A.X. Non-functional ATM protein leads to defects in DNA damage response, unresolved DSBs and genomic instability. The aim of this study was to evaluate chromosomal aberrations and γH2A.X foci as potential radiation sensitivity biomarkers in AT patients. For this purpose, lymphocytes of 8 AT patients and 10 healthy controls were irradiated and induced DNA damage and DNA repair capacity were detected by the accumulation of γH2A.X foci. The results were heterogeneous among AT patients. Evaluation revealed 2 AT patients with similar γH2A.X foci numbers as controls after 1 h while 3 patients showed a lower induction. In regard to DNA repair, 3 of 5 AT patients showed poor damage repair. Therefore, DNA damage induction and DNA repair as detected by H2A.X phosphorylation revealed individual differences, seems to depend on the underlying individual mutation and thus appears not well suited as a biomarker for radiation sensitivity. In addition, chromosomal aberrations were analyzed by mFISH. An increased frequency of spontaneous chromosomal breakage was characteristic for AT cells. After irradiation, significantly increased rates for non-exchange aberrations, translocations, complex aberrations and dicentric chromosomes were observed in AT patients compared to controls. The results of this study suggested, that complex aberrations and dicentric chromosomes might be a reliable biomarker for radiation sensitivity in AT patients, while non-exchange aberrations and translocations identified both, spontaneous and radiation-induced chromosomal instability.
Collapse
Affiliation(s)
- Martin Bucher
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Ingolstädter Landstraße 1, 85764, Oberschleißheim, Germany.
| | - David Endesfelder
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Ingolstädter Landstraße 1, 85764, Oberschleißheim, Germany
| | - Ute Roessler
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Ingolstädter Landstraße 1, 85764, Oberschleißheim, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center for Child and Adolescent Health, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Dusseldorf, Germany
| | - Gregor Dückers
- Center for Child and Adolescent Health, HELIOS Hospital Krefeld, Lutherplatz 40, 47805, Krefeld, Germany
| | - Hans-Joachim Kirlum
- Pediatric Surgery and Pediatric Orthopedics in der Au, Kühbachstraße 1, 81543, Munich, Germany
| | - Petra Lankisch
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center for Child and Adolescent Health, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Dusseldorf, Germany
| | - Prasad T Oommen
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center for Child and Adolescent Health, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Dusseldorf, Germany
| | - Tim Niehues
- Center for Child and Adolescent Health, HELIOS Hospital Krefeld, Lutherplatz 40, 47805, Krefeld, Germany
| | - Claudia E Rübe
- Department of Radiotherapy and Radiation Oncology, Saarland University Hospital and Saarland University Faculty of Medicine, Kirrberger Straße, Building 6.5, 66421, Homburg/Saar, Germany
| | - Ingrid Baumgartner
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Ingolstädter Landstraße 1, 85764, Oberschleißheim, Germany
| | - Frank Bunk
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Ingolstädter Landstraße 1, 85764, Oberschleißheim, Germany
| | - Simone Moertl
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Ingolstädter Landstraße 1, 85764, Oberschleißheim, Germany
| | - Sabine Hornhardt
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Ingolstädter Landstraße 1, 85764, Oberschleißheim, Germany
| | - Maria Gomolka
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Ingolstädter Landstraße 1, 85764, Oberschleißheim, Germany
| |
Collapse
|
17
|
Amirifar P, Ranjouri MR, Lavin M, Abolhassani H, Yazdani R, Aghamohammadi A. Ataxia-telangiectasia: epidemiology, pathogenesis, clinical phenotype, diagnosis, prognosis and management. Expert Rev Clin Immunol 2020; 16:859-871. [PMID: 32791865 DOI: 10.1080/1744666x.2020.1810570] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Ataxia-telangiectasia (A-T) is a rare autosomal recessive syndrome characterized by progressive cerebellar ataxia, oculocutaneous telangiectasia, variable immunodeficiency, radiosensitivity, and cancer predisposition. Mutations cause A-T in the ataxia telangiectasia mutated (ATM) gene encoding a serine/threonine-protein kinase. AREAS COVERED The authors reviewed the literature on PubMed, Web of Science, and Scopus databases to collect comprehensive data related to A-T. This review aims to discuss various update aspects of A-T, including epidemiology, pathogenesis, clinical manifestations, diagnosis, prognosis, and management. EXPERT OPINION A-T as a congenital disorder has phenotypic heterogeneity, and the severity of symptoms in different patients depends on the severity of mutations. This review provides a comprehensive overview of A-T, although some relevant questions about pathogenesis remain unanswered, probably owing to the phenotypic heterogeneity of this monogenic disorder. The presence of various clinical and immunologic manifestations in A-T indicates that the identification of the role of defective ATM in phenotype can be helpful in the better management and treatment of patients in the future.
Collapse
Affiliation(s)
- Parisa Amirifar
- Medical Genetics Department, School of Medicine, Tehran University of Medical Sciences , Tehran, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science , Tehran, Iran
| | - Mohammad Reza Ranjouri
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science , Tehran, Iran.,Molecular Medicine and Genetics Department, School of Medicine, Zanjan University of Medical Sciences , Zanjan, Iran
| | - Martin Lavin
- University of Queensland Centre for Clinical Research (UQCCR), University of Queensland , L, Australia
| | - Hassan Abolhassani
- Research Center for Primary Immunodeficiencies, Iran University of Medical Science , Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge , Stockholm, Sweden
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science , Tehran, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science , Tehran, Iran
| |
Collapse
|
18
|
Jaudon F, Baldassari S, Musante I, Thalhammer A, Zara F, Cingolani LA. Targeting Alternative Splicing as a Potential Therapy for Episodic Ataxia Type 2. Biomedicines 2020; 8:E332. [PMID: 32899500 PMCID: PMC7555146 DOI: 10.3390/biomedicines8090332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 12/26/2022] Open
Abstract
Episodic ataxia type 2 (EA2) is an autosomal dominant neurological disorder characterized by paroxysmal attacks of ataxia, vertigo, and nausea that usually last hours to days. It is caused by loss-of-function mutations in CACNA1A, the gene encoding the pore-forming α1 subunit of P/Q-type voltage-gated Ca2+ channels. Although pharmacological treatments, such as acetazolamide and 4-aminopyridine, exist for EA2, they do not reduce or control the symptoms in all patients. CACNA1A is heavily spliced and some of the identified EA2 mutations are predicted to disrupt selective isoforms of this gene. Modulating splicing of CACNA1A may therefore represent a promising new strategy to develop improved EA2 therapies. Because RNA splicing is dysregulated in many other genetic diseases, several tools, such as antisense oligonucleotides, trans-splicing, and CRISPR-based strategies, have been developed for medical purposes. Here, we review splicing-based strategies used for genetic disorders, including those for Duchenne muscular dystrophy, spinal muscular dystrophy, and frontotemporal dementia with Parkinsonism linked to chromosome 17, and discuss their potential applicability to EA2.
Collapse
Affiliation(s)
- Fanny Jaudon
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Simona Baldassari
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.B.); (I.M.); (F.Z.)
| | - Ilaria Musante
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.B.); (I.M.); (F.Z.)
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16126 Genoa, Italy
| | - Agnes Thalhammer
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Federico Zara
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.B.); (I.M.); (F.Z.)
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16126 Genoa, Italy
| | - Lorenzo A. Cingolani
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), 16132 Genoa, Italy;
| |
Collapse
|
19
|
Martínez-Córdoba N, Espinosa-García E. Ataxia telangiectasia: A diagnostic challenge. Case report. CASE REPORTS 2020. [DOI: 10.15446/cr.v6n2.83219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Ataxia-telangiectasia (AT) is a neurodegenerative syndrome with low incidence and prevalence worldwide, which is caused by a mutation of the ATM gene. It is an autosomal recessive disorder that is associated with defective cell regeneration and DNA repair mechanisms. It is characterized by progressive cerebellar ataxia, abnormal eye movements, oculocutaneous telangiectasias and immunodeficiency. Early diagnosis is critical to initiate a timely interdisciplinary treatment, improve acute symptoms, and control the multiple comorbidities of the disease. The following is the case of a patient who presented with the aforementioned characteristics and had an adequate response to the established medical treatment.Case presentation: A 7-year-old female patient from Bogotá, who presented clinical signs of global neurodevelopmental delay, cerebelar ataxia, frequent respiratory infections and ocular telangiectasias. Symptoms were associated with elevation of alpha fetoprotein and immunodeficiency, which allowed for a diagnosis of AT and the initiation of a timely interdisciplinary treatment.Conclusion: AT is a chromosomal instability syndrome with characteristic signs and symptoms. It is essential to know the etiopathogenesis, clinical manifestations, diagnostic criteria, and therapeutic options, emphasizing that early detection and clinical suspicion could favor the proper management of the comorbidities and improve the progressive course of the disease.
Collapse
|
20
|
Zhang L, Jia Y, Qi X, Li M, Wang S, Wang Y. Trihexyphenidyl for treatment of dystonia in ataxia telangiectasia: a case report. Childs Nerv Syst 2020; 36:873-875. [PMID: 31691010 DOI: 10.1007/s00381-019-04399-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/27/2019] [Indexed: 11/29/2022]
Abstract
Ataxia telangiectasia (AT) is an autosomal recessive multisystem disorder caused by mutations of ATM gene. And dystonia may develop as a late manifestation in typical AT. Here we report a novel homozygous frameshift ATM mutation (c.1402_1403delAA; p. K468Efs*18) in a 10-year-old male. The patient was diagnosed as typical AT according to clinical presentations which included progressive cerebellar ataxia, oculocutaneous telangiectasia, immune deficiency, and cerebellar atrophy. The genetic finding confirmed the diagnosis. Severe dystonia was presented in late stage of this disease. After 3 months of trihexyphenidyl treatment, the frequency of dystonia was reduced significantly. Although dystonia is not uncommon in phenotype spectrum of AT, compared with other symptoms of this syndrome, such as cerebellar ataxia and dysarthria, dystonia can be treated.
Collapse
Affiliation(s)
- Liping Zhang
- Department of Pediatrics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yu Jia
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaohong Qi
- Department of Pediatrics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Mingyu Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shiyu Wang
- Department of Pediatrics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
21
|
Shenhod E, Benzeev B, Sarouk I, Heimer G, Nissenkorn A. Functional parameter measurements in children with ataxia telangiectasia. Dev Med Child Neurol 2020; 62:207-213. [PMID: 31468510 DOI: 10.1111/dmcn.14334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2019] [Indexed: 12/17/2022]
Abstract
AIM To collect preliminary functional data on ataxia telangiectasia and create a disease specific scale: the Ataxia Telangiectasia Functional Scale (ATFS). METHOD Retrospective information on patients with ataxia telangiectasia referred to the Assistive Technology Unit was included. Functional mobility scales (the Gross Motor Function Classification System [GMFCS] and the Functional Mobility Scale [FMS]-5, FMS-50, FMS-500) and activities of daily living [ADL] parameters were recorded. We created a 51-point ATFS, that consisted of three ambulation items adapted for ataxia telangiectasia in the frame of FMS (home, school, outdoors), five ADL items, and one schooling item. RESULTS Twenty-seven participants (17 males, 10 females; mean age 10y 8mo [SD 5y 1mo], range 1y 9mo-25y 6mo), were enrolled; 168 measurements were recorded. Patients walked at a mean age of 1 year 4 months (SD 5y 4mo) and lost ambulatory capacity at 8 years 8 months (SD 2y 1mo). GMFCS level and FMS-5, FMS-50, FMS-500 assessments correlated with age (Spearman's correlations r=0.555, -0.617, -0.639, -0.662 respectively, p<0.01 for all), but plateaued after 12 years of age. ATFS mean score was 37.46 (SD 7.88) and increased with age (Spearman's correlation r=0.585, p<0.01). The scale showed three stages of disease progression. INTERPRETATION In this pilot study we show longitudinal functional data of ambulation and ADL skills in ataxia telangiectasia, and created a framework for a functional scale. This functional scale closely approximated disease course, but further validation is required. WHAT THIS PAPER ADDS The Gross Motor Function Classification System and the Functional Mobility Scale are ill-suited for ataxia telangiectasia assessments. Three functional mobility scales (home, school, outdoors) suited to ataxia telangiectasia were created. The Ataxia Telangiectasia Functional Scale (ATFS) combines mobility and items of activities of daily living. The ATFS closely approximates the three-stage progression of the disorder.
Collapse
Affiliation(s)
- Efrat Shenhod
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Bruria Benzeev
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Pediatric Neurology Unit, Sheba Medical Center, Sackler Faculty of Medicine, Safra Children's Hospital, Tel Aviv University, Tel Aviv, Israel
| | - Ifat Sarouk
- The National AT Center, Chaim Sheba Medical Center, Tel HaShomer, Israel.,The Pediatric Pulmonology Unit, Chaim Sheba Medical Center, Edmond and Lilly Safra Children Hospital, Tel HaShomer, Israel
| | - Gali Heimer
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Pediatric Neurology Unit, Sheba Medical Center, Sackler Faculty of Medicine, Safra Children's Hospital, Tel Aviv University, Tel Aviv, Israel
| | - Andreea Nissenkorn
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Pediatric Neurology Unit, Sheba Medical Center, Sackler Faculty of Medicine, Safra Children's Hospital, Tel Aviv University, Tel Aviv, Israel.,The Service for Rare Disorders, Chaim Sheba Medical Center, Edmond and Lilly Safra Children Hospital, Tel HaShomer, Israel
| |
Collapse
|
22
|
Pal P, Mahadevappa M, Kamble N, Santhosh Kumar DV, Yadav R, Netravathi M. A clinical profile of 100 patients with ataxia telangiectasia seen at a tertiary care center. ANNALS OF MOVEMENT DISORDERS 2020. [DOI: 10.4103/aomd.aomd_28_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
23
|
van Os NJH, van Deuren M, Weemaes CMR, van Gaalen J, Hijdra H, Taylor AMR, van de Warrenburg BPC, Willemsen MAAP. Classic ataxia-telangiectasia: the phenotype of long-term survivors. J Neurol 2019; 267:830-837. [PMID: 31776720 PMCID: PMC7035236 DOI: 10.1007/s00415-019-09641-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/10/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022]
Abstract
Objective Patients with classic ataxia–telangiectasia (A–T) generally die in the second or third decade of life. Clinical descriptions of A–T tend to focus on the symptoms at presentation. However, during the course of the disease, other symptoms and complications emerge. As long-term survivors with classic A–T develop a complex multisystem disorder with a largely unknown extent and severity, we aimed to comprehensively assess their full clinical picture. Methods Data from Dutch patients with classic A–T above the age of 30 years were retrospectively collected. In addition, we searched the literature for descriptions of classic A–T patients who survived beyond the age of 30 years. Results In the Dutch cohort, seven classic A–T patients survived beyond 30 years of age. Fourteen additional patients were retrieved by the literature search. Common problems in older patients with classic A–T were linked to ageing. Most patients had pulmonary, endocrine, cardiovascular, and gastro-intestinal problems. All patients had a tetraparesis with contractures. This led to immobilization and frequent hospital admissions. Most patients expressed the wish to no longer undergo intensive medical treatments, and waived follow-up programs. Conclusions Paucity of descriptions in the literature, and withdrawal from medical care complicate the acquisition of follow-up data on the natural history of long-term survivors. Irrespective of these limitations, we have obtained impression of the many problems that these patients face when surviving beyond 30 years of age. Awareness of these problems is needed to guide follow-up, counselling, and (palliative) care; decisions about life-prolonging treatments should be well considered. Electronic supplementary material The online version of this article (10.1007/s00415-019-09641-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nienke J H van Os
- Department of Pediatric Neurology, Radboudumc Amalia Children's Hospital, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands. .,Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Marcel van Deuren
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Corry M R Weemaes
- Department of Pediatrics, Pediatric Infectious Disease and Immunology, Radboudumc Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Judith van Gaalen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Helma Hijdra
- Department of Rehabilitation Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander M R Taylor
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Bart P C van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michèl A A P Willemsen
- Department of Pediatric Neurology, Radboudumc Amalia Children's Hospital, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
24
|
Rozpędek W, Pytel D, Nowak-Zduńczyk A, Lewko D, Wojtczak R, Diehl JA, Majsterek I. Breaking the DNA Damage Response via Serine/Threonine Kinase Inhibitors to Improve Cancer Treatment. Curr Med Chem 2019; 26:1425-1445. [PMID: 29345572 DOI: 10.2174/0929867325666180117102233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/13/2017] [Accepted: 11/24/2017] [Indexed: 12/22/2022]
Abstract
Multiple, both endogenous and exogenous, sources may induce DNA damage and DNA replication stress. Cells have developed DNA damage response (DDR) signaling pathways to maintain genomic stability and effectively detect and repair DNA lesions. Serine/ threonine kinases such as Ataxia-telangiectasia mutated (ATM) and Ataxia-telangiectasia and Rad3-Related (ATR) are the major regulators of DDR, since after sensing stalled DNA replication forks, DNA double- or single-strand breaks, may directly phosphorylate and activate their downstream targets, that play a key role in DNA repair, cell cycle arrest and apoptotic cell death. Interestingly, key components of DDR signaling networks may constitute an attractive target for anti-cancer therapy through two distinct potential approaches: as chemoand radiosensitizers to enhance the effectiveness of currently used genotoxic treatment or as single agents to exploit defects in DDR in cancer cells via synthetic lethal approach. Moreover, the newest data reported that serine/threonine protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) is also closely associated with cancer development and progression. Thereby, utilization of small-molecule, serine/threonine kinase inhibitors may provide a novel, groundbreaking, anti-cancer treatment strategy. Currently, a range of potent, highlyselective toward ATM, ATR and PERK inhibitors has been discovered, but after foregoing study, additional investigations are necessary for their future clinical use.
Collapse
Affiliation(s)
- Wioletta Rozpędek
- Department of Clinical Chemistry and Biochemistry, Military-Medical Faculty, Medical University of Lodz, Lodz, Poland
| | - Dariusz Pytel
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, United States
| | - Alicja Nowak-Zduńczyk
- Department of Clinical Chemistry and Biochemistry, Military-Medical Faculty, Medical University of Lodz, Lodz, Poland
| | - Dawid Lewko
- Department of Clinical Chemistry and Biochemistry, Military-Medical Faculty, Medical University of Lodz, Lodz, Poland
| | - Radosław Wojtczak
- Department of Clinical Chemistry and Biochemistry, Military-Medical Faculty, Medical University of Lodz, Lodz, Poland
| | - J Alan Diehl
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, United States
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Military-Medical Faculty, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
25
|
Accumulation of Cytoplasmic DNA Due to ATM Deficiency Activates the Microglial Viral Response System with Neurotoxic Consequences. J Neurosci 2019; 39:6378-6394. [PMID: 31189575 DOI: 10.1523/jneurosci.0774-19.2019] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 01/07/2023] Open
Abstract
ATM (ataxia-telangiectasia mutated) is a PI3K-like kinase best known for its role in the DNA damage response (DDR), especially after double-strand breaks. Mutations in the ATM gene result in a condition known as ataxia-telangiectasia (A-T) that is characterized by cancer predisposition, radiosensitivity, neurodegeneration, sterility, and acquired immune deficiency. We show here that the innate immune system is not spared in A-T. ATM-deficient microglia adopt an active phenotype that includes the overproduction of proinflammatory cytokines that are toxic to cultured neurons and likely contribute to A-T neurodegeneration. Causatively, ATM dysfunction results in the accumulation of DNA in the cytoplasm of microglia as well as a variety of other cell types. In microglia, cytoplasmic DNA primes an antiviral response via the DNA sensor, STING (stimulator of interferon genes). The importance of this response pathway is supported by our finding that inhibition of STING blocks the overproduction of neurotoxic cytokines. Cytosolic DNA also activates the AIM2 (absent in melanoma 2) containing inflammasome and induces proteolytic processing of cytokine precursors such as pro-IL-1β. Our study furthers our understanding of neurodegeneration in A-T and highlights the role of cytosolic DNA in the innate immune response.SIGNIFICANCE STATEMENT Conventionally, the immune deficiencies found in ataxia-telangiectasia (A-T) patients are viewed as defects of the B and T cells of the acquired immune system. In this study, we demonstrate the microglia of the innate immune system are also affected and uncover the mechanism by which this occurs. Loss of ATM (ataxia-telangiectasia mutated) activity leads to a slowing of DNA repair and an accumulation of cytoplasmic fragments of genomic DNA. This ectopic DNA induces the antivirus response, which triggers the production of neurotoxic cytokines. This expands our understanding of the neurodegeneration found in A-T and offers potentially new therapeutic options.
Collapse
|
26
|
Amirifar P, Ranjouri MR, Yazdani R, Abolhassani H, Aghamohammadi A. Ataxia-telangiectasia: A review of clinical features and molecular pathology. Pediatr Allergy Immunol 2019; 30:277-288. [PMID: 30685876 DOI: 10.1111/pai.13020] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/29/2018] [Accepted: 12/30/2018] [Indexed: 01/09/2023]
Abstract
Ataxia-telangiectasia (A-T) is an autosomal recessive primary immunodeficiency (PID) disease that is caused by mutations in ataxia-telangiectasia mutated (ATM) gene encoding a serine/threonine protein kinase. A-T patients represent a broad range of clinical manifestations including progressive cerebellar ataxia, oculocutaneous telangiectasia, variable immunodeficiency, radiosensitivity, susceptibility to malignancies, and increased metabolic diseases. This congenital disorder has phenotypic heterogeneity, and the severity of symptoms varies in different patients based on severity of mutations and disease progression. The principal role of nuclear ATM is the coordination of cellular signaling pathways in response to DNA double-strand breaks, oxidative stress, and cell cycle checkpoint. The pathogenesis of A-T is not limited to the role of ATM in the DNA damage response (DDR) pathway, and it has other functions mainly in the hematopoietic cells and neurons. ATM adjusts the functions of organelles such as mitochondria and peroxisomes and also regulates angiogenesis and glucose metabolisms. However, ATM has other functions in the cells (especially cell viability) that need further investigations. In this review, we described functions of ATM in the nucleus and cytoplasm, and also its association with some disorder formation such as neurologic, immunologic, vascular, pulmonary, metabolic, and dermatologic complications.
Collapse
Affiliation(s)
- Parisa Amirifar
- Medical Genetics Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Ranjouri
- Molecular Medicine and Genetics Department, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran, Iran
- University of Medical Science, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran, Iran
- University of Medical Science, Tehran, Iran
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran, Iran
- University of Medical Science, Tehran, Iran
| |
Collapse
|
27
|
Ye F, Chai W, Yang M, Xie M, Yang L. Ataxia-telangiectasia with a novel ATM gene mutation and Burkitt leukemia: A case report. Mol Clin Oncol 2018; 9:493-498. [PMID: 30402232 PMCID: PMC6200993 DOI: 10.3892/mco.2018.1721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/17/2018] [Indexed: 01/22/2023] Open
Abstract
Ataxia-telangiectasia (A-T) is an infrequent autosomal recessive disorder that involves multiple systems and is characterized by progressive cerebellar ataxia, oculocutaneous telangiectasias, radiosensitivity, immune deficiency with recurrent respiratory infections, and a tendency to develop lymphoid malignancies. A-T is caused by mutations in the ATM gene, with >1,000 mutations reported to date and gradually increasing in number. Patients with A-T have an increased incidence of cancers. The aim of the present study was to retrospectively review the case of a patient who presented at the age of 5 years with cerebellar ataxia without telangiectasia, and was diagnosed with Burkitt leukemia by bone marrow biopsy and molecular testing at the age of 7 years at the Xiangya Hospital of Central South University (Changsha, China). The patient received chemotherapy with the pediatric CCCG-BNHL-2015 regimen (R4 group) and achieved a complete remission after 2 courses. However, recurrent respiratory infections and thrombosis occurred during chemotherapy. The diagnosis of A-T was confirmed by uncovering two variants of the ATM gene, including c.742C>T (p.R248X; rs730881336) in exon 7 and c.6067-c.6068 ins GAGGGAAGAT in exon 41 by whole-exome sequencing. Unfortunately, the patient's parents refused follow-up treatment and he succumbed to recurrent severe infections 4 months after the diagnosis of Burkitt leukemia. The diagnosis of A-T may be challenging, as its phenotype can be incomplete early in the course of the disease. Detailed medical history, characteristic clinical manifestations and increasingly developed exome sequencing techniques may be helpful in diagnosing this rare disease. Management should be based on multidisciplinary guidance and other treatment options must be investigated in the future.
Collapse
Affiliation(s)
- Fanghua Ye
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wenwen Chai
- Department of Nuclear Medicine, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Minghua Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Min Xie
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Liangchun Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
28
|
Lin SG, Ba Z, Alt FW, Zhang Y. RAG Chromatin Scanning During V(D)J Recombination and Chromatin Loop Extrusion are Related Processes. Adv Immunol 2018; 139:93-135. [PMID: 30249335 DOI: 10.1016/bs.ai.2018.07.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An effective adaptive immune system depends on the ability of developing B and T cells to generate diverse immunoglobulin (Ig) and T cell receptor repertoires, respectively. Such diversity is achieved through a programmed somatic recombination process whereby germline V, D, and J segments of antigen receptor loci are assembled to form the variable region V(D)J exons of Ig and TCRs. Studies of this process, termed V(D)J recombination, have provided key insights into our understanding of a variety of general gene regulatory and DNA repair processes over the last several decades. V(D)J recombination is initiated by the RAG endonuclease which generates DNA double-stranded breaks at the borders of V, D, and J segments. In this review, we cover recent work that has elucidated RAG structure and work that revealed that RAG has a novel chromatin scanning activity, likely mediated by chromatin loop extrusion, that contributes to its ability to locate V, D, J gene segment substrates within large chromosomal loop domains bounded by CTCF-binding elements (CBEs). This latter function, coupled with the role CBE-based chromatin loop domains and subdomains within them play in focusing V(D)J recombination activity within antigen receptor loci, provide mechanistic explanations for long-standing questions regarding V(D)J segment usage diversification and in limiting potentially deleterious off-target RAG-initiated recombination events genome-wide. This review will focus mainly on studies of the mouse Ig heavy chain locus, but the principles described also apply to other Ig loci and to TCR loci in mice and humans.
Collapse
Affiliation(s)
- Sherry G Lin
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, United States
| | - Zhaoqing Ba
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, United States
| | - Frederick W Alt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, United States.
| | - Yu Zhang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
29
|
|
30
|
Kuznetsova MV, Trofimov DY, Shubina ES, Kochetkova TO, Karetnikova NA, Barkov IY, Bakharev VA, Gusev OA, Sukhikh GT. Two Novel Mutations Associated With Ataxia-Telangiectasia Identified Using an Ion AmpliSeq Inherited Disease Panel. Front Neurol 2017; 8:570. [PMID: 29163336 PMCID: PMC5670107 DOI: 10.3389/fneur.2017.00570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/11/2017] [Indexed: 11/16/2022] Open
Abstract
Ataxia-telangiectasia (A-T), or Louis-Bar syndrome, is a rare neurodegenerative disorder associated with immunodeficiency. For families with at least one affected child, timely A-T genotyping during any subsequent pregnancy allows the parents to make an informed decision about whether to continue to term when the fetus is affected. Mutations in the ATM gene, which is 150 kb long, give rise to A-T; more than 600 pathogenic variants in ATM have been characterized since 1990 and new mutations continue to be discovered annually. Therefore, limiting genetic screening to previously known SNPs by PCR or hybridization with microarrays may not identify the specific pathogenic genotype in ATM for a given A-T family. However, recent developments in next-generation sequencing technology offer prompt high-throughput full-length sequencing of genomic fragments of interest. This allows the identification of the whole spectrum of mutations in a gene, including any novel ones. We report two A-T families with affected children and current pregnancies. Both families are consanguineous and originate from Caucasian regions of Russia and Azerbaijan. Before our study, no ATM mutations had been identified in the older children of these families. We used ion semiconductor sequencing and an Ion AmpliSeq™ Inherited Disease Panel to perform complete ATM gene sequencing in a single member of each family. Then we compared the experimentally determined genotype with the affected/normal phenotype distribution in the whole family to provide unambiguous evidence of pathogenic mutations responsible for A-T. A single novel SNP was allocated to each family. In the first case, we found a mononucleotide deletion, and in the second, a mononucleotide insertion. Both mutations lead to truncation of the ATM protein product. Identification of the pathogenic mutation in each family was performed in a timely fashion, allowing the fetuses to be tested and diagnosed. The parents chose to continue with both pregnancies as both fetuses had a healthy genotype and thus were not at risk of A-T.
Collapse
Affiliation(s)
- Maria V Kuznetsova
- Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - Dmitry Yu Trofimov
- Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | | | | | | | - Ilya Yu Barkov
- Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | | | - Oleg A Gusev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,RIKEN Innovation Center, RIKEN, Yokohama, Japan.,Preventive Medicine and Diagnosis Innovation Program, Center for Life Science Technologies, Yokohama, Japan
| | - Gennady T Sukhikh
- Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| |
Collapse
|
31
|
van Os NJH, Haaxma CA, van der Flier M, Merkus PJFM, van Deuren M, de Groot IJM, Loeffen J, van de Warrenburg BPC, Willemsen MAAP. Ataxia-telangiectasia: recommendations for multidisciplinary treatment. Dev Med Child Neurol 2017; 59:680-689. [PMID: 28318010 DOI: 10.1111/dmcn.13424] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/04/2017] [Indexed: 12/29/2022]
Abstract
Ataxia-telangiectasia is a rare, neurodegenerative, and multisystem disease, characterized by cerebellar ataxia, oculocutaneous telangiectasia, immunodeficiency, progressive respiratory failure, and an increased risk of malignancies. It demands specialized care tailored to the individual patient's needs. Besides the classic ataxia-telangiectasia phenotype, a variant phenotype exists with partly overlapping but some distinctive disease characteristics. This guideline summarizes frequently encountered medical problems in the disease course of patients with classic and variant ataxia-telangiectasia, in the domains of neurology, immunology and infectious diseases, pulmonology, anaesthetic and perioperative risk, oncology, endocrinology, and nutrition. Furthermore, it provides a practical guide with evidence- and expert-based recommendations for the follow-up and treatment of all these different clinical topics.
Collapse
Affiliation(s)
- Nienke J H van Os
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Charlotte A Haaxma
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michiel van der Flier
- Department of Pediatric Infectious Diseases and Immunology, Amalia Children's Hospital and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter J F M Merkus
- Department of Pediatric Pulmonology, Amalia Children's Hospital and Canisius Wilhelmina Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel van Deuren
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Imelda J M de Groot
- Department of Rehabilitation Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan Loeffen
- Department of Pediatric Oncology and Hematology, Sophia Children's Hospital, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Bart P C van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michèl A A P Willemsen
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
32
|
Takagi M. DNA damage response and hematological malignancy. Int J Hematol 2017; 106:345-356. [PMID: 28374143 DOI: 10.1007/s12185-017-2226-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 12/11/2022]
Abstract
DNA damage is a serious threat to cellular homeostasis. Damaged DNA leads to genomic instability, mutation, senescence, and/or cell death. DNA damage triggers a cellular response called the DNA damage response (DDR), followed by activation of the DNA repair machinery. DDR both maintains cellular homeostasis and prevents cancer development. Germ line mutation of DDR-associated genes can lead to cancer-susceptible syndromes. Somatic mutation of DDR-associated genes has also been reported in various tumors, including hematological malignancies. Therapeutic approaches that target the DDR and DNA repair are thus now being developed. Understanding the mechanism(s) underlying DDR and DNA repair will increase our knowledge of cancer etiology and facilitate development of cancer therapies.
Collapse
Affiliation(s)
- Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8519, Japan.
| |
Collapse
|
33
|
Jyonouchi S, Jongco AM, Puck J, Sullivan KE. Immunodeficiencies Associated with Abnormal Newborn Screening for T Cell and B Cell Lymphopenia. J Clin Immunol 2017; 37:363-374. [PMID: 28353166 DOI: 10.1007/s10875-017-0388-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/20/2017] [Indexed: 10/19/2022]
Abstract
Newborn screening for SCID has revealed the association of low T cells with a number of unexpected syndromes associated with low T cells, some of which were not appreciated to have this feature. This review will discuss diagnostic approaches and the features of some of the syndromes likely to be encountered following newborn screening for immune deficiencies.
Collapse
Affiliation(s)
- Soma Jyonouchi
- Division of Allergy Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Artemio M Jongco
- Division of Allergy and Immunology, Cohen Children's Medical Center of New York, Hofstra Northwell School of Medicine, Hempstead, NY, USA
| | - Jennifer Puck
- Division of Allergy, Immunology and Blood and Marrow Transplantation, Department of Pediatrics, University of California San Francisco, and UCSF Benioff Children's Hospital, San Francisco, CA, USA
| | - Kathleen E Sullivan
- Division of Allergy Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
34
|
Abstract
Ataxia-Telangiectasia (A-T) is a prototypical genomic instability disorder with multi-organ deficiency and it is caused by the defective function of a single gene, ATM (Ataxia-Telangiectasia Mutated). Radiosensitivity, among the pleiotropic symptoms of A-T, reflects the basic physiological functions of ATM protein in the double strand break (DSB)-induced DNA damage response (DDR) and also restrains A-T patients from the conventional radiation therapy for their lymphoid malignancy. In this chapter, we describe two methods that have been developed in our lab to assess the radiosensitivity of A-T patients: (1) Colony Survival Assay (CSA) and (2) Flow Cytometry of phospho-SMC1 (FC-pSMC1). The establishment of these more rapid and reliable functional assays to measure the radiosensitivity, exemplified by A-T, would facilitate the diagnosis of other genomic instability genetic disorders as well as help the treatment options for most radiosensitive patients.
Collapse
Affiliation(s)
- Hailiang Hu
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Shareef Nahas
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Richard A Gatti
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| |
Collapse
|
35
|
Lavin MF, Yeo AJ, Kijas AW, Wolvetang E, Sly PD, Wainwright C, Sinclair K. Therapeutic targets and investigated treatments for Ataxia-Telangiectasia. Expert Opin Orphan Drugs 2016. [DOI: 10.1080/21678707.2016.1254618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
36
|
Abstract
As defined initially, chromosome instability syndromes (CIS) are a group of inherited conditions transmitted in autosomal recessive pattern characterised with both mental and physical development delay generally. They are also with other medical complications in individuals with CIS commonly including different degree of dysmorphics, organs/systems dys-function and high risk of cancer predisposition. Chromosomal breakage from CIS can be seen either in spontaneous breakage around 10-15% observed in Fanconi anemia or induced by clastogenic agents such as mitomycin (MMC), diepoxybutane (DEB). The spontaneous chromosome breakage is less common but it correlates with patient clinical severity. Relative high rates of some types of CIS can occur in certain ethnic groups. Individuals with CIS are commonly in childhood and these disorders are often lethal. Diagnosis is complicated usually because the symptoms presented from individuals with CIS may be varied and complex. Advances in molecular level have identified genes responsible for such group diseases/disorders demonstrated that CIS are characterized by the genome instability, defect in DNA repair mechanisms. Latest advances in high-throughput technologies have been increasing sequencing capabilities to facilitate more accurate data for such syndrome researches. CIS are the typical rare diseases and becoming more challenges in pediatrics clinic. In the last two decades, there were no many articles to review and analysis CIS together to comparing their phenotypes and genotypes. In this article, the similarity and differences of the phenotypes and genotypes of CIS were reviewed to understanding the whole profiles of CIS to assist laboratory genetic diagnostic services in CIS and for the confirmation from the clinical referrals.
Collapse
Affiliation(s)
- Zhan-He Wu
- Western Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, NSW, Australia
| |
Collapse
|
37
|
Gioia LV, Bonsall D, Moffett K, Leys M. Bilateral maculopathy in a patient with ataxia telangiectasia. J AAPOS 2016; 20:85-8. [PMID: 26917084 DOI: 10.1016/j.jaapos.2015.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/02/2015] [Accepted: 10/16/2015] [Indexed: 12/28/2022]
Abstract
We report a case of toxoplasmosis with bilateral maculopathy in a 7-year-old boy diagnosed with ataxia telangiectasia (AT) at age 6. AT manifests as ataxia, apraxia, telangiectasia, and dysarthria. Common ophthalmologic findings in AT include fine conjunctival telangiectasia. Patients also suffer from recurrent sinopulmonary infections; however, serious opportunistic infection is rarely diagnosed. At 8 years of age he developed disseminated Toxoplasma gondii (toxoplasmosis) infection and meningoencephalitis. This ophthalmologic finding and the subsequent toxoplasmosis meningoencephalitis have not been previously reported in AT.
Collapse
Affiliation(s)
| | | | - Kathryn Moffett
- WVU Pediatrics and WVU Infectious Diseases, Morgantown, West Virginia
| | | |
Collapse
|
38
|
Low-dose irradiation prior to bone marrow transplantation results in ATM activation and increased lethality in Atm-deficient mice. Bone Marrow Transplant 2016; 51:560-7. [PMID: 26752140 DOI: 10.1038/bmt.2015.334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/29/2015] [Accepted: 12/01/2015] [Indexed: 11/08/2022]
Abstract
Ataxia telangiectasia is a genetic instability syndrome characterized by neurodegeneration, immunodeficiency, severe bronchial complications, hypersensitivity to radiotherapy and an elevated risk of malignancies. Repopulation with ATM-competent bone marrow-derived cells (BMDCs) significantly prolonged the lifespan and improved the phenotype of Atm-deficient mice. The aim of the present study was to promote BMDC engraftment after bone marrow transplantation using low-dose irradiation (IR) as a co-conditioning strategy. Atm-deficient mice were transplanted with green fluorescent protein-expressing, ATM-positive BMDCs using a clinically relevant non-myeloablative host-conditioning regimen together with TBI (0.2-2.0 Gy). IR significantly improved the engraftment of BMDCs into the bone marrow, blood, spleen and lung in a dose-dependent manner, but not into the cerebellum. However, with increasing doses, IR lethality increased even after low-dose IR. Analysis of the bronchoalveolar lavage fluid and lung histochemistry revealed a significant enhancement in the number of inflammatory cells and oxidative damage. A delay in the resolution of γ-H2AX-expression points to an insufficient double-strand break repair capacity following IR with 0.5 Gy in Atm-deficient splenocytes. Our results demonstrate that even low-dose IR results in ATM activation. In the absence of ATM, low-dose IR leads to increased inflammation, oxidative stress and lethality in the Atm-deficient mouse model.
Collapse
|
39
|
Nissenkorn A, Borgohain R, Micheli R, Leuzzi V, Hegde AU, Mridula KR, Molinaro A, D'Agnano D, Yareeda S, Ben-Zeev B. Development of global rating instruments for pediatric patients with ataxia telangiectasia. Eur J Paediatr Neurol 2016; 20:140-6. [PMID: 26493850 DOI: 10.1016/j.ejpn.2015.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 09/09/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Ataxia telangiectasia (AT) is a neurodegenerative disorder with cerebellar and extrapyramidal features. Interventional and epidemiological studies in AT should rely on specific scales which encompass the specific neurological features, as well the early progressive course and the subsequent plateau. The aim of this study was to build a scale of the CGI type (Clinical Global Impression) which is disease specific, as well as to check the feasibility of the ICARS scale for ataxia in this population. METHODS We recruited 63 patients with ataxia, aged 10.76 ± 3.2 years, followed at 6 international AT centers, 49 of them (77.8%) with classical AT. All patients were evaluated for ataxia with ICARS scale. In patients with AT, two CGI scales were scored, unstructured as structured for which separate anchors were provided. RESULTS Mean ICARS score was 44.7 ± 20.52, and it's severity positively correlated with age (Spearman correlation, r = 0.46, p < 0.01). Mean CGI score was 2 (moderately involved). There was a high correlation between the structured and unstructured CGIs (Spearman correlation, r = 0.87, p < 0.01). Both CGI scales showed positive correlation between severity and increasing age (Spearman correlation r = 0.59, p < 0.01 for structured CGI and r = 0.61, p < 0.01 for unstructured). DISCUSSION We succeeded to build two CGI scales: structured and unstructured, which are disease specific for AT. The unstructured scale showed better connection to disease course; the sensitivity of the unstructured scale could be improved by adding anchors related to extrapyramidal features. In addition we showed that ataxia can be reliably measured in children with AT by using ICARS.
Collapse
Affiliation(s)
- Andreea Nissenkorn
- Pediatric Neurology Unit, Edmond and Lilly Safra Pediatric Hospital, Sheba Medical Center, Ramat Gan, Israel; The Service for Rare Diseases, Edmond and Lilly Safra Pediatric Hospital, Sheba Medical Center, Ramat Gan, Israel; The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Rupam Borgohain
- Department Neurology, Nizam's Institute of Medical Sciences, Punjagutta, Hyderabad, India
| | - Roberto Micheli
- Unit of Child Neurology and Psychiatry, Spedali Civili, Brescia, Italy
| | - Vincenzo Leuzzi
- Department of Pediatrics, Child Neurology and Psychiatry, University of Rome "La Sapienza", Italy
| | - Anaita Udwadia Hegde
- Pediatric Neurology, Jaslok Hospital and Research Center, Breach Candy Hospital Trust, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | | | - Anna Molinaro
- Unit of Child Neurology and Psychiatry, Spedali Civili, Brescia, Italy
| | - Daniela D'Agnano
- Department of Pediatrics, Child Neurology and Psychiatry, University of Rome "La Sapienza", Italy
| | - Sireesha Yareeda
- Department Neurology, Nizam's Institute of Medical Sciences, Punjagutta, Hyderabad, India
| | - Bruria Ben-Zeev
- Pediatric Neurology Unit, Edmond and Lilly Safra Pediatric Hospital, Sheba Medical Center, Ramat Gan, Israel; The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
40
|
Fan HC, Chi CS, Cheng SN, Lee HF, Tsai JD, Lin SZ, Harn HJ. Targeting New Candidate Genes by Small Molecules Approaching Neurodegenerative Diseases. Int J Mol Sci 2015; 17:E26. [PMID: 26712747 PMCID: PMC4730273 DOI: 10.3390/ijms17010026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/10/2015] [Accepted: 12/21/2015] [Indexed: 02/08/2023] Open
Abstract
Neurodegenerative diseases (NDs) are among the most feared of the disorders that afflict humankind for the lack of specific diagnostic tests and effective treatments. Understanding the molecular, cellular, biochemical changes of NDs may hold therapeutic promise against debilitating central nerve system (CNS) disorders. In the present review, we summarized the clinical presentations and biology backgrounds of NDs, including Parkinson's disease (PD), Huntington's disease (HD), and Alzheimer's disease (AD) and explored the role of molecular mechanisms, including dys-regulation of epigenetic control mechanisms, Ataxia-telangiectasia-mutated protein kinase (ATM), and neuroinflammation in the pathogenesis of NDs. Targeting these mechanisms may hold therapeutic promise against these devastating diseases.
Collapse
Affiliation(s)
- Hueng-Chuen Fan
- Department of Pediatrics, Tung's Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan.
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan.
| | - Ching-Shiang Chi
- Department of Pediatrics, Tung's Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan.
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan.
| | - Shin-Nan Cheng
- Department of Pediatrics, Tung's Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan.
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan.
| | - Hsiu-Fen Lee
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung 407, Taiwan.
| | - Jeng-Dau Tsai
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| | - Shinn-Zong Lin
- Graduate Institute of Immunology, China Medical University, Taichung 404, Taiwan.
- Center for Neuropsychiatry, China Medical University and Hospital, Taichung 404, Taiwan.
- Department of Neurosurgery, China Medical University Beigang Hospital, Yunlin 651, Taiwan.
| | - Horng-Jyh Harn
- Department of Pathology, China Medical University and Hospital, Taichung 404, Taiwan.
| |
Collapse
|
41
|
Caspi M, Firsow A, Rajkumar R, Skalka N, Moshkovitz I, Munitz A, Pasmanik-Chor M, Greif H, Megido D, Kariv R, Rosenberg DW, Rosin-Arbesfeld R. A flow cytometry-based reporter assay identifies macrolide antibiotics as nonsense mutation read-through agents. J Mol Med (Berl) 2015; 94:469-82. [PMID: 26620677 DOI: 10.1007/s00109-015-1364-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/24/2015] [Accepted: 11/03/2015] [Indexed: 01/01/2023]
Abstract
UNLABELLED A large number of human diseases are caused by nonsense mutations. These mutations result in premature protein termination and the expression of truncated, usually nonfunctional products. A promising therapeutic strategy for patients suffering from premature termination codon (PTC)-mediated disorders is to suppress the nonsense mutation and restore the expression of the affected protein. Such a suppression approach using specific antibiotics and other read-through promoting agents has been shown to suppress PTCs and restore the production of several important proteins. Here, we report the establishment of a novel, rapid, and very efficient method for screening stop-codon read-through agents. We also show that, in both mammalian cells and in a transgenic mouse model, distinct members of the macrolide antibiotic family can induce read-through of disease-causing stop codons leading to re-expression of several key proteins and to reduced disease phenotypes. Taken together, our results may help in the identification and characterization of well-needed customized pharmaceutical PTC suppression agents. KEY MESSAGES Establishment of a flow cytometry-based reporter assay to identify nonsense mutation read-through agents. Macrolide antibiotics can induce read-through of disease-causing stop codons. Macrolide-induced protein restoration can alleviate disease-like phenotypes.
Collapse
Affiliation(s)
- Michal Caspi
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Ramat-Aviv, 69978, Tel Aviv, Israel
| | - Anastasia Firsow
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Ramat-Aviv, 69978, Tel Aviv, Israel
| | - Raja Rajkumar
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Ramat-Aviv, 69978, Tel Aviv, Israel
| | - Nir Skalka
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Ramat-Aviv, 69978, Tel Aviv, Israel
| | - Itay Moshkovitz
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Ramat-Aviv, 69978, Tel Aviv, Israel
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Ramat-Aviv, 69978, Tel Aviv, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, G.S.W. Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Revital Kariv
- Department of Gastroenterology, Tel Aviv Sourasky Medical Center, Tel Aviv, 64239, Israel
| | - Daniel W Rosenberg
- Center for Molecular Medicine, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Rina Rosin-Arbesfeld
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Ramat-Aviv, 69978, Tel Aviv, Israel.
| |
Collapse
|
42
|
Navratil M, Đuranović V, Nogalo B, Švigir A, Dumbović Dubravčić I, Turkalj M. Ataxia-Telangiectasia Presenting as Cerebral Palsy and Recurrent Wheezing: A Case Report. AMERICAN JOURNAL OF CASE REPORTS 2015; 16:631-6. [PMID: 26380989 PMCID: PMC4578644 DOI: 10.12659/ajcr.893995] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Patient: Male, 8 Final Diagnosis: Ataxia-telangiectasia Symptoms: Ataxia • sinopulmonary infection • telangiectasiae • wheezing Medication: — Clinical Procedure: IVIG supstitution Specialty: Pediatrics and Neonatology
Collapse
Affiliation(s)
- Marta Navratil
- Department of Allergy and Immunology, Srebrnjak Children's Hospital, Zagreb, Croatia
| | - Vlasta Đuranović
- Department of Neurology, Zagreb Children's Hospital, Zagreb, Croatia
| | - Boro Nogalo
- Department of Allergy and Immunology, Srebrnjak Children's Hospital, Zagreb, Croatia
| | - Alen Švigir
- Department of Allergy and Pulmonology, Srebrnjak Children's Hospital, Zagreb, Croatia
| | | | - Mirjana Turkalj
- Department of Allergy and Immunology, Srebrnjak Children's Hospital, Zagreb, Croatia
| |
Collapse
|
43
|
Bonilla FA, Khan DA, Ballas ZK, Chinen J, Frank MM, Hsu JT, Keller M, Kobrynski LJ, Komarow HD, Mazer B, Nelson RP, Orange JS, Routes JM, Shearer WT, Sorensen RU, Verbsky JW, Bernstein DI, Blessing-Moore J, Lang D, Nicklas RA, Oppenheimer J, Portnoy JM, Randolph CR, Schuller D, Spector SL, Tilles S, Wallace D. Practice parameter for the diagnosis and management of primary immunodeficiency. J Allergy Clin Immunol 2015; 136:1186-205.e1-78. [PMID: 26371839 DOI: 10.1016/j.jaci.2015.04.049] [Citation(s) in RCA: 452] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/18/2015] [Accepted: 04/23/2015] [Indexed: 02/07/2023]
Abstract
The American Academy of Allergy, Asthma & Immunology (AAAAI) and the American College of Allergy, Asthma & Immunology (ACAAI) have jointly accepted responsibility for establishing the "Practice parameter for the diagnosis and management of primary immunodeficiency." This is a complete and comprehensive document at the current time. The medical environment is a changing environment, and not all recommendations will be appropriate for all patients. Because this document incorporated the efforts of many participants, no single individual, including those who served on the Joint Task Force, is authorized to provide an official AAAAI or ACAAI interpretation of these practice parameters. Any request for information about or an interpretation of these practice parameters by the AAAAI or ACAAI should be directed to the Executive Offices of the AAAAI, the ACAAI, and the Joint Council of Allergy, Asthma & Immunology. These parameters are not designed for use by pharmaceutical companies in drug promotion.
Collapse
|
44
|
Prognostic Significance of Nuclear Phospho-ATM Expression in Melanoma. PLoS One 2015; 10:e0134678. [PMID: 26275218 PMCID: PMC4537129 DOI: 10.1371/journal.pone.0134678] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/13/2015] [Indexed: 12/21/2022] Open
Abstract
UV radiation induced genomic instability is one of the leading causes for melanoma. Phosphorylation of Ataxia Telangiectasia Mutated (ATM) is one of the initial events that follow DNA damage. Phospho-ATM (p-ATM) plays a key role in the activation of DNA repair and several oncogenic pathways as well as in the maintenance of genomic integrity. The present study was therefore performed to understand the significance of p-ATM in melanoma progression and to correlate it with patient prognosis. Tissue microarray and immunohistochemical analysis were employed to study the expression of p-ATM in melanoma patients. A total of 366 melanoma patients (230 primary melanoma and 136 metastatic melanoma) were used for the study. Chi-square test, Kaplan-Meier, univariate and multivariate Cox regression analysis were used to elucidate the prognostic significance of p-ATM expression. Results revealed that both loss of, and gain in, p-ATM expression were associated with progression of melanoma from normal nevi to metastatic melanoma. Patients whose samples showed negative or strong p-ATM staining had significantly worse 5-year survival compared to patients who had weak to moderate expression. Loss of p-ATM expression was associated with relatively better 5-year survival, but the corresponding 10-year survival curve almost overlapped with that of strong p-ATM expression. p-ATM expression was found to be an independent prognostic factor for 5-year but not for 10-year patient survival. In conclusion our findings show that loss of p-ATM expression and gain-in p-ATM expression are indicators of worse melanoma patient survival.
Collapse
|
45
|
Dawson AJ, Marles S, Tomiuk M, Riordan D, Gatti RA. Ataxia-telangiectasia with female fertility. Am J Med Genet A 2015; 167A:1937-9. [DOI: 10.1002/ajmg.a.37084] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/15/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Angelika J. Dawson
- Cytogenetic Laboratory/HSC; Diagnostic Services of Manitoba; Winnipeg Manitoba Canada
- Deptartments of Biochemistry & Medical Genetics and Pediatrics & Child Health; University of Manitoba; Winnipeg Manitoba Canada
- Genetics & Metabolism Program; WRHA; Winnipeg Manitoba Canada
| | - Sandra Marles
- Deptartments of Biochemistry & Medical Genetics and Pediatrics & Child Health; University of Manitoba; Winnipeg Manitoba Canada
- Genetics & Metabolism Program; WRHA; Winnipeg Manitoba Canada
| | - Michelle Tomiuk
- Cytogenetic Laboratory/HSC; Diagnostic Services of Manitoba; Winnipeg Manitoba Canada
| | - Diane Riordan
- Cytogenetic Laboratory/HSC; Diagnostic Services of Manitoba; Winnipeg Manitoba Canada
| | - Richard A. Gatti
- Department of Pathology & Laboratory Medicine, and Human Genetics; UCLA/Geffen School of Medicine; Los Angeles California
| |
Collapse
|
46
|
Sahama I, Sinclair K, Pannek K, Lavin M, Rose S. Radiological imaging in ataxia telangiectasia: a review. THE CEREBELLUM 2015; 13:521-30. [PMID: 24683014 DOI: 10.1007/s12311-014-0557-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The human genetic disorder ataxia telangiectasia (A-T) is characterised by neurodegeneration, immunodeficiency, radiosensitivity, cell cycle checkpoint defects, genomic instability and cancer predisposition. Progressive cerebellar ataxia represents the most debilitating aspect of this disorder. At present, there is no therapy available to cure or prevent the progressive symptoms of A-T. While it is possible to alleviate some of the symptoms associated with immunodeficiency and deficient lung function, neither the predisposition to cancer nor the progressive neurodegeneration can be prevented. Significant effort has focused on improving our understanding of various clinical, genetic and immunological aspects of A-T; however, little attention has been directed towards identifying altered brain structure and function using MRI. To date, most imaging studies have reported radiological anomalies in A-T. This review outlines the clinical and biological features of A-T along with known radiological imaging anomalies. In addition, we briefly discuss the advent of high-resolution MRI in conjunction with diffusion-weighted imaging, which enables improved investigation of the microstructural tissue environment, giving insight into the loss in integrity of motor networks due to abnormal neurodevelopmental or progressive neurodegenerative processes. Such imaging approaches have yet to be applied in the study of A-T and could provide important new information regarding the relationship between mutation of the ataxia telangiectasia mutated (ATM) gene and the integrity of motor circuitry.
Collapse
Affiliation(s)
- Ishani Sahama
- School of Medicine, The University of Queensland, Brisbane, Australia
| | | | | | | | | |
Collapse
|
47
|
Abstract
Insults to nuclear DNA induce multiple response pathways to mitigate the deleterious effects of damage and mediate effective DNA repair. G-protein-coupled receptor kinase-interacting protein 2 (GIT2) regulates receptor internalization, focal adhesion dynamics, cell migration, and responses to oxidative stress. Here we demonstrate that GIT2 coordinates the levels of proteins in the DNA damage response (DDR). Cellular sensitivity to irradiation-induced DNA damage was highly associated with GIT2 expression levels. GIT2 is phosphorylated by ATM kinase and forms complexes with multiple DDR-associated factors in response to DNA damage. The targeting of GIT2 to DNA double-strand breaks was rapid and, in part, dependent upon the presence of H2AX, ATM, and MRE11 but was independent of MDC1 and RNF8. GIT2 likely promotes DNA repair through multiple mechanisms, including stabilization of BRCA1 in repair complexes; upregulation of repair proteins, including HMGN1 and RFC1; and regulation of poly(ADP-ribose) polymerase activity. Furthermore, GIT2-knockout mice demonstrated a greater susceptibility to DNA damage than their wild-type littermates. These results suggest that GIT2 plays an important role in MRE11/ATM/H2AX-mediated DNA damage responses.
Collapse
|
48
|
|
49
|
Beh SC, Frohman TC, Frohman EM. Neuro-ophthalmic Manifestations of Cerebellar Disease. Neurol Clin 2014; 32:1009-80. [DOI: 10.1016/j.ncl.2014.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shin C Beh
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Teresa C Frohman
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Elliot M Frohman
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
50
|
Siva K, Covello G, Denti MA. Exon-skipping antisense oligonucleotides to correct missplicing in neurogenetic diseases. Nucleic Acid Ther 2014; 24:69-86. [PMID: 24506781 DOI: 10.1089/nat.2013.0461] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Alternative splicing is an important regulator of the transcriptome. However, mutations may cause alteration of splicing patterns, which in turn leads to disease. During the past 10 years, exon skipping has been looked upon as a powerful tool for correction of missplicing in disease and progress has been made towards clinical trials. In this review, we discuss the use of antisense oligonucleotides to correct splicing defects through exon skipping, with a special focus on diseases affecting the nervous system, and the latest stage achieved in its progress.
Collapse
Affiliation(s)
- Kavitha Siva
- 1 Center for Integrative Biology (CIBIO), University of Trento , Trento, Italy
| | | | | |
Collapse
|