1
|
Pospiech M, Beckford J, Kumar AMS, Tamizharasan M, Brito J, Liang G, Mangul S, Alachkar H. The DNA methylation landscape across the TCR loci in patients with acute myeloid leukemia. Int Immunopharmacol 2024; 138:112376. [PMID: 38917523 PMCID: PMC12045071 DOI: 10.1016/j.intimp.2024.112376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/09/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024]
Abstract
The capacity of T cells to initiate anti-leukemia immune responses is determined by the ability of their receptors (TCRs) to recognize leukemia neoantigens. Epigenetic mechanisms including DNA methylation contribute to shaping the TCR repertoire composition and diversity. The DNA hypomethylating agents (HMAs) have been widely used in the treatment of acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Whether DNA HMAs directly influence TCR gene loci methylation patterns remains unknown. By analyzing public datasets, we compared methylation patterns across TCR loci in AML patients and healthy controls. We also explored how HMAs influence TCR loci DNA methylation in patients with AML. While methylation patterns are largely conserved across the TCR loci, certain V genes exhibit high interindividual variability. Although overall methylation levels within the TCR loci did not show significant differences, specific sites, including 32 TRAV and 12 TRBV sites exhibited distinct methylation patterns when comparing T cells from healthy donors to those from patients with AML. In leukemic cells, decitabine treatment demethylates sites across the TRAV and TRBV genes. While not as significant, a similar pattern of demethylation is observed in T cells. Pretreatment AML samples exhibit higher methylation beta values in differentially methylated positions (DMPs) compared with non-DMPs. Methylation levels of certain TRAV and TRBV genes in leukemic cells are associated with patients' risk status. The presence of disease specific TCR loci methylated signatures that are associated with clinical outcome presents an opportunity for therapeutic intervention. HMAs can modulate the TCR loci methylation patterns, yet whether they could reprogram the TCR repertoire composition remains to be explored.
Collapse
MESH Headings
- Humans
- DNA Methylation
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/immunology
- Decitabine/pharmacology
- Decitabine/therapeutic use
- Receptors, Antigen, T-Cell/genetics
- T-Lymphocytes/immunology
- Epigenesis, Genetic
- Antimetabolites, Antineoplastic/therapeutic use
- Antimetabolites, Antineoplastic/pharmacology
Collapse
Affiliation(s)
- Mateusz Pospiech
- Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, the United States of America
| | - John Beckford
- Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, the United States of America
| | - Advaith Maya Sanjeev Kumar
- Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, the United States of America; Department of Computer Science, University of Southern California, Los Angeles, CA, the United States of America
| | - Mukund Tamizharasan
- Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, the United States of America; Department of Computer Science, University of Southern California, Los Angeles, CA, the United States of America
| | - Jaqueline Brito
- Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, the United States of America
| | - Gangning Liang
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, the United States of America
| | - Serghei Mangul
- Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, the United States of America
| | - Houda Alachkar
- Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, the United States of America.
| |
Collapse
|
2
|
Antonacci R, Bellini M, Pala A, Mineccia M, Hassanane MS, Ciccarese S, Massari S. The occurrence of three D-J-C clusters within the dromedary TRB locus highlights a shared evolution in Tylopoda, Ruminantia and Suina. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:105-119. [PMID: 28577760 DOI: 10.1016/j.dci.2017.05.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/26/2017] [Accepted: 05/26/2017] [Indexed: 06/07/2023]
Abstract
The αβ T cells are important components of the adaptive immune system and can recognize a vast array of peptides presented by MHC molecules. The ability of these T cells to recognize the complex depends on the diversity of the αβ TR, which is generated by a recombination of specific Variable, Diversity and Joining genes for the β chain, and Variable and Joining genes for the α chain. In this study, we analysed the genomic structure and the gene content of the TRB locus in Camelus dromedarius, which is a species belonging to the Tylopoda suborder. The most noteworthy result is the presence of three in tandem TRBD-J-C clusters in the dromedary TRB locus, which is similar to clusters found in sheep, cattle and pigs and suggests a common duplication event occurred prior to the Tylopoda/Ruminantia/Suina divergence. Conversely, a significant contraction of the dromedary TRBV genes, which was previously found in the TRG and TRD loci, was observed with respect to the other artiodactyl species.
Collapse
Affiliation(s)
| | | | - Angela Pala
- Department of Biology, University "Aldo Moro" of Bari, Bari, Italy.
| | - Micaela Mineccia
- Department of Biology, University "Aldo Moro" of Bari, Bari, Italy.
| | | | | | - Serafina Massari
- Department of Biological and Environmental Science e Technologies, University of Salento, Lecce, Italy.
| |
Collapse
|
3
|
Lethé B, Snauwaert S, Bricard O, Schröder D, Gomard T, Hames G, Muller C, Lurquin C, Gauthy E, Essaghir A, Vandekerckhove B, Coulie PG. A new transcript in the TCRB locus unveils the human ortholog of the mouse pre-Dß1 promoter. IMMUNITY INFLAMMATION AND DISEASE 2017; 5:346-354. [PMID: 28508570 PMCID: PMC5569374 DOI: 10.1002/iid3.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 04/05/2017] [Accepted: 04/20/2017] [Indexed: 11/29/2022]
Abstract
Introduction While most transcripts arising from the human T Cell Receptor locus reflect fully rearranged genes, several germline transcripts have been identified. We describe a new germline transcript arising from the human TCRB locus. Methods cDNA sequencing, promoter, and gene expression analyses were used to characterize the new transcript. Results The new germline transcript encoded by the human TCRB locus consists of a new exon of 103 bp, which we named TRBX1 (X1), spliced with the first exon of gene segments Cß1 or Cß2. X1 is located upstream of gene segment Dß1 and is therefore deleted from a V‐DJ rearranged TCRB locus. The X1‐Cß transcripts do not appear to code for a protein. We define their transcription start and minimal promoter. These transcripts are found in populations of mature T lymphocytes from blood or tissues and in T cell clones with a monoallelic TCRB rearrangement. In immature thymocytes, they are already detectable in CD1a−CD34+CD4−CD8− cells, therefore before completion of the TCRB rearrangements. Conclusions The X1 promoter appears to be the ortholog of the mouse pre‐Dß1 promoter (PDß1). Like PDß1, its activation is regulated by Eß in T cells and might facilitate the TCRB rearrangement process by contributing to the accessibility of the Dß1 locus.
Collapse
Affiliation(s)
- Bernard Lethé
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Sylvia Snauwaert
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Orian Bricard
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - David Schröder
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Tiphanie Gomard
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Gérald Hames
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Catherine Muller
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Christophe Lurquin
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Emilie Gauthy
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Ahmed Essaghir
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Bart Vandekerckhove
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Pierre G Coulie
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
4
|
Outters P, Jaeger S, Zaarour N, Ferrier P. Long-Range Control of V(D)J Recombination & Allelic Exclusion: Modeling Views. Adv Immunol 2015; 128:363-413. [PMID: 26477371 DOI: 10.1016/bs.ai.2015.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Allelic exclusion of immunoglobulin (Ig) and T-cell receptor (TCR) genes ensures the development of B and T lymphocytes operating under the mode of clonal selection. This phenomenon associates asynchronous V(D)J recombination events at Ig or TCR alleles and inhibitory feedback control. Despite years of intense research, however, the mechanisms that sustain asymmetric choice in random Ig/TCR dual allele usage and the production of Ig/TCR monoallelic expressing B and T lymphocytes remain unclear and open for debate. In this chapter, we first recapitulate the biological evidence that almost from the start appeared to link V(D)J recombination and allelic exclusion. We review the theoretical models previously proposed to explain this connection. Finally, we introduce our own mathematical modeling views based on how the developmental dynamics of individual lymphoid cells combine to sustain allelic exclusion.
Collapse
Affiliation(s)
- Pernelle Outters
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Sébastien Jaeger
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Nancy Zaarour
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Pierre Ferrier
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France.
| |
Collapse
|
5
|
Majumder K, Bassing CH, Oltz EM. Regulation of Tcrb Gene Assembly by Genetic, Epigenetic, and Topological Mechanisms. Adv Immunol 2015; 128:273-306. [PMID: 26477369 DOI: 10.1016/bs.ai.2015.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The adaptive immune system endows mammals with an ability to recognize nearly any foreign invader through antigen receptors that are expressed on the surface of all lymphocytes. This defense network is generated by V(D)J recombination, a set of sequentially controlled DNA cleavage and repair events that assemble antigen receptor genes from physically separated variable (V), joining (J), and sometimes diversity (D) gene segments. The recombination process itself must be stringently regulated to minimize oncogenic translocations involving chromosomes that harbor immunoglobulin and T cell receptor loci. Indeed, V(D)J recombination is controlled at several levels, including tissue-, developmental stage-, allele-, and gene segment-specificity. These levels of control are imposed by a collection of architectural and regulatory elements that are distributed throughout each antigen receptor locus. Together, the genetic elements regulate developmental changes in chromatin, transcription, and locus topology that promote or disfavor long-range recombination. This chapter focuses on the cross talk between these mechanisms at the T cell receptor beta (Tcrb) locus, and how they sculpt a diverse TCRβ repertoire while maintaining monospecificity of this antigen receptor on each mature T lymphocyte. We also discuss how insights obtained from studies of Tcrb are more generally relevant to our understanding of gene regulation strategies employed by mammals.
Collapse
Affiliation(s)
- Kinjal Majumder
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Craig H Bassing
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Abramson Family Cancer Research Institute, Cell and Molecular Biology Graduate Program, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eugene M Oltz
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA.
| |
Collapse
|
6
|
Majumder K, Koues OI, Chan EAW, Kyle KE, Horowitz JE, Yang-Iott K, Bassing CH, Taniuchi I, Krangel MS, Oltz EM. Lineage-specific compaction of Tcrb requires a chromatin barrier to protect the function of a long-range tethering element. ACTA ACUST UNITED AC 2014; 212:107-20. [PMID: 25512470 PMCID: PMC4291525 DOI: 10.1084/jem.20141479] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Majumder et al. explore the large-scale looping architecture of the Tcrb locus early in murine thymocyte development during the generation of TCRβ diversity. They dissect novel DNA regulatory elements controlling V to D-J recombination and identify within an insulator region a distally located CTCF-containing element functioning as a tether, which facilitates looping of distal Vβ to Dβ-Jβ regions and promotes locus contraction. A second CTCF-containing element, proximal to the Dβ-Jβ region, acts as a boundary, preventing the spread of active chromatin associated with Dβ-Jβ regions. Removal of the proximal boundary element impairs the locus contraction capabilities of the tethering element. Gene regulation relies on dynamic changes in three-dimensional chromatin conformation, which are shaped by composite regulatory and architectural elements. However, mechanisms that govern such conformational switches within chromosomal domains remain unknown. We identify a novel mechanism by which cis-elements promote long-range interactions, inducing conformational changes critical for diversification of the TCRβ antigen receptor locus (Tcrb). Association between distal Vβ gene segments and the highly expressed DβJβ clusters, termed the recombination center (RC), is independent of enhancer function and recruitment of V(D)J recombinase. Instead, we find that tissue-specific folding of Tcrb relies on two distinct architectural elements located upstream of the RC. The first, a CTCF-containing element, directly tethers distal portions of the Vβ array to the RC. The second element is a chromatin barrier that protects the tether from hyperactive RC chromatin. When the second element is removed, active RC chromatin spreads upstream, forcing the tether to serve as a new barrier. Acquisition of barrier function by the CTCF element disrupts contacts between distal Vβ gene segments and significantly alters Tcrb repertoires. Our findings reveal a separation of function for RC-flanking regions, in which anchors for long-range recombination must be cordoned off from hyperactive RC landscapes by chromatin barriers.
Collapse
Affiliation(s)
- Kinjal Majumder
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Olivia I Koues
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Elizabeth A W Chan
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Katherine E Kyle
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Julie E Horowitz
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, The Children's Hospital of Philadelphia and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Katherine Yang-Iott
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, The Children's Hospital of Philadelphia and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Craig H Bassing
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, The Children's Hospital of Philadelphia and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Michael S Krangel
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Eugene M Oltz
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| |
Collapse
|
7
|
Jaeger S, Fernandez B, Ferrier P. Epigenetic aspects of lymphocyte antigen receptor gene rearrangement or 'when stochasticity completes randomness'. Immunology 2013; 139:141-50. [PMID: 23278765 DOI: 10.1111/imm.12057] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/17/2012] [Accepted: 12/19/2012] [Indexed: 01/05/2023] Open
Abstract
To perform their specific functional role, B and T lymphocytes, cells of the adaptive immune system of jawed vertebrates, need to express one (and, preferably, only one) form of antigen receptor, i.e. the immunoglobulin or T-cell receptor (TCR), respectively. This end goal depends initially on a series of DNA cis-rearrangement events between randomly chosen units from separate clusters of V, D (at some immunoglobulin and TCR loci) and J gene segments, a biomolecular process collectively referred to as V(D)J recombination. V(D)J recombination takes place in immature T and B cells and relies on the so-called RAG nuclease, a site-specific DNA cleavage apparatus that corresponds to the lymphoid-specific moiety of the VDJ recombinase. At the genome level, this recombinase's mission presents substantial biochemical challenges. These relate to the huge distance between (some of) the gene segments that it eventually rearranges and the need to achieve cell-lineage-restricted and developmentally ordered routines with at times, mono-allelic versus bi-allelic discrimination. The entire process must be completed without any recombination errors, instigators of chromosome instability, translocation and, potentially, tumorigenesis. As expected, such a precisely choreographed and yet potentially risky process demands sophisticated controls; epigenetics demonstrates what is possible when calling upon its many facets. In this vignette, we will recall the evidence that almost from the start appeared to link the two topics, V(D)J recombination and epigenetics, before reviewing the latest advances in our knowledge of this joint venture.
Collapse
Affiliation(s)
- Sébastien Jaeger
- Centre d'Immunologie de Marseille-Luminy (CIML), Institut National de la Santé et de la Recherche Médicale (Inserm) U1104, Centre National de la Recherche Scientifique (CNRS)UMR7280, Aix-Marseille University UM2, Marseille, France
| | | | | |
Collapse
|
8
|
Shrimali S, Srivastava S, Varma G, Grinberg A, Pfeifer K, Srivastava M. An ectopic CTCF-dependent transcriptional insulator influences the choice of Vβ gene segments for VDJ recombination at TCRβ locus. Nucleic Acids Res 2012; 40:7753-65. [PMID: 22718969 PMCID: PMC3439925 DOI: 10.1093/nar/gks556] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Insulators regulate transcription as they modulate the interactions between enhancers and promoters by organizing the chromatin into distinct domains. To gain better understanding of the nature of chromatin domains defined by insulators, we analyzed the ability of an insulator to interfere in VDJ recombination, a process that is critically dependent on long-range interactions between diverse types of cis-acting DNA elements. A well-established CTCF-dependent transcriptional insulator, H19 imprint control region (H19-ICR), was inserted in the mouse TCRβ locus by genetic manipulation. Analysis of the mutant mice demonstrated that the insulator retains its CTCF and position-dependent enhancer-blocking potential in this heterologous context in vivo. Remarkably, the inserted H19-ICR appears to have the ability to modulate cis-DNA interactions between recombination signal sequence elements of the TCRβ locus leading to a dramatically altered usage of Vβ segments for Vβ-to-DβJβ recombination in the mutant mice. This reveals a novel ability of CTCF to govern long range cis-DNA interactions other than enhancer-promoter interactions and suggests that CTCF-dependent insulators may play a diverse and complex role in genome organization beyond transcriptional control. Our functional analysis of mutated TCRβ locus supports the emerging role of CTCF in governing VDJ recombination.
Collapse
Affiliation(s)
- Sweety Shrimali
- National Institute of Immunology, Aruna Asaf Ali Road, New Delhi 110067, India
| | | | | | | | | | | |
Collapse
|
9
|
Mineccia M, Massari S, Linguiti G, Ceci L, Ciccarese S, Antonacci R. New insight into the genomic structure of dog T cell receptor beta (TRB) locus inferred from expression analysis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:279-293. [PMID: 22465586 DOI: 10.1016/j.dci.2012.03.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 03/16/2012] [Accepted: 03/20/2012] [Indexed: 05/31/2023]
Abstract
Here is an updated report on the genomic organization of T cell receptor beta (TRB) locus in the domestic dog (Canis lupus familiaris) as inferred from comparative genomics and expression analysis. The most interesting results we found were a second TRBD-J-C cluster, which is absent from the reference genome sequence, and the annotation of two additional TRBV genes. In dogs, TRB locus consists of a library of 37 TRBV genes positioned at the 5' end of two in tandem aligned D-J-C gene clusters, each composed of a single TRBD, 6 TRBJ and one TRBC genes, followed by a single TRBV gene with an inverted transcriptional orientation. The TRB genes are distributed in less than 300kb, making the canine locus, one of the smaller mammalian TRB locus studied so far. The small size may be ascribed to reduced gene duplication occurrences and a lower density of total interspersed repeats compared to humans and mice. Despite the low TRBV gene content, a large and diversified beta chain repertoire is displayed in the dog peripheral blood. A full usage of TRBV and TRBJ genes, including pseudogenes, and a high level of allelic polymorphism contribute to generate diversity. Finally, this study suggests that the overall TRB locus organization is evolutionarily conserved supporting the dog as a highly suited model system for immune development and diseases.
Collapse
Affiliation(s)
- Micaela Mineccia
- Dipartimento di Biologia, Universita' degli Studi di Bari Aldo Moro, Bari, Italy.
| | | | | | | | | | | |
Collapse
|
10
|
Lawson BR, Eleftheriadis T, Tardif V, Gonzalez-Quintial R, Baccala R, Kono DH, Theofilopoulos AN. Transmethylation in immunity and autoimmunity. Clin Immunol 2011; 143:8-21. [PMID: 22364920 DOI: 10.1016/j.clim.2011.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 10/18/2011] [Accepted: 10/27/2011] [Indexed: 10/14/2022]
Abstract
The activation of immune cells is mediated by a network of signaling proteins that can undergo post-translational modifications critical for their activity. Methylation of nucleic acids or proteins can have major effects on gene expression as well as protein repertoire diversity and function. Emerging data indicate that indeed many immunologic functions, particularly those of T cells, including thymic education, differentiation and effector function are highly dependent on methylation events. The critical role of methylation in immunocyte biology is further documented by evidence that autoimmune phenomena may be curtailed by methylation inhibitors. Additionally, epigenetic alterations imprinted by methylation can also exert effects on normal and abnormal immune responses. Further work in defining methylation effects in the immune system is likely to lead to a more detailed understanding of the immune system and may point to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Brian R Lawson
- The Scripps Research Institute, Department of Immunology & Microbial Science, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Brady BL, Bassing CH. Differential regulation of proximal and distal Vbeta segments upstream of a functional VDJbeta1 rearrangement upon beta-selection. THE JOURNAL OF IMMUNOLOGY 2011; 187:3277-85. [PMID: 21844384 DOI: 10.4049/jimmunol.1101079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Developmental stage-specific regulation of transcriptional accessibility helps control V(D)J recombination. Vβ segments on unrearranged TCRβ alleles are accessible in CD4(-)/CD8(-) (double-negative [DN]) thymocytes, when they recombine, and inaccessible in CD4(+)/CD8(+) (double-positive [DP]) thymocytes, when they do not rearrange. Downregulation of Vβ accessibility on unrearranged alleles is linked with Lat-dependent β-selection signals that inhibit Vβ rearrangement, stimulate Ccnd3-driven proliferation, and promote DN-to-DP differentiation. Transcription and recombination of Vβs on VDJβ-rearranged alleles in DN cells has not been studied; Vβs upstream of functional VDJβ rearrangements have been found to remain accessible, yet not recombine, in DP cells. To elucidate contributions of β-selection signals in regulating Vβ transcription and recombination on VDJβ-rearranged alleles, we analyzed wild-type, Ccnd3(-/-), and Lat(-/-) mice containing a preassembled functional Vβ1DJCβ1 (Vβ1(NT)) gene. Vβ10 segments located just upstream of this VDJCβ1 gene were the predominant germline Vβs that rearranged in Vβ1(NT/NT) and Vβ1(NT/NT)Ccnd3(-/-) thymocytes, whereas Vβ4 and Vβ16 segments located further upstream rearranged at similar levels as Vβ10 in Vβ1(NT/NT)Lat(-/-) DN cells. We previously showed that Vβ4 and Vβ16, but not Vβ10, are transcribed on Vβ1(NT) alleles in DP thymocytes; we now demonstrate that Vβ4, Vβ16, and Vβ10 are transcribed at similar levels in Vβ1(NT/NT)Lat(-/-) DN cells. These observations indicate that suppression of Vβ rearrangements is not dependent on Ccnd3-driven proliferation, and DN residence can influence the repertoire of Vβs that recombine on alleles containing an assembled VDJCβ1 gene. Our findings also reveal that β-selection can differentially silence rearrangement of germline Vβ segments located proximal and distal to functional VDJβ genes.
Collapse
Affiliation(s)
- Brenna L Brady
- Immunology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
12
|
Schatz DG, Ji Y. Recombination centres and the orchestration of V(D)J recombination. Nat Rev Immunol 2011; 11:251-63. [PMID: 21394103 DOI: 10.1038/nri2941] [Citation(s) in RCA: 420] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The initiation of V(D)J recombination by the recombination activating gene 1 (RAG1) and RAG2 proteins is carefully orchestrated to ensure that antigen receptor gene assembly occurs in the appropriate cell lineage and in the proper developmental order. Here we review recent advances in our understanding of how DNA binding and cleavage by the RAG proteins are regulated by the chromatin structure and architecture of antigen receptor genes. These advances suggest novel mechanisms for both the targeting and the mistargeting of V(D)J recombination, and have implications for how these events contribute to genome instability and lymphoid malignancy.
Collapse
Affiliation(s)
- David G Schatz
- Department of Immunobiology and Howard Hughes Medical Institute, Yale University School of Medicine, 300 Cedar Street, Box 208011, New Haven, Connecticut 06520-8011, USA.
| | | |
Collapse
|
13
|
Ji Y, Little AJ, Banerjee JK, Hao B, Oltz EM, Krangel MS, Schatz DG. Promoters, enhancers, and transcription target RAG1 binding during V(D)J recombination. ACTA ACUST UNITED AC 2010; 207:2809-16. [PMID: 21115692 PMCID: PMC3005232 DOI: 10.1084/jem.20101136] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
RAG1 binding to TCR gene elements is dictated by transcriptional control elements and by transcription itself; these findings provide direct confirmation of the long-held accessibility model. V(D)J recombination assembles antigen receptor genes in a well-defined order during lymphocyte development. This sequential process has long been understood in the context of the accessibility model, which states that V(D)J recombination is regulated by controlling the ability of the recombination machinery to gain access to its chromosomal substrates. Indeed, many features of “open” chromatin correlate with V(D)J recombination, and promoters and enhancers have been strongly implicated in creating a recombinase-accessible configuration in neighboring chromatin. An important prediction of the accessibility model is that cis-elements and transcription control binding of the recombination-activating gene 1 (RAG1) and RAG2 proteins to their DNA targets. However, this prediction has not been tested directly. In this study, we use mutant Tcra and Tcrb alleles to demonstrate that enhancers control RAG1 binding globally at Jα or Dβ/Jβ gene segments, that promoters and transcription direct RAG1 binding locally, and that RAG1 binding can be targeted in the absence of RAG2. These findings reveal important features of the genetic mechanisms that regulate RAG binding and provide a direct confirmation of the accessibility model.
Collapse
Affiliation(s)
- Yanhong Ji
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Sikes ML, McMillan RE, Bradshaw JM. The center of accessibility: Dβ control of V(D)J recombination. Arch Immunol Ther Exp (Warsz) 2010; 58:427-33. [PMID: 20890731 DOI: 10.1007/s00005-010-0101-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 07/23/2010] [Indexed: 12/26/2022]
Abstract
Developmental patterning of antigen receptor gene assembly in lymphocyte precursors correlates with decondensation of the chromatin surrounding individual gene segments. Ongoing V(D)J recombination is associated with hyperacetylation of histones H3 and H4 and the expression of sterile germline transcripts across the region of recombinational accessibility. Likewise, histone acetyltransferase and SWI/SNF chromatin remodeling complexes each appear to be required for recombination, and the PHD-finger of RAG-2 preferentially associates with recombination signal sequence (RSS) chromatin that contains H3 trimethylated on lysine 4. However, the regulatory mechanisms that direct chromatin alteration and rearrangement have proven elusive, due in large part to the interdependency of individual stages in gene activation, our limited understanding of functional significance of changes to the histone code, and the difficulty of modeling recombinational accessibility in existing experimental systems. Examining Tcrb assembly in developing thymocytes, we review the central roles of RSS elements and germline promoters as foci for epigenetic reorganization of recombinationally accessible gene segments in light of recent findings and persistent questions.
Collapse
Affiliation(s)
- Michael L Sikes
- Department of Microbiology, North Carolina State University, 100 Derieux Place, Campus Box 7615, Raleigh, NC 27695, USA.
| | | | | |
Collapse
|
15
|
Abstract
V(D)J recombination assembles antigen receptor genes from germline V, D and J segments during lymphocyte development. In αβT-cells, this leads to the subsequent expression of T-cell receptor (TCR) β and α chains. Generally, V(D)J recombination is closely controlled at various levels, including cell-type and cell-stage specificities, order of locus/gene segment recombination, and allele usage to mediate allelic exclusion. Many of these controls rely on the modulation of gene accessibility to the recombination machinery, involving not only biochemical changes in chromatin arrangement and structural modifications of chromosomal organization and positioning, but also the refined composition of the recombinase targets, the so-called recombination signal sequences. Here, we summarize current knowledge regarding the regulation of V(D)J recombination at the Tcrb gene locus, certainly one for which these various levels of control and regulatory components have been most extensively investigated.
Collapse
|
16
|
Brady BL, Oropallo MA, Yang-Iott KS, Serwold T, Hochedlinger K, Jaenisch R, Weissman IL, Bassing CH. Position-dependent silencing of germline Vß segments on TCRß alleles containing preassembled VßDJßCß1 genes. THE JOURNAL OF IMMUNOLOGY 2010; 185:3564-73. [PMID: 20709953 DOI: 10.4049/jimmunol.0903098] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The genomic organization of TCRbeta loci enables Vbeta-to-DJbeta2 rearrangements on alleles with assembled VbetaDJbetaCbeta1 genes, which could have deleterious physiologic consequences. To determine whether such Vbeta rearrangements occur and, if so, how they might be regulated, we analyzed mice with TCRbeta alleles containing preassembled functional VbetaDJbetaCbeta1 genes. Vbeta10 segments were transcribed, rearranged, and expressed in thymocytes when located immediately upstream of a Vbeta1DJbetaCbeta1 gene, but not on alleles with a Vbeta14DJbetaCbeta1 gene. Germline Vbeta10 transcription was silenced in mature alphabeta T cells. This allele-dependent and developmental stage-specific silencing of Vbeta10 correlated with increased CpG methylation and decreased histone acetylation over the Vbeta10 promoter and coding region. Transcription, rearrangement, and expression of the Vbeta4 and Vbeta16 segments located upstream of Vbeta10 were silenced on alleles containing either VbetaDJbetaCbeta1 gene; sequences within Vbeta4, Vbeta16, and the Vbeta4/Vbeta16-Vbeta10 intergenic region exhibited constitutive high CpG methylation and low histone acetylation. Collectively, our data indicate that the position of Vbeta segments relative to assembled VbetaDJbetaCbeta1 genes influences their rearrangement and suggest that DNA sequences between Vbeta segments may form boundaries between active and inactive Vbeta chromatin domains upstream of VbetaDJbetaCbeta genes.
Collapse
Affiliation(s)
- Brenna L Brady
- Immunology Graduate Group, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kondilis-Mangum HD, Cobb RM, Osipovich O, Srivatsan S, Oltz EM, Krangel MS. Transcription-dependent mobilization of nucleosomes at accessible TCR gene segments in vivo. THE JOURNAL OF IMMUNOLOGY 2010; 184:6970-7. [PMID: 20483751 DOI: 10.4049/jimmunol.0903923] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Accessibility of chromosomal recombination signal sequences to the RAG protein complex is known to be essential for V(D)J recombination at Ag receptor loci in vivo. Previous studies have addressed the roles of cis-acting regulatory elements and germline transcription in the covalent modification of nucleosomes at Ag receptor loci. However, a detailed picture of nucleosome organization at accessible and inaccessible recombination signal sequences has been lacking. In this study, we have analyzed the nucleosome organization of accessible and inaccessible Tcrb and Tcra alleles in primary murine thymocytes in vivo. We identified highly positioned arrays of nucleosomes at Dbeta, Jbeta, and Jalpha segments and obtained evidence indicating that positioning is established at least in part by the regional DNA sequence. However, we found no consistent positioning of nucleosomes with respect to recombination signal sequences, which could be nucleosomal or internucleosomal even in their inaccessible configurations. Enhancer- and promoter-dependent accessibility was characterized by diminished abundance of certain nucleosomes and repositioning of others. Moreover, some changes in nucleosome positioning and abundance at Jalpha61 were shown to be a direct consequence of germline transcription. We suggest that enhancer- and promoter-dependent transcription generates optimal recombinase substrates in which some nucleosomes are missing and others are covalently modified.
Collapse
|
18
|
Bonnet M, Huang F, Benoukraf T, Cabaud O, Verthuy C, Boucher A, Jaeger S, Ferrier P, Spicuglia S. Duality of Enhancer Functioning Mode Revealed in a Reduced TCRβ Gene Enhancer Knockin Mouse Model. THE JOURNAL OF IMMUNOLOGY 2009; 183:7939-48. [DOI: 10.4049/jimmunol.0902179] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Perlot T, Alt FW. Cis-regulatory elements and epigenetic changes control genomic rearrangements of the IgH locus. Adv Immunol 2009; 99:1-32. [PMID: 19117530 DOI: 10.1016/s0065-2776(08)00601-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Immunoglobulin variable region exons are assembled from discontinuous variable (V), diversity (D), and joining (J) segments by the process of V(D)J recombination. V(D)J rearrangements of the immunoglobulin heavy chain (IgH) locus are tightly controlled in a tissue-specific, ordered and allele-specific manner by regulating accessibility of V, D, and J segments to the recombination activating gene proteins which are the specific components of the V(D)J recombinase. In this review we discuss recent advances and established models brought forward to explain the mechanisms underlying accessibility control of V(D)J recombination, including research on germline transcripts, spatial organization, and chromatin modifications of the immunoglobulin heavy chain (IgH) locus. Furthermore, we review the functions of well-described and potential new cis-regulatory elements with regard to processes such as V(D)J recombination, allelic exclusion, and IgH class switch recombination.
Collapse
Affiliation(s)
- Thomas Perlot
- The Howard Hughes Medical Institute, The Children's Hospital, Immune Disease Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
20
|
Molecular Genetics at the T-Cell Receptor β Locus: Insights into the Regulation of V(D)J Recombination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 650:116-32. [DOI: 10.1007/978-1-4419-0296-2_10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
21
|
Temporal and spatial regulation of V(D)J recombination: interactions of extrinsic factors with the RAG complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 650:157-65. [PMID: 19731809 DOI: 10.1007/978-1-4419-0296-2_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In the course of lymphoid development, V(D)J recombination is subject to stringent locus-specific and temporal regulation. These constraints are ultimately responsible for several features peculiar to lymphoid development, including the lineage specificity of antigen receptor assembly, allelic exclusion and receptor editing. In addition, cell cycle phase-dependent regulation of V(D)J recombinase activity ensures that DNA rearrangement is completed by the appropriate mechanism of DNA repair. Regulation of V(D)J recombination involves interactions between the V(D)J recombinase--a heteromeric complex consisting of RAG-1 and RAG-2 subunits--and macromolecular assemblies extrinsic to the recombinase. This chapter will focus on those features of the recombinase itself--and in particular the RAG-2 subunit--that interact with extrinsic factors to establish patterns of temporal control and locus specificity in developing lymphocytes.
Collapse
|
22
|
Khor B, Mahowald GK, Khor K, Sleckman BP. Functional overlap in the cis-acting regulation of the V(D)J recombination at the TCRbeta locus. Mol Immunol 2008; 46:321-6. [PMID: 19070901 DOI: 10.1016/j.molimm.2008.10.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Revised: 10/27/2008] [Accepted: 10/29/2008] [Indexed: 01/25/2023]
Abstract
The second exon of lymphocyte antigen receptor genes is assembled in developing lymphocytes from component V, J and, in some cases, D gene segments through the process of V(D)J recombination. This process is initiated by an endonuclease comprised of the Rag-1 and Rag-2 proteins, collectively referred to as Rag. Rag binds to recombination signals (RSs) and catalyzes the pair-wise introduction of DNA double strand breaks (DSBs) at recombining gene segments. DNA cleavage by Rag is restricted both by intrinsic features of RSs, as well as the activity of other cis-acting elements, such as promoters and enhancers that regulate the accessibility of gene segments to Rag. In the TCRbeta locus, accessibility of the Dbeta1-Jbeta1 gene segment cluster relies on the function of an enhancer, Ebeta, and a promoter, PDbeta1. Here we demonstrate that deletion of a small genomic region containing five of the six Jbeta1 gene segments, but no known transcriptional regulatory elements, leads to a marked decrease in transcription and rearrangements involving the Dbeta1 and Jbeta1.1 gene segments. Surprisingly, point mutations in the RS of the Jbeta1.1 gene segment not only impact Rag cleavage, but also lead to diminished transcription through the Dbeta1-Jbeta1 gene segment cluster. Our findings demonstrate that cis-acting elements that regulate transcription and accessibility of the TCRbeta locus may functionally overlap with RS sequences, which are known primarily to direct Rag-mediated cleavage.
Collapse
Affiliation(s)
- Bernard Khor
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
23
|
Bassing CH, Whitlow S, Mostoslavsky R, Mostoslovasky R, Yang-Iott K, Ranganath S, Alt FW. Vbeta cluster sequences reduce the frequency of primary Vbeta2 and Vbeta14 rearrangements. Eur J Immunol 2008; 38:2564-72. [PMID: 18792409 DOI: 10.1002/eji.200838347] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
T-cell receptor (TCR) beta variable region exons are assembled from numerous gene segments in a highly ordered and regulated manner. To elucidate mechanisms and identify cis-acting elements that control Vbeta rearrangement, we generated an endogenous TCR-beta allele with only the Vbeta2, Vbeta4, and Vbeta14 segments. We found that alphabeta T lineage cells containing this Vbeta(2-4-14) allele and a wild-type TCR-beta allele developed normally, but exhibited a significant increase in Vbeta2(+) and Vbeta14(+) cells. To quantify Vbeta rearrangements on the Vbeta(2-4-14) allele, we generated alphabeta T-cell hybridomas and analyzed TCR-beta rearrangements. Despite the deletion of almost all Vbeta segments and 234 kb of Vbeta cluster sequences, the Vbeta(2-4-14) allele exhibited only a slight decrease in Vbeta rearrangement as compared with the wild-type TCR-beta allele. Thus, cis-acting control elements essential for directing Vbeta rearrangement across large chromosomal distances are not located within the Vbeta cluster. We also found a significant increase in the frequency of Vbeta rearrangements involving Vbeta2 and Vbeta14, but not Vbeta4, on the Vbeta(2-4-14) allele. Collectively, our data suggest that Vbeta cluster sequences reduce the frequency of Vbeta2 and Vbeta14 rearrangements by competing with the productive coupling of accessible Vbeta2 and Vbeta14 segments with DJbeta1 complexes.
Collapse
Affiliation(s)
- Craig H Bassing
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Du H, Ishii H, Pazin MJ, Sen R. Activation of 12/23-RSS-dependent RAG cleavage by hSWI/SNF complex in the absence of transcription. Mol Cell 2008; 31:641-9. [PMID: 18775324 PMCID: PMC4589277 DOI: 10.1016/j.molcel.2008.08.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 03/27/2008] [Accepted: 08/13/2008] [Indexed: 11/28/2022]
Abstract
Maintenance of genomic integrity during antigen receptor gene rearrangements requires (1) regulated access of the V(D)J recombinase to specific loci and (2) generation of double-strand DNA breaks only after recognition of a pair of matched recombination signal sequences (RSSs). Here we recapitulate both key aspects of regulated recombinase accessibility in a cell-free system using plasmid substrates assembled into chromatin. We show that recruitment of the SWI/SNF chromatin-remodeling complex to both RSSs increases coupled cleavage by RAG1 and RAG2 proteins. SWI/SNF functions by altering local chromatin structure in the absence of RNA polymerase II-dependent transcription or histone modifications. These observations demonstrate a direct role for cis-sequence-regulated local chromatin remodeling in RAG1/2-dependent initiation of V(D)J recombination.
Collapse
Affiliation(s)
- Hansen Du
- Laboratory of Cellular and Molecular Biology, National Institute on Aging, Baltimore, MD 21224, USA
| | | | - Michael J. Pazin
- Laboratory of Cellular and Molecular Biology, National Institute on Aging, Baltimore, MD 21224, USA
| | - Ranjan Sen
- Laboratory of Cellular and Molecular Biology, National Institute on Aging, Baltimore, MD 21224, USA
| |
Collapse
|
25
|
McMillan RE, Sikes ML. Differential activation of dual promoters alters Dbeta2 germline transcription during thymocyte development. THE JOURNAL OF IMMUNOLOGY 2008; 180:3218-28. [PMID: 18292546 DOI: 10.4049/jimmunol.180.5.3218] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Ag receptor genes are assembled through somatic rearrangements of V, D, and J gene segments. This process is directed in part by transcriptional enhancers and promoters positioned within each gene locus. Whereas enhancers coordinate reorganization of large chromatin stretches, promoters are predicted to facilitate the accessibility of proximal downstream gene segments. In TCR beta locus, rearrangement initiates at two D-J cassettes, each of which exhibits transcriptional activity coincident with DJ rearrangement in CD4/CD8 double-negative pro-T cells. Consistent with a model of promoter-facilitated recombination, assembly of the DJbeta1 cassette is dependent on a Dbeta1 promoter (PDbeta1) positioned immediately 5' of the D. Assembly of DJbeta2 proceeds independent from that of DJbeta1, albeit with less efficiency. To gain insight into the mechanisms that selectively alter D usage, we have defined transcriptional regulation at Dbeta2. We find that both DJbeta cassettes generate germline messages in murine CD44+CD25- double-negative 1 cells. However, transcription of unrearranged DJbeta2 initiates at multiple sites 400-550 bp downstream of the Dbeta2. Unexpectedly, loci from which germline promoter activity has been deleted by DJ rearrangement redirect transcription to sites immediately 5' of the new DJbeta2 joint. Our analyses suggest that 3'-PDbeta2 activity is largely controlled by NF-kappaB RelA, whereas 5'-PDbeta2 activity directs germline transcription of DJbeta2 joints from initiator elements 76 bp upstream of the Dbeta2 5' recombination signal sequence. The unique organization and timing of Dbeta2 promoter activity are consistent with a model in which promoter placement selectively regulates the rearrangement potential of Dbeta2 during TCR beta locus assembly.
Collapse
Affiliation(s)
- Ruth E McMillan
- Department of Microbiology, North Carolina State University, Raleigh, NC 27695, USA
| | | |
Collapse
|
26
|
Ranganath S, Carpenter AC, Gleason M, Shaw AC, Bassing CH, Alt FW. Productive coupling of accessible Vbeta14 segments and DJbeta complexes determines the frequency of Vbeta14 rearrangement. THE JOURNAL OF IMMUNOLOGY 2008; 180:2339-46. [PMID: 18250443 DOI: 10.4049/jimmunol.180.4.2339] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
To elucidate mechanisms that regulate Vbeta rearrangement, we generated and analyzed mice with a V(D)J recombination reporter cassette of germline Dbeta-Jbeta segments inserted into the endogenous Vbeta14 locus (Vbeta14(Rep)). As a control, we first generated and analyzed mice with the same Dbeta-Jbeta cassette targeted into the generally expressed c-myc locus (c-myc(Rep)). Substantial c-myc(Rep) recombination occurred in both T and B cells and initiated concurrently with endogenous Dbeta to Jbeta rearrangements in thymocytes. In contrast, Vbeta14(Rep) recombination was restricted to T cells and initiated after endogenous Dbeta to Jbeta rearrangements, but concurrently with endogenous Vbeta14 rearrangements. Thus, the local chromatin environment imparts lineage and developmental stage-specific accessibility upon the inserted reporter. Although Vbeta14 rearrangements occur on only 5% of endogenous TCRbeta alleles, the Vbeta14(Rep) cassette underwent rearrangement on 80-90% of alleles, supporting the suggestion that productive coupling of accessible Vbeta14 segments and DJbeta complexes influence the frequency of Vbeta14 rearrangements. Strikingly, Vbeta14(Rep) recombination also occurs on TCRbeta alleles lacking endogenous Vbeta to DJbeta rearrangements, indicating that Vbeta14 accessibility per se is not subject to allelic exclusion.
Collapse
Affiliation(s)
- Sheila Ranganath
- Howard Hughes Medical Institute, The Children's Hospital, CBR Institute for Biomedical Research, and Department of Genetics, Harvard University Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
27
|
Antonacci R, Di Tommaso S, Lanave C, Cribiu EP, Ciccarese S, Massari S. Organization, structure and evolution of 41kb of genomic DNA spanning the D-J-C region of the sheep TRB locus. Mol Immunol 2008; 45:493-509. [PMID: 17673294 DOI: 10.1016/j.molimm.2007.05.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 05/21/2007] [Indexed: 11/19/2022]
Abstract
A genomic region of 41,045 bp encompassing the 3'-end of the sheep T cell receptor beta chain was sequenced. Extensive molecular analysis has revealed that this region retains a unique structural feature for the presence of a third D-J-C cluster, never detected in any other mammalian species examined so far. A total of 3 TRBD, 18 TRBJ and 3 substantially identical TRBC genes were identified in about 28kb. At 13kb, downstream from the last TRBC gene, in an inverted transcriptional orientation, lies a TRBV gene. Sequence comparison and phylogenetic analyses have demonstrated that the extra D-J-C cluster originated from an unequal crossing over between the two ancestral TRBC genes. Interspersed repeats spanning 22.2% of the sequence, contribute to the wider size of the sheep TRB locus with respect to the other mammalian counterparts, without modifying the general genomic architecture. The nucleotide and predicted amino acid sequences from peripheral T cells cDNA clones indicated that the genes from cluster 3 are fully implicated in the beta chain recombination machinery. Closer inspections of the transcripts have also shown that inter-cluster rearrangements and splice variants, involving the additional cluster, increase the functional diversity of the sheep beta chain repertoire.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Pairing
- Base Sequence
- Chromosomes, Artificial, Bacterial
- Clone Cells
- DNA/chemistry
- DNA/genetics
- Evolution, Molecular
- Exons/genetics
- Genes, T-Cell Receptor beta
- Genes, T-Cell Receptor delta
- Genome/genetics
- Humans
- Introns/genetics
- Molecular Sequence Data
- Phylogeny
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Sequence Alignment
- Sheep/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- R Antonacci
- Dipartimento di Genetica e Microbiologia, Universita' degli Studi di Bari, Italy.
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Lymphoid cell development is an ordered process that begins in the embryo in specific sites and progresses through multiple differentiative steps to production of T- and B-cells. Lymphoid cell production is marked by the rearrangement process, which gives rise to mature cells expressing antigen-specific T-cell receptors (TCR) and immunoglobulins (Ig). While most transcripts arising from TCR or Ig loci reflect fully rearranged genes, germline transcripts have been identified, but these have always been thought to have no specific purpose. Germline transcription from either unrearranged TCR or unrearranged Ig loci was commonly associated with an open chromatin configuration during VDJ recombination. Since only early T and B cells undergo rearrangement, the association of germline transcription with the rearrangement process has served as an appropriate explanation for expression of these transcripts in early T- and B-cell progenitors. However, germline TCR-V beta 8.2 transcripts have now been identified in cells from RAG(-/-) mice, in the absence of the VDJ rearrangement event and recombinase activity. Recent data now suggest that germline TCR-V beta transcription is a developmentally regulated lymphoid cell phenomenon. Germline transcripts could also encode a protein that plays a functional role during lymphoid cell development. In the least, germline transcripts serve as markers of early lymphoid progenitors.
Collapse
|
29
|
Osipovich O, Cobb RM, Oestreich KJ, Pierce S, Ferrier P, Oltz EM. Essential function for SWI-SNF chromatin-remodeling complexes in the promoter-directed assembly of Tcrb genes. Nat Immunol 2007; 8:809-16. [PMID: 17589511 DOI: 10.1038/ni1481] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 05/22/2007] [Indexed: 11/09/2022]
Abstract
The assembly of genes encoding antigen receptors is regulated by developmental changes in chromatin that either permit or deny access to a single variable-(diversity)-joining recombinase. These changes are guided by transcriptional promoters and enhancers, which serve as accessibility-control elements in antigen-receptor loci. The function of each accessibility-control element and the factors they recruit to remodel chromatin remain obscure. Here we show that the recruitment of SWI-SNF chromatin-remodeling complexes compensated for the accessibility-control element function of a promoter but not an enhancer of the T cell receptor-beta locus (Tcrb). Loss of SWI-SNF function in thymocytes inactivated recombinase targets at the endogenous Tcrb locus. Thus, initiation of Tcrb gene assembly and T cell development is contingent on the recruitment of SWI-SNF to promoters, which exposes gene segments to variable-(diversity)-joining recombinase.
Collapse
Affiliation(s)
- Oleg Osipovich
- Department of Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
30
|
Bolland DJ, Wood AL, Afshar R, Featherstone K, Oltz EM, Corcoran AE. Antisense intergenic transcription precedes Igh D-to-J recombination and is controlled by the intronic enhancer Emu. Mol Cell Biol 2007; 27:5523-33. [PMID: 17526723 PMCID: PMC1952079 DOI: 10.1128/mcb.02407-06] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
V(D)J recombination is believed to be regulated by alterations in chromatin accessibility to the recombinase machinery, but the mechanisms responsible remain unclear. We previously proposed that antisense intergenic transcription, activated throughout the mouse Igh VH region in pro-B cells, remodels chromatin for VH-to-DJH recombination. Using RNA fluorescence in situ hybridization, we now show that antisense intergenic transcription occurs throughout the Igh DHJH region before D-to-J recombination, indicating that this is a widespread process in V(D)J recombination. Transcription initiates near the Igh intronic enhancer Emu and is abrogated in mice lacking this enhancer, indicating that Emu regulates DH antisense transcription. Emu was recently demonstrated to regulate DH-to-JH recombination of the Igh locus. Together, these data suggest that Emu controls DH-to-JH recombination by activating this form of germ line Igh transcription, thus providing a long-range, processive mechanism by which Emu can regulate chromatin accessibility throughout the DH region. In contrast, Emu deletion has no effect on VH antisense intergenic transcription, which is rarely associated with DH antisense transcription, suggesting differential regulation and separate roles for these processes at sequential stages of V(D)J recombination. These results support a directive role for antisense intergenic transcription in enabling access to the recombination machinery.
Collapse
Affiliation(s)
- Daniel J Bolland
- Laboratory of Chromatin and Gene Expression, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | | | | | | | | | | |
Collapse
|
31
|
Espinoza CR, Feeney AJ. Chromatin accessibility and epigenetic modifications differ between frequently and infrequently rearranging VH genes. Mol Immunol 2007; 44:2675-85. [PMID: 17218014 PMCID: PMC2570232 DOI: 10.1016/j.molimm.2006.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 11/16/2006] [Accepted: 12/06/2006] [Indexed: 11/30/2022]
Abstract
The molecular mechanisms that control the temporal and lineage-specific accessibility, as well as the rearrangement frequency of V(H) genes for V(H)-to-DJ(H) recombination, are not fully understood. We previously found a positive correlation between the extent of histone acetylation and the differential rearrangement frequency of individual V(H) genes. Here, we demonstrated that poorly rearranging V(H) genes are more highly associated with histone H3 dimethylated at lysine 9, a marker of repressive chromatin, than frequently rearranging V(H) genes. We also observed a positive relationship between the differential binding of Pax5 to individual V(H)S107 genes and rearrangement frequency. Furthermore, we showed that accessibility of the regions flanking the Pax5 binding site and the recombination signal sequence (RSS) to restriction enzyme cleavage correspond with the differential rearrangement frequency of the V(H)S107 family members. In addition, we found that the CpG sites located in the coding regions of V(H) genes are methylated in general, while the extent of DNA methylation drops dramatically near the RSS. For the V(H)S107 family, one CpG site located 101bp upstream of the RSS showed variable methylation that correlates with rearrangement frequency, and the methylation status of a CpG site located 34bp downstream of the RSS could also favor the rearrangement of V1 over V11. These findings suggest that the extent of histone modifications, chromatin accessibility, DNA methylation, as well as the differential binding of Pax5 to V(H) coding regions, could all influence the rearrangement frequency of individual V(H) genes, although some of these mechanisms are not strictly B cell specific.
Collapse
Affiliation(s)
- Celia R Espinoza
- The Scripps Research Institute, Department of Immunology IMM-22, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
32
|
Pawlitzky I, Angeles CV, Siegel AM, Stanton ML, Riblet R, Brodeur PH. Identification of a candidate regulatory element within the 5' flanking region of the mouse Igh locus defined by pro-B cell-specific hypersensitivity associated with binding of PU.1, Pax5, and E2A. THE JOURNAL OF IMMUNOLOGY 2006; 176:6839-51. [PMID: 16709844 DOI: 10.4049/jimmunol.176.11.6839] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Igh locus is controlled by cis-acting elements, including Emu and the 3' IgH regulatory region which flank the C region genes within the well-studied 3' part of the locus. Although the presence of additional control elements has been postulated to regulate rearrangements of the VH gene array that extends to the 5' end of the locus, the 5' border of Igh and its flanking region have not been characterized. To facilitate the analysis of this unexplored region and to identify potential novel control elements, we physically mapped the most D-distal VH segments and scanned 46 kb of the immediate 5' flanking region for DNase I hypersensitive sites. Our studies revealed a cluster of hypersensitive sites 30 kb upstream of the most 5' VH gene. Detection of one site, HS1, is restricted to pro-B cell lines and HS1 is accessible to restriction enzyme digestion exclusively in normal pro-B cells, the stage defined by actively rearranging Igh-V loci. Sequence motifs within HS1 for PU.1, Pax5, and E2A bind these proteins in vitro and these factors are recruited to HS1 sequence only in pro-B cells. Transient transfection assays indicate that the Pax5 binding site is required for the repression of transcriptional activity of HS1-containing constructs. Thus, our characterization of the region 5' of the VH gene cluster demonstrated the presence of a single cluster of DNase I hypersensitive sites within the 5' flanking region, and identified a candidate Igh regulatory region defined by pro-B cell-specific hypersensitivity and interaction with factors implicated in regulating VDJ recombination.
Collapse
Affiliation(s)
- Inka Pawlitzky
- Immunology Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | | | |
Collapse
|
33
|
Maës J, Chappaz S, Cavelier P, O'Neill L, Turner B, Rougeon F, Goodhardt M. Activation of V(D)J recombination at the IgH chain JH locus occurs within a 6-kilobase chromatin domain and is associated with nucleosomal remodeling. THE JOURNAL OF IMMUNOLOGY 2006; 176:5409-17. [PMID: 16622008 DOI: 10.4049/jimmunol.176.9.5409] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IgH genes are assembled during early B cell development by a series of regulated DNA recombination reactions in which DH and JH segments are first joined followed by V(H) to DJH rearrangement. Recent studies have highlighted the role of chromatin structure in the control of V(D)J recombination. In this study, we show that, in murine pro-B cell precursors, the JH segments are located within a 6-kb DNase I-sensitive chromatin domain containing acetylated histones H3 and H4, which is delimited 5' by the DQ52 promoter element and 3' by the intronic enhancer. Within this domain, the JH segments are covered by phased nucleosomes. High-resolution mapping of nucleosomes reveals that, in pro-B cells, unlike recombination refractory nonlymphoid cells, the recombination signal sequences flanking the four JH segments are located in regions of enhanced micrococcal nuclease and restriction enzyme accessibility, corresponding to either nucleosome-free regions or DNA rendered accessible within a nucleosome. These results support the idea that nucleosome remodeling provides an additional level of control in the regulation of Ig locus accessibility to recombination factors in B cell precursors.
Collapse
Affiliation(s)
- Jérôme Maës
- Unité de Génétique et Biochimie du Développement, Unité de Recherche Associée Centre National de la Recherche Scientifique 1960, Département d'Immunologie, Institut Pasteur, Paris, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Krangel MS, Carabana J, Abarrategui I. Some nuts are tougher to crack than others. Immunity 2006; 24:361-3. [PMID: 16618593 DOI: 10.1016/j.immuni.2006.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this issue of Immunity, Oestreich et al. (2006) show that, during V(D)J recombination, RSSs may have distinct accessibility requirements. Some rely on an enhancer-intrinsic, general chromatin opening function, whereas others require enhancer-promoter interactions that direct local chromatin remodeling.
Collapse
Affiliation(s)
- Michael S Krangel
- Department of Immunology, P.O. Box 3010, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
35
|
Oestreich KJ, Cobb RM, Pierce S, Chen J, Ferrier P, Oltz EM. Regulation of TCRbeta gene assembly by a promoter/enhancer holocomplex. Immunity 2006; 24:381-91. [PMID: 16618597 DOI: 10.1016/j.immuni.2006.02.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 01/12/2006] [Accepted: 02/01/2006] [Indexed: 01/09/2023]
Abstract
Antigen receptor gene assembly is governed by transcriptional promoters and enhancers that communicate over large distances and modulate chromatin accessibility to V(D)J recombinase. The precise role of these cis-acting elements in opening chromatin at recombinase targets and the mechanisms underlying their crosstalk remain unclear. We show that the TCRbeta enhancer (Ebeta) directs long-range chromatin opening over both DbetaJbeta clusters. Strikingly, chromatin associated with the Dbeta1 gene segment is refractory to Ebeta-mediated opening. Accessibility at Dbeta1 is accompanied by the formation of a stable holocomplex between a Dbeta-proximal promoter and Ebeta. These findings indicate a stepwise process for Dbeta --> Jbeta recombination that relies on distinct aspects of Ebeta activity: an intrinsic function that directs general chromatin opening and a cooperative function that facilitates the assembly of a promoter/enhancer holocomplex, unmasks the Dbeta1 gene segment, and triggers TCRbeta gene assembly.
Collapse
Affiliation(s)
- Kenneth J Oestreich
- Department of Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
36
|
Afshar R, Pierce S, Bolland DJ, Corcoran A, Oltz EM. Regulation of IgH gene assembly: role of the intronic enhancer and 5'DQ52 region in targeting DHJH recombination. THE JOURNAL OF IMMUNOLOGY 2006; 176:2439-47. [PMID: 16456003 DOI: 10.4049/jimmunol.176.4.2439] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The assembly of Ag receptor genes by V(D)J recombination is regulated by transcriptional promoters and enhancers which control chromatin accessibility at Ig and TCR gene segments to the RAG-1/RAG-2 recombinase complex. Paradoxically, germline deletions of the IgH enhancer (Emu) only modestly reduce D(H)-->J(H) rearrangements when assessed in peripheral B cells. However, deletion of Emu severely impairs recombination of V(H) gene segments, which are located over 100 kb away. We now test two alternative explanations for the minimal effect of Emu deletions on primary D(H)-->J(H) rearrangement: 1) Accessibility at the D(H)J(H) cluster is controlled by a redundant cis-element in the absence of Emu. One candidate for this element lies 5' to D(Q52) (PD(Q52)) and exhibits promoter/enhancer activity in pre-B cells. 2) In contrast to endpoint B cells, D(H)-->J(H) recombination may be significantly impaired in pro-B cells from enhancer-deficient mice. To elucidate the roles of PD(Q52) and Emu in the regulation of IgH locus accessibility, we generated mice with targeted deletions of these elements. We report that the defined PD(Q52) promoter is dispensable for germline transcription and recombination of the D(H)J(H) cluster. In contrast, we demonstrate that Emu directly regulates accessibility of the D(H)J(H) region. These findings reveal a significant role for Emu in the control mechanisms that activate IgH gene assembly and suggest that impaired V(H)-->D(H)J(H) rearrangement in enhancer-deficient cells may be a downstream consequence of the primary block in D(H)-->J(H) recombination.
Collapse
Affiliation(s)
- Roshi Afshar
- Department of Microbiology/Immunology, Vanderbilt University Medical School, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
37
|
Abstract
Successful V(D)J recombination at the T-cell receptor beta (Tcrb) locus is critical for early thymocyte development. The locus is subject to a host of regulatory mechanisms that impart a strict developmental order to Tcrb recombination events and that insure that Tcrb recombination occurs in an allelically excluded fashion. Progress has been made in the understanding of the cis-acting control of Tcrb locus chromatin structure and the extent to which such accessibility control can account for the developmental regulation of Tcrb recombination. However, recent studies in our laboratory and elsewhere have made it abundantly clear that accessibility control is only part of the story, and multiple additional mechanisms impact both the developmental activation and inactivation of locus recombination events. Here we evaluate our current understanding of developmental regulation at the Tcrb locus. We highlight the many unresolved issues and we discuss how recent concepts emerging from studies of other antigen receptor loci may (or may not) help to resolve these issues.
Collapse
Affiliation(s)
- Annette M Jackson
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
38
|
Dudley DD, Chaudhuri J, Bassing CH, Alt FW. Mechanism and control of V(D)J recombination versus class switch recombination: similarities and differences. Adv Immunol 2006; 86:43-112. [PMID: 15705419 DOI: 10.1016/s0065-2776(04)86002-4] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
V(D)J recombination is the process by which the variable region exons encoding the antigen recognition sites of receptors expressed on B and T lymphocytes are generated during early development via somatic assembly of component gene segments. In response to antigen, somatic hypermutation (SHM) and class switch recombination (CSR) induce further modifications of immunoglobulin genes in B cells. CSR changes the IgH constant region for an alternate set that confers distinct antibody effector functions. SHM introduces mutations, at a high rate, into variable region exons, ultimately allowing affinity maturation. All of these genomic alteration processes require tight regulatory control mechanisms, both to ensure development of a normal immune system and to prevent potentially oncogenic processes, such as translocations, caused by errors in the recombination/mutation processes. In this regard, transcription of substrate sequences plays a significant role in target specificity, and transcription is mechanistically coupled to CSR and SHM. However, there are many mechanistic differences in these reactions. V(D)J recombination proceeds via precise DNA cleavage initiated by the RAG proteins at short conserved signal sequences, whereas CSR and SHM are initiated over large target regions via activation-induced cytidine deaminase (AID)-mediated DNA deamination of transcribed target DNA. Yet, new evidence suggests that AID cofactors may help provide an additional layer of specificity for both SHM and CSR. Whereas repair of RAG-induced double-strand breaks (DSBs) involves the general nonhomologous end-joining DNA repair pathway, and CSR also depends on at least some of these factors, CSR requires induction of certain general DSB response factors, whereas V(D)J recombination does not. In this review, we compare and contrast V(D)J recombination and CSR, with particular emphasis on the role of the initiating enzymes and DNA repair proteins in these processes.
Collapse
Affiliation(s)
- Darryll D Dudley
- Howard Hughes Medical Institute, The Children's Hospital Boston, CBR Institute for Biomedical Research, and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
39
|
Abstract
Progenitor B lymphocytes that successfully assemble a heavy chain gene encoding an immunoglobulin capable of pairing with surrogate light chain proteins trigger their own further differentiation by signaling via the pre-BCR complex. The pre-BCR signals several rounds of proliferation and, in this expanded population, directs a complex, B cell-specific set of epigenetic changes resulting in allelic exclusion of the heavy chain locus and activation of the light chain loci for V(D)J recombination.
Collapse
Affiliation(s)
- Jamie K Geier
- UC-Berkeley, Department of Molecular & Cell Biology, Division of Immunology, 439 Life Sciences Addition, Berkeley, CA 94720-3200, USA
| | | |
Collapse
|
40
|
Abstract
Mammals contend with a universe of evolving pathogens by generating an enormous diversity of antigen receptors during lymphocyte development. Precursor B and T cells assemble functional immunoglobulin (Ig) and T cell receptor (TCR) genes via recombination of numerous variable (V), diversity (D), and joining (J) gene segments. Although this combinatorial process generates significant diversity, genetic reorganization is inherently dangerous. Thus, V(D)J recombination must be tightly regulated to ensure proper lymphocyte development and avoid chromosomal translocations that cause lymphoid tumors. Each genomic rearrangement is mediated by a common V(D)J recombinase that recognizes sequences flanking all antigen receptor gene segments. The specificity of V(D)J recombination is due, in large part, to changes in the accessibility of chromatin at target gene segments, which either permits or restricts access to recombinase. The chromatin configuration of antigen receptor loci is governed by the concerted action of enhancers and promoters, which function as accessibility control elements (ACEs). In general, ACEs act as conduits for transcription factors, which in turn recruit enzymes that covalently modify or remodel nucleosomes. These ACE-mediated alterations are critical for activation of gene segment transcription and for opening chromatin associated with recombinase target sequences. In this chapter, we describe advances in understanding the mechanisms that control V(D)J recombination at the level of chromatin accessibility. The discussion will focus on cis-acting regulation by ACEs, the nuclear factors that control ACE function, and the epigenetic modifications that establish recombinase accessibility.
Collapse
Affiliation(s)
- Robin Milley Cobb
- Department of Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | |
Collapse
|
41
|
West KL, Singha NC, De Ioannes P, Lacomis L, Erdjument-Bromage H, Tempst P, Cortes P. A direct interaction between the RAG2 C terminus and the core histones is required for efficient V(D)J recombination. Immunity 2005; 23:203-12. [PMID: 16111638 DOI: 10.1016/j.immuni.2005.07.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 06/01/2005] [Accepted: 07/13/2005] [Indexed: 11/18/2022]
Abstract
V(D)J recombination is a tightly controlled process of somatic recombination whose regulation is mediated in part by chromatin structure. Here, we report that RAG2 binds directly to the core histone proteins. The interaction with histones is observed in developing lymphocytes and within the RAG1/RAG2 recombinase complex in a manner that is dependent on the RAG2 C terminus. Amino acids within the plant homeo domain (PHD)-like domain as well as a conserved acidic stretch of the RAG2 C terminus that is considered to be a linker region are important for this interaction. Point mutations that disrupt the RAG2-histone association inhibit the efficiency of the V(D)J recombination reaction at the endogenous immunoglobulin locus, with the most dramatic effect in the V to DJ(H) rearrangement.
Collapse
Affiliation(s)
- Kelly L West
- Immunobiology Center, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The development of mature B and T cells in the lymphoid system involves a series of molecular decisions that culminate in the expression of a single antigen receptor on the cell surface, a phenomenon termed allelic exclusion. While feedback inhibition of the recombinase-activation gene proteins evidently plays an important role in the maintenance of allelic exclusion, the initial restriction of rearrangement to only one allele in each cell seems to be achieved through monoallelic epigenetic changes. Epigenetic mechanisms involved in the establishment of allelic exclusion also play a central role in other types of monoallelic expression, including X-chromosome inactivation in female cells, and parental imprinting. In all three systems, the inequality of the two alleles seems to be achieved mainly by differential DNA methylation, asynchronous DNA replication, differential chromatin modifications, unequal nuclear localization, and non-coding RNA. In this review, we discuss the unifying features among these monoallelically expressed systems and the unique characteristics displayed by each of them.
Collapse
Affiliation(s)
- Maya Goldmit
- Department of Experimental Medicine and Cancer Research, The Hebrew University Medical School, Jerusalem, Israel
| | | |
Collapse
|
43
|
Abstract
Breaking apart chromosomes is not a matter to be taken lightly. The possible negative outcomes are obvious: loss of information, unstable chromosomes, chromosomal translocations, tumorigenesis, or cell death. Utilizing DNA rearrangement to generate the desired diversity in the antigen receptor loci is a risky business, and it must be carefully controlled. In general, the regulation is so precise that the negative consequences are minimal or not apparent. They are visible only when the process of V(D)J recombination goes awry, as for example in some chromosomal translocations associated with lymphoid tumors. Regulation is imposed not only to prevent the generation of random breaks in the DNA, but also to direct rearrangement to the appropriate locus or subregion of a locus in the appropriate cell at the appropriate time. Antigen receptor rearrangement is regulated essentially at four different levels: expression of the RAG1/2 recombinase, intrinsic biochemical properties of the recombinase and the cleavage reaction, the post-cleavage /DNA repair stage of the process, and accessibility of the substrate to the recombinase. Within each of these broad categories, multiple mechanisms are used to achieve the desired aims. The major focus of this review is on accessibility control and the role of chromatin and nuclear architecture in achieving this regulation, although other issues are touched upon.
Collapse
MESH Headings
- Alleles
- Chromatin/chemistry
- DNA Repair
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation, Enzymologic
- Gene Rearrangement, B-Lymphocyte
- Gene Rearrangement, T-Lymphocyte
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Histones/chemistry
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Immunoglobulin Heavy Chains/immunology
- Nuclear Proteins
- Nucleosomes/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
Collapse
Affiliation(s)
- Marjorie A Oettinger
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
44
|
Abstract
The murine immunoglobulin (Ig) kappa locus has been intensively studied in an attempt to understand its developmentally regulated activation for both transcription and V(D)J recombination. A variety of signaling proteins, cis-acting DNA elements, and trans-acting DNA-binding proteins have been discovered and shown to be involved in the regulated changes in chromatin structure, which are associated with recombinase accessibility. In addition, key roles have been suggested for DNA methylation and replication in kappa-locus expression and rearrangement. This review summarizes data in this area and considers what studies of the murine kappa locus have revealed about the lineage specificity, order, and allelic exclusion of lymphoid V(D)J recombination.
Collapse
|
45
|
Abstract
Regulated assembly of antigen receptor gene segments to produce functional genes is a hallmark of B- and T-lymphocyte development. The immunoglobulin heavy-chain (IgH) and T-cell receptor beta-chain genes rearrange first in B and T lineages, respectively. Both loci require two recombination events to assemble functional genes; D-to-J recombination occurs first followed by V-to-DJ recombination. Despite similarities in overall rearrangement patterns, each locus has unique regulatory features. Here, we review the characteristics of IgH gene rearrangements such as developmental timing, deletion versus inversion, DH gene segment utilization, ordered recombination of VH gene segments, and feedback inhibition of rearrangement in pre-B cells. We summarize chromatin structural features of the locus before and during recombination and, wherever possible, incorporate these into working hypotheses for understanding regulation of IgH gene recombination. The picture emerges that the IgH locus is activated in discrete, independently regulated domains. A domain encompassing DH and JH gene segments is activated first, within which recombination is initiated. VH genes are activated subsequently and, in part, by interleukin-7. These observations lead to a model for feedback inhibition of IgH rearrangements.
Collapse
Affiliation(s)
- Dipanjan Chowdhury
- Laboratory of Cellular and Molecular Biology, National Institute on Aging, Baltimore, MD 21224, USA
| | | |
Collapse
|
46
|
Kaul-Ghanekar R, Majumdar S, Jalota A, Gulati N, Dubey N, Saha B, Chattopadhyay S. Abnormal V(D)J recombination of T cell receptor beta locus in SMAR1 transgenic mice. J Biol Chem 2004; 280:9450-9. [PMID: 15623522 DOI: 10.1074/jbc.m412206200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Scaffold/matrix-associated region-1-binding protein (SMAR1) specifically interacts with the MARbeta sequence, which is located 400-bp upstream of the murine TCRbeta enhancer and is highly expressed during the DP stage of thymocyte development. To further analyze the functions of SMAR1, transgenic mice were generated that express SMAR1 in a tissue-independent manner. SMAR1-overexpressing mice exhibit severely altered frequency of the T cells expressing commonly used Vbetas (Vbeta5.1/5.2 and Vbeta8.1/8.2/8.3). The rearrangements of Vbeta5.1/5.2, Vbeta8.1/8.2/8.3 loci are also reduced in SMAR1 transgenic mice. The T cells in SMAR1 transgenic mice exhibit a mild perturbation at the early DN stage. SMAR1 transgenic mice exhibit hypercellular lymph nodes and spleen accompanied with prominent architectural defects in these organs. These results indicate that SMAR1 plays an important role in the regulation of T cell development as well as V(D)J recombination besides maintaining the architecture of the lymphoid organs.
Collapse
Affiliation(s)
- Ruchika Kaul-Ghanekar
- National Center for Cell Science, Pune University Campus, Ganeshkhind, Pune 411007, India
| | | | | | | | | | | | | |
Collapse
|
47
|
Ryu CJ, Haines BB, Lee HR, Kang YH, Draganov DD, Lee M, Whitehurst CE, Hong HJ, Chen J. The T-cell receptor beta variable gene promoter is required for efficient V beta rearrangement but not allelic exclusion. Mol Cell Biol 2004; 24:7015-23. [PMID: 15282302 PMCID: PMC479718 DOI: 10.1128/mcb.24.16.7015-7023.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
To investigate the role of promoters in regulating variable gene rearrangement and allelic exclusion, we constructed mutant mice in which a 1.2-kb region of the V beta 13 promoter was either deleted (P13(-/-)) or replaced with the simian virus 40 minimal promoter plus five copies of Gal4 DNA sequences (P13(R/R)). In P13(-/-) mice, cleavage, rearrangement, and transcription of V beta 13, but not the flanking V beta gene segments, were significantly inhibited. In P13(R/R) mice, inhibition of V beta 13 rearrangement was less severe and was not associated with any apparent reduction in V beta 13 cleavage. Expression of a T-cell receptor (TCR) transgene blocked cleavages at the normal V beta 13-recombination signal sequence junction and V beta 13 coding joint formation of both wild-type and mutant V beta 13 alleles. However, a low level of aberrant V beta 13 cleavage was consistently detected, especially in TCR transgenic P13(R/R) mice. These findings suggest that the variable gene promoter is required for promoting local recombination accessibility of the associated V beta gene segment. Although the promoter is dispensable for allelic exclusion, it appears to suppress aberrant V beta cleavages during allelic exclusion.
Collapse
MESH Headings
- Alleles
- Animals
- Gene Expression Regulation
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Genes, T-Cell Receptor beta
- Mice
- Mice, Knockout
- Mutation
- Promoter Regions, Genetic
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Recombination, Genetic
- Transcription, Genetic
- Transgenes
Collapse
Affiliation(s)
- Chun Jeih Ryu
- Center for Cancer Research and Department of Biology, Massachusetts Institute for Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Autoreactive antibodies are etiologic agents in a number of autoimmune diseases. Like all other antibodies these antibodies are produced in developing B cells by V(D)J recombination in the bone marrow. Three mechanisms regulate autoreactive B cells: deletion, receptor editing, and anergy. Here we review the prevalence of autoantibodies in the initial antibody repertoire, their regulation by receptor editing, and the role of the recombinase proteins (RAG1 and RAG2) in this process.
Collapse
Affiliation(s)
- Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10021, USA.
| | | | | | | | | |
Collapse
|
49
|
Johnson K, Pflugh DL, Yu D, Hesslein DGT, Lin KI, Bothwell ALM, Thomas-Tikhonenko A, Schatz DG, Calame K. B cell-specific loss of histone 3 lysine 9 methylation in the V(H) locus depends on Pax5. Nat Immunol 2004; 5:853-61. [PMID: 15258579 PMCID: PMC1635547 DOI: 10.1038/ni1099] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Accepted: 06/23/2004] [Indexed: 12/28/2022]
Abstract
Immunoglobulin heavy chain rearrangement (V(H)-to-DJ(H)) occurs only in B cells, suggesting it is inhibited in other lineages. Here we found that in the mouse V(H) locus, methylation of lysine 9 on histone H3 (H3-K9), a mark of inactive chromatin, was present in non-B lineage cells but was absent in B cells. As others have shown that H3-K9 methylation can inhibit V(D)J recombination on engineered substrates, our data support the idea that H3-K9 methylation inhibits endogenous V(H)-to-DJ(H) recombination. We also show that Pax5, a transcription factor required for B cell commitment, is necessary and sufficient for the removal of H3-K9 methylation in the V(H) locus and provide evidence that one function of Pax5 is to remove this inhibitory modification by a mechanism of histone exchange, thus allowing B cell-specific V(H)-to-DJ(H) recombination.
Collapse
Affiliation(s)
- Kristen Johnson
- Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Osipovich O, Milley R, Meade A, Tachibana M, Shinkai Y, Krangel MS, Oltz EM. Targeted inhibition of V(D)J recombination by a histone methyltransferase. Nat Immunol 2004; 5:309-16. [PMID: 14985714 DOI: 10.1038/ni1042] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Accepted: 12/12/2003] [Indexed: 11/08/2022]
Abstract
The tissue- and stage-specific assembly of antigen receptor genes by V(D)J recombination is regulated by changes in the chromatin accessibility of target gene segments. This dynamic remodeling process is coordinated by cis-acting promoters and enhancers, which function as accessibility control elements. The basic epigenetic mechanisms that activate or repress chromatin accessibility to V(D)J recombinase remain unclear. We now demonstrate that a histone methyltransferase overrides accessibility control element function and cripples V(D)J recombination of chromosomal gene segments. The recruited histone methyltransferase induces extensive revisions in the local chromatin environment, including altered histone modifications and de novo methylation of DNA. These findings indicate a key function for histone methyltransferases in the tissue- and stage-specific suppression of antigen receptor gene assembly during lymphocyte development.
Collapse
Affiliation(s)
- Oleg Osipovich
- Department of Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | | | |
Collapse
|