1
|
Turicek DP, Wan X. Decoding autoimmunity: HLA-DQβ and type 1 diabetes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf070. [PMID: 40294373 DOI: 10.1093/jimmun/vkaf070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 04/30/2025]
Affiliation(s)
- David P Turicek
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, United States
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, United States
| | - Xiaoxiao Wan
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, United States
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, United States
| |
Collapse
|
2
|
Arshad S, Cameron B, Joglekar AV. Immunopeptidomics for autoimmunity: unlocking the chamber of immune secrets. NPJ Syst Biol Appl 2025; 11:10. [PMID: 39833247 PMCID: PMC11747513 DOI: 10.1038/s41540-024-00482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
T cells mediate pathogenesis of several autoimmune disorders by recognizing self-epitopes presented on Major Histocompatibility Complex (MHC) or Human Leukocyte Antigen (HLA) complex. The majority of autoantigens presented to T cells in various autoimmune disorders are not known, which has impeded autoantigen identification. Recent advances in immunopeptidomics have started to unravel the repertoire of antigenic epitopes presented on MHC. In several autoimmune diseases, immunopeptidomics has led to the identification of novel autoantigens and has enhanced our understanding of the mechanisms behind autoimmunity. Especially, immunopeptidomics has provided key evidence to explain the genetic risk posed by HLA alleles. In this review, we shed light on how immunopeptidomics can be leveraged to discover potential autoantigens. We highlight the application of immunopeptidomics in Type 1 Diabetes (T1D), Systemic Lupus Erythematosus (SLE), and Rheumatoid Arthritis (RA). Finally, we highlight the practical considerations of implementing immunopeptidomics successfully and the technical challenges that need to be addressed. Overall, this review will provide an important context for using immunopeptidomics for understanding autoimmunity.
Collapse
Affiliation(s)
- Sanya Arshad
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Benjamin Cameron
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alok V Joglekar
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Srivastava N, Vomund AN, Peterson OJ, Abousaway O, Li T, Kain L, Stone P, Clement CC, Sharma S, Zhang B, Liu C, Joglekar AV, Campisi L, Hsieh CS, Santambrogio L, Teyton L, Arbelaez AM, Lichti CF, Wan X. A post-translational cysteine-to-serine conversion in human and mouse insulin generates a diabetogenic neoepitope. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622538. [PMID: 39605669 PMCID: PMC11601459 DOI: 10.1101/2024.11.07.622538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Type 1 diabetes (T1D) affects a genetically susceptible population that develops autoreactive T cells attacking insulin-producing pancreatic β cells. Increasingly, neoantigens are recognized as critical drivers of this autoimmune response. Here, we report a novel insulin neoepitope generated via post-translational cysteine-to-serine conversion (C>S) in human patients, which is also seen in the autoimmune-prone non-obese diabetic (NOD) mice. This modification is driven by oxidative stress within the microenvironment of pancreatic β cells and is further amplified by T1D-relevant inflammatory cytokines, enhancing neoantigen formation in both pancreatic β cells and dendritic cells. We discover that C>S-modified insulin is specifically recognized by CD4 + T cells in human T1D patients and NOD mice. In humans with established T1D, HLA-DQ8-restricted, C>S-specific CD4 + T cells exhibit an activated memory phenotype and lack regulatory signatures. In NOD mice, these neoepitope-specific T cells can orchestrate islet infiltration and promote diabetes progression. Collectively, these data advance a concept that microenvironment-driven and context-dependent post-translational modifications (PTMs) can generate neoantigens that contribute to organ-specific autoimmunity.
Collapse
|
4
|
Hu H, Vomund AN, Peterson OJ, Srivastava N, Li T, Kain L, Beatty WL, Zhang B, Hsieh CS, Teyton L, Lichti CF, Unanue ER, Wan X. Crinophagic granules in pancreatic β cells contribute to mouse autoimmune diabetes by diversifying pathogenic epitope repertoire. Nat Commun 2024; 15:8318. [PMID: 39333495 PMCID: PMC11437215 DOI: 10.1038/s41467-024-52619-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 09/13/2024] [Indexed: 09/29/2024] Open
Abstract
Autoimmune attack toward pancreatic β cells causes permanent loss of glucose homeostasis in type 1 diabetes (T1D). Insulin secretory granules store and secrete insulin but are also thought to be tissue messengers for T1D. Here, we show that the crinophagic granules (crinosome), a minor set of vesicles formed by fusing lysosomes with the conventional insulin dense-core granules (DCG), are pathogenic in T1D development in mouse models. Pharmacological inhibition of crinosome formation in β cells delays T1D progression without affecting the dominant DCGs. Mechanistically, crinophagy inhibition diminishes the epitope repertoire in pancreatic islets, including cryptic, modified and disease-relevant epitopes derived from insulin. These unconventional insulin epitopes are largely undetectable in the MHC-II epitope repertoire of the thymus, where only canonical insulin epitopes are presented. CD4+ T cells targeting unconventional insulin epitopes display autoreactive phenotypes, unlike tolerized T cells recognizing epitopes presented in the thymus. Thus, the crinophagic pathway emerges as a tissue-intrinsic mechanism that transforms insulin from a signature thymic self-protein to a critical autoantigen by creating a peripheral-thymic mismatch in the epitope repertoire.
Collapse
Affiliation(s)
- Hao Hu
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Anthony N Vomund
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Orion J Peterson
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Neetu Srivastava
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Tiandao Li
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Lisa Kain
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
| | - Wandy L Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bo Zhang
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Chyi-Song Hsieh
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Luc Teyton
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
| | - Cheryl F Lichti
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Emil R Unanue
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaoxiao Wan
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA.
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
5
|
Sharma R, Amdare NP, Ghosh A, Schloss J, Sidney J, Garforth SJ, Lopez Y, Celikgil A, Sette A, Almo SC, DiLorenzo TP. Structural and biochemical analysis of highly similar HLA-B allotypes differentially associated with type 1 diabetes. J Biol Chem 2024; 300:107702. [PMID: 39173948 PMCID: PMC11422593 DOI: 10.1016/j.jbc.2024.107702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease involving T cell-mediated destruction of the insulin-producing beta cells in the pancreatic islets of Langerhans. CD8+ T cells, responding to beta cell peptides presented by class I major histocompatibility complex (MHC) molecules, are important effectors leading to beta cell elimination. Human leukocyte antigen (HLA) B∗39:06, B∗39:01, and B∗38:01 are closely related class I MHC allotypes that nonetheless show differential association with T1D. HLA-B∗39:06 is the most predisposing of all HLA class I molecules and is associated with early age at disease onset. B∗39:01 is also associated with susceptibility to T1D, but to a lesser extent, though differing from B∗39:06 by only two amino acids. HLA-B∗38:01, in contrast, is associated with protection from the disease. Upon identifying a peptide that binds to both HLA-B∗39:06 and B∗39:01, we determined the respective X-ray structures of the two allotypes presenting this peptide to 1.7 Å resolution. The peptide residues available for T cell receptor contact and those serving as anchors were identified. Analysis of the F pocket of HLA-B∗39:06 and B∗39:01 provided an explanation for the distinct peptide C terminus preferences of the two allotypes. Structure-based modeling of the protective HLA-B∗38:01 suggested a potential reason for its peptide preferences and its reduced propensity to present 8-mer peptides compared to B∗39:06. Notably, the three allotypes showed differential binding to peptides derived from beta cell autoantigens. Taken together, our findings should facilitate identification of disease-relevant candidate T cell epitopes and structure-guided therapeutics to interfere with peptide binding.
Collapse
Affiliation(s)
- Ruby Sharma
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Nitin P Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Agnidipta Ghosh
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jennifer Schloss
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Scott J Garforth
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yessenia Lopez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Alev Celikgil
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA; Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, La Jolla, California, USA
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA.
| | - Teresa P DiLorenzo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA; Division of Endocrinology and Diabetes, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA; Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA; Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
6
|
Dwyer AJ, Shaheen ZR, Fife BT. Antigen-specific T cell responses in autoimmune diabetes. Front Immunol 2024; 15:1440045. [PMID: 39211046 PMCID: PMC11358097 DOI: 10.3389/fimmu.2024.1440045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Autoimmune diabetes is a disease characterized by the selective destruction of insulin-secreting β-cells of the endocrine pancreas by islet-reactive T cells. Autoimmune disease requires a complex interplay between host genetic factors and environmental triggers that promote the activation of such antigen-specific T lymphocyte responses. Given the critical involvement of self-reactive T lymphocyte in diabetes pathogenesis, understanding how these T lymphocyte populations contribute to disease is essential to develop targeted therapeutics. To this end, several key antigenic T lymphocyte epitopes have been identified and studied to understand their contributions to disease with the aim of developing effective treatment approaches for translation to the clinical setting. In this review, we discuss the role of pathogenic islet-specific T lymphocyte responses in autoimmune diabetes, the mechanisms and cell types governing autoantigen presentation, and therapeutic strategies targeting such T lymphocyte responses for the amelioration of disease.
Collapse
Affiliation(s)
- Alexander J. Dwyer
- Center for Immunology, Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Zachary R. Shaheen
- Center for Immunology, Department of Pediatrics, Pediatric Rheumatology, Allergy, & Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Brian T. Fife
- Center for Immunology, Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
7
|
Kusano S, Ueda S, Oryoji D, Toyoumi A, Hashimoto-Tane A, Kishi H, Hamana H, Muraguchi A, Jin H, Arase H, Miyadera H, Kishikawa R, Yoshikai Y, Yamada H, Yamamoto K, Nishimura Y, Saito T, Sasazuki T, Yokoyama S. Contributions of the N-terminal flanking residues of an antigenic peptide from the Japanese cedar pollen allergen Cry j 1 to the T-cell activation by HLA-DP5. Int Immunol 2023; 35:447-458. [PMID: 37418020 PMCID: PMC10478803 DOI: 10.1093/intimm/dxad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
Cry j 1 is a major allergen present in Japanese cedar (Cryptomeria japonica) pollens. Peptides with the core sequence of KVTVAFNQF from Cry j 1 ('pCj1') bind to HLA-DP5 and activate Th2 cells. In this study, we noticed that Ser and Lys at positions -2 and -3, respectively, in the N-terminal flanking (NF) region to pCj1 are conserved well in HLA-DP5-binding allergen peptides. A competitive binding assay showed that the double mutation of Ser(-2) and Lys(-3) to Glu [S(P-2)E/K(P-3)E] in a 13-residue Cry j 1 peptide (NF-pCj1) decreased its affinity for HLA-DP5 by about 2-fold. Similarly, this double mutation reduced, by about 2-fold, the amount of NF-pCj1 presented on the surface of mouse antigen-presenting dendritic cell line 1 (mDC1) cells stably expressing HLA-DP5. We established NF-pCj1-specific and HLA-DP5-restricted CD4+ T-cell clones from HLA-DP5 positive cedar pollinosis (CP) patients, and analyzed their IL-2 production due to the activation of mouse TG40 cells expressing the cloned T-cell receptor by the NF-pCj1-presenting mDC1 cells. The T-cell activation was actually decreased by the S(P-2)E/K(P-3)E mutation, corresponding to the reduction in the peptide presentation by this mutation. In contrast, the affinity of NF-pCj1·HLA-DP5 for the T-cell receptor was not affected by the S(P-2)E/K(P-3)E mutation, as analyzed by surface plasmon resonance. Considering the positional and side-chain differences of these NF residues from previously reported T-cell activating sequences, the mechanisms of enhanced T-cell activation by Ser(-2) and Lys(-3) of NF-pCj1 may be novel.
Collapse
Affiliation(s)
- Seisuke Kusano
- RIKEN Structural Biology Laboratory, Yokohama 230-0045, Japan
- RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama 230-0045, Japan
| | - Sho Ueda
- Institute for Advanced Study, Kyushu University, Fukuoka 812-8582, Japan
| | - Daisuke Oryoji
- Institute for Advanced Study, Kyushu University, Fukuoka 812-8582, Japan
| | - Aya Toyoumi
- Institute for Advanced Study, Kyushu University, Fukuoka 812-8582, Japan
| | | | - Hiroyuki Kishi
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan
| | - Hiroshi Hamana
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan
| | - Atsushi Muraguchi
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan
| | - Hui Jin
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Hisashi Arase
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
- Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Hiroko Miyadera
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Research Institute, National Center for Global Health and Medicine, Chiba 272-8516, Japan
- Department of Medical Genetics, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Reiko Kishikawa
- Department of Allergology, The National Hospital Organization Fukuoka National Hospital, Fukuoka 811-1394, Japan
| | - Yasunobu Yoshikai
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Hisakata Yamada
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Ken Yamamoto
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Yasuharu Nishimura
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Takashi Saito
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Takehiko Sasazuki
- Institute for Advanced Study, Kyushu University, Fukuoka 812-8582, Japan
| | - Shigeyuki Yokoyama
- RIKEN Structural Biology Laboratory, Yokohama 230-0045, Japan
- RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama 230-0045, Japan
| |
Collapse
|
8
|
Stadinski BD, Cleveland SB, Brehm MA, Greiner DL, Huseby PG, Huseby ES. I-A g7 β56/57 polymorphisms regulate non-cognate negative selection to CD4 + T cell orchestrators of type 1 diabetes. Nat Immunol 2023; 24:652-663. [PMID: 36807641 PMCID: PMC10623581 DOI: 10.1038/s41590-023-01441-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 01/20/2023] [Indexed: 02/22/2023]
Abstract
Genetic susceptibility to type 1 diabetes is associated with homozygous expression of major histocompatibility complex class II alleles that carry specific beta chain polymorphisms. Why heterozygous expression of these major histocompatibility complex class II alleles does not confer a similar predisposition is unresolved. Using a nonobese diabetic mouse model, here we show that heterozygous expression of the type 1 diabetes-protective allele I-Ag7 β56P/57D induces negative selection to the I-Ag7-restricted T cell repertoire, including beta-islet-specific CD4+ T cells. Surprisingly, negative selection occurs despite I-Ag7 β56P/57D having a reduced ability to present beta-islet antigens to CD4+ T cells. Peripheral manifestations of non-cognate negative selection include a near complete loss of beta-islet-specific CXCR6+ CD4+ T cells, an inability to cross-prime islet-specific glucose-6-phosphatase catalytic subunit-related protein and insulin-specific CD8+ T cells and disease arrest at the insulitis stage. These data reveal that negative selection on non-cognate self-antigens in the thymus can promote T cell tolerance and protection from autoimmunity.
Collapse
Affiliation(s)
- Brian D Stadinski
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sarah B Cleveland
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Michael A Brehm
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dale L Greiner
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Priya G Huseby
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Eric S Huseby
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
9
|
Patarroyo ME, Bermudez A, Alba MP, Patarroyo MA, Suarez C, Aza-Conde J, Moreno-Vranich A, Vanegas M. Stereo electronic principles for selecting fully-protective, chemically-synthesised malaria vaccines. Front Immunol 2022; 13:926680. [DOI: 10.3389/fimmu.2022.926680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Major histocompatibility class II molecule-peptide-T-cell receptor (MHCII-p-TCR) complex-mediated antigen presentation for a minimal subunit-based, multi-epitope, multistage, chemically-synthesised antimalarial vaccine is essential for inducing an appropriate immune response. Deep understanding of this MHCII-p-TCR complex’s stereo-electronic characteristics is fundamental for vaccine development. This review encapsulates the main principles for achieving such epitopes’ perfect fit into MHC-II human (HLADRβ̞1*) or Aotus (Aona DR) molecules. The enormous relevance of several amino acids’ physico-chemical characteristics is analysed in-depth, as is data regarding a 26.5 ± 2.5Å distance between the farthest atoms fitting into HLA-DRβ1* structures’ Pockets 1 to 9, the role of polyproline II-like (PPIIL) structures having their O and N backbone atoms orientated for establishing H-bonds with specific HLA-DRβ1*-peptide binding region (PBR) residues. The importance of residues having specific charge and orientation towards the TCR for inducing appropriate immune activation, amino acids’ role and that of structures interfering with PPIIL formation and other principles are demonstrated which have to be taken into account when designing immune, protection-inducing peptide structures (IMPIPS) against diseases scourging humankind, malaria being one of them.
Collapse
|
10
|
Li W, Li R, Wang Y, Zhang Y, Tomar MS, Dai S. Calcitonin gene-related peptide is a potential autoantigen for CD4 T cells in type 1 diabetes. Front Immunol 2022; 13:951281. [PMID: 36189304 PMCID: PMC9523785 DOI: 10.3389/fimmu.2022.951281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/04/2022] [Indexed: 12/01/2022] Open
Abstract
The calcitonin gene-related peptide (CGRP) is a 37-amino acid neuropeptide with critical roles in the development of peripheral sensitization and pain. One of the CGRP family peptides, islet amyloid polypeptide (IAPP), is an important autoantigen in type 1 diabetes. Due to the high structural and chemical similarity between CGRP and IAPP, we expected that the CGRP peptide could be recognized by IAPP-specific CD4 T cells. However, there was no cross-reactivity between the CGRP peptide and the diabetogenic IAPP-reactive T cells. A set of CGRP-specific CD4 T cells was isolated from non-obese diabetic (NOD) mice. The T-cell receptor (TCR) variable regions of both α and β chains were highly skewed towards TRAV13 and TRBV13, respectively. The clonal expansion of T cells suggested that the presence of activated T cells responded to CGRP stimulation. None of the CGRP-specific CD4 T cells were able to be activated by the IAPP peptide. This established that CGRP-reactive CD4 T cells are a unique type of autoantigen-specific T cells in NOD mice. Using IAg7-CGRP tetramers, we found that CGRP-specific T cells were present in the pancreas of both prediabetic and diabetic NOD mice. The percentages of CGRP-reactive T cells in the pancreas of NOD mice were correlated to the diabetic progression. We showed that the human CGRP peptide presented by IAg7 elicited strong CGRP-specific T-cell responses. These findings suggested that CGRP is a potential autoantigen for CD4 T cells in NOD mice and probably in humans. The CGRP-specific CD4 T cells could be a unique marker for type 1 diabetes. Given the ubiquity of CGRP in nervous systems, it could potentially play an important role in diabetic neuropathy.
Collapse
Affiliation(s)
- Wei Li
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- National Health Commission (NHC) Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Ronghui Li
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- National Health Commission (NHC) Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Yang Wang
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Yan Zhang
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Munendra S. Tomar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Shaodong Dai
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
11
|
Huisman BD, Dai Z, Gifford DK, Birnbaum ME. A high-throughput yeast display approach to profile pathogen proteomes for MHC-II binding. eLife 2022; 11:e78589. [PMID: 35781135 PMCID: PMC9292997 DOI: 10.7554/elife.78589] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
T cells play a critical role in the adaptive immune response, recognizing peptide antigens presented on the cell surface by major histocompatibility complex (MHC) proteins. While assessing peptides for MHC binding is an important component of probing these interactions, traditional assays for testing peptides of interest for MHC binding are limited in throughput. Here, we present a yeast display-based platform for assessing the binding of tens of thousands of user-defined peptides in a high-throughput manner. We apply this approach to assess a tiled library covering the SARS-CoV-2 proteome and four dengue virus serotypes for binding to human class II MHCs, including HLA-DR401, -DR402, and -DR404. While the peptide datasets show broad agreement with previously described MHC-binding motifs, they additionally reveal experimentally validated computational false positives and false negatives. We therefore present this approach as able to complement current experimental datasets and computational predictions. Further, our yeast display approach underlines design considerations for epitope identification experiments and serves as a framework for examining relationships between viral conservation and MHC binding, which can be used to identify potentially high-interest peptide binders from viral proteins. These results demonstrate the utility of our approach to determine peptide-MHC binding interactions in a manner that can supplement and potentially enhance current algorithm-based approaches.
Collapse
Affiliation(s)
- Brooke D Huisman
- Koch Institute for Integrative Cancer ResearchCambridgeUnited States
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Zheng Dai
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of TechnologyCambridgeUnited States
| | - David K Gifford
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Michael E Birnbaum
- Koch Institute for Integrative Cancer ResearchCambridgeUnited States
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
| |
Collapse
|
12
|
Krovi SH, Kuchroo VK. Activation pathways that drive CD4 + T cells to break tolerance in autoimmune diseases . Immunol Rev 2022; 307:161-190. [PMID: 35142369 PMCID: PMC9255211 DOI: 10.1111/imr.13071] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/11/2022]
Abstract
Autoimmune diseases are characterized by dysfunctional immune systems that misrecognize self as non-self and cause tissue destruction. Several cell types have been implicated in triggering and sustaining disease. Due to a strong association of major histocompatibility complex II (MHC-II) proteins with various autoimmune diseases, CD4+ T lymphocytes have been thoroughly investigated for their roles in dictating disease course. CD4+ T cell activation is a coordinated process that requires three distinct signals: Signal 1, which is mediated by antigen recognition on MHC-II molecules; Signal 2, which boosts signal 1 in a costimulatory manner; and Signal 3, which helps to differentiate the activated cells into functionally relevant subsets. These signals are disrupted during autoimmunity and prompt CD4+ T cells to break tolerance. Herein, we review our current understanding of how each of the three signals plays a role in three different autoimmune diseases and highlight the genetic polymorphisms that predispose individuals to autoimmunity. We also discuss the drawbacks of existing therapies and how they can be addressed to achieve lasting tolerance in patients.
Collapse
Affiliation(s)
- Sai Harsha Krovi
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
13
|
Goldmann WH. Proteinase 3 associated with Wegener's Granulomatosis. Cell Biol Int 2021; 46:548-553. [PMID: 34957648 DOI: 10.1002/cbin.11757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/22/2021] [Indexed: 11/07/2022]
Abstract
Wegener's granulomatosis (WG) is a form of systemic vasculitis characterized by granulomatous inflammation of the upper and lower airways, vasculitis, and necrotizing glomerulonephritis. It is strongly associated with anti-neutrophil cytoplasmic antibodies against proteinase 3 (PR3-ANCAs). Various in vitro observations provided strong evidence that autoimmune PR3-ANCAs are directly involved in glomerular and vascular inflammation. However, little is known about the pathogenic significance of PR3-ANCAs in vivo. Therefore, the generation of animal models helped to validate the suggested autoimmune origin and pathophysiology in WG. To characterize and improve the models, numerous studies were carried out to elucidate the effect of mouse/rat PR3-ANCAs on neutrophil function as well as the role of CD4/CD8 in T and B cells and antibodies in the pathogenesis of the disease. Understanding the pathogenesis is therefore critical to relate these models to human studies hoping that they will be useful for better insight of Wegener's granulomatosis and the development of specific therapies for the disease. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wolfgang H Goldmann
- Department of Biophysics, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
14
|
T Cell Receptor Genotype and Ubash3a Determine Susceptibility to Rat Autoimmune Diabetes. Genes (Basel) 2021; 12:genes12060852. [PMID: 34205929 PMCID: PMC8227067 DOI: 10.3390/genes12060852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 12/20/2022] Open
Abstract
Genetic analyses of human type 1 diabetes (T1D) have yet to reveal a complete pathophysiologic mechanism. Inbred rats with a high-risk class II major histocompatibility complex (MHC) haplotype (RT1B/Du) can illuminate such mechanisms. Using T1D-susceptible LEW.1WR1 rats that express RT1B/Du and a susceptible allele of the Ubd promoter, we demonstrate that germline knockout of Tcrb-V13S1A1, which encodes the Vβ13a T cell receptor β chain, completely prevents diabetes. Using the RT1B/Du-identical LEW.1W rat, which does not develop T1D despite also having the same Tcrb-V13S1A1 β chain gene but a different allele at the Ubd locus, we show that knockout of the Ubash3a regulatory gene renders these resistant rats relatively susceptible to diabetes. In silico structural modeling of the susceptible allele of the Vβ13a TCR and its class II RT1u ligand suggests a mechanism by which a germline TCR β chain gene could promote susceptibility to T1D in the absence of downstream immunoregulation like that provided by UBASH3A. Together these data demonstrate the critical contribution of the Vβ13a TCR to the autoimmune synapse in T1D and the regulation of the response by UBASH3A. These experiments dissect the mechanisms by which MHC class II heterodimers, TCR and regulatory element interact to induce autoimmunity.
Collapse
|
15
|
Reed BK, Kappler JW. Hidden in Plain View: Discovery of Chimeric Diabetogenic CD4 T Cell Neo-Epitopes. Front Immunol 2021; 12:669986. [PMID: 33986758 PMCID: PMC8111216 DOI: 10.3389/fimmu.2021.669986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/01/2021] [Indexed: 11/13/2022] Open
Abstract
The T cell antigens driving autoimmune Type 1 Diabetes (T1D) have been pursued for more than three decades. When diabetogenic CD4 T cell clones and their relevant MHCII antigen presenting alleles were first identified in rodents and humans, the path to discovering the peptide epitopes within pancreatic beta cell proteins seemed straightforward. However, as experimental results accumulated, definitive data were often absent or controversial. Work within the last decade has helped to clear up some of the controversy by demonstrating that a number of the important MHCII presented epitopes are not encoded in the natural beta cell proteins, but in fact are fusions between peptide fragments derived from the same or different proteins. Recently, the mechanism for generating these MHCII diabetogenic chimeric epitopes has been attributed to a form of reverse proteolysis, called transpeptidation, a process that has been well-documented in the production of MHCI presented epitopes. In this mini-review we summarize these data and their implications for T1D and other autoimmune responses.
Collapse
Affiliation(s)
- Brendan K Reed
- Research Division, Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO, United States.,Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States.,Department of Immunology and Microbiology, University of Colorado, Aurora, CO, United States
| | - John W Kappler
- Research Division, Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO, United States.,Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States.,Department of Immunology and Microbiology, University of Colorado, Aurora, CO, United States.,Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO, United States
| |
Collapse
|
16
|
Vomund AN, Lichti CF, Peterson OJ, Arbelaez AM, Wan X, Unanue ER. Blood leukocytes recapitulate diabetogenic peptide-MHC-II complexes displayed in the pancreatic islets. J Exp Med 2021; 218:211955. [PMID: 33822842 PMCID: PMC8034384 DOI: 10.1084/jem.20202530] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/29/2021] [Accepted: 03/09/2021] [Indexed: 12/28/2022] Open
Abstract
Assessing the self-peptides presented by susceptible major histocompatibility complex (MHC) molecules is crucial for evaluating the pathogenesis and therapeutics of tissue-specific autoimmune diseases. However, direct examination of such MHC-bound peptides displayed in the target organ remains largely impractical. Here, we demonstrate that the blood leukocytes from the nonobese diabetic (NOD) mice presented peptide epitopes to autoreactive CD4 T cells. These peptides were bound to the autoimmune class II MHC molecule (MHC-II) I-Ag7 and originated from insulin B-chain and C-peptide. The presentation required a glucose challenge, which stimulated the release of the insulin peptides from the pancreatic islets. The circulating leukocytes, especially the B cells, promptly captured and presented these peptides. Mass spectrometry analysis of the leukocyte MHC-II peptidome revealed a series of β cell–derived peptides, with identical sequences to those previously identified in the islet MHC-II peptidome. Thus, the blood leukocyte peptidome echoes that found in islets and serves to identify immunogenic peptides in an otherwise inaccessible tissue.
Collapse
Affiliation(s)
- Anthony N Vomund
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Cheryl F Lichti
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO.,Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO
| | - Orion J Peterson
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Ana Maria Arbelaez
- Division of Endocrinology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Xiaoxiao Wan
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO.,Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO
| | - Emil R Unanue
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO.,Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
17
|
Dong M, Audiger C, Adegoke A, Lebel MÈ, Valbon SF, Anderson CC, Melichar HJ, Lesage S. CD5 levels reveal distinct basal T-cell receptor signals in T cells from non-obese diabetic mice. Immunol Cell Biol 2021; 99:656-667. [PMID: 33534942 DOI: 10.1111/imcb.12443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/11/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022]
Abstract
Type 1 diabetes in non-obese diabetic (NOD) mice occurs when autoreactive T cells eliminate insulin producing pancreatic β cells. While extensively studied in T-cell receptor (TCR) transgenic mice, the contribution of alterations in thymic selection to the polyclonal T-cell pool in NOD mice is not yet resolved. The magnitude of signals downstream of TCR engagement with self-peptide directs the development of a functional T-cell pool, in part by ensuring tolerance to self. TCR interactions with self-peptide are also necessary for T-cell homeostasis in the peripheral lymphoid organs. To identify differences in TCR signal strength that accompany thymic selection and peripheral T-cell maintenance, we compared CD5 levels, a marker of basal TCR signal strength, on immature and mature T cells from autoimmune diabetes-prone NOD and -resistant B6 mice. The data suggest that there is no preferential selection of NOD thymocytes that perceive stronger TCR signals from self-peptide engagement. Instead, NOD mice have an MHC-dependent increase in CD4+ thymocytes and mature T cells that express lower levels of CD5. In contrast, T cell-intrinsic mechanisms lead to higher levels of CD5 on peripheral CD8+ T cells from NOD relative to B6 mice, suggesting that peripheral CD8+ T cells with higher basal TCR signals may have survival advantages in NOD mice. These differences in the T-cell pool in NOD mice may contribute to the development or progression of autoimmune diabetes.
Collapse
Affiliation(s)
- Mengqi Dong
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada.,Département de microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Cindy Audiger
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada.,Département de microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Adeolu Adegoke
- Departments of Surgery, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Marie-Ève Lebel
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada.,Département de microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Stefanie F Valbon
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada.,Département de microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Colin C Anderson
- Departments of Surgery and Medical Microbiology & Immunology, Alberta Diabetes Institute, Alberta Transplant Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Heather J Melichar
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada.,Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Sylvie Lesage
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada.,Département de microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
18
|
The MHC-II peptidome of pancreatic islets identifies key features of autoimmune peptides. Nat Immunol 2020; 21:455-463. [PMID: 32152506 PMCID: PMC7117798 DOI: 10.1038/s41590-020-0623-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/03/2020] [Indexed: 12/11/2022]
Abstract
The nature of autoantigens that trigger autoimmune diseases has been much discussed, but direct biochemical identification is lacking for most. Addressing this question demands unbiased examination of the self-peptides displayed by a defined autoimmune major histocompatibility complex class II (MHCII) molecule. Here we examined the immunopeptidome of the pancreatic islets in non-obese diabetic (NOD) mice, which spontaneously develop autoimmune diabetes based on the I-Ag7 variant of MHCII. The relevant peptides that induced pathogenic CD4+ T cells at the initiation of diabetes derived from proinsulin. These peptides were also found in the MHCII peptidome of the pancreatic lymph nodes and spleen. The proinsulin-derived peptides followed a trajectory from their generation and exocytosis in β cells, to uptake and presentation in islets and peripheral sites. Such a pathway generated conventional epitopes but also resulted in the presentation of post-translationally modified peptides, including deamidated sequences. These analyses reveal the key features of a restricted component in the self-MHCII peptidome that caused autoreactivity.
Collapse
|
19
|
Gioia L, Holt M, Costanzo A, Sharma S, Abe B, Kain L, Nakayama M, Wan X, Su A, Mathews C, Chen YG, Unanue E, Teyton L. Position β57 of I-A g7 controls early anti-insulin responses in NOD mice, linking an MHC susceptibility allele to type 1 diabetes onset. Sci Immunol 2019; 4:eaaw6329. [PMID: 31471352 PMCID: PMC6816460 DOI: 10.1126/sciimmunol.aaw6329] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022]
Abstract
The class II region of the major histocompatibility complex (MHC) locus is the main contributor to the genetic susceptibility to type 1 diabetes (T1D). The loss of an aspartic acid at position 57 of diabetogenic HLA-DQβ chains supports this association; this single amino acid change influences how TCRs recognize peptides in the context of HLA-DQ8 and I-Ag7 using a mechanism termed the P9 switch. Here, we built register-specific insulin peptide MHC tetramers to examine CD4+ T cell responses to Ins12-20 and Ins13-21 peptides during the early prediabetic phase of disease in nonobese diabetic (NOD) mice. A single-cell analysis of anti-insulin CD4+ T cells performed in 6- and 12-week-old NOD mice revealed tissue-specific gene expression signatures. TCR signaling and clonal expansion were found only in the islets of Langerhans and produced either classical TH1 differentiation or an unusual Treg phenotype, independent of TCR usage. The early phase of the anti-insulin response was dominated by T cells specific for Ins12-20, the register that supports a P9 switch mode of recognition. The presence of the P9 switch was demonstrated by TCR sequencing, reexpression, mutagenesis, and functional testing of TCRαβ pairs in vitro. Genetic correction of the I-Aβ57 mutation in NOD mice resulted in the disappearance of D/E residues in the CDR3β of anti-Ins12-20 T cells. These results provide a mechanistic molecular explanation that links the characteristic MHC class II polymorphism of T1D with the recognition of islet autoantigens and disease onset.
Collapse
Affiliation(s)
- Louis Gioia
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marie Holt
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Anne Costanzo
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Siddhartha Sharma
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Brian Abe
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lisa Kain
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Maki Nakayama
- Department of Pediatrics and Department of Immunology and Microbiology, Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Denver, CO 80045, USA
| | - Xiaoxiao Wan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew Su
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Clayton Mathews
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yi-Guang Chen
- University of Florida College of Medicine, Gainesville, FL 32611, USA
| | - Emil Unanue
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Luc Teyton
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
20
|
Unanue ER, Wan X. The Immunoreactive Platform of the Pancreatic Islets Influences the Development of Autoreactivity. Diabetes 2019; 68:1544-1551. [PMID: 31331989 PMCID: PMC6692819 DOI: 10.2337/dbi18-0048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/27/2019] [Indexed: 01/23/2023]
Abstract
Tissue homeostasis is maintained through a finely tuned balance between the immune system and the organ-resident cells. Disruption of this process not only results in organ dysfunction but also may trigger detrimental autoimmune responses. The islet of Langerhans consists of the insulin-producing β-cells essential for proper control of body metabolism, but less appreciated is that these cells naturally interact with the immune system, forming a platform by which the β-cell products are sensed, processed, and responded to by the local immune cells, particularly the islet-resident macrophages. Although its physiological outcomes are not completely understood, this immunoreactive platform is crucial for precipitating islet autoreactivity in individuals carrying genetic risks, leading to the development of type 1 diabetes. In this Perspective, we summarize recent studies that examine the cross talk between the β-cells and various immune components, with a primary focus on discussing how antigenic information generated during normal β-cell catabolism can be delivered to the resident macrophage and further recognized by the adaptive CD4 T-cell system, a critical step to initiate autoimmune diabetes. The core nature of the islet immune platform can be extrapolated to other endocrine tissues and may represent a common mechanism underlying the development of autoimmune syndromes influencing multiple endocrine organs.
Collapse
Affiliation(s)
- Emil R Unanue
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Xiaoxiao Wan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
21
|
Transgenic substitution with Greater Amberjack Seriola dumerili fish insulin 2 in NOD mice reduces beta cell immunogenicity. Sci Rep 2019; 9:4965. [PMID: 30899071 PMCID: PMC6428854 DOI: 10.1038/s41598-019-40768-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/14/2019] [Indexed: 11/08/2022] Open
Abstract
Type I diabetes (T1D) is caused by immune-mediated destruction of pancreatic beta cells. This process is triggered, in part, by specific (aa 9–23) epitopes of the insulin Β chain. Previously, fish insulins were used clinically in patients allergic to bovine or porcine insulin. Fish and human insulin differ by two amino acids in the critical immunogenic region (aa 9–23) of the B chain. We hypothesized that β cells synthesizing fish insulin would be less immunogenic in a mouse model of T1D. Transgenic NOD mice in which Greater Amberjack fish (Seriola dumerili) insulin was substituted for the insulin 2 gene were generated (mouse Ins1−/− mouse Ins2−/− fish Ins2+/+). In these mice, pancreatic islets remained free of autoimmune attack. To determine whether such reduction in immunogenicity is sufficient to protect β cells from autoimmunity upon transplantation, we transplanted fish Ins2 transgenic (expressing solely Seriola dumerili Ins2), NOD, or B16:A-dKO islets under the kidney capsules of 5 weeks old female NOD wildtype mice. The B:Y16A Β chain substitution has been previously shown to be protective of T1D in NOD mice. NOD mice receiving Seriola dumerili transgenic islet transplants showed a significant (p = 0.004) prolongation of their euglycemic period (by 6 weeks; up to 18 weeks of age) compared to un-manipulated female NOD (diabetes onset at 12 weeks of age) and those receiving B16:A-dKO islet transplants (diabetes onset at 12 weeks of age). These data support the concept that specific amino acid sequence modifications can reduce insulin immunogenicity. Additionally, our study shows that alteration of a single epitope is not sufficient to halt an ongoing autoimmune response. Which, and how many, T cell epitopes are required and suffice to perpetuate autoimmunity is currently unknown. Such studies may be useful to achieve host tolerance to β cells by inactivating key immunogenic epitopes of stem cell-derived β cells intended for transplantation.
Collapse
|
22
|
Wan X, Unanue ER. Antigen recognition in autoimmune diabetes: a novel pathway underlying disease initiation. PRECISION CLINICAL MEDICINE 2018; 1:102-110. [PMID: 30687564 PMCID: PMC6333048 DOI: 10.1093/pcmedi/pby015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/13/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022] Open
Abstract
Development of human autoimmune disorders results from complex interplay among genetic, environmental, and immunological risk factors. Despite much heterogeneity in environmental triggers, the leading genes that give the propensity for tissue-specific autoimmune diseases, such as type 1 diabetes, are those associated with particular class II major histocompatibility complex alleles. Such genetic predisposition precipitates presentation of tissue antigens to MHC-II-restricted CD4 T cells. When properly activated, these self-reactive CD4 T cells migrate to the target tissue and trigger the initial immune attack. Using the non-obese diabetic mouse model of spontaneous autoimmune diabetes, much insight has been gained in understanding how presentation of physiological levels of self-antigens translates into pathological outcomes. In this review, we summarize recent advances illustrating the features of the antigen presenting cells, the sites of the antigen recognition, and the nature of the consequent T cell responses. We emphasize emerging evidence that highlights the importance of systemic presentation of catabolized tissue antigens in mobilization of pathogenic T cells. The implication of these studies in therapeutic perspectives is also discussed.
Collapse
Affiliation(s)
- Xiaoxiao Wan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Emil R Unanue
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
23
|
Guerder S, Hassel C, Carrier A. Thymus-specific serine protease, a protease that shapes the CD4 T cell repertoire. Immunogenetics 2018; 71:223-232. [PMID: 30225612 DOI: 10.1007/s00251-018-1078-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/22/2018] [Indexed: 12/22/2022]
Abstract
The lifespan of T cells is determined by continuous interactions of their T cell receptors (TCR) with self-peptide-MHC (self-pMHC) complexes presented by different subsets of antigen-presenting cells (APC). In the thymus, developing thymocytes are positively selected through recognition of self-pMHC presented by cortical thymic epithelial cells (cTEC). They are subsequently negatively selected by medullary thymic epithelial cells (mTEC) or thymic dendritic cells (DC) presenting self-pMHC complexes. In the periphery, the homeostasis of mature T cells is likewise controlled by the interaction of their TCR with self-pMHC complexes presented by lymph node stromal cells while they may be tolerized by DC presenting tissue-derived self-antigens. To perform these tasks, the different subsets of APC are equipped with distinct combination of antigen processing enzymes and consequently present specific repertoire of self-peptides. Here, we discuss one such antigen processing enzyme, the thymus-specific serine protease (TSSP), which is predominantly expressed by thymic stromal cells. In thymic DC and TEC, TSSP edits the repertoire of peptide presented by class II molecules and thus shapes the CD4 T cell repertoire.
Collapse
Affiliation(s)
- Sylvie Guerder
- INSERM, U1043, 31300, Toulouse, France. .,CNRS, UMR5282, 31300, Toulouse, France. .,Centre de Physiopathologie de Toulouse Purpan, Université Toulouse III Paul-Sabatier, 31300, Toulouse, France. .,INSERM UMR1043, Centre de Physiopathologie de Toulouse Purpan, CHU Purpan, BP 3028, 31024, Toulouse CEDEX 3, France.
| | - Chervin Hassel
- INSERM, U1043, 31300, Toulouse, France.,CNRS, UMR5282, 31300, Toulouse, France.,Centre de Physiopathologie de Toulouse Purpan, Université Toulouse III Paul-Sabatier, 31300, Toulouse, France
| | - Alice Carrier
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| |
Collapse
|
24
|
C-terminal modification of the insulin B:11-23 peptide creates superagonists in mouse and human type 1 diabetes. Proc Natl Acad Sci U S A 2017; 115:162-167. [PMID: 29255035 PMCID: PMC5776820 DOI: 10.1073/pnas.1716527115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Insulin is a target of CD4 T cells in type 1 diabetes in mice and humans. Why the major epitope in the insulin B chain is presented poorly to the diabetogenic CD4 T cells by the disease-associated major histocompatibility class II (MHCII) alleles has been highly debated. Here we present high-resolution mouse and human MHCII structures and T-cell functional data to show that C-terminal modifications of this epitope are required for binding and presentation in the appropriate position in the MHCII binding groove. These results suggest that pancreas-specific posttranslational modifications of this peptide may play a role in the induction of diabetes and explain how the pathogenic T cells escape deletion in the thymus. A polymorphism at β57 in some major histocompatibility complex class II (MHCII) alleles of rodents and humans is associated with a high risk for developing type 1 diabetes (T1D). However, a highly diabetogenic insulin B chain epitope within the B:9–23 peptide is presented poorly by these alleles to a variety of mouse and human CD4 T cells isolated from either nonobese diabetic (NOD) mice or humans with T1D. We have shown for both species that mutations at the C-terminal end of this epitope dramatically improve presentation to these T cells. Here we present the crystal structures of these mutated peptides bound to mouse IAg7 and human HLA-DQ8 that show how the mutations function to improve T-cell activation. In both peptide binding grooves, the mutation of B:22R to E in the peptide changes a highly unfavorable side chain for the p9 pocket to an optimal one that is dependent on the β57 polymorphism, accounting for why these peptides bind much better to these MHCIIs. Furthermore, a second mutation of the adjacent B:21 (E to G) removes a side chain from the surface of the complex that is highly unfavorable for a subset of NOD mouse CD4 cells, thereby greatly enhancing their response to the complex. These results point out the similarities between the mouse and human responses to this B chain epitope in T1D and suggest there may be common posttranslational modifications at the C terminus of the peptide in vivo to create the pathogenic epitopes in both species.
Collapse
|
25
|
Serre L, Girard M, Ramadan A, Menut P, Rouquié N, Lucca LE, Mahiddine K, Leobon B, Mars LT, Guerder S. Thymic-Specific Serine Protease Limits Central Tolerance and Exacerbates Experimental Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2017; 199:3748-3756. [PMID: 29061767 DOI: 10.4049/jimmunol.1700667] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/25/2017] [Indexed: 12/20/2022]
Abstract
The genetic predisposition to multiple sclerosis (MS) is most strongly conveyed by MHC class II haplotypes, possibly by shaping the autoimmune CD4 T cell repertoire. Whether Ag-processing enzymes contribute to MS susceptibility by editing the peptide repertoire presented by these MHC haplotypes is unclear. Thymus-specific serine protease (TSSP) is expressed by thymic epithelial cells and thymic dendritic cells (DCs) and, in these two stromal compartments, TSSP edits the peptide repertoire presented by class II molecules. We show in this article that TSSP increases experimental autoimmune encephalomyelitis severity by limiting central tolerance to myelin oligodendrocyte glycoprotein. The effect on experimental autoimmune encephalomyelitis severity was MHC class II allele dependent, because the lack of TSSP expression conferred protection in NOD mice but not in C57BL/6 mice. Importantly, although human thymic DCs express TSSP, individuals segregate into two groups having a high or 10-fold lower level of expression. Therefore, the level of TSSP expression by thymic DCs may modify the risk factors for MS conferred by some MHC class II haplotypes.
Collapse
Affiliation(s)
- Laurent Serre
- INSERM, U1043, Toulouse F-31300, France.,CNRS, UMR5282, Toulouse F-31300, France.,Centre de Physiopathologie de Toulouse Purpan, Université Toulouse III Paul-Sabatier, Toulouse F-31300, France
| | - Maeva Girard
- INSERM, U1043, Toulouse F-31300, France.,CNRS, UMR5282, Toulouse F-31300, France.,Centre de Physiopathologie de Toulouse Purpan, Université Toulouse III Paul-Sabatier, Toulouse F-31300, France
| | - Abdoulraouf Ramadan
- INSERM, U1043, Toulouse F-31300, France.,CNRS, UMR5282, Toulouse F-31300, France.,Centre de Physiopathologie de Toulouse Purpan, Université Toulouse III Paul-Sabatier, Toulouse F-31300, France
| | - Paul Menut
- INSERM, U1043, Toulouse F-31300, France.,CNRS, UMR5282, Toulouse F-31300, France.,Centre de Physiopathologie de Toulouse Purpan, Université Toulouse III Paul-Sabatier, Toulouse F-31300, France
| | - Nelly Rouquié
- INSERM, U1043, Toulouse F-31300, France.,CNRS, UMR5282, Toulouse F-31300, France.,Centre de Physiopathologie de Toulouse Purpan, Université Toulouse III Paul-Sabatier, Toulouse F-31300, France
| | - Liliana E Lucca
- INSERM, U1043, Toulouse F-31300, France.,CNRS, UMR5282, Toulouse F-31300, France.,Centre de Physiopathologie de Toulouse Purpan, Université Toulouse III Paul-Sabatier, Toulouse F-31300, France
| | - Karim Mahiddine
- INSERM, U1043, Toulouse F-31300, France.,CNRS, UMR5282, Toulouse F-31300, France.,Centre de Physiopathologie de Toulouse Purpan, Université Toulouse III Paul-Sabatier, Toulouse F-31300, France
| | - Bertrand Leobon
- Department of Pediatric Cardiology and Cardiovascular Surgery, Children's Hospital of Toulouse, Toulouse F-31300, France
| | - Lennart T Mars
- INSERM, U1043, Toulouse F-31300, France.,CNRS, UMR5282, Toulouse F-31300, France.,Centre de Physiopathologie de Toulouse Purpan, Université Toulouse III Paul-Sabatier, Toulouse F-31300, France.,INSERM UMR995, Lille Inflammation Research International Center, F-59000 Lille, France; and.,Centre d'Excellence LICEND and FHU IMMINeNT, Université Lille, F-59000 Lille, France
| | - Sylvie Guerder
- INSERM, U1043, Toulouse F-31300, France; .,CNRS, UMR5282, Toulouse F-31300, France.,Centre de Physiopathologie de Toulouse Purpan, Université Toulouse III Paul-Sabatier, Toulouse F-31300, France
| |
Collapse
|
26
|
Yamashita Y, Anczurowski M, Nakatsugawa M, Tanaka M, Kagoya Y, Sinha A, Chamoto K, Ochi T, Guo T, Saso K, Butler MO, Minden MD, Kislinger T, Hirano N. HLA-DP 84Gly constitutively presents endogenous peptides generated by the class I antigen processing pathway. Nat Commun 2017; 8:15244. [PMID: 28489076 PMCID: PMC5436232 DOI: 10.1038/ncomms15244] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 03/09/2017] [Indexed: 12/17/2022] Open
Abstract
Classical antigen processing leads to the presentation of antigenic peptides derived from endogenous and exogenous sources for MHC class I and class II molecules, respectively. Here we show that, unlike other class II molecules, prevalent HLA-DP molecules with β-chains encoding Gly84 (DP84Gly) constitutively present endogenous peptides. DP84Gly does not bind invariant chain (Ii) via the class II-associated invariant chain peptide (CLIP) region, nor does it present CLIP. However, Ii does facilitate the transport of DP84Gly from the endoplasmic reticulum (ER) to the endosomal/lysosomal pathway by transiently binding DP84Gly via a non-CLIP region(s) in a pH-sensitive manner. Accordingly, like class I, DP84Gly constitutively presents endogenous peptides processed by the proteasome and transported to the ER by the transporter associated with antigen processing (TAP). Therefore, DP84Gly, found only in common chimpanzees and humans, uniquely uses both class I and II antigen-processing pathways to present peptides derived from intracellular and extracellular sources.
Collapse
Affiliation(s)
- Yuki Yamashita
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Mark Anczurowski
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 2M9.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Munehide Nakatsugawa
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Makito Tanaka
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Yuki Kagoya
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Ankit Sinha
- Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 1L7.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada M5G 2M9
| | - Kenji Chamoto
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Toshiki Ochi
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Tingxi Guo
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 2M9.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Kayoko Saso
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Marcus O Butler
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 2M9.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada M5S 1A8.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Mark D Minden
- Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 2M9.,University of Toronto, Toronto, Ontario, Canada M5G 2M9
| | - Thomas Kislinger
- Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 1L7.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada M5G 2M9
| | - Naoto Hirano
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 2M9.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
27
|
Abstract
In 1974, the discovery of a mouse and a rat that spontaneously developed hyperglycemia led to the development of 2 autoimmune diabetes models: nonobese diabetic (NOD) mouse and Bio-Breeding rat. These models have contributed to our understanding of autoimmune diabetes, provided tools to dissect autoimmune islet damage, and facilitated development of early detection, prevention, and treatment of type 1 diabetes. The genetic characterization, monoclonal antibodies, and congenic strains have made NOD mice especially useful.Although the establishment of the inbred NOD mouse strain was documented by Makino et al (Jikken Dobutsu. 1980;29:1-13), this review will focus on the not-as-well-known history leading to the discovery of a glycosuric female mouse by Yoshihiro Tochino. This discovery was spearheaded by years of effort by Japanese scientists from different disciplines and dedicated animal care personnel and by the support of the Shionogi Pharmaceutical Company, Osaka, Japan. The history is based on the early literature, mostly written in Japanese, and personal communications especially with Dr Tochino, who was involved in diabetes animal model development and who contributed to the release of NOD mice to the international scientific community. This article also reviews the scientific contributions made by the Bio-Breeding rat to autoimmune diabetes.
Collapse
|
28
|
Bettini ML, Bettini M. Understanding Autoimmune Diabetes through the Prism of the Tri-Molecular Complex. Front Endocrinol (Lausanne) 2017; 8:351. [PMID: 29312143 PMCID: PMC5735072 DOI: 10.3389/fendo.2017.00351] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/30/2017] [Indexed: 12/15/2022] Open
Abstract
The strongest susceptibility allele for Type 1 Diabetes (T1D) is human leukocyte antigen (HLA), which supports a central role for T cells as the drivers of autoimmunity. However, the precise mechanisms that allow thymic escape and peripheral activation of beta cell antigen-specific T cells are still largely unknown. Studies performed with the non-obese diabetic (NOD) mouse have challenged several immunological dogmas, and have made the NOD mouse a key experimental system to study the steps of immunodysregulation that lead to autoimmune diabetes. The structural similarities between the NOD I-Ag7 and HLA-DQ8 have revealed the stability of the T cell receptor (TCR)/HLA/peptide tri-molecular complex as an important parameter in the development of autoimmune T cells, as well as afforded insights into the key antigens targeted in T1D. In this review, we will provide a summary of the current understanding with regard to autoimmune T cell development, the significance of the antigens targeted in T1D, and the relationship between TCR affinity and immune regulation.
Collapse
Affiliation(s)
- Matthew L. Bettini
- Pediatric Diabetes and Endocrinology, Baylor College of Medicine, Texas Children’s Hospital, McNair Medical Institute, Houston, TX, United States
- *Correspondence: Matthew L. Bettini, ; Maria Bettini,
| | - Maria Bettini
- Pediatric Diabetes and Endocrinology, Baylor College of Medicine, Texas Children’s Hospital, McNair Medical Institute, Houston, TX, United States
- *Correspondence: Matthew L. Bettini, ; Maria Bettini,
| |
Collapse
|
29
|
Unanue ER, Ferris ST, Carrero JA. The role of islet antigen presenting cells and the presentation of insulin in the initiation of autoimmune diabetes in the NOD mouse. Immunol Rev 2016; 272:183-201. [PMID: 27319351 PMCID: PMC4938008 DOI: 10.1111/imr.12430] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have been examining antigen presentation and the antigen presenting cells (APCs) in the islets of Langerhans of the non-obese diabetic (NOD) mouse. The purpose is to identify the earliest events that initiate autoimmunity in this confined tissue. Islets normally have a population of macrophages that is distinct from those that inhabit the exocrine pancreas. Also found in NOD islets is a minor population of dendritic cells (DCs) that bear the CD103 integrin. We find close interactions between beta cells and the two APCs that result in the initiation of the autoimmunity. Even under non-inflammatory conditions, beta cells transfer insulin-containing vesicles to the APCs of the islet. This reaction requires live cells and intimate contact. The autoimmune process starts in islets with the entrance of CD4(+) T cells and an increase in the CD103(+) DCs. Mice deficient in the Batf3 transcription factor never develop diabetes due to the absence of the CD103/CD8α lineage of DCs. We hypothesize that the 12-20 peptide of the beta chain of insulin is responsible for activation of the initial CD4(+) T-cell response during diabetogenesis.
Collapse
Affiliation(s)
- Emil R. Unanue
- Department of Pathology and Immunology, Division of Immunobiology, 660 South Euclid Avenue, Campus Box 8118, Washington University School of Medicine, St. Louis, Missouri USA 63110
| | - Stephen T. Ferris
- Department of Pathology and Immunology, Division of Immunobiology, 660 South Euclid Avenue, Campus Box 8118, Washington University School of Medicine, St. Louis, Missouri USA 63110
| | - Javier A. Carrero
- Department of Pathology and Immunology, Division of Immunobiology, 660 South Euclid Avenue, Campus Box 8118, Washington University School of Medicine, St. Louis, Missouri USA 63110
| |
Collapse
|
30
|
Sobel D, Ahvazi B, Pontzer C. The Role of Type I Interferon Subtypes and Interferon-Gamma in Type I Interferon Diabetes Inhibitory Activity in the NOD Mouse. J Interferon Cytokine Res 2015; 36:238-46. [PMID: 26716812 DOI: 10.1089/jir.2014.0232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
As in bacterial infections and endotoxin shock, type I interferons (IFNs) also have complex and often opposing effects in various models of autoimmune disease. We have shown that type I IFN paradoxically inhibits autoimmune diabetes in the nonobese diabetic mouse (NOD) and biobreeding (BB) rat. We hypothesize that type I IFN activity differs by IFN subtype and interaction with IFN-gamma. We examined the structure-function relationship of the type I IFN molecule and the mechanism of its diabetes-sparing activity in the NOD mouse. While both recombinant human IFN-alpha A/D (bgl 11) (rHuIFN-alphaA/D) and ovine IFN-tauImod (ovIFN-tau) potently inhibited the development of diabetes (P < 0.01), neither recombinant human IFN-alpha B/D (rHuIFN-alphaB/D) nor recombinant human IFN-alpha consensus (CIFN) were efficacious. The activity of IFN subtypes correlate with their NH3-terminal amino acid sequences. All type I IFN save CIFN, which has no diabetes-sparing activity, inhibited the accessory cell function. IFN-tau administration decreased the expression of Fas and ICAM on total cells, class II MHC expression on B cells, and CD40L expression on T cells by 39%, 45%, 45%, and 60%, respectively. In addition, IFN-tau inhibited the development of diabetes in the NOD.IL4(null) but not the NOD.IFN-gamma(null) mice, suggesting a coordinated interaction between type I and type II IFNs to suppress diabetes development. Thus, the amino terminal portion of the type I IFN molecule influences its ability to inhibit the development of autoimmune diabetes in NOD mice. These data also support the contention that IFN-gamma may have a role in mediating the diabetes-sparing effect of high-dose type I IFNs by the inhibition of the IFN-gamma-inducible immune modulators, class II MHC, Fas, ICAM, and CD40L.
Collapse
Affiliation(s)
- Douglas Sobel
- 1 Department of Pediatrics, Georgetown University , Washington, District of Columbia
| | - Behrouz Ahvazi
- 1 Department of Pediatrics, Georgetown University , Washington, District of Columbia
| | - Carol Pontzer
- 2 Department of Molecular Biology, University of Maryland , College Park, Maryland
| |
Collapse
|
31
|
Abstract
Type 1 diabetes is a chronic autoimmune disease resulting from T cell-mediated destruction of insulin-producing beta cells within pancreatic islets. Disease incidence has increased significantly in the last two decades, especially in young children. Type 1 diabetes is now predictable in humans with the measurement of serum islet autoantibodies directed against insulin and beta cell proteins. Knowledge regarding the presentation of insulin and islet antigens to T cells has increased dramatically over the last several years. Here, we review the trimolecular complex in diabetes, which consists of a major histocompatibility molecule,self-peptide, and T cell receptor, with a focus on insulin peptide presentation to T cells. With this increased understanding of how antigens are presented to T cells comes the hope for improved therapies for type 1 diabetes prevention.
Collapse
Affiliation(s)
- Maki Nakayama
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kimberly M Simmons
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Aaron W Michels
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
32
|
N-terminal additions to the WE14 peptide of chromogranin A create strong autoantigen agonists in type 1 diabetes. Proc Natl Acad Sci U S A 2015; 112:13318-23. [PMID: 26453556 DOI: 10.1073/pnas.1517862112] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chromogranin A (ChgA) is an autoantigen for CD4(+) T cells in the nonobese diabetic (NOD) mouse model of type 1 diabetes (T1D). The natural ChgA-processed peptide, WE14, is a weak agonist for the prototypical T cell, BDC-2.5, and other ChgA-specific T-cell clones. Mimotope peptides with much higher activity share a C-terminal motif, WXRM(D/E), that is predicted to lie in the p5 to p9 position in the mouse MHC class II, IA(g7) binding groove. This motif is also present in WE14 (WSRMD), but at its N terminus. Therefore, to place the WE14 motif into the same position as seen in the mimotopes, we added the amino acids RLGL to its N terminus. Like the other mimotopes, RLGL-WE14, is much more potent than WE14 in T-cell stimulation and activates a diverse population of CD4(+) T cells, which also respond to WE14 as well as islets from WT, but not ChgA(-/-) mice. The crystal structure of the IA(g7)-RLGL-WE14 complex confirmed the predicted placement of the peptide within the IA(g7) groove. Fluorescent IA(g7)-RLGL-WE14 tetramers bind to ChgA-specific T-cell clones and easily detect ChgA-specific T cells in the pancreas and pancreatic lymph nodes of NOD mice. The prediction that many different N-terminal amino acid extensions to the WXRM(D/E) motif are sufficient to greatly improve T-cell stimulation leads us to propose that such a posttranslational modification may occur uniquely in the pancreas or pancreatic lymph nodes, perhaps via the mechanism of transpeptidation. This modification could account for the escape of these T cells from thymic negative selection.
Collapse
|
33
|
Associations of human leukocyte antigens with autoimmune diseases: challenges in identifying the mechanism. J Hum Genet 2015; 60:697-702. [PMID: 26290149 DOI: 10.1038/jhg.2015.100] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 12/24/2022]
Abstract
The mechanism of genetic associations between human leukocyte antigen (HLA) and susceptibility to autoimmune disorders has remained elusive for most of the diseases, including rheumatoid arthritis (RA) and type 1 diabetes (T1D), for which both the genetic associations and pathogenic mechanisms have been extensively analyzed. In this review, we summarize what are currently known about the mechanisms of HLA associations with RA and T1D, and elucidate the potential mechanistic basis of the HLA-autoimmunity associations. In RA, the established association between the shared epitope (SE) and RA risk has been explained, at least in part, by the involvement of SE in the presentation of citrullinated peptides, as confirmed by the structural analysis of DR4-citrullinated peptide complex. Self-peptide(s) that might explain the predispositions of variants at 11β and 13β in DRB1 to RA risk have not currently been identified. Regarding the mechanism of T1D, pancreatic self-peptides that are presented weakly on the susceptible HLA allele products are recognized by self-reactive T cells. Other studies have revealed that DQ proteins encoded by the T1D susceptible DQ haplotypes are intrinsically unstable. These findings indicate that the T1D susceptible DQ haplotypes might confer risk for T1D by facilitating the formation of unstable HLA-self-peptide complex. The studies of RA and T1D reveal the two distinct mechanistic basis that might operate in the HLA-autoimmunity associations. Combination of these mechanisms, together with other functional variations among the DR and DQ alleles, may generate the complex patterns of DR-DQ haplotype associations with autoimmunity.
Collapse
|
34
|
Zhao Y, Scott NA, Quah HS, Krishnamurthy B, Bond F, Loudovaris T, Mannering SI, Kay TWH, Thomas HE. Mouse pancreatic beta cells express MHC class II and stimulate CD4(+) T cells to proliferate. Eur J Immunol 2015; 45:2494-503. [PMID: 25959978 DOI: 10.1002/eji.201445378] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 03/25/2015] [Accepted: 05/07/2015] [Indexed: 11/05/2022]
Abstract
Type 1 diabetes results from destruction of pancreatic beta cells by autoreactive T cells. Both CD4(+) and CD8(+) T cells have been shown to mediate beta-cell killing. While CD8(+) T cells can directly recognize MHC class I on beta cells, the interaction between CD4(+) T cells and beta cells remains unclear. Genetic association studies have strongly implicated HLA-DQ alleles in human type 1 diabetes. Here we studied MHC class II expression on beta cells in nonobese diabetic mice that were induced to develop diabetes by diabetogenic CD4(+) T cells with T-cell receptors that recognize beta-cell antigens. Acute infiltration of CD4(+) T cells in islets occurred with rapid onset of diabetes. Beta cells from islets with immune infiltration expressed MHC class II mRNA and protein. Exposure of beta cells to IFN-γ increased MHC class II gene expression, and blocking IFN-γ signaling in beta cells inhibited MHC class II upregulation. IFN-γ also increased HLA-DR expression in human islets. MHC class II(+) beta cells stimulated the proliferation of beta-cell-specific CD4(+) T cells. Our study indicates that MHC class II molecules may play an important role in beta-cell interaction with CD4(+) T cells in the development of type 1 diabetes.
Collapse
Affiliation(s)
- Yuxing Zhao
- St. Vincent's Institute, Immunology and Diabetes Laboratory, Fitzroy, Victoria, Australia
| | - Nicholas A Scott
- St. Vincent's Institute, Immunology and Diabetes Laboratory, Fitzroy, Victoria, Australia.,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Hong Sheng Quah
- St. Vincent's Institute, Immunology and Diabetes Laboratory, Fitzroy, Victoria, Australia.,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | | | - Francene Bond
- St. Vincent's Institute, Immunology and Diabetes Laboratory, Fitzroy, Victoria, Australia
| | - Thomas Loudovaris
- St. Vincent's Institute, Immunology and Diabetes Laboratory, Fitzroy, Victoria, Australia
| | - Stuart I Mannering
- St. Vincent's Institute, Immunology and Diabetes Laboratory, Fitzroy, Victoria, Australia.,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Thomas W H Kay
- St. Vincent's Institute, Immunology and Diabetes Laboratory, Fitzroy, Victoria, Australia.,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Helen E Thomas
- St. Vincent's Institute, Immunology and Diabetes Laboratory, Fitzroy, Victoria, Australia.,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| |
Collapse
|
35
|
Regulatory vs. inflammatory cytokine T-cell responses to mutated insulin peptides in healthy and type 1 diabetic subjects. Proc Natl Acad Sci U S A 2015; 112:4429-34. [PMID: 25831495 DOI: 10.1073/pnas.1502967112] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Certain class II MHC (MHCII) alleles in mice and humans confer risk for or protection from type 1 diabetes (T1D). Insulin is a major autoantigen in T1D, but how its peptides are presented to CD4 T cells by MHCII risk alleles has been controversial. In the mouse model of T1D, CD4 T cells respond to insulin B-chain peptide (B:9-23) mimotopes engineered to bind the mouse MHCII molecule, IA(g7), in an unfavorable position or register. Because of the similarities between IA(g7) and human HLA-DQ T1D risk alleles, we examined control and T1D subjects with these risk alleles for CD4 T-cell responses to the same natural B:9-23 peptide and mimotopes. A high proportion of new-onset T1D subjects mounted an inflammatory IFN-γ response much more frequently to one of the mimotope peptides than to the natural peptide. Surprisingly, the control subjects bearing an HLA-DQ risk allele also did. However, these control subjects, especially those with only one HLA-DQ risk allele, very frequently made an IL-10 response, a cytokine associated with regulatory T cells. T1D subjects with established disease also responded to the mimotope rather than the natural B:9-23 peptide in proliferation assays and the proliferating cells were highly enriched in certain T-cell receptor sequences. Our results suggest that the risk of T1D may be related to how an HLA-DQ genotype determines the balance of T-cell inflammatory vs. regulatory responses to insulin, having important implications for the use and monitoring of insulin-specific therapies to prevent diabetes onset.
Collapse
|
36
|
Abstract
Foxp3⁺ regulatory T (Treg) cells are critical contributors to the establishment and maintenance of immunological self-tolerance. Autoimmune type 1 diabetes (T1D) is characterized by the loss of self-tolerance to the insulin-producing β cells in the pancreas and the destruction of β cells, resulting in the development of chronic hyperglycemia at diagnosis. The application of strong agonistic T-cell receptor ligands provided under subimmunogenic conditions functions as a critical means for the efficient de novo conversion of naive CD4⁺ T cells into Foxp3⁺ Treg cells. The specific induction of Treg cells upon supply of strong-agonistic variants of certain self-antigens could therefore function as a critical instrument in order to achieve safe and specific prevention of autoimmunity such as T1D via the restoration of self-tolerance. Such immunotherapeutic strategies are being developed, and in the case of T1D aim to restrict autoimmunity and β-cell destruction. In this review, we discuss the requirements and opportunities for Treg-based tolerance approaches with the goal of interfering with autoimmune T1D.
Collapse
|
37
|
Jaberi-Douraki M, Liu SW(S, Pietropaolo M, Khadra A. Autoimmune responses in T1DM: quantitative methods to understand onset, progression, and prevention of disease. Pediatr Diabetes 2014; 15:162-74. [PMID: 24827702 PMCID: PMC4050373 DOI: 10.1111/pedi.12148] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 03/12/2014] [Accepted: 04/01/2014] [Indexed: 02/06/2023] Open
Abstract
Understanding the physiological processes that underlie autoimmune disorders and identifying biomarkers to predict their onset are two pressing issues that need to be thoroughly sorted out by careful thought when analyzing these diseases. Type 1 diabetes (T1D) is a typical example of such diseases. It is mediated by autoreactive cytotoxic CD4⁺ and CD8⁺ T-cells that infiltrate the pancreatic islets of Langerhans and destroy insulin-secreting β-cells, leading to abnormal levels of glucose in affected individuals. The disease is also associated with a series of islet-specific autoantibodies that appear in high-risk subjects (HRS) several years prior to the onset of diabetes-related symptoms. It has been suggested that T1D is relapsing-remitting in nature and that islet-specific autoantibodies released by lymphocytic B-cells are detectable at different stages of the disease, depending on their binding affinity (the higher, the earlier they appear). The multifaceted nature of this disease and its intrinsic complexity make this disease very difficult to analyze experimentally as a whole. The use of quantitative methods, in the form of mathematical models and computational tools, to examine the disease has been a very powerful tool in providing predictions and insights about the underlying mechanism(s) regulating its onset and development. Furthermore, the models developed may have prognostic implications by aiding in the enrollment of HRS into trials for T1D prevention. In this review, we summarize recent advances made in determining T- and B-cell involvement in T1D using these quantitative approaches and delineate areas where mathematical modeling can make further contributions in unraveling certain aspect of this disease.
Collapse
Affiliation(s)
- Majid Jaberi-Douraki
- Department of Physiology, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Shang Wan (Shalon) Liu
- Department of Physiology, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Massimo Pietropaolo
- Laboratory of Immunogenetics, University of Michigan, Ann Arbor, MI, USA 48105-5714
| | - Anmar Khadra
- Department of Physiology, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| |
Collapse
|
38
|
Abstract
This paper reviews the presentation of peptides by major histocompatibility complex (MHC) class II molecules in the autoimmune diabetes of the nonobese diabetic (NOD) mouse. Islets of Langerhans contain antigen-presenting cells that capture the proteins and peptides of the beta cells' secretory granules. Peptides bound to I-A(g7), the unique MHC class II molecule of NOD mice, are presented in islets and in pancreatic lymph nodes. The various beta cell-derived peptides interact with selected CD4 T cells to cause inflammation and beta cell demise. Many autoreactive T cells are found in NOD mice, but not all have a major role in the initiation of the autoimmune process. I emphasize here the evidence pointing to insulin autoreactivity as a seminal component in the diabetogenic process.
Collapse
Affiliation(s)
- Emil R Unanue
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110;
| |
Collapse
|
39
|
Monoclonal antibody blocking the recognition of an insulin peptide-MHC complex modulates type 1 diabetes. Proc Natl Acad Sci U S A 2014; 111:2656-61. [PMID: 24550292 DOI: 10.1073/pnas.1323436111] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The primary autoantigen triggering spontaneous type 1 diabetes mellitus in nonobese diabetic (NOD) mice is insulin. The major T-cell insulin epitope lies within the amino acid 9-23 peptide of the β-chain (B:9-23). This peptide can bind within the peptide binding groove of the NOD MHC class II molecule (MHCII), IA(g7), in multiple positions or "registers." However, the majority of pathogenic CD4 T cells recognize this complex only when the insulin peptide is bound in register 3 (R3). We hypothesized that antibodies reacting specifically with R3 insulin-IA(g7) complexes would inhibit autoimmune diabetes specifically without interfering with recognition of other IA(g7)-presented antigens. To test this hypothesis, we generated a monoclonal antibody (mAb287), which selectively binds to B:9-23 and related variants when presented by IA(g7) in R3, but not other registers. The monoclonal antibody blocks binding of IA(g7)-B:10-23 R3 tetramers to cognate T cells and inhibits T-cell responses to soluble B:9-23 peptides and NOD islets. However, mAb287 has no effect on recognition of other peptides bound to IA(g7) or other MHCII molecules. Intervention with mAb287, but not irrelevant isotype matched antibody, at either early or late stages of disease development, significantly delayed diabetes onset by inhibiting infiltration by not only insulin-specific CD4 T cells, but also by CD4 and CD8 T cells of other specificities. We propose that peptide-MHC-specific monoclonal antibodies can modulate autoimmune disease without the pleiotropic effects of nonselective reagents and, thus, could be applicable to the treatment of multiple T-cell mediated autoimmune disorders.
Collapse
|
40
|
Eberwine RA, Cort L, Habib M, Mordes JP, Blankenhorn EP. Autoantigen-induced focusing of Vβ13+ T cells precedes onset of autoimmune diabetes in the LEW.1WR1 rat. Diabetes 2014; 63:596-604. [PMID: 24150607 PMCID: PMC3900547 DOI: 10.2337/db13-0462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The earliest events leading to autoimmune type 1 diabetes (T1D) are not known in any species. A T-cell receptor (TCR)-variable region, TCR-Vβ13, is required for susceptibility to autoimmune diabetes in rats, and selective depletion of Vβ13(+) T cells with an allele-specific monoclonal antibody prevents disease in multiple rat strains. To investigate the role of Vβ13 early in diabetes, we examined islet T-cell transcripts in susceptible (LEW.1WR1) and resistant (LEW.1W and Wistar Furth) strains induced with polyinosinic:polycytidylic acid. Vβ13(+) T cells displayed antigenic focusing in LEW.1WR1 islets 5 days postinduction and were characterized by a substantial decrease in complementarity determining region 3 diversity. This occurred prior to significant islet T-cell accumulation (day 7) or frank diabetes (days 10-14). Vβ13(+) transcripts increased in LEW.1WR1 islets during diabetes progression, but not in resistant rats. We also analyzed transcript clonality of rat TCR-Vα5, an ortholog of the dominant TCR-Vα chain found on insulin B:9-23-reactive T cells in nonobese diabetic rat islets. We observed clonal expansion of Vα5(+) transcripts in prediabetic LEW.1WR1 islets, suggesting that rat Vα5 is also an important component of islet autoantigen recognition. These data provide additional evidence that genome-encoded TCR sequences are important determinants of genetic susceptibility to T1D.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Animals, Genetically Modified
- Antibodies, Monoclonal
- Autoantigens
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Gene Expression Regulation/immunology
- Genetic Predisposition to Disease
- Islets of Langerhans/cytology
- Poly I-C
- Rats
- Rats, Inbred Strains
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocyte Subsets/physiology
- Up-Regulation
Collapse
Affiliation(s)
- Ryan A. Eberwine
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA
| | - Laura Cort
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA
| | - Michael Habib
- Division of Endocrinology & Metabolism, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - John P. Mordes
- Division of Endocrinology & Metabolism, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Elizabeth P. Blankenhorn
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA
- Corresponding author: Elizabeth P. Blankenhorn,
| |
Collapse
|
41
|
De Riva A, Busch R. MHC Class II Protein Turnover In vivo and Its Relevance for Autoimmunity in Non-Obese Diabetic Mice. Front Immunol 2013; 4:399. [PMID: 24324466 PMCID: PMC3839011 DOI: 10.3389/fimmu.2013.00399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/08/2013] [Indexed: 11/19/2022] Open
Abstract
Major histocompatibility complex class II (MHCII) proteins are loaded with endosomal peptides and reside at the surface of antigen-presenting cells (APCs) for a time before being degraded. In vitro, MHCII protein levels and turnover are affected by peptide loading and by rates of ubiquitin-dependent internalization from the cell surface, which is in turn affected by APC type and activation state. Prior work suggested that fast turnover of disease-associated MHCII alleles may contribute to autoimmunity. We recently developed novel stable isotope tracer techniques to test this hypothesis in vivo. In non-obese diabetic (NOD) mice, a model of type 1 diabetes (T1D), MHCII turnover was affected by APC type, but unaffected by disease-associated structural polymorphism. Differences in MHCII turnover were observed between NOD colonies with high and low T1D incidence, but fast turnover was dispensable for autoimmunity. Moreover, NOD mice with gene knockouts of peptide loading cofactors do not develop T1D. Thus, fast turnover does not appear pathogenic, and conventional antigen presentation is critical for autoimmunity in NOD mice. However, shared environmental factors may underpin colony differences in MHCII protein turnover, immune regulation, and pathogenesis.
Collapse
Affiliation(s)
| | - Robert Busch
- Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
42
|
Advances in our understanding of the pathophysiology of Type 1 diabetes: lessons from the NOD mouse. Clin Sci (Lond) 2013; 126:1-18. [PMID: 24020444 DOI: 10.1042/cs20120627] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
T1D (Type 1 diabetes) is an autoimmune disease caused by the immune-mediated destruction of pancreatic β-cells. Studies in T1D patients have been limited by the availability of pancreatic samples, a protracted pre-diabetic phase and limitations in markers that reflect β-cell mass and function. The NOD (non-obese diabetic) mouse is currently the best available animal model of T1D, since it develops disease spontaneously and shares many genetic and immunopathogenic features with human T1D. Consequently, the NOD mouse has been extensively studied and has made a tremendous contribution to our understanding of human T1D. The present review summarizes the key lessons from NOD mouse studies concerning the genetic susceptibility, aetiology and immunopathogenic mechanisms that contribute to autoimmune destruction of β-cells. Finally, we summarize the potential and limitations of immunotherapeutic strategies, successful in NOD mice, now being trialled in T1D patients and individuals at risk of developing T1D.
Collapse
|
43
|
Guerder S, Joncker N, Mahiddine K, Serre L. Dendritic cells in tolerance and autoimmune diabetes. Curr Opin Immunol 2013; 25:670-5. [PMID: 24168964 DOI: 10.1016/j.coi.2013.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/27/2013] [Accepted: 10/03/2013] [Indexed: 01/22/2023]
Abstract
Type 1 diabetes is a T cell mediated autoimmune disease where both central and peripheral mechanisms effect T cell tolerance induction. Dendritic cells (DCs) are key regulators of innate and adaptive immune responses. They significantly contribute to central and peripheral T cell tolerance and, following maturation, induce the activation and differentiation of naïve T cells into effector and memory cells. DCs are also major actors in inflammation. Given these multiple effects on immune responses, DCs are suspected to contribute to autoimmune diseases. In this review we discuss how some specific features of DC may contribute to type 1 diabetes.
Collapse
Affiliation(s)
- Sylvie Guerder
- Centre de Physiopathologie de Toulouse Purpan, Université Toulouse III Paul-Sabatier, Toulouse F-31300, France; INSERM, U1043, Toulouse F-31300, France; CNRS, UMR5282, Toulouse F-31300, France.
| | | | | | | |
Collapse
|
44
|
Tsai S, Santamaria P. MHC Class II Polymorphisms, Autoreactive T-Cells, and Autoimmunity. Front Immunol 2013; 4:321. [PMID: 24133494 PMCID: PMC3794362 DOI: 10.3389/fimmu.2013.00321] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/22/2013] [Indexed: 01/13/2023] Open
Abstract
Major histocompatibility complex (MHC) genes, also known as human leukocyte antigen genes (HLA) in humans, are the prevailing contributors of genetic susceptibility to autoimmune diseases such as Type 1 Diabetes (T1D), multiple sclerosis, and rheumatoid arthritis, among others (1–3). Although the pathways through which MHC molecules afford autoimmune risk or resistance remain to be fully mapped out, it is generally accepted that they do so by shaping the central and peripheral T-cell repertoires of the host toward autoimmune proclivity or resistance, respectively. Disease-predisposing MHC alleles would both spare autoreactive thymocytes from central tolerance and bias their development toward a pathogenic phenotype. Protective MHC alleles, on the other hand, would promote central deletion of autoreactive thymocytes and skew their development toward non-pathogenic phenotypes. This interpretation of the data is at odds with two other observations: that in MHC-heterozygous individuals, resistance is dominant over susceptibility; and that it is difficult to understand how deletion of one or a few clonal autoreactive T-cell types would suffice to curb autoimmune responses driven by hundreds if not thousands of autoreactive T-cell specificities. This review provides an update on current advances in our understanding of the mechanisms underlying MHC class II-associated autoimmune disease susceptibility and/or resistance and attempts to reconcile these seemingly opposing concepts.
Collapse
Affiliation(s)
- Sue Tsai
- Department of Microbiology, Immunology and Infectious Diseases, Faculty of Medicine, Julia McFarlane Diabetes Research Centre, Snyder Institute for Chronic Diseases, University of Calgary , Calgary, AB , Canada
| | | |
Collapse
|
45
|
Baker RL, Delong T, Barbour G, Bradley B, Nakayama M, Haskins K. Cutting edge: CD4 T cells reactive to an islet amyloid polypeptide peptide accumulate in the pancreas and contribute to disease pathogenesis in nonobese diabetic mice. THE JOURNAL OF IMMUNOLOGY 2013; 191:3990-4. [PMID: 24043895 DOI: 10.4049/jimmunol.1301480] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We previously reported a peptide KS20 from islet amyloid polypeptide (IAPP) to be the target Ag for a highly diabetogenic CD4 T cell clone BDC-5.2.9. To track IAPP-reactive T cells in NOD mice and determine how they contribute to the pathogenesis of type 1 diabetes, we designed a new I-Ag7 tetramer with high affinity for BDC-5.2.9 that contains the peptide KS20. We found that significant numbers of KS20 tetramer(+) CD4 T cells can be detected in the pancreas of prediabetic and diabetic NOD mice. To verify pathogenicity of IAPP-reactive cells, we sorted KS20 tetramer(+) cells and cloned them from uncloned T cell lines isolated from spleen and lymph nodes of diabetic mice. We isolated a new KS20-reactive Th1 CD4 T cell clone that rapidly transfers diabetes. Our results suggest that IAPP triggers a broad autoimmune response by CD4 T cells in NOD mice.
Collapse
Affiliation(s)
- Rocky L Baker
- Integrated Department of Immunology, University of Colorado at Denver School of Medicine and National Jewish Health, Denver, CO 80206
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Chronic beryllium disease (CBD) is a granulomatous lung disorder caused by a hypersensitivity to beryllium and characterized by the accumulation of beryllium-specific CD4(+) T cells in the lung. Genetic susceptibility to beryllium-induced disease is strongly associated with HLA-DP alleles possessing a glutamic acid at the 69th position of the β-chain (βGlu69). The structure of HLA-DP2, the most prevalent βGlu69-containing molecule, revealed a unique solvent-exposed acidic pocket that includes βGlu69 and represents the putative beryllium-binding site. The delineation of mimotopes and endogenous self-peptides that complete the αβTCR ligand for beryllium-specific CD4(+) T cells suggests a unique role of these peptides in metal ion coordination and the generation of altered self-peptides, blurring the distinction between hypersensitivity and autoimmunity.
Collapse
|
47
|
Bello M, Correa-Basurto J. Molecular dynamics simulations to provide insights into epitopes coupled to the soluble and membrane-bound MHC-II complexes. PLoS One 2013; 8:e72575. [PMID: 23977319 PMCID: PMC3747130 DOI: 10.1371/journal.pone.0072575] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 07/10/2013] [Indexed: 11/24/2022] Open
Abstract
Epitope recognition by major histocompatibility complex II (MHC-II) is essential for the activation of immunological responses to infectious diseases. Several studies have demonstrated that this molecular event takes place in the MHC-II peptide-binding groove constituted by the α and β light chains of the heterodimer. This MHC-II peptide-binding groove has several pockets (P1-P11) involved in peptide recognition and complex stabilization that have been probed through crystallographic experiments and in silico calculations. However, most of these theoretical calculations have been performed without taking into consideration the heavy chains, which could generate misleading information about conformational mobility both in water and in the membrane environment. Therefore, in absence of structural information about the difference in the conformational changes between the peptide-free and peptide-bound states (pMHC-II) when the system is soluble in an aqueous environment or non-covalently bound to a cell membrane, as the physiological environment for MHC-II is. In this study, we explored the mechanistic basis of these MHC-II components using molecular dynamics (MD) simulations in which MHC-II was previously co-crystallized with a small epitope (P7) or coupled by docking procedures to a large (P22) epitope. These MD simulations were performed at 310 K over 100 ns for the water-soluble (MHC-IIw, MHC-II-P7w, and MHC-II-P22w) and 150 ns for the membrane-bound species (MHC-IIm, MHC-II-P7m, and MHC-II-P22m). Our results reveal that despite the different epitope sizes and MD simulation environments, both peptides are stabilized primarily by residues lining P1, P4, and P6-7, and similar noncovalent intermolecular energies were observed for the soluble and membrane-bound complexes. However, there were remarkably differences in the conformational mobility and intramolecular energies upon complex formation, causing some differences with respect to how the two peptides are stabilized in the peptide-binding groove.
Collapse
Affiliation(s)
- Martiniano Bello
- Laboratorio de Modelado Molecular y Bioinformática de la Escuela Superior de Medicina, Instituto Politécnico Nacional, México, Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomas, Mexico City, México.
| | | |
Collapse
|
48
|
Bour-Jordan H, Thompson HL, Giampaolo JR, Davini D, Rosenthal W, Bluestone JA. Distinct genetic control of autoimmune neuropathy and diabetes in the non-obese diabetic background. J Autoimmun 2013; 45:58-67. [PMID: 23850635 PMCID: PMC4156399 DOI: 10.1016/j.jaut.2013.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 06/11/2013] [Indexed: 02/01/2023]
Abstract
The non-obese diabetic (NOD) mouse is susceptible to the development of autoimmune diabetes but also multiple other autoimmune diseases. Over twenty susceptibility loci linked to diabetes have been identified in NOD mice and progress has been made in the definition of candidate genes at many of these loci (termed Idd for insulin-dependent diabetes). The susceptibility to multiple autoimmune diseases in the NOD background is a unique opportunity to examine susceptibility genes that confer a general propensity for autoimmunity versus susceptibility genes that control individual autoimmune diseases. We previously showed that NOD mice deficient for the costimulatory molecule B7-2 (NOD-B7-2KO mice) were protected from diabetes but spontaneously developed an autoimmune peripheral neuropathy. Here, we took advantage of multiple NOD mouse strains congenic for Idd loci to test the role of these Idd loci the development of neuropathy and determine if B6 alleles at Idd loci that are protective for diabetes will also be for neuropathy. Thus, we generated NOD-B7-2KO strains congenic at Idd loci and examined the development of neuritis and clinical neuropathy. We found that the NOD-H-2(g7) MHC region is necessary for development of neuropathy in NOD-B7-2KO mice. In contrast, other Idd loci that significantly protect from diabetes did not affect neuropathy when considered individually. However, we found potent genetic interactions of some Idd loci that provided almost complete protection from neuritis and clinical neuropathy. In addition, defective immunoregulation by Tregs could supersede protection by some, but not other, Idd loci in a tissue-specific manner in a model where neuropathy and diabetes occurred concomitantly. Thus, our study helps identify Idd loci that control tissue-specific disease or confer general susceptibility to autoimmunity, and brings insight to the Treg-dependence of autoimmune processes influenced by given Idd region in the NOD background.
Collapse
Affiliation(s)
- Hélène Bour-Jordan
- University of California in San Francisco, 513 Parnassus Avenue, Box 0400, San Francisco, CA 94143-0400, USA
| | | | | | | | | | | |
Collapse
|
49
|
Therapeutic opportunities for manipulating T(Reg) cells in autoimmunity and cancer. Nat Rev Drug Discov 2013; 12:51-63. [PMID: 23274471 DOI: 10.1038/nrd3683] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Forkhead box P3 (FOXP3)-expressing regulatory T (T(Reg)) cells have a pivotal role in the regulation of immune responses and in the maintenance of immunological self-tolerance. These cells have emerged as attractive targets for strategies that allow the steering of immune responses in desired directions - arming the immune system to destroy infected cells and cancer cells or downregulating it to limit tissue destruction in autoimmunity. Efforts to understand the generation, activation and function of T(Reg) cells should permit the development of therapeutics for reprogramming the immune system. In this Review, we discuss insights into the generation of T(Reg) cells, their involvement in disease and the molecular basis of the dominant tolerance exerted by FOXP3(+) T(Reg) cells that could permit their safe and specific manipulation in humans.
Collapse
|
50
|
Pompeu YA, Stewart JD, Mallal S, Phillips E, Peters B, Ostrov DA. The structural basis of HLA-associated drug hypersensitivity syndromes. Immunol Rev 2013; 250:158-66. [PMID: 23046128 DOI: 10.1111/j.1600-065x.2012.01163.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recent data suggest alternative mechanisms that promote human leukocyte antigen (HLA)-associated drug syndromes. Hypersensitive responses have been attributed to drug interactions with HLA molecules, peptides presented by HLA molecules and T-cell antigen receptors. Definition of an increasing number of HLA-associated drug syndromes suggests that polymorphism in the antigen-binding cleft residues influence recognition of specific drugs. Recent data demonstrate that small molecule drugs bind within the antigen-binding cleft of HLA in a manner that alters the repertoire of HLA-bound peptide ligands. This drug recognition mechanism permits presentation of self-peptides to which the host has not been tolerized. This altered repertoire mechanism is analogous to massive polyclonal T-cell responses occurring in mismatched HLA organ transplantation in which the drug in effect creates a novel HLA allele. Alteration of the self-peptide repertoire by HLA-binding small molecules may be the mechanistic basis for a diverse set of deleterious T-cell responses since the antigen-binding cleft has structural features that are compatible with binding drug-like small molecules. Small molecule drugs that bind elements of the trimolecular complex (T-cell receptor, peptide, and HLA) may cause short- and long-term adverse effects by a diverse set of mechanisms.
Collapse
Affiliation(s)
- Yuri A Pompeu
- Department of Chemistry, University of Florida, Gainesville, USA
| | | | | | | | | | | |
Collapse
|