1
|
Breznik M, Ge Y, Bluck JP, Briem H, Hahn DF, Christ CD, Mortier J, Mobley DL, Meier K. Prioritizing Small Sets of Molecules for Synthesis through in-silico Tools: A Comparison of Common Ranking Methods. ChemMedChem 2023; 18:e202200425. [PMID: 36240514 PMCID: PMC9868080 DOI: 10.1002/cmdc.202200425] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/10/2022] [Indexed: 01/26/2023]
Abstract
Prioritizing molecules for synthesis is a key role of computational methods within medicinal chemistry. Multiple tools exist for ranking molecules, from the cheap and popular molecular docking methods to more computationally expensive molecular-dynamics (MD)-based methods. It is often questioned whether the accuracy of the more rigorous methods justifies the higher computational cost and associated calculation time. Here, we compared the performance on ranking the binding of small molecules for seven scoring functions from five docking programs, one end-point method (MM/GBSA), and two MD-based free energy methods (PMX, FEP+). We investigated 16 pharmaceutically relevant targets with a total of 423 known binders. The performance of docking methods for ligand ranking was strongly system dependent. We observed that MD-based methods predominantly outperformed docking algorithms and MM/GBSA calculations. Based on our results, we recommend the application of MD-based free energy methods for prioritization of molecules for synthesis in lead optimization, whenever feasible.
Collapse
Affiliation(s)
- Marko Breznik
- Computational Molecular Design, Pharmaceuticals, R&D, Bayer AG, 13342 Berlin, Germany
| | - Yunhui Ge
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| | - Joseph P. Bluck
- Computational Molecular Design, Pharmaceuticals, R&D, Bayer AG, 13342 Berlin, Germany
| | - Hans Briem
- Computational Molecular Design, Pharmaceuticals, R&D, Bayer AG, 13342 Berlin, Germany
| | - David F. Hahn
- Computational Chemistry, Janssen Research & Development, Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Clara D. Christ
- Molecular Design, Pharmaceuticals, R&D, Bayer AG, 13342 Berlin, Germany
| | - Jérémie Mortier
- Computational Molecular Design, Pharmaceuticals, R&D, Bayer AG, 13342 Berlin, Germany
| | - David L. Mobley
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA,Department of Chemistry, University of California, Irvine, CA 92697, USA
| | - Katharina Meier
- Computational Life Science Technology Functions, Crop Science, R&D, Bayer AG, 40789 Monheim, Germany
| |
Collapse
|
2
|
Essa AF, Teleb M, El-Kersh DM, El Gendy AENG, Elshamy AI, Farag MA. Natural acylated flavonoids: their chemistry and biological merits in context to molecular docking studies. PHYTOCHEMISTRY REVIEWS 2022. [DOI: 10.1007/s11101-022-09840-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 09/23/2022] [Indexed: 09/02/2023]
Abstract
AbstractAcylated flavonoids are widely distributed natural dietary bioactives with several health attributes. A large diversity of acylated flavonoids with interesting biological potentialities were reported. Of these, 123 compounds with potential antimicrobial, antiparasitic, anti-inflammatory, anti-nociceptive, analgesic and anti-complementary effects were selected from several databases. Based upon these data, the possible mechanistic evidence for their effects were reported. Generally, aromatic acyls i.e., galloyl derivatives appeared to improve efficacy through enhancement of the binding affinities to molecular targets due to plenty of donating and accepting centers. Docking simulations conducted by Molecular Operating Environment (MOE) of acylated flavonoids revealed that compound 12 is at the top of the list into the antibacterial target DNA gyrase subunit B (GyrB), from E. coli, followed by compounds 10, 4 and 23. Compounds 81, 88, 96, 92, 99, 100, 102 and 103 have the strongest binding affinities into Human matrix metallopeptidase (MMP) 2 and 9 catalytic domains. Compound 103 exerted the most balanced predicted dual MMP-2/MMP-9 inhibition action. Compound 95 recorded the strongest binding affinity into metabotropic glutamate receptor (mglur1) with the lowest energy conformer. The data presented in this review suggests that these candidate acylated flavonoids ought to be considered in future drug developments especially as anti-inflammatory and antimicrobial agents.
Collapse
|
3
|
Abd Al Moaty MN, El Ashry ESH, Awad LF, Ibrahim NA, Abu-Serie MM, Barakat A, Altowyan MS, Teleb M. Enhancing the Anticancer Potential of Targeting Tumor-Associated Metalloenzymes via VEGFR Inhibition by New Triazolo[4,3-a]pyrimidinone Acyclo C-Nucleosides Multitarget Agents. Molecules 2022; 27:molecules27082422. [PMID: 35458618 PMCID: PMC9026109 DOI: 10.3390/molecules27082422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/18/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
The role of metalloenzymes in tumor progression had broadened their application in cancer therapy. Of these, MMPs and CAs are validated druggable targets that share some pivotal signaling pathways. The majority of MMPs or CAs inhibitors are designed as single-target agents. Despite their transient efficacy, these agents are often susceptible to resistance. This set the stage to introduce dual inhibitors of correlated MMPs and CAs. The next step is expected to target the common vital signaling nodes as well. In this regard, VEGFR-2 is central to various tumorigenesis events involving both families, especially MMP-2 and CA II. Herein, we report simultaneous inhibition of MMP-2, CA II, and VEGFR-2 via rationally designed hybrid 1,2,4-triazolo[4,3-a]pyrimidinone acyclo C-nucleosides. The promising derivatives were nanomolar inhibitors of VEGFR-2 (8; IC50 = 5.89 nM, 9; IC50 = 10.52 nM) and MMP-2 (8; IC50 = 17.44 nM, 9; IC50 = 30.93 nM) and submicromolar inhibitors of CA II (8; IC50 = 0.21 µM, 9; IC50 = 0.36 µM). Docking studies predicted their binding modes into the enzyme active sites and the structural determinants of activity regarding substitution and regioselectivity. MTT assay demonstrated that both compounds were 12 folds safer than doxorubicin with superior anticancer activities against three human cancers recording single-digit nanomolar IC50, thus echoing their enzymatic activities. Up to our knowledge, this study introduces the first in class triazolopyrimidinone acyclo C-nucleosides VEGFR-2/MMP-2/CA II inhibitors that deserve further investigation.
Collapse
Affiliation(s)
- Mohamed Nabil Abd Al Moaty
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.N.A.A.M.); (E.S.H.E.A.); (N.A.I.)
| | - El Sayed Helmy El Ashry
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.N.A.A.M.); (E.S.H.E.A.); (N.A.I.)
| | - Laila Fathy Awad
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.N.A.A.M.); (E.S.H.E.A.); (N.A.I.)
- Correspondence: (L.F.A.); (A.B.)
| | - Nihal Ahmed Ibrahim
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.N.A.A.M.); (E.S.H.E.A.); (N.A.I.)
| | - Marwa Muhammad Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt;
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Correspondence: (L.F.A.); (A.B.)
| | - Mezna Saleh Altowyan
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt;
| |
Collapse
|
4
|
Targeting the interplay between MMP-2, CA II and VEGFR-2 via new sulfonamide-tethered isomeric triazole hybrids; Microwave-assisted synthesis, computational studies and evaluation. Bioorg Chem 2022; 124:105816. [DOI: 10.1016/j.bioorg.2022.105816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 12/20/2022]
|
5
|
Synthesis, Characterization, In vivo, Molecular Docking, ADMET and HOMO-LUMO study of Juvenile Hormone Analogues having sulfonamide feature as an Insect Growth Regulators. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Moussa N, Hassan A, Gharaghani S. Pharmacophore model, docking, QSAR, and molecular dynamics simulation studies of substituted cyclic imides and herbal medicines as COX-2 inhibitors. Heliyon 2021; 7:e06605. [PMID: 33889764 PMCID: PMC8047494 DOI: 10.1016/j.heliyon.2021.e06605] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/22/2021] [Accepted: 03/24/2021] [Indexed: 01/09/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) enzyme inhibitors have not eliminated the necessity for developed drugs not only in the nonsteroidal anti-inflammatory drug (NSAIDs) area, but also in other therapeutic applications including prevention of cancer and Alzheimer's disease. A series of novel substituted cyclic imides have been reported as selective COX-2 inhibitors. To understand the structural features responsible for their activity, a 3D validated pharmacophore and quantitative structure−activity relationship (QSAR) model have been developed. The values of enrichment factor (EF), goodness of hit score (GH), area under the ROC curve (AUC), sensitivity, and specificity refer to the good ability of the pharmacophore model to identify active compounds. Multiple linear regression (MLR) produced statistically significant QSAR model with (R2training = 0.763, R2test = 0.96) and predictability (Q2training = 0.66, Q2test = 0.84). Then, using the pharmacophore and QSAR models, eight authenticated botanicals in two herbal medicines and the ZINC compounds database, were virtually screened for ligands to COX-2. The retrieved hits which also obey lipinski's rule of five (RO5) were docked in the COX-2 3D structure to investigate their binding mode and affinity. Finally, based on the docking results, nine molecules were prioritized as promising hits that could be used as leads to discover novel COX-2 inhibitors. COX-2 inhibition of most of these hits has not been reported previously. Ten-nanosecond molecular dynamics simulation (10-ns MD) was performed on the initial structure COX-2 complex with ZINC000113253375 and ZINC000043170560 resulted from the docking. Our utilization of the 3D pharmacophore model, QSAR, molecular docking, and molecular dynamics simulation trials can be a potent strategy to successfully predict activity, efficiently design drugs, and screen large numbers of new compounds as active drug candidates.
Collapse
Affiliation(s)
- Nathalie Moussa
- Department of Pharmaceutical Chemistry and Quality Control of Medicaments, Faculty of Pharmacy, Damascus University, Damascus, Syria
| | - Ahmad Hassan
- Department of Pharmaceutical Chemistry and Quality Control of Medicaments, Faculty of Pharmacy, Damascus University, Damascus, Syria
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics and Drug Design, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
7
|
Çınaroğlu SS, Timuçin E. Comparative Assessment of Seven Docking Programs on a Nonredundant Metalloprotein Subset of the PDBbind Refined. J Chem Inf Model 2019; 59:3846-3859. [PMID: 31460757 DOI: 10.1021/acs.jcim.9b00346] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Extensive usage of molecular docking for computer-aided drug discovery resulted in development of numerous programs with versatile scoring and posing algorithms. Selection of the docking program among these vast number of options is central to the outcome of drug discovery. To this end, comparative assessment studies of docking offer valuable insights into the selection of the optimal tool. Despite the availability of various docking assessment studies, the performance difference of docking programs has not been well addressed on metalloproteins which comprise a substantial portion of the human proteome and have been increasingly targeted for treatment of a wide variety of diseases. This study reports comparative assessment of seven docking programs on a diverse metalloprotein set which was compiled for this study. The refined set of the PDBbind (2017) was screened to gather 710 complexes with metal ion(s) closely located to the ligands (<4 Å). The redundancy was eliminated by clustering and overall 213 complexes were compiled as the nonredundant metalloprotein subset of the PDBbind refined. The scoring, ranking, and posing powers of seven noncommercial docking programs, namely, AutoDock4, AutoDock4Zn, AutoDock Vina, Quick Vina 2, LeDock, PLANTS, and UCSF DOCK6, were comprehensively evaluated on this nonredundant set. Results indicated that PLANTS (80%) followed by LeDock (77%), QVina (76%), and Vina (73%) had the most accurate posing algorithms while AutoDock4 (48%) and DOCK6 (56%) were the least successful in posing. Contrary to their moderate-to-high level of posing success, none of the programs was successful in scoring or ranking of the binding affinities (r2 ≈ 0). Screening power was further evaluated by using active-decoy ligand sets for a large compilation of metalloprotein targets. PLANTS stood out among other programs to be able to enrich the active ligand for every target, underscoring its robustness for screening of metalloprotein inhibitors. This study provides useful information for drug discovery studies targeting metalloproteins.
Collapse
Affiliation(s)
- Süleyman Selim Çınaroğlu
- Department of Biostatistics and Medical Informatics, School of Medicine , Acibadem Mehmet Ali Aydinlar University , Istanbul 34752 , Turkey
| | - Emel Timuçin
- Department of Biostatistics and Medical Informatics, School of Medicine , Acibadem Mehmet Ali Aydinlar University , Istanbul 34752 , Turkey
| |
Collapse
|
8
|
Shahraki A, Ebrahimi A. Binding of ellagic acid and urolithin metabolites to the CK2 protein, based on the ONIOM method and molecular docking calculations. NEW J CHEM 2019. [DOI: 10.1039/c9nj03508g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Using three-layer ONIOM and molecular docking calculations to investigate the binding of urolithins to the active site of the CK2 protein.
Collapse
Affiliation(s)
- Asiyeh Shahraki
- Department of Chemistry
- Computational Quantum Chemistry Laboratory
- University of Sistan and Baluchestan
- Zahedan
- Iran
| | - Ali Ebrahimi
- Department of Chemistry
- Computational Quantum Chemistry Laboratory
- University of Sistan and Baluchestan
- Zahedan
- Iran
| |
Collapse
|
9
|
Nazarshodeh E, Gharaghani S. Toward a hierarchical virtual screening and toxicity risk analysis for identifying novel CA XII inhibitors. Biosystems 2017; 162:35-43. [PMID: 28899791 DOI: 10.1016/j.biosystems.2017.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 12/13/2022]
Abstract
Carbonic anhydrase isoform XII (CA XII) is a potential target for cancer treatment. In this study, pharmacophore modeling, hierarchical virtual screening, and toxicity risk analysis were performed for identifying novel CA XII inhibitors. A pharmacophore model of two classes of CA XII inhibitors was generated. The pharmacophore model indicated the important features of inhibitors for the binding with the CA XII. The model was then utilized to screen the ZINC and CoCoCo databases for retrieving potential hit compounds of CA XII. For accurate conclusions about the selectivity of inhibitors, the retrieved molecules which obey of Lipinski's rule of five (RO5) and have no toxicity risk were docked in a CA XII 3D structure by smina. Finally, on the basis of binding affinity and the binding mode of the molecules, twelve molecules were prioritized as promising hits. It should be noted that two of hits H5 and H6 were previously reported in the CHEMBL database. This hierarchical method is worthy of reducing the time and using almost all information available. The final hits may be used as a lead to discovery novel CA XII inhibitors.
Collapse
Affiliation(s)
- Elmira Nazarshodeh
- Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
10
|
Koutnik P, Shcherbakova EG, Gozem S, Caglayan MG, Minami T, Anzenbacher P. Fluorescence-Based Assay for Carbonic Anhydrase Inhibitors. Chem 2017. [DOI: 10.1016/j.chempr.2017.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
11
|
Dinçer B, Ekinci AP, Akyüz G, Kurtoğlu İZ. Characterization and inhibition studies of carbonic anhydrase from gill of Russian Sturgeon Fish (Acipenser gueldenstaedtii). J Enzyme Inhib Med Chem 2015; 31:1662-5. [DOI: 10.3109/14756366.2015.1076810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Barbaros Dinçer
- Department of Chemistry, Recep Tayyip Erdoğan University, Faculty of Arts and Sciences, Rize, Turkey and
| | - Arife Pınar Ekinci
- Department of Chemistry, Recep Tayyip Erdoğan University, Faculty of Arts and Sciences, Rize, Turkey and
| | - Gülay Akyüz
- Department of Chemistry, Recep Tayyip Erdoğan University, Faculty of Arts and Sciences, Rize, Turkey and
| | - İlker Zeki Kurtoğlu
- Department of Aquaculture, Recep Tayyip Erdoğan University, Fisheries Faculty, Rize, Turkey
| |
Collapse
|
12
|
Batool I, Saeed A, Qureshi IZ, Kalsoom S, Razzaq A. Synthesis, molecular docking and biological evaluation of new thiazolopyrimidine carboxylates as potential antidiabetic and antibacterial agents. RESEARCH ON CHEMICAL INTERMEDIATES 2015. [DOI: 10.1007/s11164-015-2078-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Sharma P, Thakur S, Awasthi P. Synthesis, Characterization, Biological Evaluation and Docking Study of Heterocyclic-Based Synthetic Sulfonamides as Potential Pesticide Against G. mellonella. Appl Biochem Biotechnol 2015; 176:125-39. [DOI: 10.1007/s12010-015-1562-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 03/12/2015] [Indexed: 11/28/2022]
|
14
|
Xu W, Lucke AJ, Fairlie DP. Comparing sixteen scoring functions for predicting biological activities of ligands for protein targets. J Mol Graph Model 2015; 57:76-88. [PMID: 25682361 DOI: 10.1016/j.jmgm.2015.01.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 12/17/2022]
Abstract
Accurately predicting relative binding affinities and biological potencies for ligands that interact with proteins remains a significant challenge for computational chemists. Most evaluations of docking and scoring algorithms have focused on enhancing ligand affinity for a protein by optimizing docking poses and enrichment factors during virtual screening. However, there is still relatively limited information on the accuracy of commercially available docking and scoring software programs for correctly predicting binding affinities and biological activities of structurally related inhibitors of different enzyme classes. Presented here is a comparative evaluation of eight molecular docking programs (Autodock Vina, Fitted, FlexX, Fred, Glide, GOLD, LibDock, MolDock) using sixteen docking and scoring functions to predict the rank-order activity of different ligand series for six pharmacologically important protein and enzyme targets (Factor Xa, Cdk2 kinase, Aurora A kinase, COX-2, pla2g2a, β Estrogen receptor). Use of Fitted gave an excellent correlation (Pearson 0.86, Spearman 0.91) between predicted and experimental binding only for Cdk2 kinase inhibitors. FlexX and GOLDScore produced good correlations (Pearson>0.6) for hydrophilic targets such as Factor Xa, Cdk2 kinase and Aurora A kinase. By contrast, pla2g2a and COX-2 emerged as difficult targets for scoring functions to predict ligand activities. Although possessing a high hydrophobicity in its binding site, β Estrogen receptor produced reasonable correlations using LibDock (Pearson 0.75, Spearman 0.68). These findings can assist medicinal chemists to better match scoring functions with ligand-target systems for hit-to-lead optimization using computer-aided drug design approaches.
Collapse
Affiliation(s)
- Weijun Xu
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Andrew J Lucke
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David P Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
15
|
Alaghaz ANMA, Ammar RAA, Koehler G, Wolschann KP, El-Gogary TM. Synthesis, spectral and quantum chemical studies on NO-chelating sulfamonomethoxine-cyclophosph(V)azane and its Er(III) complex. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 128:724-729. [PMID: 24699291 DOI: 10.1016/j.saa.2014.02.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/10/2014] [Accepted: 02/13/2014] [Indexed: 06/03/2023]
Abstract
Computational studies have been carried out at the DFT-B3LYP/6-31G(d) level of theory on the structural and spectroscopic properties of novel ethane-1,2-diol-dichlorocyclophosph(V)azane of sulfamonomethoxine (L), and its binuclear Er(III) complex. Different tautomers of the ligand were optimized at the ab initio DFT level. Keto-form structure is about 15.8 kcal/mol more stable than the enol form (taking zpe correction into account). Simulated IR frequencies were scaled and compared with that experimentally measured. TD-DFT method was used to compute the UV-VIS spectra which show good agreement with measured electronic spectra. The structures of the novel isolated products are proposed based on elemental analyses, IR, UV-VIS, (1)H NMR, (31)P NMR, SEM, XRD spectra, effective magnetic susceptibility measurements and thermogravimetric analysis (TGA).
Collapse
Affiliation(s)
- Abdel-Nasser M A Alaghaz
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt; Department of Chemistry, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | - Reda A A Ammar
- Department of Chemistry, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Gottfried Koehler
- Max F Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | | | - Tarek M El-Gogary
- Department of Chemistry, Faculty of Science, Damietta University, Damietta, Egypt.
| |
Collapse
|
16
|
Al-Mogren MM, Alaghaz ANMA, El-Gogary TM. Spectral and quantum chemical studies on 1,3-bis(N(1)-4-amino-6-methoxypyrimidinebenzenesulfonamide-2,2,4,4-ethane-1,2-dithiol)-2,4-dichlorocyclodiphosph(V)azane and its erbium complex. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 118:481-487. [PMID: 24080579 DOI: 10.1016/j.saa.2013.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 08/26/2013] [Accepted: 09/02/2013] [Indexed: 06/02/2023]
Abstract
Novel 1,3-bis(N(1)-4-amino-6-methoxypyrimidine-benzenesulfonamide-2,2,4,4-ethane-1,2-dithiol)-2,4-dichlorocyclodiphosph(V)azane (L), was prepared and their coordinating behavior towards the lanthanide ion Er(III) was studied. The structures of the isolated products are proposed based on elemental analyses, IR, UV-VIS., (1)H NMR, (13)C NMR, (31)P NMR, SEM, XRD, mass spectra, effective magnetic susceptibility measurements and thermogravimetric analysis (TGA). Computational studies have been carried out at the DFT-B3LYP/6-31G(d) level of theory on the structural and spectroscopic properties of L and its binuclear Er(III) complex. Different tautomers of the ligand were optimized at the ab initio DFT level. Keto-form structure is about 17.7 kcal/mol more stable than the enol form (taking zpe correction into account). Simulated IR frequencies were scaled and compared with that experimentally measured. TD-DFT method was used to compute the UV-VIS spectra which compared by the measured electronic spectra.
Collapse
Affiliation(s)
- Muneerah M Al-Mogren
- Department of Chemistry, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | | |
Collapse
|
17
|
Sahu C, Sen K, Pakhira S, Mondal B, Das AK. Binding affinity of substituted ureido-benzenesulfonamide ligands to the carbonic anhydrase receptor: a theoretical study of enzyme inhibition. J Comput Chem 2013; 34:1907-16. [PMID: 23712937 DOI: 10.1002/jcc.23335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 04/25/2013] [Accepted: 04/26/2013] [Indexed: 01/23/2023]
Abstract
The binding properties of a series of benzenesulfonamide inhibitors (4-substituted-ureido-benzenesulfonamides, UBSAs) of human carbonic anhydrase II (hCA II) enzyme with active site residues have been studied using a hybrid quantum mechanical/molecular mechanical (QM/MM) model. To account for the important docking interactions between the UBSAs ligand and hCA II enzyme, a molecular docking program AutoDock Vina is used. The molecular docking results obtained by AutoDock Vina revealed that the docked conformer has root mean square deviation value less than 1.50 Å compared to X-ray crystal structures. The inhibitory activity of UBSA ligands against hCA II is found to be in good agreement with the experimental results. The thermodynamic parameters for inhibitor binding show that hydrogen bonding, hydrophilic, and hydrophobic interactions play a major role in explaining the diverse inhibitory range of these derivatives. Additionally, natural bond orbital analysis is performed to characterize the ligand-metal charge transfer stability. The insights gained from this study have great potential to design new hCA-II inhibitor, 4-[3-(1-p-Tolyl-4-trifluoromethyl-1H-pyrazol-3-yl)-ureido]-benzenesulfonamide, which belongs to the family of UBSA inhibitors and shows similar type of inhibitor potency with hCA II. This work also reveals that a QM/MM model and molecular docking method are computationally feasible and accurate for studying substrate-protein inhibition.
Collapse
Affiliation(s)
- Chandan Sahu
- Department of Spectroscopy, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | | | | | | | | |
Collapse
|
18
|
Minami A, Ishibashi S, Ikeda K, Ishitsubo E, Hori T, Tokiwa H, Taguchi R, Ieno D, Otsubo T, Matsuda Y, Sai S, Inada M, Suzuki T. Catalytic preference of Salmonella typhimurium LT2 sialidase for N-acetylneuraminic acid residues over N-glycolylneuraminic acid residues. FEBS Open Bio 2013; 3:231-6. [PMID: 23772399 PMCID: PMC3678298 DOI: 10.1016/j.fob.2013.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/17/2013] [Accepted: 05/17/2013] [Indexed: 01/21/2023] Open
Abstract
In a comparison of sialidase activities toward N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc), we found that Salmonella typhimurium LT2 sialidase (STSA) hardly cleaved 4-methylumbelliferyl Neu5Gc (4MU-Neu5Gc). The k cat/K m value of STSA for 4MU-Neu5Gc was found to be 110 times lower than that for 4-methylumbelliferyl Neu5Ac (4MU-Neu5Ac). Additionally, STSA had remarkably weak ability to cleave α2-3-linked-Neu5Gc contained in gangliosides and equine erythrocytes. In silico analysis based on first-principle calculations with transition-state analogues suggested that the binding affinity of Neu5Gc2en is 14.3 kcal/mol more unstable than that of Neu5Ac2en. The results indicated that STSA preferentially cleaves Neu5Ac residues rather than Neu5Gc residues, which is important for anyone using this enzyme to cleave α2-3-linked sialic acids.
Collapse
Key Words
- 4MU, 4-methylumbelliferone
- 4MU-Neu5Ac, 4-methylumbelliferyl N-acetylneuraminic acid
- 4MU-Neu5Gc
- 4MU-Neu5Gc, 4-methylumbelliferyl N-glycolylneuraminic acid
- AUSA, Arthrobacter ureafaciens sialidase
- Boc, tert-butoxycarbonyl
- CPSA, Clostridium perfingens sialidase
- DANA, 2,3-dehydro-2-deoxy-N-acetylneuraminic acid
- DMAP, 4-dimethylaminopyridine
- DMB, 1,2-diamino-4,5-methylenedioxybenzene
- Docking simulations
- E. coli, Escherichia coli
- HPLC, high-performance liquid chromatography
- MDSA, Macrobdella decora sialidase
- N-glycolylneuraminic acid
- N.D., not detected
- Neu5Ac, N-acetylneuraminic acid
- Neu5Gc, N-glycolylneuraminic acid
- PBS, phosphate buffered saline
- STSA, Salmonella typhimurium LT2 sialidase
- Salmonella typhimurium LT2 sialidase
- Sia, sialic acid
- Sialic acid
- Substrate specificity
- THF, tetrahydrofuran
- VCSA, Vibrio cholerae sialidase
- rt, room temperature
Collapse
Affiliation(s)
- Akira Minami
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Sayaka Ishibashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kiyoshi Ikeda
- Department of Organic Chemistry, School of Pharmaceutical Sciences, Hiroshima International University, 5-1-1, Hirokoshingai, Kure-shi, Hiroshima 737-0112, Japan
| | - Erika Ishitsubo
- Department of Chemistry, Faculty of Science, Rikkyo University, Tokyo 171-8501, Japan
| | - Takanori Hori
- Department of Chemistry, Faculty of Science, Rikkyo University, Tokyo 171-8501, Japan
| | - Hiroaki Tokiwa
- Department of Chemistry, Faculty of Science, Rikkyo University, Tokyo 171-8501, Japan
| | - Risa Taguchi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Daisuke Ieno
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Tadamune Otsubo
- Department of Organic Chemistry, School of Pharmaceutical Sciences, Hiroshima International University, 5-1-1, Hirokoshingai, Kure-shi, Hiroshima 737-0112, Japan
| | - Yukino Matsuda
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Saki Sai
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Mari Inada
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Takashi Suzuki
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
19
|
El-Gogary TM, Alaghaz ANM, Ammar RA. Quantum chemical calculations and experimental investigations on 2-aminobenzoic acid-cyclodiphosph(V)azane derivative and its homo-binuclear Cu(II) complex. J Mol Struct 2012. [DOI: 10.1016/j.molstruc.2011.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Suhara Y, Hanada N, Okitsu T, Sakai M, Watanabe M, Nakagawa K, Wada A, Takeda K, Takahashi K, Tokiwa H, Okano T. Structure-activity relationship of novel menaquinone-4 analogues: modification of the side chain affects their biological activities. J Med Chem 2012; 55:1553-8. [PMID: 22250752 DOI: 10.1021/jm2013166] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We synthesized new vitamin K analogues with demethylation or reduction of the double bonds of the side chain of menaquinone-4 (MK-4) and evaluated their SXR-mediated transcriptional activity as well as the extent of their conversion to MK-4. The results indicated that the analogue with the methyl group deleted at the 7' site of the side chain part affected conversion activity to MK-4. In contrast, a decrease in the number of the double bonds in the side chain moiety appeared to decrease the SXR-mediated transcriptional activity.
Collapse
Affiliation(s)
- Yoshitomo Suhara
- Laboratory of Environmental Sciences, Yokohama College of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama 245-0066, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Remko M. Molecular structure, pKa, lipophilicity, solubility and absorption of biologically active aromatic and heterocyclic sulfonamides. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.theochem.2009.12.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Tiwari R, Mahasenan K, Pavlovicz R, Li C, Tjarks W. Carborane clusters in computational drug design: a comparative docking evaluation using AutoDock, FlexX, Glide, and Surflex. J Chem Inf Model 2009; 49:1581-9. [PMID: 19449853 PMCID: PMC2702476 DOI: 10.1021/ci900031y] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Compounds containing boron atoms play increasingly important roles in the therapy and diagnosis of various diseases, particularly cancer. However, computational drug design of boron-containing therapeutics and diagnostics is hampered by the fact that many software packages used for this purpose lack parameters for all or part of the various types of boron atoms. In the present paper, we describe simple and efficient strategies to overcome this problem, which are based on the replacement of boron atom types with carbon atom types. The developed methods were validated by docking closo- and nido-carboranyl antifolates into the active site of a human dihydrofolate reductase (hDHFR) using AutoDock, Glide, FlexX, and Surflex and comparing the obtained docking poses with the poses of their counterparts in the original hDHFR-carboranyl antifolate crystal structures. Under optimized conditions, AutoDock and Glide were equally good in docking of the closo-carboranyl antifolates followed by Surflex and FlexX, whereas Autodock, Glide, and Surflex proved to be comparably efficient in the docking of nido-carboranyl antifolates followed by FlexX. Differences in geometries and partial atom charges in the structures of the carboranyl antifolates resulting from different data sources and/or optimization methods did not impact the docking performances of AutoDock or Glide significantly. Binding energies predicted by all four programs were in accordance with experimental data.
Collapse
Affiliation(s)
- Rohit Tiwari
- Division of Medicinal Chemistry & Pharmacognosy, 500 W. 12th Ave, The Ohio State University, Columbus, OH 43210
| | - Kiran Mahasenan
- Division of Medicinal Chemistry & Pharmacognosy, 500 W. 12th Ave, The Ohio State University, Columbus, OH 43210
| | - Ryan Pavlovicz
- Division of Medicinal Chemistry & Pharmacognosy, 500 W. 12th Ave, The Ohio State University, Columbus, OH 43210
| | - Chenglong Li
- Division of Medicinal Chemistry & Pharmacognosy, 500 W. 12th Ave, The Ohio State University, Columbus, OH 43210
| | - Werner Tjarks
- Division of Medicinal Chemistry & Pharmacognosy, 500 W. 12th Ave, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
24
|
Bülbül M, Hisar O, Beydemir S, Ciftçi M, Küfrevioğlu OI. TheIn VitroandIn VivoInhibitory Effects of Some Sulfonamide Derivatives on Rainbow Trout (Oncorhynchus Mykiss) Erythrocyte Carbonic Anhydrase Activity. J Enzyme Inhib Med Chem 2008; 18:371-5. [PMID: 14567552 DOI: 10.1080/1475636031000138769] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The in vitro and in vivo inhibitory effects of 5-(3alpha, 12alpha-dihydroxy-5-beta-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (1), 5-(3alpha, 7alpha, 12alpha-trihydroxy-5-beta-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (2), 5-(3alpha, 7alpha, 12alpha-triacetoxy-5-beta-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (3) and acetazolamide on rainbow trout (Oncorhynchus mykiss) (RT) erythrocyte carbonic anhydrase (CA) were investigated. The RT erythrocyte CA was obtained by affinity chromatography with a yield of 20.9%, a specific activity of 422.5EU/mg protein and a purification of 222.4-fold. The purity of the enzyme was confirmed by SDS-PAGE. Inhibitory effects of the sulfonamides and acetazolamide on the RT erythrocyte CA were determined using the CO2-Hydratase method in vitro and in vivo studies. From in vitro studies, it was found that all the compounds inhibited CA. The obtained I50 value for the sulfonamides (1), (2) and (3) and acetazolamide were 0.83, 0.049, 0.82 and 0.052 microM, respectively. From in vivo studies, it was observed that CA was inhibited by the sulfonamides (1), (2) and (3) and acetazolamide.
Collapse
Affiliation(s)
- Metin Bülbül
- Department of Chemistry, Faculty of Science and Arts, Dumlupinar University, Kütahya, Turkey
| | | | | | | | | |
Collapse
|
25
|
Alaghaz AMA. Complexes of Co(II), Ni(II), Cu(II), and Pd(II) with Sulfametrole-Cyclodiphosph(V)azane Derivatives. PHOSPHORUS SULFUR 2008. [DOI: 10.1080/10426500802016661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- A. M. A. Alaghaz
- a Chemistry Department, Faculty of Science , Al-Azhar University (for Boys) , Nasr City , Cairo , Egypt
| |
Collapse
|
26
|
Beydemir S, Gülçin I. Effects of Melatonin on Carbonic Anhydrase from Human ErythrocytesIn Vitroand from Rat ErythrocytesIn Vivo. J Enzyme Inhib Med Chem 2008; 19:193-7. [PMID: 15449736 DOI: 10.1080/14756360310001656736] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The in vitro effects of melatonin (N-acetyl-5-methoxy-tryptamine) on human carbonic anhydrase isozymes (HCA-I and HCA-II) from human erythrocytes and in vivo effects on rat erythrocytes carbonic anhydrase (CA) were determined. Human erythrocyte carbonic anhydrase isozymes were purified by haemolysate preparation and Sepharose-4B-L tyrosine-sulfanilamide affinity gel chromatography. The HCA-I enzyme, having a specific activity of 7337.5 EU/mg protein, was purified 843-fold with a yield of 60% and the HCA-II enzyme, having a specific activity of 17067EU/mg protein, was purified 1962-fold with a yield of 22.7%. For in vitro experiments, the enzyme activity was minimal at 2 x 10(-4) M melatonin concentration and increased above this concentration. Ten mgkg(-1) melatonin was administered intraperitoneally and showed a stimulatory effect on the enzyme. Time-dependent in vivo studies were conducted for melatonin in Sprague-Dawley type rats. It was found that CA activity in the rat erythrocytes was decreased by the melatonin after 1 and 3 hours to 2500 +/- 500.0 and 1875 +/- 239.4 respectively which were statistically significant (p < 0.05) differences to the control (2660 +/- 235.8). However, CA activity was restored to its normal level after 6h (2666 +/- 235.7) (p > 0.05) probably due to metabolism of the melatonin. The findings indicate that melatonin may be pharmacologically useful in some diseases.
Collapse
Affiliation(s)
- Sükrü Beydemir
- Department of Chemistry, Science and Arts Faculty, Atatürk University, 25240 Erzurum, Turkey.
| | | |
Collapse
|
27
|
El-Ghamry H, Issa R, El-Baradie K, Isagai K, Masaoka S, Sakai K. 1-[4-(Diamino-methyl-eneamino-sulfon-yl)phenyl-iminiometh-yl]-2-naphtholate N,N-dimethyl-formamide disolvate. Acta Crystallogr Sect E Struct Rep Online 2008; 64:o1350-1. [PMID: 21202970 PMCID: PMC2961766 DOI: 10.1107/s1600536808018710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 06/20/2008] [Indexed: 11/25/2022]
Abstract
The asymmetric unit the title compound, C18H16N4O3S·2C3H7NO, contains a molecule in a zwitterionic form with a deprotonated hydroxyl group and an iminium group, and two dimethylformamide solvent molecules. The dihedral angles of the guanidine group and the naphthyl ring system with respect to the central benzene ring are 76.04 (7) and 3.45 (9)°, respectively. The conformation of the molecule may be influenced, in part, by two intramolecular hydrogen bonds, while in the crystal structure, intermolecular hydrogen bonds form one-dimensional chains along [010].
Collapse
|
28
|
Mohamed GG. New Cyclodiphosph(V)azane Complexes of Fe(III), Co(II), Ni(II), Cu(II), Zn(II), and UO2 (II): Preparation, Characterization, and Biological Activity Studies. PHOSPHORUS SULFUR 2007. [DOI: 10.1080/104265090884238] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Gehad G. Mohamed
- a Chemistry Department, Faculty of Science, Cairo University , Giza, Egypt
| |
Collapse
|
29
|
Warren GL, Andrews CW, Capelli AM, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS. A critical assessment of docking programs and scoring functions. J Med Chem 2006; 49:5912-31. [PMID: 17004707 DOI: 10.1021/jm050362n] [Citation(s) in RCA: 1212] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Docking is a computational technique that samples conformations of small molecules in protein binding sites; scoring functions are used to assess which of these conformations best complements the protein binding site. An evaluation of 10 docking programs and 37 scoring functions was conducted against eight proteins of seven protein types for three tasks: binding mode prediction, virtual screening for lead identification, and rank-ordering by affinity for lead optimization. All of the docking programs were able to generate ligand conformations similar to crystallographically determined protein/ligand complex structures for at least one of the targets. However, scoring functions were less successful at distinguishing the crystallographic conformation from the set of docked poses. Docking programs identified active compounds from a pharmaceutically relevant pool of decoy compounds; however, no single program performed well for all of the targets. For prediction of compound affinity, none of the docking programs or scoring functions made a useful prediction of ligand binding affinity.
Collapse
Affiliation(s)
- Gregory L Warren
- GlaxoSmithKline Pharmaceuticals, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Irwin JJ, Raushel FM, Shoichet BK. Virtual screening against metalloenzymes for inhibitors and substrates. Biochemistry 2005; 44:12316-28. [PMID: 16156645 DOI: 10.1021/bi050801k] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular docking uses the three-dimensional structure of a receptor to screen databases of small molecules for potential ligands, often based on energetic complementarity. For many docking scoring functions, which calculate nonbonded interactions, metalloenzymes are challenging because of the partial covalent nature of metal-ligand interactions. To investigate how well molecular docking can identify potential ligands of metalloenzymes using a "standard" scoring function, we have docked the MDL Drug Data Report (MDDR), a functionally annotated database of 95,000 small molecules, against the X-ray crystal structures of five metalloenzymes. These enzymes included three zinc proteases, the nickel analogue of an iron enzyme, and a molybdenum metalloenzyme. The ability of the docking program to retrospectively enrich the annotated ligands as high-scoring hits for each enzyme and to calculate proper geometries was evaluated. In all five systems, the annotated ligands within the MDDR were enriched at least 20 times over random. To test the approach prospectively, a sixth target, the zinc beta-lactamase from Bacteroides fragilis, was screened against the fragment-like subset of the ZINC database. We purchased and tested 15 compounds from among the top 50 top-ranked ligands from docking, and found 5 inhibitors with apparent K(i) values less than 120 microM, the best of which was 2 microM. A more ambitious test still was predicting actual substrates for a seventh target, a Zn-dependent phosphotriesterase from Pseudomonas diminuta. Screening the Available Chemicals Directory (ACD) identified 25 thiophosphate esters as potential substrates within the top 100 ranked compounds. Eight of these, all previously uncharacterized for this enzyme, were acquired and tested, and all were confirmed experimentally as substrates. These results suggest that a simple, noncovalent scoring function may be used to identify inhibitors of at least some metalloenzymes.
Collapse
Affiliation(s)
- John J Irwin
- Department of Pharmaceutical Chemistry, University of California, San Francisco 94143-2550, USA
| | | | | |
Collapse
|
31
|
Sharaby CM. Preparation, characterization and biological activity of Fe(III), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and UO(2)(II) complexes of new cyclodiphosph(V)azane of sulfaguanidine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2005; 62:326-34. [PMID: 16257733 DOI: 10.1016/j.saa.2004.12.047] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Accepted: 12/03/2004] [Indexed: 05/05/2023]
Abstract
Novel hexachlorocyclodiphosph(V)azane of sulfaguanidine, H(4)L, l,3-[N'-amidino-sulfanilamide]-2,2,2,4,4,4-hexachlorocyclodiphosph(V)azane was prepared and its coordination behaviour towards the transition metal ions Fe(III), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and UO(2)(II) was studied. The structures of the isolated products are proposed based on elemental analyses, IR, UV-vis, (1)H NMR, mass spectra, reflectance, magnetic susceptibility measurements and thermogravimetric analysis (TGA). The hyperfine interactions in the isolated complex compounds were studied using 14.4keV gamma-ray from radioactive (57)Co (Mössbauer spectroscopy). The data show that the ligand are coordinated to the metal ions via the sulfonamide O and deprotonated NH atoms in an octahedral manner. The H(4)L ligand forms complexes of the general formulae [(MX(z))(2)(H(2)L)H(2)O)(n)] and [(FeSO(4))(2) (H(4)L) (H(2)O)(4)], where X=NO(3) in case of UO(2)(II) and Cl in case of Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II). The molar conductance data show that the complexes are non-electrolytes. The thermal behaviour of the complexes was studied and different thermodynamic parameters were calculated using Coats-Redfern method. Most of the prepared complexes showed high bactericidal activity and some of the complexes show more activity compared with the ligand and standards.
Collapse
Affiliation(s)
- Carmen M Sharaby
- Chemistry Department, Faculty of Science, Al-Azhar University (Girls), Nasr City, Cairo, Egypt.
| |
Collapse
|
32
|
Sharaby CM. Studies of Some New Cyclodiphosphazane Complexes of Fe(III), Fe(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II). ACTA ACUST UNITED AC 2005. [DOI: 10.1081/sim-200035687] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
Aras-Hisar S, Hisar O, Beydemir S, Gülçin I, Yanik T. Effect of vitamin E on carbonic anhydrase enzyme activity in rainbow trout (Oncorhynchus mykiss) erythrocytes in vitro and in vivo. Acta Vet Hung 2004; 52:413-22. [PMID: 15595275 DOI: 10.1556/avet.52.2004.4.4] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Considering that the excessive usage of vitamin E causes hypervitaminosis and thus reduces blood erythrocyte concentrations, therefore it is worth studying how its pharmacological dosage affects the activity of carbonic anhydrase (CA) enzyme found in erythrocytes of rainbow trout (Oncorhynchus mykiss) in vitro and in vivo. Vitamin E inhibited CA enzyme and the IC50 value of the vitamin was 0.039 mM in vitro. Similarly, it was seen that vitamin E inhibited CA enzyme activity after the first hour following vitamin E injections in vivo. The activities of CA in groups of trout given vitamin E injection were measured at 1, 3 and 5 h and the corresponding activities were found to be 772.7 +/- 290.5 (P < 0.05), 1286.4 +/- 378.2 and 1005.7 +/- 436.1 enzyme units (EU) g Hb(-1). The difference over the control was significant (P < 0.05) in the first hour and insignificant at 3 and 5 h (P > 0.05). The activity of CA in the control, which did not contain vitamin E, was determined as 1597.7 +/- 429.0 EU g Hb(-1).
Collapse
Affiliation(s)
- S Aras-Hisar
- Department of Aquaculture, Agriculture Faculty, Atatürk University, 25240 Erzurum, Turkey
| | | | | | | | | |
Collapse
|
34
|
Arashisar S, Hisar O, Yanık T, Aras SM. Inhibitory effects of ammonia and urea on gill carbonic anhydrase enzyme activity of rainbow trout (Oncorhynchus mykiss). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2004; 17:125-128. [PMID: 21782723 DOI: 10.1016/j.etap.2004.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Accepted: 03/15/2004] [Indexed: 05/31/2023]
Abstract
The effects of ammonia and urea on branchial carbonic anhydrase (CA) enzyme which plays a key role in ionoregulation, osmoregulation and acid-base balance of rainbow trout (Oncorhynchus mykiss) were investigated. CA activity of the control group for ammonia and urea was determined as 1285.7 ± 67.9 and 1261.7 ± 60.8EU/mg protein, respectively. The CA enzyme activities of the other groups were measured at 1, 2 and 3h after ammonia and urea applications. The corresponding activities of ammonia were 774.9 ± 68.8, 732.1 ± 48.6 and 768.1 ± 59.5EU/mg protein, respectively and that of urea were 769.3 ± 58.9, 638.2 ± 47.7 and 1108.1 ± 61.1EU/mg protein, respectively. The differences between the initial CA activities for the controls was not significantly (P > 0.01). The CA activities were significantly (P < 0.01) inhibited both in ammonia and urea group. However, the ammonia inhibited more than urea since there was significant differences between final values of gill CA activities.
Collapse
Affiliation(s)
- Sükriye Arashisar
- Department of Aquaculture, Agriculture Faculty, Atatürk University, 25240 Erzurum, Turkey
| | | | | | | |
Collapse
|
35
|
|
36
|
Zhou Z, Fisher D, Spidel J, Greenfield J, Patson B, Fazal A, Wigal C, Moe OA, Madura JD. Kinetic and docking studies of the interaction of quinones with the quinone reductase active site. Biochemistry 2003; 42:1985-94. [PMID: 12590585 DOI: 10.1021/bi026518s] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
NAD(P)H/quinone acceptor oxidoreductase type 1 (QR1) protects cells from cytotoxic and neoplastic effects of quinones though two-electron reduction. Kinetic experiments, docking, and binding affinity calculations were performed on a series of structurally varied quinone substrates. A good correlation between calculated and measured binding affinities from kinetic determinations was obtained. The experimental and theoretical studies independently support a model in which quinones (with one to three fused aromatic rings) bind in the QR1 active site utilizing a pi-stacking interaction with the isoalloxazine ring of the FAD cofactor.
Collapse
Affiliation(s)
- Zhigang Zhou
- Department of Chemistry, Lebanon Valley College, Annville, Pennsylvania 17003, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Remko M. Theoretical Study of Molecular Structure and Gas-Phase Acidity of Some Biologically Active Sulfonamides. J Phys Chem A 2003. [DOI: 10.1021/jp026980m] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Milan Remko
- Department of Pharmaceutical Chemistry, Comenius University, Odbojarov 10, SK-832 32 Bratislava, Slovakia
| |
Collapse
|
38
|
Zhou Z, Madrid M, Madura JD. Docking of non-nucleoside inhibitors: neotripterifordin and its derivatives to HIV-1 reverse transcriptase. Proteins 2002; 49:529-42. [PMID: 12402361 DOI: 10.1002/prot.10233] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The docking of small molecules to proteins has played an important role in the understanding of drug/receptor interactions. An important drug/receptor interaction is between non-nucleoside inhibitors of HIV-1 RT and the non-nucleoside binding pocket. We report the results of docking calculations in which we have docked known and proposed non-nucleoside reverse transcriptase inhibitors to the type 1 virus. The proposed NNRTIs dock in a similar position and orientation as known inhibitors. In addition, we observe a linear correlation between the calculated interaction energy and EC50 for the inhibitors, suggesting that the docked structure orientation and the interaction energies are reasonable. Two hydrogen bonds between nevirapine and RT (3HVT and 1VRT) are observed and are reproduced across different docking schemes. Since we used two different HIV-1 RT crystal structures (3HVT and 1VRT), which are at different levels of resolution (2.9 and 2.2 A, respectively), we propose that structures with resolutions better than 3 A can be used to produce reasonable docking results.
Collapse
Affiliation(s)
- Zhigang Zhou
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | | | | |
Collapse
|