1
|
Gent DG, Saif M, Dobson R, Wright DJ. Cardiovascular Disease After Hematopoietic Stem Cell Transplantation in Adults: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2024; 6:475-495. [PMID: 39239331 PMCID: PMC11372032 DOI: 10.1016/j.jaccao.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 09/07/2024] Open
Abstract
The use of hematopoietic cell transplantation (HCT) has expanded in the last 4 decades to include an older and more comorbid population. These patients face an increased risk of cardiovascular disease after HCT. The risk varies depending on several factors, including the type of transplant (autologous or allogeneic). Many therapies used in HCT have the potential to be cardiotoxic. Cardiovascular complications after HCT include atrial arrhythmias, heart failure, myocardial infarction, and pericardial effusions. Before HCT, patients should undergo a comprehensive cardiovascular assessment, with ongoing surveillance tailored to their individual level of cardiovascular risk. In this review, we provide an overview of cardiotoxicity after HCT and outline our approach to risk assessment and ongoing care.
Collapse
Affiliation(s)
- David G Gent
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
| | - Muhammad Saif
- The Clatterbridge Cancer Centre, Liverpool, United Kingdom
| | - Rebecca Dobson
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
| | - David J Wright
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
| |
Collapse
|
2
|
Hayek SS, Zaha VG, Bogle C, Deswal A, Langston A, Rotz S, Vasbinder A, Yang E, Okwuosa T. Cardiovascular Management of Patients Undergoing Hematopoietic Stem Cell Transplantation: From Pretransplantation to Survivorship: A Scientific Statement From the American Heart Association. Circulation 2024; 149:e1113-e1127. [PMID: 38465648 DOI: 10.1161/cir.0000000000001220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Hematopoietic stem cell transplantation can cure various disorders but poses cardiovascular risks, especially for elderly patients and those with cardiovascular diseases. Cardiovascular evaluations are crucial in pretransplantation assessments, but guidelines are lacking. This American Heart Association scientific statement summarizes the data on transplantation-related complications and provides guidance for the cardiovascular management throughout transplantation. Hematopoietic stem cell transplantation consists of 4 phases: pretransplantation workup, conditioning therapy and infusion, immediate posttransplantation period, and long-term survivorship. Complications can occur during each phase, with long-term survivors facing increased risks for late effects such as cardiovascular disease, secondary malignancies, and endocrinopathies. In adults, arrhythmias such as atrial fibrillation and flutter are the most frequent acute cardiovascular complication. Acute heart failure has an incidence ranging from 0.4% to 2.2%. In pediatric patients, left ventricular systolic dysfunction and pericardial effusion are the most common cardiovascular complications. Factors influencing the incidence and risk of complications include pretransplantation therapies, transplantation type (autologous versus allogeneic), conditioning regimen, comorbid conditions, and patient age. The pretransplantation cardiovascular evaluation consists of 4 steps: (1) initial risk stratification, (2) exclusion of high-risk cardiovascular disease, (3) assessment of cardiac reserve, and (4) optimization of cardiovascular reserve. Clinical risk scores could be useful tools for the risk stratification of adult patients. Long-term cardiovascular management of hematopoietic stem cell transplantation survivors includes optimizing risk factors, monitoring, and maintaining a low threshold for evaluating cardiovascular causes of symptoms. Future research should prioritize refining risk stratification and creating evidence-based guidelines and strategies to optimize outcomes in this growing patient population.
Collapse
|
3
|
Hassanein EHM, Kamel EO, Gad-Elrab WM, Ahmed MA, Mohammedsaleh ZM, Ali FEM. Lansoprazole attenuates cyclophosphamide-induced cardiopulmonary injury by modulating redox-sensitive pathways and inflammation. Mol Cell Biochem 2023; 478:2319-2335. [PMID: 36717473 PMCID: PMC10520119 DOI: 10.1007/s11010-023-04662-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 01/09/2023] [Indexed: 02/01/2023]
Abstract
Cyclophosphamide (CPA) is a classical chemotherapeutic drug widely used as an anticancer and immunosuppressive agent. However, it is frequently associated with significant toxicities to the normal cells of different organs, including the lung and heart. Lansoprazole (LPZ), a proton pump inhibitor (PPI), possesses antioxidant and anti-inflammatory properties. The current study investigated how LPZ protects against CPA-induced cardiac and pulmonary damage, focusing on PPARγ, Nrf2, HO-1, cytoglobin, PI3K/AKT, and NF-κB signaling. Animals were randomly assigned into four groups: normal control group (received vehicle), LPZ only group (Rats received LPZ at a dose of 50 mg/kg/day P.O. for 10 days), CPA group (CPA was administered (200 mg/kg) as a single i.p. injection on the 7th day), and cotreatment group (LPZ plus CPA). Histopathological and biochemical analyses were conducted. Our results revealed that LPZ treatment revoked CPA-induced heart and lung histopathological alterations. Also, LPZ potently mitigated CPA-induced cardiac and pulmonary oxidative stress through the activation of PPARγ, Nrf2/HO-1, cytoglobin, and PI3K/AKT signaling pathways. Also, LPZ effectively suppressed inflammatory response as evidenced by down-regulating the inflammatory strategic controller NF-κB, MPO, and pro-inflammatory cytokines. The present findings could provide a mechanistic basis for understanding LPZ's role in CPA-induced cardiopulmonary injury through the alleviation of oxidative stress and inflammatory burden.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Esam O Kamel
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Wail M Gad-Elrab
- Department of Human Anatomy & Embryology, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Mohammed A Ahmed
- Pathology Department, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Kingdom of Saudi Arabia
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| |
Collapse
|
4
|
Kim JY, Kim JY, Kim H, Moon EC, Heo K, Shim JJ, Lee JL. Immunostimulatory effects of dairy probiotic strains Bifidobacterium animalis ssp. lactis HY8002 and Lactobacillus plantarum HY7717. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:1117-1131. [PMID: 36812033 PMCID: PMC9890336 DOI: 10.5187/jast.2022.e84] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 12/14/2022]
Abstract
Previous studies reported that Bifidobacterium animalis ssp. lactis HY8002 (HY8002) improved intestinal integrity and had immunomodulatory effects. Lactobacillus plantarum HY7717 (HY7717) was screened in vitro from among 21 other lactic acid bacteria (LAB) and demonstrated nitric oxide (NO) production. The aims of this study were to investigate the individual and combined ex vivo and in vivo effects of LAB strains HY8002 and HY7717 at immunostimulating mice that have been challenged with an immunosuppressant drug. The combination of HY8002 and HY7717 increased the secretion of cytokines such as interferon (IFN)-γ, interleukin (IL)-12, and tumor necrosis factor (TNF)-α in splenocytes. In a cyclophosphamide (CTX)-induced immunosuppression model, administration of the foregoing LAB combination improved the splenic and hematological indices, activated natural killer (NK) cells, and up-regulated plasma immunoglobulins and cytokines. Moreover, this combination treatment increased Toll-like receptor 2 (TLR2) expression. The ability of the combination treatment to upregulate IFN-γ and TNF-α in the splenocytes was inhibited by anti-TLR2 antibody. Hence, the immune responses stimulated by the combination of HY8002 and HY7717 are associated with TLR2 activation. The preceding findings suggest that the combination of the HY8002 and HY7717 LAB strains could prove to be a beneficial and efficacious immunostimulant probiotic supplement. The combination of the two probiotic strains will be applied on the dairy foods including yogurt and cheese.
Collapse
Affiliation(s)
- Ju-Yeon Kim
- R&BD Center, hy Co.,
Ltd., Yongin 17086, Korea
| | - Joo Yun Kim
- R&BD Center, hy Co.,
Ltd., Yongin 17086, Korea
| | - Hyeonji Kim
- R&BD Center, hy Co.,
Ltd., Yongin 17086, Korea
| | | | - Keon Heo
- R&BD Center, hy Co.,
Ltd., Yongin 17086, Korea,Corresponding author: Keon Heo,
R&BD Center, hy Co., Ltd., Yongin 17086, Korea. Tel: +82-70-7835-6040,
E-mail:
| | | | | |
Collapse
|
5
|
Kim CW, Choi KC. Effects of anticancer drugs on the cardiac mitochondrial toxicity and their underlying mechanisms for novel cardiac protective strategies. Life Sci 2021; 277:119607. [PMID: 33992675 DOI: 10.1016/j.lfs.2021.119607] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria are organelles that play a pivotal role in the production of energy in cells, and vital to the maintenance of cellular homeostasis due to the regulation of many biochemical processes. The heart contains a lot of mitochondria because those muscles require a lot of energy to keep supplying blood through the circulatory system, implying that the energy generated from mitochondria is highly dependent. Thus, cardiomyocytes are sensitive to mitochondrial dysfunction and are likely to be targeted by mitochondrial toxic drugs. It has been reported that some anticancer drugs caused unwanted toxicity to mitochondria. Mitochondrial dysfunction is related to aging and the onset of many diseases, such as obesity, diabetes, cancer, cardiovascular and neurodegenerative diseases. Mitochondrial toxic mechanisms can be mainly explained concerning reactive oxygen species (ROS)/redox status, calcium homeostasis, and endoplasmic reticulum stress (ER) stress signaling. The toxic mechanisms of many anticancer drugs have been revealed, but more studying and understanding of the mechanisms of drug-induced mitochondrial toxicity is required to develop mitochondrial toxicity screening system as well as novel cardioprotective strategies for the prevention of cardiac disorders of drugs. This review focuses on the cardiac mitochondrial toxicity of commonly used anticancer drugs, i.e., doxorubicin, mitoxantrone, cisplatin, arsenic trioxide, and cyclophosphamide, and their possible chemopreventive agents that can prevent or alleviate cardiac mitochondrial toxicity.
Collapse
Affiliation(s)
- Cho-Won Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
6
|
The Role of Antioxidants in Ameliorating Cyclophosphamide-Induced Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4965171. [PMID: 32454939 PMCID: PMC7238386 DOI: 10.1155/2020/4965171] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/09/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022]
Abstract
The chemotherapeutic and immunosuppressive agent cyclophosphamide has previously been shown to induce complications within the setting of bone marrow transplantation. More recently, cardiotoxicity has been shown to be a dose-limiting factor during cyclophosphamide therapy, and cardiooncology is getting wider attention. Though mechanism of cyclophosphamide-induced cardiotoxicity is not completely understood, it is thought to encompass oxidative and nitrative stress. As such, this review focuses on antioxidants and their role in preventing or ameliorating cyclophosphamide-induced cardiotoxicity. It will give special emphasis to the cardioprotective effects of natural, plant-derived antioxidants that have garnered significant interest in recent times.
Collapse
|
7
|
Meng Y, Wang J, Wang Z, Zhang G, Liu L, Huo G, Li C. Lactobacillus plantarum KLDS1.0318 Ameliorates Impaired Intestinal Immunity and Metabolic Disorders in Cyclophosphamide-Treated Mice. Front Microbiol 2019; 10:731. [PMID: 31031723 PMCID: PMC6473033 DOI: 10.3389/fmicb.2019.00731] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/25/2019] [Indexed: 12/21/2022] Open
Abstract
Cyclophosphamide (CTX), a clinically important antineoplastic drug, also leads to some side effects such as nausea, vomiting and diarrhea in the consumer. In this study, Lactobacillus plantarum (L. plantarum) KLDS1.0318 preserved in our laboratory was orally administered to CTX-treated mice to explore its potential effects to attenuate the toxic effects of CTX-induced by modulating intestinal immune response, promoting intestinal integrity and improving metabolic profile. BALB/c mice were randomly divided into six groups including normal control group (NC; non-CTX with sterile saline), model control group (MC; CTX-treated with sterile saline), CTX-treated with L. plantarum KLDS1.0318 (10 mL/kg) groups with three different doses (KLDS1.0318-L, 5 × 107 CFU/mL; KLDS1.0318-M, 5 × 108 CFU/mL; KLDS1.0318-H, 5 × 109 CFU/mL), and CTX-treated with levamisole hydrochloride (40 mg/kg) as a positive control (PC) group. After receiving the bacterium for 20 days, samples of small intestine and colonic contents were collected for different analyses. The results revealed that the levels of cytokines secreted by Th1 cells (IL-2, IFN-γ, and TNF-α) and Th2 cells (IL-4, IL-6, and IL-10) in probiotic treatment groups were significantly higher than those in the MC group. Histopathological results showed that L. plantarum KLDS1.0318 favorably recovered CTX-induced abnormal intestinal morphology by improving the villus height and crypt depth as well as quantity of goblet cells and mucins production. Compared to CTX alone-treated group, the production of short-chain fatty acids (SCFAs) were significantly increased and the levels of pH and ammonia were decreased significantly with high dose L. plantarum KLDS1.0318 supplementation. Compared with mice in CTX alone-treated group, mice in three groups of KLDS1.0318 had increased Bifidobacterium and Lactobacillus and decreased Escherichia and Enterococcus in their cecal content. The present findings suggested that L. plantarum KLDS1.0318 could be of significant advantage to mitigate the harmful effects of CTX and improve the intestinal health in mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chun Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
8
|
Qian P, Peng CH, Ye X. Interstitial pneumonia induced by cyclophosphamide: A case report and review of the literature. Respir Med Case Rep 2019; 26:212-214. [PMID: 30733918 PMCID: PMC6354618 DOI: 10.1016/j.rmcr.2019.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 02/07/2023] Open
Abstract
Introduction Recently, interstitial lung disease significantly increases and it is difficult to treat. Cyclophosphamide(CP) is one drug administrated in interstitial lung disease, which can also cause pulmonary fibrosis and lung function lesion. This article present a case which exacerbated interstitial pneumonia after treatment by CP, aiming to enhance the understanding of the side effects of CP and standardize usage of the CP. Case presentation A patient of nephrotic syndrome administrated with CP suffered respiratory insufficiency requiring mechanical ventilation. Computed tomography (CT) imaging was compatible with interstitial pneumonia(IP). After treating with multimodal combination therapy (corticosteroids, immune globulins), the patient survived. The clinical characteristics of CP-related lung toxicity and/or pulmonary fibrosis should be paid more attention to avoid the serious outcomes. Conclusion Although interstitial lung disease induced by CP is rare, with the current widespread usage of CP increases the risks of diffuse interstitial pneumonia and pulmonary fibrosis, which need to be noted in time to get early treatment.
Collapse
Affiliation(s)
- Panpan Qian
- ZunYi Medical University, Zunyi, Guizhou Province, China.,Department of Respiration and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, China
| | - Chun Hong Peng
- Department of Respiration and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, China
| | - Xianwei Ye
- Department of Respiration and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, China
| |
Collapse
|
9
|
Iqubal A, Iqubal MK, Sharma S, Ansari MA, Najmi AK, Ali SM, Ali J, Haque SE. Molecular mechanism involved in cyclophosphamide-induced cardiotoxicity: Old drug with a new vision. Life Sci 2018; 218:112-131. [PMID: 30552952 DOI: 10.1016/j.lfs.2018.12.018] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/08/2018] [Accepted: 12/10/2018] [Indexed: 12/20/2022]
Abstract
Cyclophosphamide (CP) is an important anticancer drug which belongs to the class of alkylating agent. Cyclophosphamide is mostly used in bone marrow transplantation, rheumatoid arthritis, lupus erythematosus, multiple sclerosis, neuroblastoma and other types of cancer. Dose-related cardiotoxicity is a limiting factor for its use. CP-induced cardiotoxicity ranges from 7 to 28% and mortality ranges from 11 to 43% at the therapeutic dose of 170-180 mg/kg, i.v. CP undergoes hepatic metabolism that results in the production of aldophosphamide. Aldophosphamide decomposes into phosphoramide mustard & acrolein. Phosphoramide is an active neoplastic agent, and acrolein is a toxic metabolite which acts on the myocardium and endothelial cells. This is the first review article that talks about cyclophosphamide-induced cardiotoxicity and the different signaling pathways involved in its pathogenicity. Based on the available literature, CP is accountable for cardiomyocytes energy pool alteration by affecting the heart fatty acid binding proteins (H-FABP). CP has been found associated with cardiomyocytes apoptosis, inflammation, endothelial dysfunction, calcium dysregulation, endoplasmic reticulum damage, and mitochondrial damage. Molecular mechanism of cardiotoxicity has been discussed in detail through crosstalk of Nrf2/ARE, Akt/GSK-3β/NFAT/calcineurin, p53/p38MAPK, NF-kB/TLR-4, and Phospholamban/SERCA-2a signaling pathway. Based on the available literature we support the fact that metabolites of CP are responsible for cardiotoxicity due to depletion of antioxidants/ATP level, altered contractility, damaged endothelium and enhanced pro-inflammatory/pro-apoptotic activities resulting into cardiomyopathy, myocardial infarction, and heart failure. Dose adjustment, elimination/excretion of acrolein and maintenance of endogenous antioxidant pool could be the therapeutic approach to mitigate the toxicities.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Sumit Sharma
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Asif Ansari
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Syed Mansoor Ali
- Department of Biosciences, Jamia Millia Islamia,110025 New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
10
|
Protective Effects of Fullerene C 60 Nanoparticles and Virgin Olive Oil against Genotoxicity Induced by Cyclophosphamide in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1261356. [PMID: 30116471 PMCID: PMC6079351 DOI: 10.1155/2018/1261356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 12/31/2022]
Abstract
The potential effects of the fullerene C60 nanoparticle (C60) as well as virgin olive oil (VOO) against the cyclophosphamide- (CP-) induced cytotoxic and mutagenic effects were evaluated by two main methods: molecular intersimple sequence repeat (ISSR) assay and cytogenetic biomarkers. Thirty adult male rats were divided to five groups (control, CP, C60, CP + C60, and CP + VOO). CP was i.p. injected with a single dose of 200 mg/kg; C60 and VOO were given orally (4 mg/kg dissolved in VOO and 1 ml, resp.) in alternative days for 20 days. The ISSR analysis revealed an increased in the DNA fragmentation level for liver and heart tissues represented by 21.2% and 32.6%, respectively, in the CP group. The DNA polymorphism levels were modulated and improved in CP + C60 (8.9% and 12%) and CP + VOO (9.8% and 12.7%) for hepatic and cardiac tissues, respectively. The bone marrow cytogenetic analysis revealed that C60 and VOO had significantly decreased the frequency of CP-induced chromosomal aberrations (chromosomal ring, deletion, dicentric chromosome, fragmentation, and polyploidy). Fullerene C60 and VOO have ability to reduce DNA damage and decrease chromosomal aberrations. In conclusion, fullerene C60 and VOO have protective effects against the CP-induced mutagenicity and genotoxicity. Fullerene C60 and VOO open an interesting field concerning their potential antigenotoxic agents against deleterious side effects of chemotherapeutics.
Collapse
|
11
|
Baaten CCFMJ, Moenen FCJI, Henskens YMC, Swieringa F, Wetzels RJH, van Oerle R, Heijnen HFG, Ten Cate H, Holloway GP, Beckers EAM, Heemskerk JWM, van der Meijden PEJ. Impaired mitochondrial activity explains platelet dysfunction in thrombocytopenic cancer patients undergoing chemotherapy. Haematologica 2018; 103:1557-1567. [PMID: 29880611 PMCID: PMC6119160 DOI: 10.3324/haematol.2017.185165] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 06/05/2018] [Indexed: 01/07/2023] Open
Abstract
Severe thrombocytopenia (≤50×109 platelets/L) due to hematological malignancy and intensive chemotherapy is associated with an increased risk of clinically significant bleeding. Since the bleeding risk is not linked to the platelet count only, other hemostatic factors must be involved. We studied platelet function in 77 patients with acute leukemia, multiple myeloma or malignant lymphoma, who experienced chemotherapy-induced thrombocytopenia. Platelets from all patients - independent of disease or treatment type - were to a variable extent compromised in Ca2+ flux, integrin a β activation and P-selectin expression when stimulated with a panelIIbof3 agonists. The patients' platelets were also impaired in spreading on fibrinogen. Whereas the Ca2+ store content was unaffected, the patients' platelets showed ongoing phosphatidylserine exposure, which was not due to apoptotic caspase activity. Interestingly, mitochondrial function was markedly reduced in platelets from a representative subset of patients, as evidenced by a low mitochondrial membrane potential (P<0.001) and low oxygen consumption (P<0.05), while the mitochondrial content was normal. Moreover, the mitochondrial impairments coincided with elevated levels of reactive oxygen species (Spearman's rho=-0.459, P=0.012). Markedly, the impairment of platelet function only appeared after two days of chemotherapy, suggesting origination in the megakaryocytes. In patients with bone marrow recovery, platelet function improved. In conclusion, our findings disclose defective receptor signaling related to impaired mitochondrial bioenergetics, independent of apoptosis, in platelets from cancer patients treated with chemotherapy, explaining the low hemostatic potential of these patients.
Collapse
Affiliation(s)
- Constance C F M J Baaten
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, the Netherlands
| | - Floor C J I Moenen
- Department of Hematology, Maastricht University Medical Centre, the Netherlands
| | - Yvonne M C Henskens
- Central Diagnostic Laboratory, Maastricht University Medical Centre, the Netherlands
| | - Frauke Swieringa
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, the Netherlands.,Department of Protein Dynamics, Leibniz Institute for Analytical Sciences - ISAS-e.V., Dortmund, Germany
| | - Rick J H Wetzels
- Central Diagnostic Laboratory, Maastricht University Medical Centre, the Netherlands
| | - René van Oerle
- Central Diagnostic Laboratory, Maastricht University Medical Centre, the Netherlands.,Laboratory for Clinical Thrombosis and Hemostasis, Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, the Netherlands
| | - Harry F G Heijnen
- Department of Cell Biology and Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, the Netherlands
| | - Hugo Ten Cate
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, the Netherlands.,Laboratory for Clinical Thrombosis and Hemostasis, Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, the Netherlands
| | - Graham P Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph, Ontario, Canada
| | - Erik A M Beckers
- Department of Hematology, Maastricht University Medical Centre, the Netherlands
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, the Netherlands
| | - Paola E J van der Meijden
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, the Netherlands
| |
Collapse
|
12
|
Elshater AEA, Haridy MA, Salman MM, Fayyad AS, Hammad S. Fullerene C60 nanoparticles ameliorated cyclophosphamide-induced acute hepatotoxicity in rats. Biomed Pharmacother 2018; 97:53-59. [DOI: 10.1016/j.biopha.2017.10.134] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/30/2017] [Accepted: 10/23/2017] [Indexed: 10/18/2022] Open
|
13
|
Inhibition of gene expression of carnitine palmitoyltransferase I and heart fatty acid binding protein in cyclophosphamide and ifosfamide-induced acute cardiotoxic rat models. Cardiovasc Toxicol 2015; 14:232-42. [PMID: 24469765 DOI: 10.1007/s12012-014-9247-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This study investigated whether cyclophosphamide (CP) and ifosfamide (IFO) therapy alters the expression of the key genes engaged in long-chain fatty acid (LCFA) oxidation outside rat heart mitochondria, and if so, whether these alterations should be viewed as a mechanism during CP- and IFO-induced cardiotoxicity. Adult male Wistar albino rats were assigned to one of the six treatment groups: Rats in group 1 (control) and group 2 (L-carnitine) were injected intraperitoneal (i.p.) with normal saline and L-carnitine (200 mg/kg/day), respectively, for 10 successive days. Animals in group 3 (CP group) were injected i.p. with normal saline for 5 days before and 5 days after a single dose of CP (200 mg/kg, i.p.). Rats in group 4 (IFO group) received normal saline for 5 successive days followed by IFO (50 mg/kg/day, i.p.) for 5 successive days. Rats in group 5 (CP-carnitine supplemented) were given the same doses of L-carnitine as group 2 for 5 days before and 5 days after a single dose of CP as group 3. Rats in group 6 (IFO-carnitine supplemented) were given the same doses of L-carnitine as group 2 for 5 days before and 5 days concomitant with IFO as group 4. Immediately, after the last dose of the treatment protocol, blood samples were withdrawn and animals were killed for biochemical, histopathological and gene expression studies. Treatment with CP and IFO significantly decreased expression of heart fatty acid binding protein (H-FABP) and carnitine palmitoyltransferase I (CPT I) genes in cardiac tissues. Moreover, CP but not IFO significantly increased acetyl-CoA carboxylase2 mRNA expression. Conversely, IFO but not CP significantly decreased mRNA expression of malonyl-CoA decarboxylase. Both CP and IFO significantly increased serum lactate dehydrogenase, creatine kinase isoenzyme MB and malonyl-CoA content and histopathological lesions in cardiac tissues. Interestingly, carnitine supplementation completely reversed all the biochemical, histopathological and gene expression changes induced by CP and IFO to the control values, except CPT I mRNA, and protein expression remained inhibited by IFO. Data from the current study suggest, for the first time, that (1) CP and IFO therapy is associated with the inhibition of the expression of H-FABP and CPT I genes in cardiac tissues with the consequent inhibition of mitochondrial transport and oxidation of LCFA. (2) The progressive increase in cardiotoxicity enzymatic indices and the decrease in H-FABP and CPT I expression may point to the possible contribution of these genes to CP- and IFO-induced cardiotoxicity.
Collapse
|
14
|
Nayak G, Vadinkar A, Nair S, Kalthur SG, D'Souza AS, Shetty PK, Mutalik S, Shetty MM, Kalthur G, Adiga SK. Sperm abnormalities induced by pre-pubertal exposure to cyclophosphamide are effectively mitigated byMoringa oleiferaleaf extract. Andrologia 2015; 48:125-36. [DOI: 10.1111/and.12422] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2015] [Indexed: 12/19/2022] Open
Affiliation(s)
- G. Nayak
- Division of Clinical Embryology; Department of Obstetrics and Gynecology; Kasturba Medical College; Manipal University; Manipal Karnataka India
| | - A. Vadinkar
- Division of Clinical Embryology; Department of Obstetrics and Gynecology; Kasturba Medical College; Manipal University; Manipal Karnataka India
| | - S. Nair
- Division of Clinical Embryology; Department of Obstetrics and Gynecology; Kasturba Medical College; Manipal University; Manipal Karnataka India
| | - S. G. Kalthur
- Department of Anatomy; Kasturba Medical College; Manipal University; Manipal Karnataka India
| | - A. S. D'Souza
- Department of Anatomy; Kasturba Medical College; Manipal University; Manipal Karnataka India
| | - P. K. Shetty
- Department of Pharmaceutics; Manipal College of Pharmaceutical Sciences; Manipal University; Manipal Karnataka India
| | - S. Mutalik
- Department of Pharmaceutics; Manipal College of Pharmaceutical Sciences; Manipal University; Manipal Karnataka India
| | - M. M. Shetty
- Department of Pharmacognosy; Manipal College of Pharmaceutical Sciences; Manipal University; Manipal Karnataka India
| | - G. Kalthur
- Division of Clinical Embryology; Department of Obstetrics and Gynecology; Kasturba Medical College; Manipal University; Manipal Karnataka India
| | - S. K. Adiga
- Division of Clinical Embryology; Department of Obstetrics and Gynecology; Kasturba Medical College; Manipal University; Manipal Karnataka India
| |
Collapse
|
15
|
Nagi MN, Al-Shabanah OA, Hafez MM, Sayed-Ahmed MM. Thymoquinone supplementation attenuates cyclophosphamide-induced cardiotoxicity in rats. J Biochem Mol Toxicol 2010; 25:135-42. [PMID: 20957680 DOI: 10.1002/jbt.20369] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This study examined the possible protective effects of thymoquinone (TQ), the main constituent of the volatile oil of black seed (Nigella sativa), against cyclophosphamide (CP)-induced cardiotoxicity. Adult male Wistar albino rats were divided into four treatment groups. Rats in the first group were served as control. Rats in the second group received TQ (50 mg/L in drinking water) for 12 days. Animals in the third group were injected with a single dose of CP (200 mg/kg, IP) at day 5. Rats in the fourth group received TQ (50 mg/L in drinking water) for 5 days before a single dose of CP (200 mg/kg, IP) and continued thereafter throughout the experiment. On day 13, animals were sacrificed; serum and hearts were isolated and analyzed. Cyclophosphamide resulted in a significant increase in serum creatine kinase, lactate dehydrogenase, cholesterol, triglycerides, creatinine, urea, and tumor necrosis factor-α. In heart tissues, CP resulted in a significant increase in thiobarbituric acid reactive substances and total nitrate/nitrite and a significant decrease in reduced glutathione, glutathione peroxidase, catalase, and adenosine triphosphate levels. Interestingly, TQ supplementation resulted in a complete reversal of all the biochemical changes induced by CP to their control values. Data from this study suggest that TQ supplementation attenuates CP-induced cardiotoxicity by a mechanism related, at least in part, to its ability to decrease oxidative and nitrosative stress and to preserve the activity of antioxidant enzymes as well as its ability to improve the mitochondrial function and energy production. .
Collapse
Affiliation(s)
- Mahmoud N Nagi
- Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | | | | | | |
Collapse
|
16
|
A. Asiri Y. Anticancer and Biochemical Effects of Calcium Chloride on Ehrlich Carcinoma Cell-Bearing Swiss Albino Mice. INT J PHARMACOL 2008. [DOI: 10.3923/ijp.2009.13.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Kevorkian G, Alchujyan N, Movsesyan N, Hayrapetyan H, Guevorkian A, Ohanyan R, Dagbashyan S. Nitrergic response to cyclophosphamide treatment in blood and bone marrow. Open Biochem J 2008; 2:81-90. [PMID: 18949079 PMCID: PMC2570548 DOI: 10.2174/1874091x00802010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 04/22/2008] [Accepted: 05/13/2008] [Indexed: 12/04/2022] Open
Abstract
Daily intraperitoneal injection of cyclophosphamide (CPA) (50 mgkg(-1) of body weight) for 5 days resulted in reduced levels of marrow and blood cellularity, which was most pronounced in 18 days post-treatment (pt). On day 18 after CPA treatment the enhancedlevels of nitric oxide (NO) precursors and metabolites (L-arginine, L-citrulline, reactive nitrogen species (RNS)) of marrow and blood cells (platelet, neutrophil, lymphocyte and monocyte) resulted from up-regulation of Ca(II)/calmodulin(CaM)-independent "inducible" NO synthase (iNOS), with a lessercontribution of Ca(II)/CaM-dependent "constitutive" cNOS isoforms to systemic NO.Biphasic response to CPA of marrow nitrergic system, i.e. both iNOS and cNOS showed significantly depressed activities, as well as diminished levels of NO metabolites on day 9 pt, suggested that signals in addition to NO might be involved in CPA-induced inhibition of hematopoesis, while a gradual increase of neutrophil and platelet NOS activity appeared to be contributed to a CPA-induced development of granulopenia, thrombocytopenia and hemorrhage.
Collapse
Affiliation(s)
- G.A Kevorkian
- />H. Buniatian Institute of Biochemistry NAS RA, 5/1 P.Sevak St., 0014, Yerevan, Republic of Armenia
| | - N.Kh Alchujyan
- />H. Buniatian Institute of Biochemistry NAS RA, 5/1 P.Sevak St., 0014, Yerevan, Republic of Armenia
| | - N.H Movsesyan
- />H. Buniatian Institute of Biochemistry NAS RA, 5/1 P.Sevak St., 0014, Yerevan, Republic of Armenia
| | - H.L Hayrapetyan
- />H. Buniatian Institute of Biochemistry NAS RA, 5/1 P.Sevak St., 0014, Yerevan, Republic of Armenia
| | - A.G Guevorkian
- />H. Buniatian Institute of Biochemistry NAS RA, 5/1 P.Sevak St., 0014, Yerevan, Republic of Armenia
| | - R.M Ohanyan
- />H. Buniatian Institute of Biochemistry NAS RA, 5/1 P.Sevak St., 0014, Yerevan, Republic of Armenia
| | - S.S Dagbashyan
- />H. Buniatian Institute of Biochemistry NAS RA, 5/1 P.Sevak St., 0014, Yerevan, Republic of Armenia
| |
Collapse
|
18
|
. AA. Effect of Calcium Chloride on Cyclophosphamide-Induced Genotoxic and Biochemical Changes in Swiss Albino Mice. INT J PHARMACOL 2007. [DOI: 10.3923/ijp.2007.492.498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Sudharsan PT, Mythili Y, Selvakumar E, Varalakshmi P. Lupeol and its ester exhibit protective role against cyclophosphamide-induced cardiac mitochondrial toxicity. J Cardiovasc Pharmacol 2006; 47:205-10. [PMID: 16495757 DOI: 10.1097/01.fjc.0000200658.89629.ba] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cyclophosphamide (CP), an anti-cancer and immunosuppressant drug, causes fatal cardiotoxicity during high dose chemotherapy. Lupeol, a pentacyclic triterpene, isolated from Crataeva nurvala stem bark and its ester, lupeol linoleate, possess wide range of medicinal properties. The objective of this study was to establish the pharmacological efficacy of lupeol and its ester against CP-induced mitochondrial-cardiomyopathy. Male albino rats of Wistar strain were injected with a single dose of CP (200 mg/kg body weight, i.p.). A decrease in the activities of TCA cycle enzymes such as succinate dehydrogenase, malate dehydrogenase, and isocitrate dehydrogenase were noted in CP-treated rats. Simultaneously there was a decrease in the activities of mitochondrial complexes of electron transport chain. Electron microscopical observations were also in agreement with the above changes. Mitochondria were swollen with numerous electron dense granules and showed damaged cristae, revealing the cytotoxic effect of CP. Lupeol (50 mg/kg body weight for 10 days orally) and its ester, lupeol linoleate (50 mg/kg body weight for 10 days orally) showed reversal of the above alterations induced by CP. These data suggest that the protective effects of lupeol and its ester against CP-induced cardiac damage were achieved by restoration of mitochondrial structure and function.
Collapse
Affiliation(s)
- Periyasamy Thandavan Sudharsan
- Department of Medical Biochemistry, Dr. ALM. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India
| | | | | | | |
Collapse
|
20
|
Mythili Y, Sudharsan PT, Selvakumar E, Varalakshmi P. Protective effect of DL-alpha-lipoic acid on cyclophosphamide induced oxidative cardiac injury. Chem Biol Interact 2005; 151:13-9. [PMID: 15607758 DOI: 10.1016/j.cbi.2004.10.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Revised: 10/24/2004] [Accepted: 10/24/2004] [Indexed: 10/26/2022]
Abstract
Cyclophosphamide (CP), one of the most widely prescribed antineoplastic drugs could cause a lethal cardiotoxicity. The present study is aimed at evaluating the role of DL-alpha-lipoic acid (LA) in oxidative cardiac damage induced by CP. Adult male Wistar rats were divided into four treatment groups. Two groups received single intraperitoneal injection of CP (200 mg/kg BW) to induce cardiotoxicity, one of these groups received LA treatment (25 mg/kg BW for 10 days). A vehicle treated control group and a LA drug control were also included. Cardiotoxicity, evident from increased activities of serum creatine phosphokinase, lactate dehydrogenase, aspartate transaminase and alanine transaminase in CP administered rats, was reversed by LA treatment. CP administered rats showed abnormal levels of enzymic (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione-S-transferase) and non-enzymic antioxidants (glutathione, vitamin C and vitamin E) along with high malondialdehyde levels. However, normalized lipid peroxidation and antioxidant defenses were reported in the LA treated rats. These findings highlight the efficacy of LA as a cytoprotectant in CP induced cardiotoxicity.
Collapse
Affiliation(s)
- Y Mythili
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600113, India
| | | | | | | |
Collapse
|
21
|
Mythili Y, Sudharsan PT, Varalakshmi P. dl-α-lipoic acid ameliorates cyclophosphamide induced cardiac mitochondrial injury. Toxicology 2005; 215:108-14. [PMID: 16085348 DOI: 10.1016/j.tox.2005.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 06/20/2005] [Accepted: 07/04/2005] [Indexed: 10/25/2022]
Abstract
Mitochondria play a central role in heart metabolism and function. Administration of antineoplastic drug cyclophosphamide (CP) adversely affects the heart mitochondria which may result in cardiotoxicity. The present study is aimed at evaluating the role of lipoic acid (LA) in CP induced myocardial injury. Male albino rats of Wistar strain were used for the study. CP was administered as a single intraperitoneal injection (200 mg/kg BW). A decrease in the activities of TCA cycle enzymes such as succinate dehydrogenase, malate dehydrogenase and isocitrate dehydrogenase was noted in CP treated rats. Simultaneously there was a decrease in the activities of mitochondrial complexes of electron transport chain. Decrease in the activities of these enzymes suggests a loss in mitochondrial function and integrity. Ultrastuctural observations were also in agreement with the above abnormal changes. Loss of myofilaments and damage of mitochondrial cristae revealed the cytotoxic effect of CP. The supplementation of LA (25 mg/kg BW) restored the above abnormalities to near normalcy. The study brings out the importance of LA in improving the mitochondrial function in cardiac cells after CP administration.
Collapse
Affiliation(s)
- Y Mythili
- Department of Medical Biochemistry, Dr. ALM. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600113, India
| | | | | |
Collapse
|
22
|
Selvakumar E, Prahalathan C, Mythili Y, Varalakshmi P. Mitigation of oxidative stress in cyclophosphamide-challenged hepatic tissue by DL-alpha-lipoic acid. Mol Cell Biochem 2005; 272:179-85. [PMID: 16010986 DOI: 10.1007/s11010-005-7322-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The present study investigated the protective effect of DL-alpha-lipoic acid on the tissue peroxidative damage and abnormal antioxidant levels in cyclophosphamide (CP) induced hepatotoxicity. Male Wistar rats of 140 +/- 20 g were categorized into four groups. Two groups were administered CP (15 mg/kg body weight once a week for 10 weeks by oral gavage) to induce hepatotoxicity; one of these groups received lipoic acid treatment (35 mg/kg body weight intraperitoneally once a week for 10 weeks; 24 h prior to the CP administration). A vehicle (saline) treated control group and a lipoic acid drug control group were also included. The extent of liver damage in CP-induced rats was evident from the increased activities of serum aminotransferases, alkaline phosphatase and lactate dehydrogenase; whereas lipoic acid pretreatment prevented the rise in these marker enzymes. We evaluated the changes in activities/levels of tissue enzymic (superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, glutathione reductase and glucose-6-phosphate dehydrogenase) and non-enzymic (reduced glutathione, ascorbate and a-tocopherol) antioxidants along with malondialdehyde levels in the experimental groups. In CP-administered rats the antioxidant enzymes showed significantly depressed activities (p < 0.001, p < 0.01) and the antioxidant molecules also showed depleted levels (p < 0.001, p < 0.01), in comparison with the control group. However the extent of lipid peroxidation and the abnormal antioxidant status were normalized in lipoic acid pretreated rats. The present work highlights the efficacy of lipoic acid as a cytoprotectant in CP-induced hepatic oxidative injury.
Collapse
Affiliation(s)
- Elangovan Selvakumar
- Department of Medical Biochemistry, Dr A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India
| | | | | | | |
Collapse
|
23
|
|
24
|
Niemann CU, Saeed M, Akbari H, Jacobsen W, Benet LZ, Christians U, Serkova N. Close association between the reduction in myocardial energy metabolism and infarct size: dose-response assessment of cyclosporine. J Pharmacol Exp Ther 2002; 302:1123-8. [PMID: 12183671 DOI: 10.1124/jpet.102.036848] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cyclosporine protects the heart against ischemia/reperfusion injury, but its effect on cardiac metabolism is largely unknown. We assessed cyclosporine-induced metabolic changes in the rat heart prior to occlusion using magnetic resonance spectroscopy (MRS) and correlated effects with infarct size in a coronary occlusion/reperfusion model. The two study groups were cyclosporine and cyclosporine + coronary occlusion (n = 20/group). Rats were pretreated with cyclosporine (5, 10, 15, and 25 mg/kg/day) or the vehicle by oral gavage for 3 days (n = 4/dose). On day 4, hearts of rats in the cyclosporine group were excised, and extracted cell metabolites were measured using (1)H and (31)P MRS. The second group was subjected to 30 min of coronary artery occlusion followed by 24 h of reperfusion. Infarct size and area at risk were measured using a double staining method. In the cyclosporine group, cyclosporine reduced cardiac energy metabolism (ATP: r = -0.89, P < 0.001) via depression of oxidative phosphorylation and the Krebs' cycle in a dose-dependent manner. The decrease of ATP levels was positively correlated with changes of NAD(+) (r = 0.89), glutamate (r = 0.95), glutamine (r = 0.84), and glucose concentrations (r = 0.92, all P < 0.002). It was inversely correlated with lactate (r = -0.93, P < 0.001). In the coronary occlusion group, cyclosporine dose dependently reduced the ratio [area of infarct/area of the left ventricle] (r = -0.86, P < 0.01), with 15 mg/kg/day being the most effective cyclosporine dose. The reduction in infarct size correlated with the reduction in oxidative phosphorylation (ATP: r = 0.97; NAD(+): r = 0.82, P < 0.01). The reduction in cardiac energy metabolism before occlusion may be the cause of myocardial preservation during ischemia/reperfusion.
Collapse
Affiliation(s)
- Claus U Niemann
- Department of Anesthesia and Perioperative Care, University of California-San Francisco, San Francisco, CA, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
|