1
|
Aphasizheva I, Alfonzo J, Carnes J, Cestari I, Cruz-Reyes J, Göringer HU, Hajduk S, Lukeš J, Madison-Antenucci S, Maslov DA, McDermott SM, Ochsenreiter T, Read LK, Salavati R, Schnaufer A, Schneider A, Simpson L, Stuart K, Yurchenko V, Zhou ZH, Zíková A, Zhang L, Zimmer S, Aphasizhev R. Lexis and Grammar of Mitochondrial RNA Processing in Trypanosomes. Trends Parasitol 2020; 36:337-355. [PMID: 32191849 PMCID: PMC7083771 DOI: 10.1016/j.pt.2020.01.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 12/15/2022]
Abstract
Trypanosoma brucei spp. cause African human and animal trypanosomiasis, a burden on health and economy in Africa. These hemoflagellates are distinguished by a kinetoplast nucleoid containing mitochondrial DNAs of two kinds: maxicircles encoding ribosomal RNAs (rRNAs) and proteins and minicircles bearing guide RNAs (gRNAs) for mRNA editing. All RNAs are produced by a phage-type RNA polymerase as 3' extended precursors, which undergo exonucleolytic trimming. Most pre-mRNAs proceed through 3' adenylation, uridine insertion/deletion editing, and 3' A/U-tailing. The rRNAs and gRNAs are 3' uridylated. Historically, RNA editing has attracted major research effort, and recently essential pre- and postediting processing events have been discovered. Here, we classify the key players that transform primary transcripts into mature molecules and regulate their function and turnover.
Collapse
Affiliation(s)
- Inna Aphasizheva
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, MA 02118, USA.
| | - Juan Alfonzo
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Jason Carnes
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Igor Cestari
- Institute of Parasitology, McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, H9X3V9, Québec, Canada
| | - Jorge Cruz-Reyes
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - H Ulrich Göringer
- Department of Molecular Genetics, Darmstadt University of Technology, 64287 Darmstadt, Germany
| | - Stephen Hajduk
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Susan Madison-Antenucci
- Parasitology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | - Dmitri A Maslov
- Department of Molecular, Cell, and Systems Biology, University of California - Riverside, Riverside, CA 92521, USA
| | - Suzanne M McDermott
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Torsten Ochsenreiter
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern CH-3012, Switzerland
| | - Laurie K Read
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Reza Salavati
- Institute of Parasitology, McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, H9X3V9, Québec, Canada
| | - Achim Schnaufer
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Bern CH-3012, Switzerland
| | - Larry Simpson
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095, USA
| | - Kenneth Stuart
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic; Martsinovsky Institute of Medical Parasitology, Sechenov University, Moscow, Russia
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095, USA
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Liye Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Sara Zimmer
- University of Minnesota Medical School, Duluth campus, Duluth, MN 55812, USA
| | - Ruslan Aphasizhev
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, MA 02118, USA
| |
Collapse
|
2
|
Kruse E, Voigt C, Leeder WM, Göringer HU. RNA helicases involved in U-insertion/deletion-type RNA editing. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:835-41. [PMID: 23587716 DOI: 10.1016/j.bbagrm.2013.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/04/2013] [Accepted: 04/08/2013] [Indexed: 12/20/2022]
Abstract
Mitochondrial pre-messenger RNAs in kinetoplastid protozoa such as the disease-causing African trypanosomes are substrates of a unique RNA editing reaction. The process is characterized by the site-specific insertion and deletion of exclusively U nucleotides and converts nonfunctional pre-mRNAs into translatable transcripts. Similar to other RNA-based metabolic pathways, RNA editing is catalyzed by a macromolecular protein complex, the editosome. Editosomes provide a reactive surface for the individual steps of the catalytic cycle and involve as key players a specific class of small, non-coding RNAs termed guide (g)RNAs. gRNAs basepair proximal to an editing site and act as quasi templates in the U-insertion/deletion reaction. Next to the editosome several accessory proteins and complexes have been identified, which contribute to different steps of the reaction. This includes matchmaking-type RNA/RNA annealing factors as well as RNA helicases of the archetypical DEAD- and DExH/D-box families. Here we summarize the current structural, genetic and biochemical knowledge of the two characterized "editing RNA helicases" and provide an outlook onto dynamic processes within the editing reaction cycle. This article is part of a Special Issue entitled: The Biology of RNA helicases - Modulation for life.
Collapse
|
3
|
Abstract
RNA editing describes a chemically diverse set of biomolecular reactions in which the nucleotide sequence of RNA molecules is altered. Editing reactions have been identified in many organisms and frequently contribute to the maturation of organellar transcripts. A special editing reaction has evolved within the mitochondria of the kinetoplastid protozoa. The process is characterized by the insertion and deletion of uridine nucleotides into otherwise nontranslatable messenger RNAs. Kinetoplastid RNA editing involves an exclusive class of small, noncoding RNAs known as guide RNAs. Furthermore, a unique molecular machinery, the editosome, catalyzes the process. Editosomes are megadalton multienzyme assemblies that provide a catalytic surface for the individual steps of the reaction cycle. Here I review the current mechanistic understanding and molecular inventory of kinetoplastid RNA editing and the editosome machinery. Special emphasis is placed on the molecular morphology of the editing complex in order to correlate structural features with functional characteristics.
Collapse
Affiliation(s)
- H Ulrich Göringer
- Department of Genetics, Darmstadt University of Technology, Germany.
| |
Collapse
|
4
|
|
5
|
Göringer HU, Katari VS, Böhm C. The structural landscape of native editosomes in African trypanosomes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2011; 2:395-407. [PMID: 21957025 DOI: 10.1002/wrna.67] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The majority of mitochondrial pre-messenger RNAs in African trypanosomes are substrates of a U-nucleotide-specific insertion/deletion-type RNA editing reaction. The process converts nonfunctional pre-mRNAs into translation-competent molecules and can generate protein diversity by alternative editing. High molecular mass protein complexes termed editosomes catalyze the processing reaction. They stably interact with pre-edited mRNAs and small noncoding RNAs, known as guide RNAs (gRNAs), which act as templates in the reaction. Editosomes provide a molecular surface for the individual steps of the catalytic reaction cycle and although the protein inventory of the complexes has been studied in detail, a structural analysis of the processing machinery has only recently been accomplished. Electron microscopy in combination with single particle reconstruction techniques has shown that steady state isolates of editosomes contain ensembles of two classes of stable complexes with calculated apparent hydrodynamic sizes of 20S and 35-40S. 20S editosomes are free of substrate RNAs, whereas 35-40S editosomes are associated with endogenous mRNA and gRNA molecules. Both complexes are characterized by a diverse structural landscape, which include complexes that lack or possess defined subdomains. Here, we summarize the consensus models and structural landmarks of both complexes. We correlate structural features with functional characteristics and provide an outlook into dynamic aspects of the editing reaction cycle.
Collapse
Affiliation(s)
- H Ulrich Göringer
- Department of Microbiology and Genetics, Darmstadt University of Technology, Darmstadt, Germany.
| | | | | |
Collapse
|
6
|
Ammerman ML, Hashimi H, Novotná L, Cicová Z, McEvoy SM, Lukes J, Read LK. MRB3010 is a core component of the MRB1 complex that facilitates an early step of the kinetoplastid RNA editing process. RNA (NEW YORK, N.Y.) 2011; 17:865-77. [PMID: 21451155 PMCID: PMC3078736 DOI: 10.1261/rna.2446311] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 02/17/2011] [Indexed: 05/20/2023]
Abstract
Gene expression in the mitochondria of the kinetoplastid parasite Trypanosoma brucei is regulated primarily post-transcriptionally at the stages of RNA processing, editing, and turnover. The mitochondrial RNA-binding complex 1 (MRB1) is a recently identified multiprotein complex containing components with distinct functions during different aspects of RNA metabolism, such as guide RNA (gRNA) and mRNA turnover, precursor transcript processing, and RNA editing. In this study we examined the function of the MRB1 protein, Tb927.5.3010, which we term MRB3010. We show that MRB3010 is essential for growth of both procyclic form and bloodstream form life-cycle stages of T. brucei. Down-regulation of MRB3010 by RNAi leads to a dramatic inhibition of RNA editing, yet its depletion does not impact total gRNA levels. Rather, it appears to affect the editing process at an early stage, as indicated by the accumulation of pre-edited and small partially edited RNAs. MRB3010 is present in large (>20S) complexes and exhibits both RNA-dependent and RNA-independent interactions with other MRB1 complex proteins. Comparison of proteins isolated with MRB3010 tagged at its endogenous locus to those reported from other MRB1 complex purifications strongly suggests the presence of an MRB1 "core" complex containing five to six proteins, including MRB3010. Together, these data further our understanding of the function and composition of the imprecisely defined MRB1 complex.
Collapse
Affiliation(s)
- Michelle L Ammerman
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
TbPRMT6 is a type I protein arginine methyltransferase that contributes to cytokinesis in Trypanosoma brucei. EUKARYOTIC CELL 2010; 9:866-77. [PMID: 20418380 DOI: 10.1128/ec.00018-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Arginine methylation is a widespread posttranslational modification of proteins catalyzed by a family of protein arginine methyltransferases (PRMTs). In Saccharomyces cerevisiae and mammals, this modification affects multiple cellular processes, such as chromatin remodeling leading to transcriptional regulation, RNA processing, DNA repair, and cell signaling. The protozoan parasite Trypanosoma brucei possesses five putative PRMTs in its genome. This is a large number of PRMTs relative to other unicellular eukaryotes, suggesting an important role for arginine methylation in trypanosomes. Here, we present the in vitro and in vivo characterization of a T. brucei enzyme homologous to human PRMT6, which we term TbPRMT6. Like human PRMT6, TbPRMT6 is a type I PRMT, catalyzing the production of monomethylarginine and asymmetric dimethylarginine residues. In in vitro methylation assays, TbPRMT6 utilizes bovine histones as a substrate, but it does not methylate several T. brucei glycine/arginine-rich proteins. As such, it exhibits a relatively narrow substrate specificity compared to other T. brucei PRMTs. Knockdown of TbPRMT6 in both procyclic form and bloodstream form T. brucei leads to a modest but reproducible effect on parasite growth in culture. Moreover, upon TbPRMT6 depletion, both PF and BF exhibit aberrant morphologies indicating defects in cell division, and these defects differ in the two life cycle stages. Mass spectrometry of TbPRMT6-associated proteins reveals histones, components of the nuclear pore complex, and flagellar proteins that may represent TbPRMT6 substrates contributing to the observed growth and morphological defects.
Collapse
|
8
|
Guo X, Ernst NL, Carnes J, Stuart KD. The zinc-fingers of KREPA3 are essential for the complete editing of mitochondrial mRNAs in Trypanosoma brucei. PLoS One 2010; 5:e8913. [PMID: 20111718 PMCID: PMC2811742 DOI: 10.1371/journal.pone.0008913] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 12/30/2009] [Indexed: 01/16/2023] Open
Abstract
Most mitochondrial mRNAs in trypanosomes undergo uridine insertion/deletion editing that is catalyzed by ∼20S editosomes. The editosome component KREPA3 is essential for editosome structural integrity and its two zinc finger (ZF) motifs are essential for editing in vivo but not in vitro. KREPA3 function was further explored by examining the consequence of mutation of its N- and C- terminal ZFs (ZF1 and ZF2, respectively). Exclusively expressed myc-tagged KREPA3 with ZF2 mutation resulted in lower KREPA3 abundance and a relative increase in KREPA2 and KREL1 proteins. Detailed analysis of edited RNA products revealed the accumulation of partially edited mRNAs with less insertion editing compared to the partially edited mRNAs found in the cells with wild type KREPA3 expression. Mutation of ZF1 in TAP-tagged KREPA3 also resulted in accumulation of partially edited mRNAs that were shorter and only edited in the 3′-terminal editing region. Mutation of both ZFs essentially eliminated partially edited mRNA. The mutations did not affect gRNA abundance. These data indicate that both ZFs are essential for the progression of editing and perhaps its accuracy, which suggests that KREPA3 plays roles in the editing process via its ZFs interaction with editosome proteins and/or RNA substrates.
Collapse
Affiliation(s)
- Xuemin Guo
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Nancy Lewis Ernst
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Jason Carnes
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Kenneth D. Stuart
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
9
|
Schnaufer A, Wu M, Park YJ, Nakai T, Deng J, Proff R, Hol WGJ, Stuart KD. A protein-protein interaction map of trypanosome ~20S editosomes. J Biol Chem 2009; 285:5282-95. [PMID: 20018860 DOI: 10.1074/jbc.m109.059378] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mitochondrial mRNA editing in trypanosomatid parasites involves several multiprotein assemblies, including three very similar complexes that contain the key enzymatic editing activities and sediment at ~20S on glycerol gradients. These ~20S editosomes have a common set of 12 proteins, including enzymes for uridylyl (U) removal and addition, 2 RNA ligases, 2 proteins with RNase III-like domains, and 6 proteins with predicted oligonucleotide binding (OB) folds. In addition, each of the 3 distinct ~20S editosomes contains a different RNase III-type endonuclease, 1 of 3 related proteins and, in one case, an additional exonuclease. Here we present a protein-protein interaction map that was obtained through a combination of yeast two-hybrid analysis and subcomplex reconstitution with recombinant protein. This map interlinks ten of the proteins and in several cases localizes the protein region mediating the interaction, which often includes the predicted OB-fold domain. The results indicate that the OB-fold proteins form an extensive protein-protein interaction network that connects the two trimeric subcomplexes that catalyze U removal or addition and RNA ligation. One of these proteins, KREPA6, interacts with the OB-fold zinc finger protein in each subcomplex that interconnects their two catalytic proteins. Another OB-fold protein, KREPA3, appears to link to the putative endonuclease subcomplex. These results reveal a physical organization that underlies the coordination of the various catalytic and substrate binding activities within the ~20S editosomes during the editing process.
Collapse
Affiliation(s)
- Achim Schnaufer
- Seattle Biomedical Research Institute, Seattle, Washington 98109, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Ernst NL, Panicucci B, Carnes J, Stuart K. Differential functions of two editosome exoUases in Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2009; 15:947-957. [PMID: 19318463 PMCID: PMC2673068 DOI: 10.1261/rna.1373009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 01/22/2009] [Indexed: 05/27/2023]
Abstract
Mitochondrial RNAs in trypanosomes are edited by the insertion and deletion of uridine (U) nucleotides to form translatable mRNAs. Editing is catalyzed by three distinct editosomes that contain two related U-specific exonucleases (exoUases), KREX1 and KREX2, with the former present exclusively in KREN1 editosomes and the latter present in all editosomes. We show here that repression of KREX1 expression leads to a concomitant reduction of KREN1 in approximately 20S editosomes, whereas KREX2 repression results in reductions of KREPA2 and KREL1 in approximately 20S editosomes. Knockdown of KREX1 results in reduced cell viability, reduction of some edited RNA in vivo, and a significant reduction in deletion but not insertion endonuclease activity in vitro. In contrast, KREX2 knockdown does not affect cell growth or editing in vivo but results in modest reductions of both insertion and deletion endonuclease activities and a significant reduction of U removal in vitro. Simultaneous knockdown of both proteins leads to a more severe inhibition of cell growth and editing in vivo and an additive effect on endonuclease cleavage in vitro. Taken together, these results indicate that both KREX1 and KREX2 are important for retention of other proteins in editosomes, and suggest that the reduction in cell viability upon KREX1 knockdown is likely a consequence of KREN1 loss. Furthermore, although KREX2 appears dispensable for cell growth, the increased inhibition of editing and parasite viability upon knockdown of both KREX1 and KREX2 together suggests that both proteins have roles in editing.
Collapse
Affiliation(s)
- Nancy Lewis Ernst
- Seattle Biomedical Research Institute, Seattle, Washington 98109, USA
| | | | | | | |
Collapse
|
11
|
Fisk JC, Sayegh J, Zurita-Lopez C, Menon S, Presnyak V, Clarke SG, Read LK. A type III protein arginine methyltransferase from the protozoan parasite Trypanosoma brucei. J Biol Chem 2009; 284:11590-600. [PMID: 19254949 DOI: 10.1074/jbc.m807279200] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arginine methylation is a widespread post-translational modification of proteins catalyzed by a family of protein arginine methyltransferases (PRMTs). The ancient protozoan parasite, Trypanosoma brucei, possesses five putative PRMTs, a relatively large number for a single-celled eukaryote. Trypanosomatids lack gene regulation at the level of transcription, instead relying on post-transcriptional control mechanisms that act at the levels of RNA turnover, translation, and editing, all processes that likely involve multiple RNA-binding proteins, which are common targets of arginine methylation. Here, we report the characterization of a trypanosome PRMT, TbPRMT7, which is homologous to human PRMT7. Interestingly, trypanosomatids are the only single-celled eukaryotes known to harbor a PRMT7 homologue. TbPRMT7 differs dramatically from all known metazoan PRMT7 homologues in lacking the second AdoMet binding-like domain that is required for activity of the human enzyme. Nevertheless, bacterially expressed TbPRMT7 exhibits robust methyltransferase activity toward multiple targets in vitro. High resolution ion exchange chromatography analysis of methylated substrates reveals that TbPRMT7 is a type III PRMT, catalyzing the formation of only monomethylarginine, thereby representing the only exclusively type III PRMT identified to date. TbPRMT7 is expressed in both mammalian and insect stage T. brucei and is apparently dispensable for growth in both life cycle stages. The enzyme is cytoplasmically localized and is a component of several higher order complexes in vivo. Together, our studies indicate that TbPRMT7 is a Type III PRMT, and its robust activity and presence in numerous complexes suggest it plays multiple roles during the complex T. brucei life cycle.
Collapse
Affiliation(s)
- John C Fisk
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14124, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Snapshots of the RNA editing machine in trypanosomes captured at different assembly stages in vivo. EMBO J 2009; 28:766-78. [PMID: 19197238 DOI: 10.1038/emboj.2009.19] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 01/12/2009] [Indexed: 01/15/2023] Open
Abstract
Mitochondrial pre-messenger RNAs in kinetoplastid protozoa are substrates of uridylate-specific RNA editing. RNA editing converts non-functional pre-mRNAs into translatable molecules and can generate protein diversity by alternative editing. Although several editing complexes have been described, their structure and relationship is unknown. Here, we report the isolation of functionally active RNA editing complexes by a multistep purification procedure. We show that the endogenous isolates contain two subpopulations of approximately 20S and approximately 35-40S and present the three-dimensional structures of both complexes by electron microscopy. The approximately 35-40S complexes consist of a platform density packed against a semispherical element. The approximately 20S complexes are composed of two subdomains connected by an interface. The two particles are structurally related, and we show that RNA binding is a main determinant for the interconversion of the two complexes. The approximately 20S editosomes contain an RNA-binding site, which binds gRNA, pre-mRNA and gRNA/pre-mRNA hybrid molecules with nanomolar affinity. Variability analysis indicates that subsets of complexes lack or possess additional domains, suggesting binding sites for components. Together, a picture of the RNA editing machinery is provided.
Collapse
|
13
|
Zíková A, Kopečná J, Schumacher MA, Stuart K, Trantírek L, Lukeš J. Structure and function of the native and recombinant mitochondrial MRP1/MRP2 complex from Trypanosoma brucei. Int J Parasitol 2008; 38:901-12. [PMID: 18295767 PMCID: PMC2492832 DOI: 10.1016/j.ijpara.2007.12.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 12/19/2007] [Accepted: 12/31/2007] [Indexed: 10/22/2022]
Abstract
The mitochondrial RNA-binding proteins (MRP) 1 and 2 play a regulatory role in RNA editing and putative role(s) in RNA processing in Trypanosoma brucei. Here, we report the purification of a high molecular weight protein complex consisting solely of the MRP1 and MRP2 proteins from the mitochondrion of T. brucei. The MRP1/MRP2 complex natively purified from T. brucei and the one reconstituted in Escherichia coli in vivo bind guide (g) RNAs and pre-mRNAs with dissociation constants in the nanomolar range, and efficiently promote annealing of pre-mRNAs with their cognate gRNAs. In addition, the MRP1/MRP2 complex stimulates annealing between two non-cognate RNA molecules suggesting that along with the cognate duplexes, spuriously mismatched RNA hybrids may be formed at some rate in vivo. A mechanism of catalysed annealing of gRNA/pre-mRNA by the MRP1/MRP2 complex is proposed.
Collapse
Affiliation(s)
- Alena Zíková
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
- Seattle Biomedical Research Institute, Seattle, USA
| | - Jana Kopečná
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Maria A. Schumacher
- Department of Biochemistry and Molecular Biology, University of Texas, M.D. Anderson Cancer Center, Houston, USA
| | | | - Lukáš Trantírek
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
14
|
Fisk JC, Ammerman ML, Presnyak V, Read LK. TbRGG2, an essential RNA editing accessory factor in two Trypanosoma brucei life cycle stages. J Biol Chem 2008; 283:23016-25. [PMID: 18583347 DOI: 10.1074/jbc.m801021200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the mitochondria of kinetoplastid protozoa, including Trypanosoma brucei, RNA editing inserts and/or deletes uridines from pre-mRNAs to produce mature, translatable mRNAs. RNA editing is carried out by several related multiprotein complexes known as editosomes, which contain all of the enzymatic components required for catalysis of editing. In addition, noneditosome accessory factors necessary for editing of specific RNAs have also been described. Here, we report the in vitro and in vivo characterization of the mitochondrial TbRGG2 protein (originally termed TbRGGm) and demonstrate that it acts as an editing accessory factor. TbRGG2 is an RNA-binding protein with a preference for poly(U). TbRGG2 protein levels are up-regulated 10-fold in procyclic form T. brucei compared with bloodstream forms. Nevertheless, the protein is essential for growth in both life cycle stages. TbRGG2 associates with RNase-sensitive and RNase-insensitive mitochondrial complexes, and a small fraction of the protein co-immunoprecipitates with editosomes. RNA interference-mediated depletion of TbRGG2 in both procyclic and bloodstream form T. brucei leads to a dramatic decrease in pan-edited RNAs and in some cases a corresponding increase in the pre-edited RNA. TbRGG2 down-regulation also results in moderate stabilization of never-edited and minimally edited RNAs. Thus, our data are consistent with a model in which TbRGG2 is multifunctional, strongly facilitating the editing of pan-edited RNAs and modestly destabilizing minimally edited and never-edited RNAs. This is the first example of an RNA editing accessory factor that functions in the mammalian infective T. brucei life cycle stage.
Collapse
Affiliation(s)
- John C Fisk
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
15
|
|
16
|
Göringer HU, Brecht M, Böhm C, Kruse E. RNA Editing Accessory Factors — the Example of mHel61p. NUCLEIC ACIDS AND MOLECULAR BIOLOGY 2008. [DOI: 10.1007/978-3-540-73787-2_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
17
|
Abstract
Multisubunit RNA editing complexes recognize thousands of pre-mRNA sites in the single mitochondrion of trypanosomes. Specific determinants at each editing site must trigger the complexes to catalyze a complete cycle of either uridylate insertion or deletion. While a wealth of information on the protein composition and catalytic activities of these complexes is currently available, the precise mechanisms that govern substrate recognition and editing site specificity remain unknown. This chapter describes basic assays to visualize direct photocrosslinking interactions between purified editing complexes and targeted deletion and insertion sites in model substrates for full-round editing. It also illustrates how variations of these assays can be applied to examine the specificity of the editing enzyme/substrate association, and to dissect structural or biochemical requirements of both the substrates and enzyme complex.
Collapse
Affiliation(s)
- Jorge Cruz-Reyes
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
18
|
Hans J, Hajduk SL, Madison-Antenucci S. RNA-editing-associated protein 1 null mutant reveals link to mitochondrial RNA stability. RNA (NEW YORK, N.Y.) 2007; 13:881-9. [PMID: 17416633 PMCID: PMC1869032 DOI: 10.1261/rna.486107] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In trypanosomatids, uridylate residues are post-transcriptionally added to or deleted from pre-mRNAs during the complex process of RNA editing. Editing is carried out exclusively in the mitochondrion of these parasites and involves numerous proteins assembled into protein and ribonucleoprotein complexes. Previously we identified RNA-editing-associated protein -1 (REAP-1), an RNA binding protein found in the mitochondrion of Trypanosoma brucei. REAP-1 was shown to specifically recognize and bind to pre-mRNAs that require editing and was proposed to act as a recruitment factor to deliver pre-mRNAs to editing complexes. To help define the role of REAP-1, we have now constructed REAP-1 null mutants. We show that the null mutants, although viable, have a significant growth defect. RNA levels within the mitochondrion were evaluated using reverse transcriptase real-time PCR. Surprisingly, the results show that mitochondrial RNA levels are increased, regardless of the editing status of the RNA. All RNA tested, whether unedited, edited, or never edited were increased in the mutant cell line relative to wild-type levels. This study provides the first evidence for a role of REAP-1 in RNA metabolism.
Collapse
Affiliation(s)
- Jennifer Hans
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York 12201, USA
| | | | | |
Collapse
|
19
|
Cifuentes-Rojas C, Pavia P, Hernandez A, Osterwisch D, Puerta C, Cruz-Reyes J. Substrate determinants for RNA editing and editing complex interactions at a site for full-round U insertion. J Biol Chem 2007; 282:4265-4276. [PMID: 17158098 DOI: 10.1074/jbc.m605554200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Multisubunit RNA editing complexes catalyze uridylate insertion/deletion RNA editing directed by complementary guide RNAs (gRNAs). Editing in trypanosome mitochondria is transcript-specific and developmentally controlled, but the molecular mechanisms of substrate specificity remain unknown. Here we used a minimal A6 pre-mRNA/gRNA substrate to define functional determinants for full-round insertion and editing complex interactions at the editing site 2 (ES2). Editing begins with pre-mRNA cleavage within an internal loop flanked by upstream and downstream duplexes with gRNA. We found that substrate recognition around the internal loop is sequence-independent and that completely artificial duplexes spanning a single helical turn are functional. Furthermore, after our report of cross-linking interactions at the deletion ES1 (35), we show for the first time editing complex contacts at an insertion ES. Our studies using site-specific ribose 2' substitutions defined 2'-hydroxyls within the (a) gRNA loop region and (b) flanking helixes that markedly stimulate both pre-mRNA cleavage and editing complex interactions at ES2. Modification of the downstream helix affected scissile bond specificity. Notably, a single 2'-hydroxyl at ES2 is essential for cleavage but dispensable for editing complex cross-linking. This study provides new insights on substrate recognition during full-round editing, including the relevance of secondary structure and the first functional association of specific (pre-mRNA and gRNA) riboses with both endonuclease cleavage and cross-linking activities of editing complexes at an ES. Importantly, most observed cross-linking interactions are both conserved and relatively stable at ES2 and ES1 in hybrid substrates. However, they were also detected as transient low-stability contacts in a non-edited transcript.
Collapse
Affiliation(s)
| | - Paula Pavia
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843 and
| | - Alfredo Hernandez
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843 and
| | - Daniel Osterwisch
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843 and
| | - Concepcion Puerta
- Laboratorio of Parasitologia Molecular, Pontificia Universidad Javeriana, Carrera 7a No. 43-82, Ed. 50, Lab 113, Bogota´, Colombia
| | - Jorge Cruz-Reyes
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843 and.
| |
Collapse
|
20
|
Law JA, O'Hearn S, Sollner-Webb B. In Trypanosoma brucei RNA editing, TbMP18 (band VII) is critical for editosome integrity and for both insertional and deletional cleavages. Mol Cell Biol 2006; 27:777-87. [PMID: 17101787 PMCID: PMC1800803 DOI: 10.1128/mcb.01460-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In trypanosome RNA editing, uridylate (U) residues are inserted and deleted at numerous sites within mitochondrial pre-mRNAs by an approximately 20S protein complex that catalyzes cycles of cleavage, U addition/U removal, and ligation. We used RNA interference to deplete TbMP18 (band VII), the last unexamined major protein of our purified editing complex, showing it is essential. TbMP18 is critical for the U-deletional and U-insertional cleavages and for integrity of the approximately 20S editing complex, whose other major components, TbMP99, TbMP81, TbMP63, TbMP52, TbMP48, TbMP42 (bands I through VI), and TbMP57, instead sediment as approximately 10S associations. Additionally, TbMP18 augments editing substrate recognition by the TbMP57 terminal U transferase, possibly aiding the recognition component, TbMP81. The other editing activities and their coordination in precleaved editing remain active in the absence of TbMP18. These data are reminiscent of the data on editing subcomplexes reported by A. Schnaufer et al. (Mol. Cell 12:307-319, 2003) and suggest that these subcomplexes are held together in the approximately 20S complex by TbMP18, as was proposed previously. Our data additionally imply that the proteins are less long-lived in these subcomplexes than they are when held in the complete editing complex. The editing endonucleolytic cleavages being lost when the editing complex becomes fragmented, as upon TbMP18 depletion, should be advantageous to the trypanosome, minimizing broken mRNAs.
Collapse
Affiliation(s)
- Julie A Law
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
21
|
Goulah CC, Pelletier M, Read LK. Arginine methylation regulates mitochondrial gene expression in Trypanosoma brucei through multiple effector proteins. RNA (NEW YORK, N.Y.) 2006; 12:1545-55. [PMID: 16775306 PMCID: PMC1524885 DOI: 10.1261/rna.90106] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Arginine methylation is a post-translational modification that impacts gene expression in both the cytoplasm and nucleus. Here, we demonstrate that arginine methylation also affects mitochondrial gene expression in the protozoan parasite, Trypanosoma brucei. Down-regulation of the major trypanosome type I protein arginine methyltransferase, TbPRMT1, leads to destabilization of specific mitochondrial mRNAs. We provide evidence that some of these effects are mediated by the mitochondrial RNA-binding protein, RBP16, which we previously demonstrated affects both RNA editing and stability. TbPRMT1 catalyzes methylation of RBP16 in vitro. Further, MALDI-TOF-MS analysis of RBP16 isolated from TbPRMT1-depleted cells indicates that, in vivo, TbPRMT1 modifies two of the three known methylated arginine residues in RBP16. Expression of mutated, nonmethylatable RBP16 in T. brucei has a dominant negative effect, leading to destabilization of a subset of those mRNAs affected by TbPRMT1 depletion. Our results suggest that the specificity and multifunctional nature of RBP16 are due, at least in part, to the presence of differentially methylated forms of the protein. However, some effects of TbPRMT1 depletion on mitochondrial gene expression cannot be accounted for by RBP16 action. Thus, these data implicate additional, unknown methylproteins in mitochondrial gene regulation.
Collapse
Affiliation(s)
- Christopher C Goulah
- Department of Microbiology and Immunology and Witebsky Center for Microbial Pathogenesis and Immunology, SUNY Buffalo School of Medicine, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
22
|
Panigrahi AK, Ernst NL, Domingo GJ, Fleck M, Salavati R, Stuart KD. Compositionally and functionally distinct editosomes in Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2006; 12:1038-49. [PMID: 16611942 PMCID: PMC1464856 DOI: 10.1261/rna.45506] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Uridylate insertion/deletion RNA editing in Trypanosoma brucei mitochondria is catalyzed by a multiprotein complex, the approximately 20S editosome. Editosomes purified via three related tagged RNase III proteins, KREN1 (KREPB1/TbMP90), KREPB2 (TbMP67), and KREN2 (KREPB3/TbMP61), had very similar but nonidentical protein compositions, and only the tagged member of these three RNase III proteins was identified in each respective complex. Three new editosome proteins were also identified in these complexes. Each tagged complex catalyzed both precleaved insertion and deletion editing in vitro. However, KREN1 complexes cleaved deletion but not insertion editing sites in vitro, and, conversely, KREN2 complexes cleaved insertion but not deletion editing sites. These specific nuclease activities were abolished by mutations in the putative RNase III catalytic domain of the respective proteins. Thus editosomes appear to be heterogeneous in composition with KREN1 complexes catalyzing cleavage of deletion sites and KREN2 complexes cleaving insertion sites while both can catalyze the U addition, U removal, and ligation steps of editing.
Collapse
|
23
|
Salavati R, Ernst NL, O'Rear J, Gilliam T, Tarun S, Stuart K. KREPA4, an RNA binding protein essential for editosome integrity and survival of Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2006; 12:819-31. [PMID: 16601201 PMCID: PMC1440894 DOI: 10.1261/rna.2244106] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Accepted: 02/08/2006] [Indexed: 05/08/2023]
Abstract
The 20S editosome, a multiprotein complex, catalyzes the editing of most mitochondrial mRNAs in trypanosomatids by uridylate insertion and deletion. RNAi mediated inactivation of expression of KREPA4 (previously TbMP24), a component of the 20S editosome, in procyclic form Trypanosoma brucei resulted in inhibition of cell growth, loss of RNA editing, and disappearance of 20S editosomes. Levels of MRP1 and REAP-1 proteins, which may have roles in editing but are not editosome components, were unaffected. Tagged KREPA4 protein is incorporated into 20S editosomes in vivo with no preference for either insertion or deletion subcomplexes. Consistent with its S1-like motif, recombinant KREPA4 protein binds synthetic gRNA with a preference for the 3' oligo (U) tail. These data suggest that KREPA4 is an RNA binding protein that may be specific for the gRNA Utail and also is important for 20S editosome stability.
Collapse
Affiliation(s)
- Reza Salavati
- Seattle Biomedical Research Institute, Washington 98109-5219, USA
| | | | | | | | | | | |
Collapse
|
24
|
Deng J, Ernst NL, Turley S, Stuart KD, Hol WGJ. Structural basis for UTP specificity of RNA editing TUTases from Trypanosoma brucei. EMBO J 2005; 24:4007-17. [PMID: 16281058 PMCID: PMC1356302 DOI: 10.1038/sj.emboj.7600861] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Accepted: 10/10/2005] [Indexed: 01/07/2023] Open
Abstract
Trypanosomatids are pathogenic protozoa that undergo a unique form of post-transcriptional RNA editing that inserts or deletes uridine nucleotides in many mitochondrial pre-mRNAs. Editing is catalyzed by a large multiprotein complex, the editosome. A key editosome enzyme, RNA editing terminal uridylyl transferase 2 (TUTase 2; RET2) catalyzes the uridylate addition reaction. Here, we report the 1.8 A crystal structure of the Trypanosoma brucei RET2 apoenzyme and its complexes with uridine nucleotides. This structure reveals that the specificity of the TUTase for UTP is determined by a crucial water molecule that is exquisitely positioned by the conserved carboxylates D421 and E424 to sense a hydrogen atom on the N3 position of the uridine base. The three-domain structure also unveils a unique domain arrangement not seen before in the nucleotidyltansferase superfamily, with a large domain insertion between the catalytic aspartates. This insertion is present in all trypanosomatid TUTases. We also show that TbRET2 is essential for survival of the bloodstream form of the parasite and therefore is a potential target for drug therapy.
Collapse
Affiliation(s)
- Junpeng Deng
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
- Department of Biochemistry, Biomolecular Structure Center, University of Washington, Seattle, WA, USA
- Department of Biological Structure, Biomolecular Structure Center, University of Washington, Seattle, WA, USA
| | | | - Stewart Turley
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
- Department of Biochemistry, Biomolecular Structure Center, University of Washington, Seattle, WA, USA
- Department of Biological Structure, Biomolecular Structure Center, University of Washington, Seattle, WA, USA
| | - Kenneth D Stuart
- Seattle Biomedical Research Institute, Seattle, WA, USA
- Department of Pathobiology, University of Washington, Seattle, WA, USA
| | - Wim GJ Hol
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
- Department of Biochemistry, Biomolecular Structure Center, University of Washington, Seattle, WA, USA
- Department of Biological Structure, Biomolecular Structure Center, University of Washington, Seattle, WA, USA
- Department of Biochemistry, Biomolecular Structure Center, University of Washington, Seattle, WA 98195, USA. Tel.: +1 206 685 7044; Fax: +1 206 685 7002; E-mail:
| |
Collapse
|
25
|
Lukes J, Hashimi H, Zíková A. Unexplained complexity of the mitochondrial genome and transcriptome in kinetoplastid flagellates. Curr Genet 2005; 48:277-99. [PMID: 16215758 DOI: 10.1007/s00294-005-0027-0] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 09/03/2005] [Accepted: 09/07/2005] [Indexed: 10/25/2022]
Abstract
Kinetoplastids are flagellated protozoans, whose members include the pathogens Trypanosoma brucei, T. cruzi and Leishmania species, that are considered among the earliest diverging eukaryotes with a mitochondrion. This organelle has become famous because of its many unusual properties, which are unique to the order Kinetoplastida, including an extensive kinetoplast DNA network and U-insertion/deletion type RNA editing of its mitochondrial transcripts. In the last decade, considerable progress has been made in elucidating the complex machinery of RNA editing. Moreover, our understanding of the structure and replication of kinetoplast DNA has also dramatically improved. Much less however, is known, about the developmental regulation of RNA editing, its integration with other RNA maturation processes, stability of mitochondrial mRNAs, or evolution of the editing process itself. Yet the profusion of genomic data recently made available by sequencing consortia, in combination with methods of reverse genetics, hold promise in understanding the complexity of this exciting organelle, knowledge of which may enable us to fight these often medically important protozoans.
Collapse
Affiliation(s)
- Julius Lukes
- Institute of Parasitology, Czech Academy of Sciences, Faculty of Biology, University of South Bohemia, Branisovská 31, 37005, Ceské Budejovice, Czech Republic.
| | | | | |
Collapse
|
26
|
Brecht M, Niemann M, Schlüter E, Müller UF, Stuart K, Göringer HU. TbMP42, a protein component of the RNA editing complex in African trypanosomes, has endo-exoribonuclease activity. Mol Cell 2005; 17:621-30. [PMID: 15749013 DOI: 10.1016/j.molcel.2005.01.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Revised: 12/03/2004] [Accepted: 01/21/2005] [Indexed: 01/06/2023]
Abstract
RNA editing in trypanosomatids is catalyzed by a high molecular mass RNP complex, which is only partially characterized. TbMP42 is a 42 kDa protein of unknown function that copurifies with the editing complex. The polypeptide is characterized by two Zn fingers and a potential barrel structure/OB-fold at its C terminus. Using recombinant TbMP42, we show that the protein can bind to dsRNA and dsDNA but fails to recognize DNA/RNA hybrids. rTbMP42 degrades ssRNA by a 3' to 5' exoribonuclease activity. In addition, rTbMP42 has endoribonuclease activity, which preferentially hydrolyzes non-base-paired uridylate-containing sequences. Gene silencing of TbMP42 inhibits cell growth and is ultimately lethal to the parasite. Mitochondrial extracts from TbMP42-minus trypanosomes have only residual RNA editing activity and strongly reduced endo-exoribonuclease activity. However, all three activities can be restored by the addition of rTbMP42. Together, the data suggest that TbMP42 contributes both endo- and exoribonuclease activity to the editing reaction cycle.
Collapse
Affiliation(s)
- Michael Brecht
- Department of Microbiology and Genetics, Darmstadt University of Technology, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Deng J, Schnaufer A, Salavati R, Stuart KD, Hol WGJ. High resolution crystal structure of a key editosome enzyme from Trypanosoma brucei: RNA editing ligase 1. J Mol Biol 2004; 343:601-13. [PMID: 15465048 DOI: 10.1016/j.jmb.2004.08.041] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Revised: 08/11/2004] [Accepted: 08/12/2004] [Indexed: 11/23/2022]
Abstract
Trypanosomatids are causative agents of several devastating tropical diseases such as African sleeping sickness, Chagas' disease and leishmaniasis. There are no effective vaccines available to date for treatment of these protozoan diseases, while current drugs have limited efficacy, significant toxicity and suffer from increasing resistance. Trypanosomatids have several remarkable and unique metabolic and structural features that are of great interest for developing new anti-protozoan therapeutics. One such feature is "RNA editing", an essential process in these pathogenic protozoa. Transcripts for key trypanosomatid mitochondrial proteins undergo extensive post-transcriptional RNA editing by specifically inserting or deleting uridylates from pre-mature mRNA in order to create mature mRNAs that encode functional proteins. The RNA editing process is carried out in a approximately 1.6 MDa multi-protein complex, the editosome. In Trypanosoma brucei, one of the editosome's core enzymes, the RNA editing ligase 1 (TbREL1), has been shown to be essential for survival of both insect and bloodstream forms of the parasite. We report here the crystal structure of the catalytic domain of TbREL1 at 1.2 A resolution, in complex with ATP and magnesium. The magnesium ion interacts with the beta and gamma-phosphate groups and is almost perfectly octahedrally coordinated by six phosphate and water oxygen atoms. ATP makes extensive direct and indirect interactions with the ligase via essentially all its atoms while extending its base into a deep pocket. In addition, the ATP makes numerous interactions with residues that are conserved in the editing ligases only. Further away from the active site, TbREL1 contains a unique loop containing several hydrophobic residues that are highly conserved among trypanosomatid RNA editing ligases which may play a role in protein-protein interactions in the editosome. The distinct characteristics of the adenine-binding pocket, and the absence of any close homolog in the human genome, bode well for the design of selective inhibitors that will block the essential RNA ligase function in a number of major protozoan pathogens.
Collapse
Affiliation(s)
- Junpeng Deng
- Howard Hughes Medical Institute, University of Washington, Seattle WA 98195, USA
| | | | | | | | | |
Collapse
|
28
|
Vondrusková E, van den Burg J, Zíková A, Ernst NL, Stuart K, Benne R, Lukes J. RNA interference analyses suggest a transcript-specific regulatory role for mitochondrial RNA-binding proteins MRP1 and MRP2 in RNA editing and other RNA processing in Trypanosoma brucei. J Biol Chem 2004; 280:2429-38. [PMID: 15504736 DOI: 10.1074/jbc.m405933200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial RNA-binding proteins MRP1 and MRP2 occur in a heteromeric complex that appears to play a role in U-insertion/deletion editing in trypanosomes. Reduction in the levels of MRP1 (gBP21) and/or MRP2 (gBP25) mRNA by RNA interference in procyclic Trypanosoma brucei resulted in severe growth inhibition. It also resulted in the loss of both proteins, even when only one of the MRP mRNAs was reduced, indicating a mutual dependence for stability. Elimination of the MRPs gave rise to substantially reduced levels of edited CyB and RPS12 mRNAs but little or no reduction of the level of edited Cox2, Cox3, and A6 mRNAs as measured by poisoned primer extension analyses. In contrast, edited NADH-dehydrogenase (ND) subunit 7 mRNA was increased 5-fold in MRP1+2 double knock-down cells. Furthermore, MRP elimination resulted in reduced levels of Cox1, ND4, and ND5 mRNAs, which are never edited, whereas mitoribosomal 12 S rRNA levels were not affected. These data indicate that MRP1 and MRP2 are not essential for RNA editing per se but, rather, play a regulatory role in the editing of specific transcripts and other RNA processing activities.
Collapse
Affiliation(s)
- Eva Vondrusková
- Institute of Parasitology, Czech Academy of Sciences, and Faculty of Biology, University of South Bohemia, 37005 Ceské Budejovice, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
29
|
Simpson L, Aphasizhev R, Gao G, Kang X. Mitochondrial proteins and complexes in Leishmania and Trypanosoma involved in U-insertion/deletion RNA editing. RNA (NEW YORK, N.Y.) 2004; 10:159-70. [PMID: 14730014 PMCID: PMC1370527 DOI: 10.1261/rna.5170704] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A number of mitochondrial proteins have been identified in Leishmania sp. and Trypanosoma brucei that may be involved in U-insertion/deletion RNA editing. Only a few of these have yet been characterized sufficiently to be able to assign functional names for the proteins in both species, and most have been denoted by a variety of species-specific and laboratory-specific operational names, leading to a terminology confusion both within and outside of this field. In this review, we summarize the present status of our knowledge of the orthologous and unique putative editing proteins in both species and the functional motifs identified by sequence analysis and by experimentation. An online Supplemental sequence database (http://164.67.60.200/proteins/protsmini1.asp) is also provided as a research resource.
Collapse
Affiliation(s)
- Larry Simpson
- Department of Microbiology, Immunology and Molecular Genetics and Howard Hughes Medical Institute, University of California, Los Angeles, California 90095, USA.
| | | | | | | |
Collapse
|
30
|
Schnaufer A, Ernst NL, Palazzo SS, O'Rear J, Salavati R, Stuart K. Separate insertion and deletion subcomplexes of the Trypanosoma brucei RNA editing complex. Mol Cell 2003; 12:307-19. [PMID: 14536071 DOI: 10.1016/s1097-2765(03)00286-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Trypanosoma brucei editosome catalyzes the maturation of mitochondrial mRNAs through the insertion and deletion of uridylates and contains at least 16 stably associated proteins. We examined physical and functional associations among these proteins using three different approaches: purification of complexes via tagged editing ligases TbREL1 and TbREL2, comprehensive yeast two-hybrid analysis, and coimmunoprecipitation of recombinant proteins. A purified TbREL1 subcomplex catalyzed precleaved deletion editing in vitro, while a purified TbREL2 subcomplex catalyzed precleaved insertion editing in vitro. The TbREL1 subcomplex contained three to four proteins, including a putative exonuclease, and appeared to be coordinated by the zinc finger protein TbMP63. The TbREL2 subcomplex had a different composition, contained the TbMP57 terminal uridylyl transferase, and appeared to be coordinated by the TbMP81 zinc finger protein. This study provides insight into the molecular architecture of the editosome and supports the existence of separate subcomplexes for deletion and insertion editing.
Collapse
Affiliation(s)
- Achim Schnaufer
- Seattle Biomedical Research Institute, 4 Nickerson Street, Suite 200, Seattle, WA 98109, USA
| | | | | | | | | | | |
Collapse
|
31
|
Panigrahi AK, Allen TE, Stuart K, Haynes PA, Gygi SP. Mass spectrometric analysis of the editosome and other multiprotein complexes in Trypanosoma brucei. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2003; 14:728-735. [PMID: 12837594 DOI: 10.1016/s1044-0305(03)00126-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The composition of the editosome, a multi-protein complex that catalyzes uridine insertion and deletion RNA editing to produce mature mitochondrial mRNAs in trypanosomes, was analyzed by mass spectrometry. The editosomes were isolated by column chromatography, glycerol gradient sedimentation, and monoclonal antibody affinity purifications. At least 16 proteins form the catalytic core of the editosome, and additional associated proteins were identified. Analyses of mitochondrial fractions identified several non-editosome proteins and multi-protein complexes. These studies contribute to the functional annotation of T. brucei genome.
Collapse
Affiliation(s)
- Aswini K Panigrahi
- Department of Pathobiology, University of Washington, and Seattle Biomedical Research Institute, Seattle, Washington 98109, USA
| | | | | | | | | |
Collapse
|
32
|
Panigrahi AK, Schnaufer A, Ernst NL, Wang B, Carmean N, Salavati R, Stuart K. Identification of novel components of Trypanosoma brucei editosomes. RNA (NEW YORK, N.Y.) 2003; 9:484-92. [PMID: 12649499 PMCID: PMC1370414 DOI: 10.1261/rna.2194603] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2002] [Accepted: 01/09/2003] [Indexed: 05/19/2023]
Abstract
The editosome is a multiprotein complex that catalyzes the insertion and deletion of uridylates that occurs during RNA editing in trypanosomatids. We report the identification of nine novel editosome proteins in Trypanosoma brucei. They were identified by mass spectrometric analysis of functional editosomes that were purified by serial ion exchange/gel permeation chromatography, immunoaffinity chromatography specific to the TbMP63 editosome protein, or tandem affinity purification based on a tagged RNA editing ligase. The newly identified proteins have ribonuclease and/or RNA binding motifs suggesting nuclease function for at least some of these. Five of the proteins are interrelated, as are two others, and one is related to four previously identified editosome proteins. The implications of these findings are discussed.
Collapse
|
33
|
Pelletier M, Read LK. RBP16 is a multifunctional gene regulatory protein involved in editing and stabilization of specific mitochondrial mRNAs in Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2003; 9:457-68. [PMID: 12649497 PMCID: PMC1370412 DOI: 10.1261/rna.2160803] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2002] [Accepted: 12/27/2002] [Indexed: 05/20/2023]
Abstract
RBP16 is a Trypanosoma brucei mitochondrial RNA-binding protein that associates with guide RNAs (gRNAs), mRNAs, and ribosomal RNAs. Based on its inclusion in the multifunctional Y-box protein family and its ability to bind multiple RNA classes, we hypothesized that RBP16 plays a role in diverse aspects of mitochondrial gene regulation. To gain insight into RBP16 function, we generated cells expressing less than 10% of wild-type RBP16 levels by tetracycline-regulated RNA interference (RNAi). Poisoned primer extension analyses revealed that edited, but not unedited, CYb mRNA is reduced by approximately 98% in tetracycline-induced RBP16 RNAi cells, suggesting that RBP16 is critical for CYb RNA editing. The down-regulation of CYb editing in RBP16 RNAi transfectants apparently entails a defect in gRNA utilization, as gCYb[560] abundance is similar in uninduced and induced cells. We observed a surprising degree of specificity regarding the ability of RBP16 to modulate editing, as editing of mRNAs other than CYb is not significantly affected upon RBP16 disruption. However, the abundance of the never edited mitochondrial RNAs COI and ND4 is reduced by 70%-80% in RBP16 RNAi transfectants, indicating an additional role for RBP16 in the stabilization of these mRNAs. Analysis of RNAs bound to RBP16 immunoprecipitated from wild-type cells reveals that RBP16 is associated with multiple gRNA sequence classes in vivo, including those whose abundance and usage appear unaffected by RBP16 disruption. Overall, our results indicate that RBP16 is an accessory factor that regulates the editing and stability of specific populations of mitochondrial mRNAs.
Collapse
Affiliation(s)
- Michel Pelletier
- Department of Microbiology and Witebsky Center for Microbial Pathogenesis and Immunology, State University of New York-Buffalo School of Medicine, Buffalo, New York 14214, USA
| | | |
Collapse
|
34
|
Simpson L, Sbicego S, Aphasizhev R. Uridine insertion/deletion RNA editing in trypanosome mitochondria: a complex business. RNA (NEW YORK, N.Y.) 2003; 9:265-76. [PMID: 12591999 PMCID: PMC1370392 DOI: 10.1261/rna.2178403] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The basic mechanism of uridine insertion/deletion RNA editing in mitochondria of kinetoplastid protists has been established for some time but the molecular details remained largely unknown. Recently, there has been significant progress in defining the molecular components of the editing reaction. A number of factors have been isolated from trypanosome mitochondria, some of which have been definitely implicated in the uridine insertion/deletion RNA editing reaction and others of which have been circumstantially implicated. Several protein complexes have been isolated which exhibit some editing activities, and the macromolecular organization of these complexes is being analyzed. In addition, there have been several important technical advances in the in vitro analysis of editing. In this review we critically examine the various factors and complexes proposed to be involved in RNA editing.
Collapse
Affiliation(s)
- Larry Simpson
- Howard Hughes Medical Institute and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, USA.
| | | | | |
Collapse
|
35
|
Abstract
RNA editing in Trypanosomatids creates functional mitochondrial mRNAs by extensive uridylate (U) insertion and deletion as specified by small guide RNAs (gRNAs). Editing is catalysed by the multiprotein editosome. Over 20 of its protein components have been identified and additional proteins are likely to function in editing and its regulation. The functions of only a few editosome proteins have been determined. Surprisingly, there are related pairs or sets of editosome proteins, and insertion and deletion editing appear to be functionally and perhaps spatially separate. A model for the editosome is proposed, which has a catalysis domain with separate sectors for insertion and deletion editing. It also contains domains for anchor duplex and upstream RNA binding, which position the sequence to be edited in the catalysis domain.
Collapse
|
36
|
Abstract
Recent discoveries have revealed that there is a myriad of RNAs and associated RNA-binding proteins that spatially and temporally appear in the cells of all organisms. The structures of these RNA-protein complexes are providing valuable insights into the binding modes and functional implications of these interactions. Even the common RNA-binding domains (RBDs) and the double stranded RNA binding motifs (dsRBMs) have been shown to exhibit a plethora of binding modes.
Collapse
Affiliation(s)
- Kathleen B Hall
- Department of Biochemistry and Molecular Biophysics, Box 8231, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA.
| |
Collapse
|
37
|
Huang CE, O'Hearn SF, Sollner-Webb B. Assembly and function of the RNA editing complex in Trypanosoma brucei requires band III protein. Mol Cell Biol 2002; 22:3194-203. [PMID: 11940676 PMCID: PMC133760 DOI: 10.1128/mcb.22.9.3194-3203.2002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2001] [Revised: 11/20/2001] [Accepted: 01/07/2002] [Indexed: 11/20/2022] Open
Abstract
Trypanosome RNA editing, the posttranscriptional insertion and deletion of U residues in mitochondrial transcripts, is catalyzed by a protein complex containing seven distinct proteins. In this study, we cloned the gene for band III, a 555-amino-acid protein with two separate zinc finger motifs. We prepared antibodies that showed band III protein cofractionates with the previously characterized band IV protein throughout the purification of the editing complex and is not found free or in other protein associations; therefore, it is a true constituent of the editing complex. Double-stranded RNA interference efficiently depleted band III protein and demonstrated that band III expression is essential for growth of procyclic trypanosomes and for RNA editing. These depleted cell extracts were deficient specifically in guide RNA-directed endonuclease cleavage at both U deletion and U insertion sites and in the activity of the band IV ligase, but they retained the 3'-U-exonuclease and terminal-U-transferase activities as well as band V ligase of the editing complex. Loss of band III protein also resulted in almost complete loss of the band IV ligase protein and altered sedimentation of the band V ligase. These data indicate that band III is either the RNA editing endonuclease or a factor critical for cleavage activity in the editing complex. They also demonstrate that band III is required for proper assembly of the editing complex.
Collapse
Affiliation(s)
- Catherine E Huang
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
38
|
Abstract
The assembly and disassembly of ribonucleoprotein complexes containing substrate precursor mRNAs and guide RNAs is crucial to the initiation and propagation of RNA editing. We discuss here the composition of these complexes and how their assembly may regulate RNA editing.
Collapse
Affiliation(s)
- Susan Madison-Antenucci
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
39
|
Müller UF, Göringer HU. Mechanism of the gBP21-mediated RNA/RNA annealing reaction: matchmaking and charge reduction. Nucleic Acids Res 2002; 30:447-55. [PMID: 11788706 PMCID: PMC99830 DOI: 10.1093/nar/30.2.447] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2001] [Revised: 11/16/2001] [Accepted: 11/16/2001] [Indexed: 01/17/2023] Open
Abstract
The guide RNA-binding protein gBP21 has been characterized as a mitochondrial RNA/RNA annealing factor. The protein co-immunoprecipitates with RNA editing ribonucleoprotein complexes, which suggests that gBP21 contributes its annealing activity to the RNA editing machinery. In support of this view, gBP21 was found to accelerate the hybridization of cognate guide (g)RNA/pre-edited mRNA pairs. Here we analyze the mechanism of the gBP21-mediated RNA annealing reaction. Three possible modes of action are considered: chaperone function, matchmaker function and product stabilization. We conclude that gBP21 works as a matchmaker by binding to gRNAs as one of the two RNA annealing reactants. Three lines of evidence substantiate this model. First, gBP21 and gRNAs form a thermodynamically and kinetically stable complex in a 1 + 1 stoichiometry. Secondly, gRNA-bound gBP21 stabilizes single-stranded RNA, which can be considered the transition state in the annealing reaction. Thirdly, gBP21 has a low affinity for double-stranded RNAs, suggesting the release of the annealed reaction product after the hybridization step. In the process, up to six ionic bonds are formed between gBP21 and a gRNA, which decreases the net negative charge of the RNA. As a consequence, the electrostatic repulsion between the two annealing reactants is reduced favoring the hybridization reaction.
Collapse
Affiliation(s)
- Ulrich F Müller
- Department of Microbiology and Genetics, Darmstadt University of Technology, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | | |
Collapse
|