1
|
Architectural and functional details of CF IA proteins involved in yeast 3'-end pre-mRNA processing and its significance for eukaryotes: A concise review. Int J Biol Macromol 2021; 193:387-400. [PMID: 34699898 DOI: 10.1016/j.ijbiomac.2021.10.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 11/22/2022]
Abstract
In eukaryotes, maturation of pre-mRNA relies on its precise 3'-end processing. This processing involves co-transcriptional steps regulated by sequence elements and other proteins. Although, it holds tremendous importance, defect in the processing machinery will result in erroneous pre-mRNA maturation leading to defective translation. Remarkably, more than 20 proteins in humans and yeast share homology and execute this processing. The defects in this processing are associated with various diseases in humans. We shed light on the CF IA subunit of yeast Saccharomyces cerevisiae that contains four proteins (Pcf11, Clp1, Rna14 and Rna15) involved in this processing. Structural details of various domains of CF IA and their roles during 3'-end processing, like cleavage and polyadenylation at 3'-UTR of pre-mRNA and other cellular events are explained. Further, the chronological development and important discoveries associated with 3'-end processing are summarized. Moreover, the mammalian homologues of yeast CF IA proteins, along with their key roles are described. This knowledge would be helpful for better comprehension of the mechanism associated with this marvel; thus opening up vast avenues in this area.
Collapse
|
2
|
Reines D. A fluorescent assay for the genetic dissection of the RNA polymerase II termination machinery. Methods 2019; 159-160:124-128. [PMID: 30616008 DOI: 10.1016/j.ymeth.2018.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 01/25/2023] Open
Abstract
RNA polymerase II is a highly processive enzyme that synthesizes mRNAs and some non-protein coding RNAs. Termination of transcription, which entails release of the transcript and disengagement of the polymerase, requires an active process. In yeast, there are at least two multi-protein complexes needed for termination of transcription, depending upon which class of RNAs are being acted upon. In general, the two classes are relatively short non-coding RNAs (e.g. snoRNAs) and relatively long mRNAs, although there are exceptions. Here, a procedure is described in which defective termination can be detected in living cells, resulting in a method that allows strains with mutations in termination factors or cis-acting sequences, to be identified and recovered. The strategy employs a reporter plasmid with a galactose inducible promoter driving transcription of green fluorescent protein which yields highly fluorescent cells. When a test terminator is inserted between the promoter and the fluorescent protein reading frame, cells fail to fluoresce. Mutant strains that have lost termination capability, so called terminator-override mutants, gain expression of the fluorescent protein and can be collected by fluorescence activated cell sorting. The strategy is robust since acquisition of fluorescence is a positive trait that has a low probability of happening adventitiously. Live mutant cells can easily be cloned from the population of positive candidates. Flow sorting is a sensitive, high-throughput detection step capable of discovering spontaneous mutations in yeast with high fidelity.
Collapse
Affiliation(s)
- Daniel Reines
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, United States.
| |
Collapse
|
3
|
Sonkar A, Gaurav S, Ahmed S. Fission yeast Ctf1, a cleavage and polyadenylation factor subunit is required for the maintenance of genomic integrity. Mol Genet Genomics 2017; 292:1027-1036. [PMID: 28567704 DOI: 10.1007/s00438-017-1329-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 05/26/2017] [Indexed: 11/28/2022]
Abstract
Accurate segregation of chromosome during mitosis requires the coordinated action of several cell cycle checkpoints that monitor replication of the genome and the attachment of sister chromatids to the mitotic spindle apparatus. Here we have characterized the fission yeast Ctf1, an ortholog of S. cerevisiae Rna15 in the maintenance of genomic integrity. The ctf1 is nonessential for the cell survival and its deletion strain exhibit cold sensitivity. The ctf1 deleted cells exhibit genetic interaction with spindle checkpoint protein Mad2 and Bub1. The deletion of ctf1 gene affects the chromosomal attachment to the mitotic spindle leading to the accumulation of Bub1-GFP foci. Ctf1 localizes to the nucleus and physically interacts with Rna14, a cleavage and polyadenylation factor.
Collapse
Affiliation(s)
- Amit Sonkar
- Molecular and Structural Biology Division, CSIR, Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.,Department of Biochemistry, North-Eastern Hill University, Shillong, India
| | - Sachin Gaurav
- Molecular and Structural Biology Division, CSIR, Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Shakil Ahmed
- Molecular and Structural Biology Division, CSIR, Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
| |
Collapse
|
4
|
Abstract
Here we focus on the biogenesis and function of messenger RNA (mRNA) in fission yeast cells. Following a general introduction that also briefly touches on other classes of RNA, we provide an overview of methods used to analyze mRNAs throughout their life cycles.
Collapse
Affiliation(s)
- Jo Ann Wise
- Center for RNA Molecular Biology and Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106-4906
| | - Olaf Nielsen
- Department of Biology, Functional Genomics Division, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
5
|
Kowalik KM, Shimada Y, Flury V, Stadler MB, Batki J, Bühler M. The Paf1 complex represses small-RNA-mediated epigenetic gene silencing. Nature 2015; 520:248-252. [PMID: 25807481 PMCID: PMC4398878 DOI: 10.1038/nature14337] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/16/2015] [Indexed: 01/26/2023]
Abstract
RNA interference (RNAi) refers to the ability of exogenously introduced double-stranded RNA (dsRNA) to silence expression of homologous sequences. Silencing is initiated when the enzyme Dicer processes the dsRNA into small interfering RNAs (siRNAs). Small RNA molecules are incorporated into Argonaute protein-containing effector complexes, which they guide to complementary targets to mediate different types of gene silencing, specifically post-transcriptional gene silencing (PTGS) and chromatin-dependent gene silencing1. Although endogenous small RNAs play critical roles in chromatin-mediated processes across kingdoms, efforts to initiate chromatin modifications in trans by using siRNAs have been inherently difficult to achieve in all eukaryotic cells. Using fission yeast, we show that RNAi-directed heterochromatin formation is negatively controlled by the highly conserved RNA polymerase-associated factor 1 complex (Paf1C). Temporary expression of a synthetic hairpin RNA in Paf1C mutants triggers stable heterochromatin formation at homologous loci, effectively silencing genes in trans. This repressed state is propagated across generations by continual production of secondary siRNAs, independently of the synthetic hairpin RNA. Our data support a model where Paf1C prevents targeting of nascent transcripts by the siRNA-containing RNA-induced transcriptional silencing (RITS) complex and thereby epigenetic gene silencing, by promoting efficient transcription termination and rapid release of the RNA from the site of transcription. We show that although compromised transcription termination is sufficient to initiate the formation of bi-stable heterochromatin by trans-acting siRNAs, impairment of both transcription termination and nascent transcript release is imperative to confer stability to the repressed state. Our work uncovers a novel mechanism for small RNA- mediated epigenome regulation and highlights fundamental roles for Paf1C and the RNAi machinery in building epigenetic memory.
Collapse
Affiliation(s)
- Katarzyna Maria Kowalik
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.,University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Yukiko Shimada
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.,University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Valentin Flury
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.,University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Michael Beda Stadler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.,University of Basel, Petersplatz 10, 4003 Basel, Switzerland.,Swiss Institute of Bioinformatics, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Julia Batki
- Eötvös Loránd University, Faculty of Sciences, Institute of Chemistry, 1/A Pázmány Péter sétány, Budapest, 1117, Hungary
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.,University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| |
Collapse
|
6
|
Tsao DC, Park NJ, Nag A, Martinson HG. Prolonged α-amanitin treatment of cells for studying mutated polymerases causes degradation of DSIF160 and other proteins. RNA (NEW YORK, N.Y.) 2012; 18:222-229. [PMID: 22194310 PMCID: PMC3264909 DOI: 10.1261/rna.030452.111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/04/2011] [Indexed: 05/31/2023]
Abstract
A useful method for studying the function of the mammalian RNA polymerase II takes advantage of the extreme sensitivity of its largest subunit, Rpb1, to α-amanitin. Mutations of interest are introduced into an α-amanitin-resistant version of Rpb1, which is then expressed ectopically in cells. The phenotypes of these cells are then examined after inhibiting the endogenous wild-type polymerase with α-amanitin. Here, we show that cells that are enabled to grow in α-amanitin by expression of an α-amanitin-resistant Rpb1 exhibit changes in cell physiology that can lead to misleading experimental outcomes. The changes we have characterized include the accelerated degradation of some proteins, such as DSIF160, and the reduced rate of synthesis of others. In one series of experiments, we examined an α-amanitin-resistant construct, with a mutant C-terminal domain (CTD), that was unable to direct poly(A)-dependent transcription termination in cells growing in α-amanitin. The potential interpretation that the termination defect in this construct is due to the mutation in the CTD was rejected when the construct was found to be termination-competent in cells grown in the absence of α-amanitin. Instead, it appears that certain termination factors become limiting when the cells are grown in α-amanitin, presumably due to the α-amanitin-induced degradation we have characterized and/or to the inadequate transcription of certain genes by the α-amanitin-resistant Rpb1-containing polymerase.
Collapse
Affiliation(s)
- David C. Tsao
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095-1569, USA
| | - Noh Jin Park
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095-1569, USA
| | - Anita Nag
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095-1569, USA
| | - Harold G. Martinson
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095-1569, USA
| |
Collapse
|
7
|
Abstract
During transcription elongation, RNA polymerase II (Pol II) binds the general elongation factor Spt5. Spt5 contains a repetitive C-terminal region (CTR) that is required for cotranscriptional recruitment of the Paf1 complex (D. L. Lindstrom et al., Mol. Cell. Biol. 23:1368-1378, 2003; Z. Zhang, J. Fu, and D. S. Gilmour, Genes Dev. 19:1572-1580, 2005). Here we report a new role of the Spt5 CTR in the recruitment of 3' RNA-processing factors. Chromatin immunoprecipitation (ChIP) revealed that the Spt5 CTR is required for normal recruitment of pre-mRNA cleavage factor I (CFI) to the 3' ends of Saccharomyces cerevisiae genes. RNA contributes to CFI recruitment, as RNase treatment prior to ChIP further decreases CFI ChIP signals. Genome-wide ChIP profiling detected occupancy peaks of CFI subunits around 100 nucleotides downstream of the polyadenylation (pA) sites of genes. CFI recruitment to this defined region may result from simultaneous binding to the Spt5 CTR, to nascent RNA containing the pA sequence, and to the elongating Pol II isoform that is phosphorylated at serine 2 (S2) residues in its C-terminal domain (CTD). Consistent with this model, the CTR interacts with CFI in vitro but is not required for pA site recognition and transcription termination in vivo.
Collapse
|
8
|
Transcriptional activation of the general amino acid permease gene per1 by the histone deacetylase Clr6 Is regulated by Oca2 kinase. Mol Cell Biol 2010; 30:3396-410. [PMID: 20404084 DOI: 10.1128/mcb.00971-09] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Expression of nitrogen metabolism genes is regulated by the quality of the nitrogen supply. Here, we describe a mechanism for the transcriptional regulation of the general amino acid permease gene per1 in Schizosaccharomyces pombe. We show that when ammonia is used as the nitrogen source, low levels of per1 are transcribed and histones in the coding and surrounding regions of per1 are acetylated. In the presence of proline, per1 transcription is upregulated and initiates from a more upstream site, generating 5'-extended mRNAs. Concomitantly, histones at per1 are deacetylated in a Clr6-dependent manner, suggesting a positive role for Clr6 in transcriptional regulation of per1. Upstream initiation and histone deactylation of per1 are constitutive in cells lacking the serine/threonine kinase oca2, indicating that Oca2 is a repressor of per1. Oca2 interacts with a protein homologous to the Saccharomyces cerevisiae transcriptional activator Cha4 and with Ago1. Loss of Cha4 or Ago1 causes aberrant induction of per1 under noninducing conditions, suggesting that these proteins are also involved in per1 regulation and hence in nitrogen utilization.
Collapse
|
9
|
Singh N, Ma Z, Gemmill T, Wu X, Defiglio H, Rossettini A, Rabeler C, Beane O, Morse RH, Palumbo MJ, Hanes SD. The Ess1 prolyl isomerase is required for transcription termination of small noncoding RNAs via the Nrd1 pathway. Mol Cell 2009; 36:255-66. [PMID: 19854134 DOI: 10.1016/j.molcel.2009.08.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 07/03/2009] [Accepted: 08/13/2009] [Indexed: 12/17/2022]
Abstract
Genome-wide studies have identified abundant small, noncoding RNAs, including small nuclear RNAs, small nucleolar RNAs (snoRNAs), cryptic unstable transcripts (CUTs), and upstream regulatory RNAs (uRNAs), that are transcribed by RNA polymerase II (pol II) and terminated by an Nrd1-dependent pathway. Here, we show that the prolyl isomerase Ess1 is required for Nrd1-dependent termination of noncoding RNAs. Ess1 binds the carboxy-terminal domain (CTD) of pol II and is thought to regulate transcription by conformational isomerization of Ser-Pro bonds within the CTD. In ess1 mutants, expression of approximately 10% of the genome was altered, due primarily to defects in termination of snoRNAs, CUTs, stable unannotated transcripts, and uRNAs. Ess1 promoted dephosphorylation of Ser5 (but not Ser2) within the CTD, most likely by the Ssu72 phosphatase. We also provide evidence for a competition between Nrd1 and Pcf11 for CTD binding that is regulated by Ess1. These data indicate that a prolyl isomerase is required for specifying the "CTD code."
Collapse
Affiliation(s)
- Navjot Singh
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, NY 12208, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Nabavi S, Nazar RN. Fail‐safe termination elements: a common feature of the eukaryotic genome? FASEB J 2009; 24:684-8. [DOI: 10.1096/fj.09-142745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sadeq Nabavi
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphOntarioCanada
| | - Ross N. Nazar
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
11
|
Dermody JL, Dreyfuss JM, Villén J, Ogundipe B, Gygi SP, Park PJ, Ponticelli AS, Moore CL, Buratowski S, Bucheli ME. Unphosphorylated SR-like protein Npl3 stimulates RNA polymerase II elongation. PLoS One 2008; 3:e3273. [PMID: 18818768 PMCID: PMC2538588 DOI: 10.1371/journal.pone.0003273] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 09/01/2008] [Indexed: 01/04/2023] Open
Abstract
The production of a functional mRNA is regulated at every step of transcription. An area not well-understood is the transition of RNA polymerase II from elongation to termination. The S. cerevisiae SR-like protein Npl3 functions to negatively regulate transcription termination by antagonizing the binding of polyA/termination proteins to the mRNA. In this study, Npl3 is shown to interact with the CTD and have a direct stimulatory effect on the elongation activity of the polymerase. The interaction is inhibited by phosphorylation of Npl3. In addition, Casein Kinase 2 was found to be required for the phosphorylation of Npl3 and affect its ability to compete against Rna15 (Cleavage Factor I) for binding to polyA signals. Our results suggest that phosphorylation of Npl3 promotes its dissociation from the mRNA/RNAP II, and contributes to the association of the polyA/termination factor Rna15. This work defines a novel role for Npl3 in elongation and its regulation by phosphorylation.
Collapse
Affiliation(s)
- Jessica L. Dermody
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jonathan M. Dreyfuss
- Harvard-Partners Center for Genetics and Genomics, Boston, Massachusetts, United States of America
| | - Judit Villén
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Babatunde Ogundipe
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Peter J. Park
- Harvard-Partners Center for Genetics and Genomics, Boston, Massachusetts, United States of America
| | - Alfred S. Ponticelli
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York, United States of America
| | - Claire L. Moore
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Miriam E. Bucheli
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
12
|
Weitzer S, Martinez J. The human RNA kinase hClp1 is active on 3' transfer RNA exons and short interfering RNAs. Nature 2007; 447:222-6. [PMID: 17495927 DOI: 10.1038/nature05777] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 03/21/2007] [Indexed: 11/09/2022]
Abstract
RNA interference allows the analysis of gene function by introducing synthetic, short interfering RNAs (siRNAs) into cells. In contrast to siRNA and microRNA duplexes generated endogenously by the RNaseIII endonuclease Dicer, synthetic siRNAs display a 5' OH group. However, to become incorporated into the RNA-induced silencing complex (RISC) and mediate target RNA cleavage, the guide strand of an siRNA needs to display a phosphate group at the 5' end. The identity of the responsible kinase has so far remained elusive. Monitoring siRNA phosphorylation, we applied a chromatographic approach that resulted in the identification of the protein hClp1 (human Clp1), a known component of both transfer RNA splicing and messenger RNA 3'-end formation machineries. Here we report that the kinase hClp1 phosphorylates and licenses synthetic siRNAs to become assembled into RISC for subsequent target RNA cleavage. More importantly, we reveal the physiological role of hClp1 as the RNA kinase that phosphorylates the 5' end of the 3' exon during human tRNA splicing, allowing the subsequent ligation of both exon halves by an unknown tRNA ligase. The investigation of this novel enzymatic activity of hClp1 in the context of mRNA 3'-end formation, where no RNA phosphorylation event has hitherto been predicted, remains a challenge for the future.
Collapse
Affiliation(s)
- Stefan Weitzer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr Gasse 3, A-1030 Vienna, Austria
| | | |
Collapse
|
13
|
Qu X, Perez-Canadillas JM, Agrawal S, De Baecke J, Cheng H, Varani G, Moore C. The C-terminal domains of vertebrate CstF-64 and its yeast orthologue Rna15 form a new structure critical for mRNA 3'-end processing. J Biol Chem 2006; 282:2101-15. [PMID: 17116658 DOI: 10.1074/jbc.m609981200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Yeast Rna15 and its vertebrate orthologue CstF-64 play critical roles in mRNA 3 '-end processing and in transcription termination downstream of poly(A) sites. These proteins contain N-terminal domains that recognize the poly(A) site, but little is known about their highly conserved C-terminal regions. Here we show by NMR that the C-terminal domains of CstF-64 and Rna15 fold into a three-helix bundle with an uncommon topological arrangement. The structure defines a cluster of evolutionary conserved yet exposed residues we show to be essential for the interaction between Pcf11 and Rna15. Furthermore, we demonstrate that this interaction is critical for the function of Rna15 in 3 '-end processing but dispensable for transcription termination. The C-terminal domain of the Rna15 homologue Pti1 contains critical sequence alterations within this region that are predicted to prevent Pcf11 interaction, providing an explanation for the distinct functions of these two closely related proteins in the 3 '-end formation of RNA polymerase II transcripts. These results define the role of the C-terminal half of Rna15 and provide insight into the network of protein/protein interactions responsible for assembly of the 3 '-end processing apparatus.
Collapse
Affiliation(s)
- Xiangping Qu
- Department of Molecular Microbiology, Tufts University School of Medicine and the Sackler Graduate School of Biomedical Sciences, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Coupling of transcription termination to RNAi. J Theor Biol 2006; 245:278-89. [PMID: 17157879 DOI: 10.1016/j.jtbi.2006.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2006] [Revised: 10/21/2006] [Accepted: 10/25/2006] [Indexed: 11/28/2022]
Abstract
In metazoans, the mechanisms of transcriptional termination by RNA polymerase II (Pol II) and accelerated decay of messenger RNA (mRNA) following transcription shutdown are linked by sharing the same sequence elements and mRNA elongation, processing and termination factors. This begs the question, how could one process have two opposite outcomes, making or degrading mRNA? An integrated "allosteric-GENEi-torpedo" model that could explain this paradox predicts participation of two novel factors: (1) An allosteric factor, regulated by a physiological repressor, binds to a unique sequence element of a gene near the site of cleavage and polyadenylation, poly(A) site, and acts on the homologous site on the nascent transcript to cause its cleavage. The conformational changes of this factor determine the fate of nascent RNA, either to get cleaved and processed to mature mRNA for directing protein synthesis, or not to get cleaved and become template for double-stranded (ds) RNA synthesis. (2) A general transcription termination factor, recruited by transcribing Pol II at the poly(A) site, allostrically alters and induces Pol II to switch template from DNA to nascent RNA several hundred nucleotides downstream of the poly(A) site. The template switch disengages Pol II from DNA and effectively terminates transcription. The Pol II with newly acquired RNA-dependent RNA polymerase activity retraces its path, back along the nascent RNA, so generating dsRNA. The extent to which it can retrace this path is determined by the factors influencing the cleavage of the pre-mRNA at the site of polyA addition. If cleavage and polyadenylation occur, the retracing is cut short, the 3' RNA is degraded by an exonuclease and the polymerase is liberated to reinitiate transcription. If the cleavage is inhibited, then a full-length dsRNA can be produced. This can then be subject to cleavage by "Dicer", which generates fragments of approximately 22bp that guide degradation of the cognate mRNA via the RNA interference (RNAi) pathway. This model complements the current "allosteric-torpedo" model of transcription termination, and could explain the apparent paradox of the divergent results of a common biological process.
Collapse
|
15
|
Herr AJ, Molnàr A, Jones A, Baulcombe DC. Defective RNA processing enhances RNA silencing and influences flowering of Arabidopsis. Proc Natl Acad Sci U S A 2006; 103:14994-5001. [PMID: 17008405 PMCID: PMC1581427 DOI: 10.1073/pnas.0606536103] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many eukaryotic cells use RNA-directed silencing mechanisms to protect against viruses and transposons and to suppress endogenous gene expression at the posttranscriptional level. RNA silencing also is implicated in epigenetic mechanisms affecting chromosome structure and transcriptional gene silencing. Here, we describe enhanced silencing phenotype (esp) mutants in Arabidopsis thaliana that reveal how proteins associated with RNA processing and 3' end formation can influence RNA silencing. These proteins were a putative DEAH RNA helicase homologue of the yeast PRP2 RNA splicing cofactor and homologues of mRNA 3' end formation proteins CstF64, symplekin/PTA1, and CPSF100. The last two proteins physically associated with the flowering time regulator FY in the 3' end formation complex AtCPSF. The phenotypes of the 3' end formation esp mutants include impaired termination of the transgene transcripts, early flowering, and enhanced silencing of the FCA-beta mRNA. Based on these findings, we propose that the ESP-containing 3' end formation complexes prevent transgene and endogenous mRNAs from entering RNA-silencing pathways. According to this proposal, in the absence of these ESP proteins, these RNAs have aberrant 3' termini. The aberrant RNAs would enter the RNA silencing pathways because they are converted into dsRNA by RNA-dependent RNA polymerases.
Collapse
Affiliation(s)
- Alan J. Herr
- Sainsbury Laboratory, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Attila Molnàr
- Sainsbury Laboratory, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Alex Jones
- Sainsbury Laboratory, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - David C. Baulcombe
- Sainsbury Laboratory, John Innes Centre, Norwich NR4 7UH, United Kingdom
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
16
|
Affiliation(s)
- Emanuel Rosonina
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | |
Collapse
|
17
|
Forbes KP, Addepalli B, Hunt AG. An Arabidopsis Fip1 homolog interacts with RNA and provides conceptual links with a number of other polyadenylation factor subunits. J Biol Chem 2005; 281:176-86. [PMID: 16282318 DOI: 10.1074/jbc.m510964200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protein Fip1 is an important subunit of the eukaryotic polyadenylation apparatus, since it provides a bridge of sorts between poly(A) polymerase, other subunits of the polyadenylation apparatus, and the substrate RNA. In this study, a previously unreported Arabidopsis Fip1 homolog is characterized. The gene for this protein resides on chromosome V and encodes a 1196-amino acid polypeptide. Yeast two-hybrid and in vitro assays indicate that the N-terminal 137 amino acids of the Arabidopsis Fip1 protein interact with poly(A) polymerase (PAP). This domain also stimulates the activity of the PAP. Interestingly, this part of the Arabidopsis Fip1 interacts with Arabidopsis homologs of CstF77, CPSF30, CFIm-25, and PabN1. The interactions with CstF77, CPSF30, and CFIm-25 are reminiscent in various respects of similar interactions seen in yeast and mammals, although the part of the Arabidopsis Fip1 protein that participates in these interactions has no apparent counterpart in other eukaryotic Fip1 proteins. Interactions between Fip1 and PabN1 have not been reported in other systems; this may represent plant-specific associations. The C-terminal 789 amino acids of the Arabidopsis Fip1 protein were found to contain an RNA-binding domain; this domain correlated with an intact arginine-rich region and had a marked preference for poly(G) among the four homopolymers studied. These results indicate that the Arabidopsis Fip1, like its human counterpart, is an RNA-binding protein. Moreover, they provide conceptual links between PAP and several other Arabidopsis polyadenylation factor subunit homologs.
Collapse
Affiliation(s)
- Kevin P Forbes
- Plant Physiology, Biochemistry, and Molecular Biology Program, Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546-0312, USA
| | | | | |
Collapse
|
18
|
Abstract
Recent advances in understanding the molecular mechanism of mRNA 3' end cleavage and polyadenylation have uncovered an unanticipated involvement of this process in the regulation of the transcriptional apparatus on its chromatin template. Thus, newly defined factors associated with mRNA 3' end formation are also connected with initiation of transcription, suggesting a close collaboration between the initiation and termination phases of transcription. Furthermore several of these factors are involved in setting up appropriate chromatin structure to facilitate efficient transcriptional elongation and termination.
Collapse
Affiliation(s)
- Nick Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK.
| |
Collapse
|
19
|
He X, Moore C. Regulation of yeast mRNA 3' end processing by phosphorylation. Mol Cell 2005; 19:619-29. [PMID: 16137619 DOI: 10.1016/j.molcel.2005.07.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 06/01/2005] [Accepted: 07/14/2005] [Indexed: 11/15/2022]
Abstract
Recent studies have found that the phosphatase Glc7 associates with the yeast cleavage/polyadenylation factor (CPF), but the role of Glc7 in 3' end processing has not been investigated. Here, we report that depletion of Glc7 causes shortened poly(A) tails in vivo and accumulation of phosphorylated Pta1, a CPF subunit. Removal of Glc7 also gives extract defective for poly(A) addition but normal for cleavage at the poly(A) site. Polyadenylation is rescued by addition of Glc7 or Pta1, but not by phosphorylated Pta1. Moreover, Ypi1, a Glc7-specific inhibitor, or the Cka1 kinase blocks poly(A) addition in wild-type (wt) extract. Pta1 interacts physically and genetically with Glc7, suggesting that Pta1 may also regulate Glc7 or recruit it to CPF. A weakened association of Fip1 with phosphorylated CPF may explain the specific effect on polyadenylation. These results support a model in which poly(A) synthesis is controlled by cycles of phosphorylation and dephosphorylation that require the action of Glc7.
Collapse
Affiliation(s)
- Xiaoyuan He
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
20
|
Schramke V, Sheedy DM, Denli AM, Bonila C, Ekwall K, Hannon GJ, Allshire RC. RNA-interference-directed chromatin modification coupled to RNA polymerase II transcription. Nature 2005; 435:1275-9. [PMID: 15965464 DOI: 10.1038/nature03652] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Accepted: 04/22/2005] [Indexed: 01/07/2023]
Abstract
RNA interference (RNAi) acts on long double-stranded RNAs (dsRNAs) in a variety of eukaryotes to generate small interfering RNAs that target homologous messenger RNA, resulting in their destruction. This process is widely used to 'knock-down' the expression of genes of interest to explore phenotypes. In plants, fission yeast, ciliates, flies and mammalian cells, short interfering RNAs (siRNAs) also induce DNA or chromatin modifications at the homologous genomic locus, which can result in transcriptional silencing or sequence elimination. siRNAs may direct DNA or chromatin modification by siRNA-DNA interactions at the homologous locus. Alternatively, they may act by interactions between siRNA and nascent transcript. Here we show that in fission yeast (Schizosaccharomyces pombe), chromatin modifications are only directed by RNAi if the homologous DNA sequences are transcribed. Furthermore, transcription by exogenous T7 polymerase is not sufficient. Ago1, a component of the RNAi effector RISC/RITS complex, associates with target transcripts and RNA polymerase II. Truncation of the regulatory carboxy-terminal domain (CTD) of RNA pol II disrupts transcriptional silencing, indicating that, like other RNA processing events, RNAi-directed chromatin modification is coupled to transcription.
Collapse
Affiliation(s)
- Vera Schramke
- Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, King's Buildings, University of Edinburgh, Edinburgh EH9 3JR, UK
| | | | | | | | | | | | | |
Collapse
|
21
|
Melcangi RC, Cavarretta ITR, Ballabio M, Leonelli E, Schenone A, Azcoitia I, Miguel Garcia-Segura L, Magnaghi V. Peripheral nerves: a target for the action of neuroactive steroids. ACTA ACUST UNITED AC 2005; 48:328-38. [PMID: 15850671 DOI: 10.1016/j.brainresrev.2004.12.021] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2004] [Accepted: 12/09/2004] [Indexed: 10/25/2022]
Abstract
Peripheral nervous system possesses both classical and non-classical steroid receptors and consequently may represent a target for the action of neuroactive steroids. The present review summarizes the state of art of this intriguing field of research reporting data which indicate that neuroactive steroids, like for instance progesterone, dihydroprogesterone, tetrahydroprogesterone, dihydrotestosterone and 3alpha-diol, stimulate the expression of two important proteins of the myelin of peripheral nerves, the glycoprotein P0 (P0) and the peripheral myelin protein 22 (PMP22). Interestingly, the mechanisms by which neuroactive steroids exert their effects involve classical steroid receptors, like for instance progesterone and androgen receptors, in case of P0 and non-classical steroid receptors, like GABA(A) receptor, in case of PMP22. Moreover, neuroactive steroids not only control the expression of these specific myelin proteins, but also influence the morphology of myelin sheaths and axons suggesting that these molecules may represent an interesting new therapeutic approach to maintain peripheral nerve integrity during neurodegenerative events.
Collapse
|
22
|
Calvo O, Manley JL. The transcriptional coactivator PC4/Sub1 has multiple functions in RNA polymerase II transcription. EMBO J 2005; 24:1009-20. [PMID: 15692559 PMCID: PMC554125 DOI: 10.1038/sj.emboj.7600575] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Accepted: 01/11/2005] [Indexed: 11/09/2022] Open
Abstract
Transcription and processing of mRNA precursors are coordinated events that require numerous complex interactions to ensure that they are successfully executed. We described previously an unexpected association between a transcription factor, PC4 (or Sub1 in yeast), and an mRNA polyadenylation factor, CstF-64 (Rna15 in yeast), and provided evidence that this was important for efficient transcription elongation. Here we provide insight into the mechanism by which this occurs. We show that Sub1 and Rna15 are recruited to promoters and present along the length of several yeast genes. Allele-specific genetic interactions between SUB1 and genes encoding an RNA polymerase II (RNAP II)-specific kinase (KIN28) and phosphatase (FCP1) suggest that Sub1 influences and/or is sensitive to the phosphorylation status of elongating RNAP II. Remarkably, we find that cells lacking Sub1 display decreased accumulation of Fcp1, altered RNAP II phosphorylation and decreased crosslinking of RNAP II to transcribed genes. Our data provide evidence that Rna15 and Sub1 are present along the length of several genes and that Sub1 facilitates elongation by influencing enzymes that modify RNAP II.
Collapse
Affiliation(s)
- Olga Calvo
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Centro de Investigación del Cáncer, Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, Salamanca, Spain
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Biological Sciences, Columbia University, 1117 Fairchild Center, 1212 Amsterdam Avenue, NY 10027, USA. Tel.: +1 212 854 4647; Fax: +1 212 865 8246; E-mail:
| |
Collapse
|
23
|
Kaplan CD, Holland MJ, Winston F. Interaction between Transcription Elongation Factors and mRNA 3′-End Formation at the Saccharomyces cerevisiae GAL10-GAL7 Locus. J Biol Chem 2005; 280:913-22. [PMID: 15531585 DOI: 10.1074/jbc.m411108200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spt6 is a conserved transcription factor that associates with RNA polymerase II (pol II) during elongation. Spt6 is essential for viability in Saccharomyces cerevisiae and regulates chromatin structure during pol II transcription. Here we present evidence that mutations that impair Spt6, a second elongation factor, Spt4, and pol II can affect 3'-end formation at GAL10. Additional analysis suggests that Spt6 is required for cotranscriptional association of the factor Ctr9, a member of the Paf1 complex, with GAL10 and GAL7, and that Ctr9 association with chromatin 3' of GAL10 is regulated by the GAL10 polyadenylation signal. Overall, these results provide new evidence for a connection between the transcription elongation factor Spt6 and 3'-end formation in vivo.
Collapse
Affiliation(s)
- Craig D Kaplan
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
24
|
|
25
|
Noble CG, Walker PA, Calder LJ, Taylor IA. Rna14-Rna15 assembly mediates the RNA-binding capability of Saccharomyces cerevisiae cleavage factor IA. Nucleic Acids Res 2004; 32:3364-75. [PMID: 15215336 PMCID: PMC443540 DOI: 10.1093/nar/gkh664] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Rna14-Rna15 complex is a core component of the cleavage factor IA RNA-processing complex from Saccharomyces cerevisiae. To understand the assembly and RNA-binding properties, we have isolated and characterized the Rna14-Rna15 complex using a combination of biochemical and biophysical methods. Analysis of the purified complex, using transmission electron microscopy, reveals that the two proteins assemble into a kinked rod-shaped structure and that these rods are able to further self-associate. Analytical ultracentrifugation reveals that Rna14 mediates this association and facilitates assembly of an A2B2 tetramer (M(r) 230 000), where relatively compact Rna14-Rna15 heterodimers are in rapid equilibrium with tetramers that have a more extended shape. The Rna14-Rna15 complex, unlike the individual components, binds to an RNA oligonucleotide derived from the 3'-untranslated region of the S.cerevisiae GAL7 gene. Based on these structural and thermodynamic data, we propose that CFIA assembly regulates RNA-binding activity.
Collapse
Affiliation(s)
- Christian G Noble
- Division of Protein Structur, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | |
Collapse
|
26
|
Park NJ, Tsao DC, Martinson HG. The two steps of poly(A)-dependent termination, pausing and release, can be uncoupled by truncation of the RNA polymerase II carboxyl-terminal repeat domain. Mol Cell Biol 2004; 24:4092-103. [PMID: 15121832 PMCID: PMC400489 DOI: 10.1128/mcb.24.10.4092-4103.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The carboxyl-terminal repeat domain (CTD) of RNA polymerase II is thought to help coordinate events during RNA metabolism. The mammalian CTD consists of 52 imperfectly repeated heptads followed by 10 additional residues at the C terminus. The CTD is required for cleavage and polyadenylation in vitro. We studied poly(A)-dependent termination in vivo using CTD truncation mutants. Poly(A)-dependent termination occurs in two steps, pause and release. We found that the CTD is required for release, the first 25 heptads being sufficient. Neither the final 10 amino acids nor the variant heptads of the second half of the CTD were required. No part of the CTD was required for poly(A)-dependent pausing--the poly(A) signal could communicate directly with the body of the polymerase. By removing the CTD, pausing could be observed without being obscured by release. Poly(A)-dependent pausing appeared to operate by slowing down the polymerase, such as by down-regulation of a positive elongation factor. Although the first 25 heptads supported undiminished poly(A)-dependent termination, they did not efficiently support events near the promoter involved in abortive elongation. However, the second half of the CTD, including the final 10 amino acids, was sufficient for these functions.
Collapse
Affiliation(s)
- Noh Jin Park
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095-1569, USA
| | | | | |
Collapse
|
27
|
Kim SJ, Martinson HG. Poly(A)-dependent transcription termination: continued communication of the poly(A) signal with the polymerase is required long after extrusion in vivo. J Biol Chem 2003; 278:41691-701. [PMID: 12933817 DOI: 10.1074/jbc.m306304200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genes encoding polyadenylated mRNAs depend on their poly(A) signals for termination of transcription. An unsolved problem is how the poly(A) signal triggers the polymerase to terminate. A popular model is that this occurs during extrusion of the poly(A) signal, at which time it interacts with factors on the transcription complex. To test this idea we used cis-antisense inhibition in vivo to probe the temporal relationship between poly(A) signal extrusion and the commitment of the polymerase to terminate. Our rationale was to inactivate the poly(A) signal at increasing times post-extrusion to determine the point beyond which it is no longer required for termination. We found that communication with the polymerase is not temporally restricted to the time of poly(A) signal extrusion, but is ongoing and perhaps random. Some polymerases terminate almost immediately. Others have yet to receive their termination instructions from the poly(A) signal even 500 bp downstream, as indicated by the ability of an antisense at this distance to block termination. Thus, the poly(A) signal can functionally interact with the polymerase at considerable distances down the template. This is consistent with the emerging picture of a processing apparatus that assembles and matures while riding with the polymerase.
Collapse
Affiliation(s)
- Steven J Kim
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095-1569, USA
| | | |
Collapse
|
28
|
Mitsuzawa H, Ishihama A. RNA polymerase II transcription apparatus in Schizosaccharomyces pombe. Curr Genet 2003; 44:287-94. [PMID: 14574615 DOI: 10.1007/s00294-003-0446-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2003] [Revised: 08/27/2003] [Accepted: 09/04/2003] [Indexed: 10/26/2022]
Abstract
Eukaryotic RNA polymerase II (Pol II) transcription apparatus is a multi-protein complex consisting of the RNA polymerase II core enzyme (12 subunits), general transcription factors, the mediator, and some other specific accessory factors with regulatory functions. After genome sequencing was completed, the fission yeast Schizosaccharomyces pombe was recognized as a good model organism to study the Pol II transcription apparatus, because most genetic methods developed with the budding yeast Saccharomyces cerevisiae are applicable but the genetic systems of Sch. pombe, including transcription, are closer to those in higher eukaryotes. Recent studies on components of the Sch. pombe basal transcription machinery not only revealed a number of properties common in other eukaryotes but also illuminated some features unique to Sch. pombe. Convergence of information from both yeasts will provide us with a more general understanding of eukaryotic transcription.
Collapse
Affiliation(s)
- Hiroshi Mitsuzawa
- Department of Molecular Genetics, National Institute of Genetics, Mishima, 411-8540, Shizuoka, Japan
| | | |
Collapse
|
29
|
Steinmetz EJ, Brow DA. Ssu72 protein mediates both poly(A)-coupled and poly(A)-independent termination of RNA polymerase II transcription. Mol Cell Biol 2003; 23:6339-49. [PMID: 12944462 PMCID: PMC193702 DOI: 10.1128/mcb.23.18.6339-6349.2003] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2003] [Revised: 05/06/2003] [Accepted: 06/04/2003] [Indexed: 11/20/2022] Open
Abstract
Termination of transcription by RNA polymerase II (Pol II) is a poorly understood yet essential step in eukaryotic gene expression. Termination of pre-mRNA synthesis is coupled to recognition of RNA signals that direct cleavage and polyadenylation of the nascent transcript. Termination of nonpolyadenylated transcripts made by Pol II in the yeast Saccharomyces cerevisiae, including the small nuclear and small nucleolar RNAs, requires distinct RNA elements recognized by the Nrd1 protein and other factors. We have used genetic selection to characterize the terminator of the SNR13 snoRNA gene, revealing a bipartite structure consisting of an upstream element closely matching a Nrd1-binding sequence and a downstream element similar to a cleavage/polyadenylation signal. Genome-wide selection for factors influencing recogniton of the SNR13 terminator yielded mutations in the gene coding for the essential Pol II-binding protein Ssu72. Ssu72 has recently been found to associate with the pre-mRNA cleavage/polyadenylation machinery, and we find that an ssu72 mutation that disrupts Nrd1-dependent termination also results in deficient poly(A)-dependent termination. These findings extend the parallels between the two termination pathways and suggest that they share a common mechanism to signal Pol II termination.
Collapse
Affiliation(s)
- Eric J Steinmetz
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, 1300 University Avenue, Madison, WI 53706-1532, USA
| | | |
Collapse
|
30
|
Maqbool Z, Kersey PJ, Fantes PA, McInerny CJ. MCB-mediated regulation of cell cycle-specific cdc22+ transcription in fission yeast. Mol Genet Genomics 2003; 269:765-75. [PMID: 12898217 DOI: 10.1007/s00438-003-0885-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2003] [Accepted: 06/09/2003] [Indexed: 10/26/2022]
Abstract
The cdc22+ gene of the fission yeast, Schizosaccharomyces pombe, encodes the large subunit of ribonucleotide reductase, and is periodically expressed during the mitotic cell cycle, transcript abundance reaching a maximum at the G1-S boundary. This regulation of expression is controlled by a transcription factor complex called DSC1, which binds to MCB motifs (ACGCGT) present in the promoter of cdc22+. cdc22+ has a complex pattern of MCBs, including two clusters of four motifs each, one of which is located within the transcribed region. We show that both clusters of MCBs contribute to the regulation of cdc22+ expression during the cell cycle, each having a different role. The MCB cluster within the transcribed region has the major role in regulating cdc22+, as its removal results in loss of transcription. The upstream cluster, instead, controls cell cycle-specific transcription through a negative function, as its removal results in expression of cdc22+ throughout the cell cycle. Both MCB clusters bind DSC1. We show that the interaction of DSC1 with the MCB cluster within the transcribed region has a high "on-off" rate, suggesting a mechanism by which DSC1 could activate expression, and still allow RNA polymerase to pass during transcription. Finally, we show that both clusters are orientation-dependent in their function. The significance of these results, in the context of MCB-mediated regulation of G1-S expression in fission yeast, is discussed.
Collapse
Affiliation(s)
- Z Maqbool
- Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, G12 8QQ, Glasgow, Scotland
| | | | | | | |
Collapse
|
31
|
Nedea E, He X, Kim M, Pootoolal J, Zhong G, Canadien V, Hughes T, Buratowski S, Moore CL, Greenblatt J. Organization and function of APT, a subcomplex of the yeast cleavage and polyadenylation factor involved in the formation of mRNA and small nucleolar RNA 3'-ends. J Biol Chem 2003; 278:33000-10. [PMID: 12819204 DOI: 10.1074/jbc.m304454200] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Messenger RNA 3'-end formation is functionally coupled to transcription by RNA polymerase II. By tagging and purifying Ref2, a non-essential protein previously implicated in mRNA cleavage and termination, we isolated a multiprotein complex, holo-CPF, containing the yeast cleavage and polyadenylation factor (CPF) and six additional polypeptides. The latter can form a distinct complex, APT, in which Pti1, Swd2, a type I protein phosphatase (Glc7), Ssu72 (a TFIIB and RNA polymerase II-associated factor), Ref2, and Syc1 are associated with the Pta1 subunit of CPF. Systematic tagging and purification of holo-CPF subunits revealed that yeast extracts contain similar amounts of CPF and holo-CPF. By purifying holo-CPF from strains lacking Ref2 or containing truncated subunits, subcomplexes were isolated that revealed additional aspects of the architecture of APT and holo-CPF. Chromatin immunoprecipitation was used to localize Ref2, Ssu72, Pta1, and other APT subunits on small nucleolar RNA (snoRNA) genes and primarily near the polyadenylation signals of the constitutively expressed PYK1 and PMA1 genes. Use of mutant components of APT revealed that Ssu72 is important for preventing readthrough-dependent expression of downstream genes for both snoRNAs and polyadenylated transcripts. Ref2 and Pta1 similarly affect at least one snoRNA transcript.
Collapse
Affiliation(s)
- Eduard Nedea
- Banting and Best Department of Medical Research and Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kyburz A, Sadowski M, Dichtl B, Keller W. The role of the yeast cleavage and polyadenylation factor subunit Ydh1p/Cft2p in pre-mRNA 3'-end formation. Nucleic Acids Res 2003; 31:3936-45. [PMID: 12853609 PMCID: PMC167639 DOI: 10.1093/nar/gkg478] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cleavage and polyadenylation factor (CPF) is a multi-protein complex that functions in pre-mRNA 3'-end formation and in the RNA polymerase II (RNAP II) transcription cycle. Ydh1p/Cft2p is an essential component of CPF but its precise role in 3'-end processing remained unclear. We found that mutations in YDH1 inhibited both the cleavage and the polyadenylation steps of the 3'-end formation reaction in vitro. Recently, we demonstrated that an important function of CPF lies in the recognition of poly(A) site sequences and RNA binding analyses suggesting that Ydh1p/Cft2p interacts with the poly(A) site region. Here we show that mutant ydh1 strains are deficient in the recognition of the ACT1 cleavage site in vivo. The C-terminal domain (CTD) of RNAP II plays a major role in coupling 3'-end processing and transcription. We provide evidence that Ydh1p/Cft2p interacts with the CTD of RNAP II, several other subunits of CPF and with Pcf11p, a component of CF IA. We propose that Ydh1p/Cft2p contributes to the formation of important interaction surfaces that mediate the dynamic association of CPF with RNAP II, the recognition of poly(A) site sequences and the assembly of the polyadenylation machinery on the RNA substrate.
Collapse
Affiliation(s)
- Andrea Kyburz
- Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
33
|
Affiliation(s)
- Olga Calvo
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
34
|
Sadowski M, Dichtl B, Hübner W, Keller W. Independent functions of yeast Pcf11p in pre-mRNA 3' end processing and in transcription termination. EMBO J 2003; 22:2167-77. [PMID: 12727883 PMCID: PMC156072 DOI: 10.1093/emboj/cdg200] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pcf11p, an essential subunit of the yeast cleavage factor IA, is required for pre-mRNA 3' end processing, binds to the C-terminal domain (CTD) of the largest subunit of RNA polymerase II (RNAP II) and is involved in transcription termination. We show that the conserved CTD interaction domain (CID) of Pcf11p is essential for cell viability. Interestingly, the CTD binding and 3' end processing activities of Pcf11p can be functionally uncoupled from each other and provided by distinct Pcf11p fragments in trans. Impaired CTD binding did not affect the 3' end processing activity of Pcf11p and a deficiency of Pcf11p in 3' end processing did not prevent CTD binding. Transcriptional run-on analysis with the CYC1 gene revealed that loss of cleavage activity did not correlate with a defect in transcription termination, whereas loss of CTD binding did. We conclude that Pcf11p is a bifunctional protein and that transcript cleavage is not an obligatory step prior to RNAP II termination.
Collapse
Affiliation(s)
- Martin Sadowski
- Department of Cell Biology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
35
|
Medlin JE, Uguen P, Taylor A, Bentley DL, Murphy S. The C-terminal domain of pol II and a DRB-sensitive kinase are required for 3' processing of U2 snRNA. EMBO J 2003; 22:925-34. [PMID: 12574128 PMCID: PMC145437 DOI: 10.1093/emboj/cdg077] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The human snRNA genes transcribed by RNA polymerase II (e.g. U1 and U2) have a characteristic TATA-less promoter containing an essential proximal sequence element. Formation of the 3' end of these non-polyadenylated RNAs requires a specialized 3' box element whose function is promoter specific. Here we show that truncation of the C-terminal domain (CTD) of RNA polymerase II and treatment of cells with CTD kinase inhibitors, including DRB (5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole), causes a dramatic reduction in proper 3' end formation of U2 transcripts. Activation of 3' box recognition by the phosphorylated CTD would be consistent with the role of phospho-CTD in mRNA processing. CTD kinase inhibitors, however, have little effect on initiation or elongation of transcription of the U2 genes, whereas elongation of transcription of the beta-actin gene is severely affected. This result highlights differences in transcription of snRNA and mRNA genes.
Collapse
Affiliation(s)
| | | | | | - David L. Bentley
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK and
Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, B121, 4200 East 9th Avenue, Denver, CO 80262, USA Corresponding author e-mail:
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK and
Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, B121, 4200 East 9th Avenue, Denver, CO 80262, USA Corresponding author e-mail:
| |
Collapse
|
36
|
Abstract
Recent studies have uncovered new connections between the enzymes of mRNA 3' end processing and RNA polymerase II. These connections improve the efficiency of polyadenylation and signal to the polymerase to terminate transcription; their discovery reveals another level of gene regulation.
Collapse
Affiliation(s)
- Nick Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | |
Collapse
|
37
|
Alén C, Kent NA, Jones HS, O'Sullivan J, Aranda A, Proudfoot NJ. A role for chromatin remodeling in transcriptional termination by RNA polymerase II. Mol Cell 2002; 10:1441-52. [PMID: 12504018 DOI: 10.1016/s1097-2765(02)00778-5] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chromatin remodeling can facilitate the recruitment of RNA polymerase II (Pol II) to targeted promoters, as well as enhancing the level of transcription. Here, we describe a further key role for chromatin remodeling in transcriptional termination. Using a genetic screen in S. pombe, we identified the CHD-Mi2 class chromatin remodeling ATPase, Hrp1, as a termination factor. In S. cerevisiae, we show that transcriptional termination and chromatin structure at the 3' ends of three genes all depend on the activity of the Hrp1 homolog, Chd1p, either alone or redundantly with the ISWI ATPases, Isw1p, and Isw2p. We suggest that chromatin remodeling of termination regions is a necessary prelude to efficient Pol II termination.
Collapse
Affiliation(s)
- Claudia Alén
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE, Oxford, United Kingdom
| | | | | | | | | | | |
Collapse
|
38
|
Skaar DA, Greenleaf AL. The RNA polymerase II CTD kinase CTDK-I affects pre-mRNA 3' cleavage/polyadenylation through the processing component Pti1p. Mol Cell 2002; 10:1429-39. [PMID: 12504017 DOI: 10.1016/s1097-2765(02)00731-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There are several kinases in Saccharomyces cerevisiae that phosphorylate the CTD of RNA polymerase II, but specific and distinct functions of the phospho-CTDs generated by the different kinases are not well understood. A genetic screen for suppressors of loss of yeast CTD kinase I (CTDK-I) function (by deletion of the catalytic subunit gene CTK1) identified PTI1, a potential 3' cleavage/polyadenylation factor. Genetic and physical interactions connect Pti1p to components of CF IA and CF II/CPF, and mutations of PTI1 or CTK1 affect 3' cleavage site choice and transcript abundance of particular genes. Therefore, one important function of the CTDK-I-generated phospho-CTD appears to be the coupling of transcription to 3' processing of pre-mRNAs by a Pti1p-containing complex.
Collapse
Affiliation(s)
- David A Skaar
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
39
|
Campbell SG, Li Del Olmo M, Beglan P, Bond U. A sequence element downstream of the yeast HTB1 gene contributes to mRNA 3' processing and cell cycle regulation. Mol Cell Biol 2002; 22:8415-25. [PMID: 12446762 PMCID: PMC139887 DOI: 10.1128/mcb.22.24.8415-8425.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histone mRNAs accumulate in the S phase and are rapidly degraded as cells progress into the G(2) phase of the cell cycle. In Saccharomyces cerevisiae, fusion of the 3' untranslated region and downstream sequences of the yeast histone gene HTB1 to a neomycin phosphotransferase open reading frame is sufficient to confer cell cycle regulation on the resulting chimera gene (neo-HTB1). We have identified a sequence element, designated the distal downstream element (DDE), that influences both the 3'-end cleavage site selection and the cell cycle regulation of the neo-HTB1 mRNA. Mutations in the DDE, which is located approximately 110 nucleotides downstream of the HTB1 gene, lead to a delay in the accumulation of the neo-HTB1 mRNA in the S phase and a lack of mRNA turnover in the G(2) phase. The DDE is transcribed as part of the primary transcript and binds a protein factor(s). Maximum binding is observed in the S phase of the cell cycle, and mutations that affect the turnover of the HTB1 mRNA alter the binding activity. While located in the same general region, mutations that affect 3'-end cleavage site selection act independently from those that alter the cell cycle regulation.
Collapse
Affiliation(s)
- Susan G Campbell
- Microbiology Department, Moyne Institute for Preventive Medicine, Trinity College, University of Dublin, Dublin 2, Ireland
| | | | | | | |
Collapse
|
40
|
Dichtl B, Blank D, Ohnacker M, Friedlein A, Roeder D, Langen H, Keller W. A role for SSU72 in balancing RNA polymerase II transcription elongation and termination. Mol Cell 2002; 10:1139-50. [PMID: 12453421 DOI: 10.1016/s1097-2765(02)00707-4] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interactions of pre-mRNA 3'end factors and the CTD of RNA polymerase II (RNAP II) are required for transcription termination and 3'end processing. Here, we demonstrate that Ssu72p is stably associated with yeast cleavage and polyadenylation factor CPF and provide evidence that it bridges the CPF subunits Pta1p and Ydh1p/Cft2p, the general transcription factor TFIIB, and RNAP II via Rpb2p. Analyses of ssu72-2 mutant cells in the absence and presence of the nuclear exosome component Rrp6p revealed defects in RNAP II transcription elongation and termination. 6-azauracil, that reduces transcription elongation rates, suppressed the ssu72-2 growth defect at 33 degrees C. The sum of our analyses suggests a negative influence of Ssu72p on RNAP II during transcription that affects the commitment to either elongation or termination.
Collapse
Affiliation(s)
- Bernhard Dichtl
- Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
41
|
Dichtl B, Blank D, Sadowski M, Hübner W, Weiser S, Keller W. Yhh1p/Cft1p directly links poly(A) site recognition and RNA polymerase II transcription termination. EMBO J 2002; 21:4125-35. [PMID: 12145212 PMCID: PMC126137 DOI: 10.1093/emboj/cdf390] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RNA polymerase II (pol II) transcription termination requires co-transcriptional recognition of a functional polyadenylation signal, but the molecular mechanisms that transduce this signal to pol II remain unclear. We show that Yhh1p/Cft1p, the yeast homologue of the mammalian AAUAAA interacting protein CPSF 160, is an RNA-binding protein and provide evidence that it participates in poly(A) site recognition. Interestingly, RNA binding is mediated by a central domain composed of predicted beta-propeller-forming repeats, which occurs in proteins of diverse cellular functions. We also found that Yhh1p/Cft1p bound specifically to the phosphorylated C-terminal domain (CTD) of pol II in vitro and in a two-hybrid test in vivo. Furthermore, transcriptional run-on analysis demonstrated that yhh1 mutants were defective in transcription termination, suggesting that Yhh1p/Cft1p functions in the coupling of transcription and 3'-end formation. We propose that direct interactions of Yhh1p/Cft1p with both the RNA transcript and the CTD are required to communicate poly(A) site recognition to elongating pol II to initiate transcription termination.
Collapse
Affiliation(s)
- Bernhard Dichtl
- Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
Corresponding authors e-mail: or
| | | | | | | | | | - Walter Keller
- Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
Corresponding authors e-mail: or
| |
Collapse
|
42
|
Abstract
Processing of RNA precursors to their mature form often occurs co-transcriptionally. Consequently, the ternary complex of DNA template, RNA polymerase and nascent RNA chain is the physiological substrate for factors that modify the nascent RNA by capping, splicing and cleavage/polyadenylation. mRNA production is thought to occur within a "factory" that contains the RNA polymerase II transcription machine and the processing machines. Newly discovered protein-protein contacts between RNA polymerase and factors that process mRNA precursors are beginning to illuminate how the "mRNA factory" works.
Collapse
Affiliation(s)
- David Bentley
- Department of Biochemistry and Molecular Genetics, UCHSC, B121, 4200 East 9th Avenue, Denver, CO 80262, USA.
| |
Collapse
|
43
|
Torchet C, Bousquet-Antonelli C, Milligan L, Thompson E, Kufel J, Tollervey D. Processing of 3'-extended read-through transcripts by the exosome can generate functional mRNAs. Mol Cell 2002; 9:1285-96. [PMID: 12086625 DOI: 10.1016/s1097-2765(02)00544-0] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Strains carrying rna14.1 and rna15.2 mutations are defective in pre-mRNA 3' cleavage, polyadenylation, and transcription termination. Long extended read-through transcripts generated in rna14.1 and rna15.2 strains are greatly stabilized by depletion of Rrp41p, a core component of the exosome complex or the RNA helicase Dob1p/Mtr4p. The absence of the nuclear-specific exosome component, Rrp6p, from the rna14.1 strain gave a very different phenotype. Short polyadenylated pre-mRNAs were strongly stabilized, and these were functional for translation. Production of these mRNAs was suppressed by depletion of Rrp41p, indicating that they are the products of exosome processing followed by uncoupled polyadenylation. The balance between complete degradation of 3'-unprocessed pre-mRNAs and their processing to functional mRNAs is regulated, with degradation favored on glucose media.
Collapse
Affiliation(s)
- Claire Torchet
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3JR Edinburgh, Scotland, UK
| | | | | | | | | | | |
Collapse
|
44
|
Licatalosi DD, Geiger G, Minet M, Schroeder S, Cilli K, McNeil JB, Bentley DL. Functional interaction of yeast pre-mRNA 3' end processing factors with RNA polymerase II. Mol Cell 2002; 9:1101-11. [PMID: 12049745 DOI: 10.1016/s1097-2765(02)00518-x] [Citation(s) in RCA: 246] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The RNA polymerase II CTD is essential for 3' end cleavage of metazoan pre-mRNAs and binds 3' end processing factors in vitro. We show genetic and biochemical interactions between the CTD and the Pcf11 subunit of the yeast cleavage/polyadenylation factor, CFIA. In vitro binding to Pcf11 required phosphorylation of the CTD on Ser2 in the YSPTSPS heptad repeats. Deletion of the yeast CTD reduced the efficiency of cleavage at poly(A) sites, and the length of poly(A) tails suggesting that it helps couple 3' end formation with transcription. Consistent with this model, the 3' end processing factors CFIA, CFIB, and PFI were recruited to genes progressively, starting at the 5' end, in a process that required ongoing transcription.
Collapse
Affiliation(s)
- Donny D Licatalosi
- Department Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Gene expression in eukaryotes requires several multi-component cellular machines. Each machine carries out a separate step in the gene expression pathway, which includes transcription, several pre-messenger RNA processing steps and the export of mature mRNA to the cytoplasm. Recent studies lead to the view that, in contrast to a simple linear assembly line, a complex and extensively coupled network has evolved to coordinate the activities of the gene expression machines. The extensive coupling is consistent with a model in which the machines are tethered to each other to form 'gene expression factories' that maximize the efficiency and specificity of each step in gene expression.
Collapse
Affiliation(s)
- Tom Maniatis
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
46
|
Abstract
The messenger RNA processing reactions of capping, splicing, and polyadenylation occur cotranscriptionally. They not only influence one another's efficiency and specificity, but are also coordinated by transcription. The phosphorylated CTD of RNA polymerase II provides key molecular contacts with these mRNA processing reactions throughout transcriptional elongation and termination.
Collapse
Affiliation(s)
- Nick J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom.
| | | | | |
Collapse
|
47
|
Tran DP, Kim SJ, Park NJ, Jew TM, Martinson HG. Mechanism of poly(A) signal transduction to RNA polymerase II in vitro. Mol Cell Biol 2001; 21:7495-508. [PMID: 11585929 PMCID: PMC99921 DOI: 10.1128/mcb.21.21.7495-7508.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2001] [Accepted: 07/26/2001] [Indexed: 11/20/2022] Open
Abstract
Termination of transcription by RNA polymerase II usually requires the presence of a functional poly(A) site. How the poly(A) site signals its presence to the polymerase is unknown. All models assume that the signal is generated after the poly(A) site has been extruded from the polymerase, but this has never been tested experimentally. It is also widely accepted that a "pause" element in the DNA stops the polymerase and that cleavage at the poly(A) site then signals termination. These ideas also have never been tested. The lack of any direct tests of the poly(A) signaling mechanism reflects a lack of success in reproducing the poly(A) signaling phenomenon in vitro. Here we describe a cell-free transcription elongation assay that faithfully recapitulates poly(A) signaling in a crude nuclear extract. The assay requires the use of citrate, an inhibitor of RNA polymerase II carboxyl-terminal domain phosphorylation. Using this assay we show the following. (i) Wild-type but not mutant poly(A) signals instruct the polymerase to stop transcription on downstream DNA in a manner that parallels true transcription termination in vivo. (ii) Transcription stops without the need of downstream elements in the DNA. (iii) cis-antisense inhibition blocks signal transduction, indicating that the signal to stop transcription is generated following extrusion of the poly(A) site from the polymerase. (iv) Signaling can be uncoupled from processing, demonstrating that signaling does not require cleavage at the poly(A) site.
Collapse
Affiliation(s)
- D P Tran
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California 90095-1569, USA
| | | | | | | | | |
Collapse
|
48
|
Current awareness on yeast. Yeast 2001; 18:1269-76. [PMID: 11561294 DOI: 10.1002/yea.689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
49
|
Calvo O, Manley JL. Evolutionarily conserved interaction between CstF-64 and PC4 links transcription, polyadenylation, and termination. Mol Cell 2001; 7:1013-23. [PMID: 11389848 DOI: 10.1016/s1097-2765(01)00236-2] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Tight connections exist between transcription and subsequent processing of mRNA precursors, and interactions between the transcription and polyadenylation machineries seem especially extensive. Using a yeast two-hybrid screen to identify factors that interact with the polyadenylation factor CstF-64, we uncovered an interaction with the transcriptional coactivator PC4. Both human proteins have yeast homologs, Rna15p and Sub1p, respectively, and we show that these two proteins also interact. Given evidence that certain polyadenylation factors, including Rna15p, are necessary for termination in yeast, we show that deletion or overexpression of SUB1 suppresses or enhances, respectively, both growth and termination defects detected in an rna15 mutant strain. Our findings provide an additional, unexpected connection between transcription and polyadenylation and suggest that PC4/Sub1p, via its interaction with CstF-64/Rna15p, possesses an evolutionarily conserved antitermination activity.
Collapse
Affiliation(s)
- O Calvo
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|