1
|
Barbosa GM, Delaney S. Initiation of base excision repair is modulated by nucleosome occupancy modifying sequences. DNA Repair (Amst) 2025; 150:103852. [PMID: 40449045 DOI: 10.1016/j.dnarep.2025.103852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/15/2025] [Accepted: 05/22/2025] [Indexed: 06/02/2025]
Abstract
Nucleosome occupancy varies across the genome and plays a critical role in modulating DNA accessibility. While the effect of occupancy on gene expression has been studied, its influence on DNA repair, particularly base excision repair (BER), remains unexplored. In this work, we investigate the relationship between nucleosome occupancy and the initiation of BER by reconstituting nucleosome core particles (NCPs) using four DNA sequences known to modulate nucleosome occupancy in vivo. The results demonstrate that histone-DNA interactions differ significantly among these sequences. Moreover, uracil DNA glycosylase (UDG) activity is limited to solution-accessible uracil (U) lesion sites on NCPs containing the high occupancy sequences M4 and SB. In contrast, UDG displays high activity on NCPs containing the low occupancy sequences M2 and M3, even at less solution accessible lesion sites. In fact, for NCPs containing the sequence with the lowest occupancy, M2, UDG exhibits high activity regardless of the U lesion position. However, this high level of activity regardless of lesion position was not observed for thymine DNA glycosylase (TDG) and single-stranded monofunctional uracil DNA glycosylase 1 (SMUG1). Instead, the activity of TDG was dictated by the sequence flanking the U with a preference for 5'-UpG-3' and 5'-UpA-3' sequences, consistent with the role of TDG in epigenetic regulation. SMUG1 activity is high at many U sites but is severely hindered in the dyad region. These results highlight the interplay between nucleosome occupancy and BER, offering new insights into the dynamics of chromatin and DNA repair.
Collapse
Affiliation(s)
- Giovannia M Barbosa
- Department of Chemistry, Brown University, Providence, RI 02912, United States
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, RI 02912, United States.
| |
Collapse
|
2
|
Greenwood SN, Dispensa AN, Wang M, Bauer JR, Vaden TD, Liu Z, Weiser BP. Ion-DNA Interactions as a Key Determinant of Uracil DNA Glycosylase Activity. Biochemistry 2025; 64:2332-2344. [PMID: 40331587 PMCID: PMC12096439 DOI: 10.1021/acs.biochem.5c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/23/2025] [Accepted: 04/25/2025] [Indexed: 05/08/2025]
Abstract
Because of their ubiquitous presence, ions interact with numerous macromolecules in the cell and affect critical biological processes. Here, we discuss how cations including Mg2+ alter the enzymatic activity of a DNA glycosylase by tuning its affinity for DNA. The response of uracil DNA glycosylase (UNG2) to Mg2+ ions in solution is biphasic and paradoxical, where low concentrations of the ion stimulate the enzyme, but high concentrations inhibit the enzyme. We analyzed this phenomenon by modeling experimental data with a statistical framework that we empirically derived to understand molecular systems that display biphasic behaviors. Parameters from our statistical model indicate that DNA substrates are nearly saturated with cations under ideal conditions for UNG2 activity. However, the enzyme slows rather abruptly when the ionic content becomes too low or too high due to changes in the electrostatic environment that alter protein affinity for DNA. We discuss how ion occupancy on DNA is dependent on DNA length; thus, the sensitivity of UNG2 to cations is also dependent on DNA length. Finally, we found that Mg2+-induced changes in DNA base stacking and dynamics have minimal effects on UNG2, as these outcomes occur at ion concentrations that are much lower than is required for efficient enzyme activity. Altogether, our work demonstrates how cation-DNA interactions, which are likely common in the nucleus, are a key determinant of uracil base excision repair mediated by UNG2.
Collapse
Affiliation(s)
- Sharon N. Greenwood
- Department
of Molecular Biology, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, New Jersey08084, United States
- Department
of Molecular Biology, Rowan-Virtua School of Translational Biomedical
Engineering & Sciences, Rowan University, Stratford, New Jersey08084, United States
| | - Alexis N. Dispensa
- Department
of Molecular Biology, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, New Jersey08084, United States
- Department
of Molecular Biology, Rowan-Virtua School of Translational Biomedical
Engineering & Sciences, Rowan University, Stratford, New Jersey08084, United States
| | - Matthew Wang
- Department
of Molecular Biology, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, New Jersey08084, United States
- Department
of Molecular Biology, Rowan-Virtua School of Translational Biomedical
Engineering & Sciences, Rowan University, Stratford, New Jersey08084, United States
| | - Justin R. Bauer
- Department
of Molecular Biology, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, New Jersey08084, United States
- Department
of Molecular Biology, Rowan-Virtua School of Translational Biomedical
Engineering & Sciences, Rowan University, Stratford, New Jersey08084, United States
| | - Timothy D. Vaden
- Department
of Chemistry & Biochemistry, College of Science and Mathematics, Rowan University, Glassboro, New Jersey08028, United States
| | - Zhiwei Liu
- Department
of Chemistry & Biochemistry, College of Science and Mathematics, Rowan University, Glassboro, New Jersey08028, United States
| | - Brian P. Weiser
- Department
of Molecular Biology, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, New Jersey08084, United States
- Department
of Molecular Biology, Rowan-Virtua School of Translational Biomedical
Engineering & Sciences, Rowan University, Stratford, New Jersey08084, United States
| |
Collapse
|
3
|
Gao Y, McPherson L, Adimoolam S, Suresh S, Wilson DL, Das I, Park ER, Ng CSC, Jun YW, Ford JM, Kool ET. Small-molecule activator of SMUG1 enhances repair of pyrimidine lesions in DNA. DNA Repair (Amst) 2025; 146:103809. [PMID: 39879855 PMCID: PMC11846699 DOI: 10.1016/j.dnarep.2025.103809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/18/2024] [Accepted: 01/08/2025] [Indexed: 01/31/2025]
Abstract
A potentially promising approach to targeted cancer prevention in genetically at-risk populations is the pharmacological upregulation of DNA repair pathways. SMUG1 is a base excision repair enzyme that ameliorates adverse genotoxic and mutagenic effects of hydrolytic and oxidative damage to pyrimidines. Here we describe the discovery and initial cellular activity of a small-molecule activator of SMUG1. Screening of a kinase inhibitor library and iterative rounds of structure-activity relationship studies produced compound 40 (SU0547), which activates SMUG1 by as much as 350 ± 60 % in vitro at 100 nM, with an AC50 of 4.3 ± 1.1 µM. To investigate the effect of compound 40 on endogenous SMUG1, we performed in vitro cell-based experiments with 5-hydroxymethyl-2'-deoxyuridine (5-hmdU), a pyrimidine oxidation product that is selectively removed by SMUG1. In several human cell lines, compound 40 at 3-5 µM significantly reduces the cytotoxicity of 5-hmdU and decreases levels of double-strand breaks induced by the damaged nucleoside. We conclude that the SMUG1 activator compound 40 is a useful tool to study the mechanisms of 5-hmdU toxicity and the potentially beneficial effects of suppressing damage to pyrimidines in cellular DNA.
Collapse
Affiliation(s)
- Yixuan Gao
- Department of Chemistry and Stanford University, Stanford, CA 94305, United States
| | - Lisa McPherson
- Department of Medicine, Stanford University, Stanford, CA 94305, United States
| | - Shanthi Adimoolam
- Department of Medicine, Stanford University, Stanford, CA 94305, United States
| | - Samyuktha Suresh
- Department of Medicine, Stanford University, Stanford, CA 94305, United States
| | - David L Wilson
- Department of Chemistry and Stanford University, Stanford, CA 94305, United States
| | - Ishani Das
- Department of Medicine, Stanford University, Stanford, CA 94305, United States
| | - Elizabeth R Park
- Department of Chemistry and Stanford University, Stanford, CA 94305, United States
| | - Christine S C Ng
- Department of Chemistry and Stanford University, Stanford, CA 94305, United States
| | - Yong Woong Jun
- Department of Chemistry and Stanford University, Stanford, CA 94305, United States
| | - James M Ford
- Department of Medicine, Stanford University, Stanford, CA 94305, United States
| | - Eric T Kool
- Department of Chemistry and Stanford University, Stanford, CA 94305, United States.
| |
Collapse
|
4
|
Roy S, Azhar MK, Gupta V. Structural and Functional Insights into UDGs. Protein Pept Lett 2025; 32:85-96. [PMID: 39757627 DOI: 10.2174/0109298665318621241128041145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 01/07/2025]
Abstract
Endogenous or exogenous DNA damage needs to be repaired, therefore, cells in all the three domains have repair pathways to maintain the integrity of their genetic material. Uracil DNA glycosylases (UDGs), also known as UNGs (uracil-DNA N-glycosylases), are part of the base-excision repair (BER) pathway. These enzymes specifically remove uracil from DNA molecules by cleaving the glycosidic bond between the uracil base and the deoxyribose sugar. UDGs can be broadly classified into six families, and each of them share conserved motifs that are critical for substrate recognition and catalysis. Recently, an unconventional UDG known as UDGX has been identified from the species Mycobacterium smegmatis, which is different from other UDG members in forming an irreversible and extremely stable complex with DNA that is resistant to even harsh denaturants such as SDS, NaOH, and heat. This suicide inactivation mechanism prevents uracil excision and might play a protective role in maintaining genome integrity, as bacterial survival under hypoxic conditions is reduced due to the overexpression of MsmUDGX. Additionally, due to the importance of UDGs, the number of structures has been resolved. Moreover, high-resolution 3D structures of apo MsmUDGX, as well as uracil and DNAbound forms, are available in PDB. This review aims to provide insights into the specific structural- functional aspects of each UDG family member for theragnostic applications.
Collapse
Affiliation(s)
- Shreya Roy
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10 Sec 62, Noida, 201309, India
| | - Md Khabeer Azhar
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10 Sec 62, Noida, 201309, India
- Current Affiliation- Center of Computational Natural Science and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Vibha Gupta
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10 Sec 62, Noida, 201309, India
| |
Collapse
|
5
|
Endutkin AV, Yudkina AV, Zharkov TD, Barmatov AE, Petrova DV, Kim DV, Zharkov DO. Repair and DNA Polymerase Bypass of Clickable Pyrimidine Nucleotides. Biomolecules 2024; 14:681. [PMID: 38927084 PMCID: PMC11201982 DOI: 10.3390/biom14060681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Clickable nucleosides, most often 5-ethynyl-2'-deoxyuridine (EtU), are widely used in studies of DNA replication in living cells and in DNA functionalization for bionanotechology applications. Although clickable dNTPs are easily incorporated by DNA polymerases into the growing chain, afterwards they might become targets for DNA repair systems or interfere with faithful nucleotide insertion. Little is known about the possibility and mechanisms of these post-synthetic events. Here, we investigated the repair and (mis)coding properties of EtU and two bulkier clickable pyrimidine nucleosides, 5-(octa-1,7-diyn-1-yl)-U (C8-AlkU) and 5-(octa-1,7-diyn-1-yl)-C (C8-AlkC). In vitro, EtU and C8-AlkU, but not C8-AlkC, were excised by SMUG1 and MBD4, two DNA glycosylases from the base excision repair pathway. However, when placed into a plasmid encoding a fluorescent reporter inactivated by repair in human cells, EtU and C8-AlkU persisted for much longer than uracil or its poorly repairable phosphorothioate-flanked derivative. DNA polymerases from four different structural families preferentially bypassed EtU, C8-AlkU and C8-AlkC in an error-free manner, but a certain degree of misincorporation was also observed, especially evident for DNA polymerase β. Overall, clickable pyrimidine nucleotides could undergo repair and be a source of mutations, but the frequency of such events in the cell is unlikely to be considerable.
Collapse
Affiliation(s)
- Anton V. Endutkin
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.V.Y.); (T.D.Z.); (A.E.B.); (D.V.P.); (D.V.K.)
| | - Anna V. Yudkina
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.V.Y.); (T.D.Z.); (A.E.B.); (D.V.P.); (D.V.K.)
| | - Timofey D. Zharkov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.V.Y.); (T.D.Z.); (A.E.B.); (D.V.P.); (D.V.K.)
| | - Alexander E. Barmatov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.V.Y.); (T.D.Z.); (A.E.B.); (D.V.P.); (D.V.K.)
| | - Daria V. Petrova
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.V.Y.); (T.D.Z.); (A.E.B.); (D.V.P.); (D.V.K.)
| | - Daria V. Kim
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.V.Y.); (T.D.Z.); (A.E.B.); (D.V.P.); (D.V.K.)
| | - Dmitry O. Zharkov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.V.Y.); (T.D.Z.); (A.E.B.); (D.V.P.); (D.V.K.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| |
Collapse
|
6
|
Lirussi L, Nilsen HL. DNA Glycosylases Define the Outcome of Endogenous Base Modifications. Int J Mol Sci 2023; 24:10307. [PMID: 37373453 DOI: 10.3390/ijms241210307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Chemically modified nucleic acid bases are sources of genomic instability and mutations but may also regulate gene expression as epigenetic or epitranscriptomic modifications. Depending on the cellular context, they can have vastly diverse impacts on cells, from mutagenesis or cytotoxicity to changing cell fate by regulating chromatin organisation and gene expression. Identical chemical modifications exerting different functions pose a challenge for the cell's DNA repair machinery, as it needs to accurately distinguish between epigenetic marks and DNA damage to ensure proper repair and maintenance of (epi)genomic integrity. The specificity and selectivity of the recognition of these modified bases relies on DNA glycosylases, which acts as DNA damage, or more correctly, as modified bases sensors for the base excision repair (BER) pathway. Here, we will illustrate this duality by summarizing the role of uracil-DNA glycosylases, with particular attention to SMUG1, in the regulation of the epigenetic landscape as active regulators of gene expression and chromatin remodelling. We will also describe how epigenetic marks, with a special focus on 5-hydroxymethyluracil, can affect the damage susceptibility of nucleic acids and conversely how DNA damage can induce changes in the epigenetic landscape by altering the pattern of DNA methylation and chromatin structure.
Collapse
Affiliation(s)
- Lisa Lirussi
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
- Section of Clinical Molecular Biology (EpiGen), Akershus University Hospital, 1478 Lørenskog, Norway
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Hilde Loge Nilsen
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
- Unit for Precision Medicine, Akershus University Hospital, 1478 Lørenskog, Norway
| |
Collapse
|
7
|
Rioux KL, Delaney S. Ionic strength modulates excision of uracil by SMUG1 from nucleosome core particles. DNA Repair (Amst) 2023; 125:103482. [PMID: 36931160 PMCID: PMC10073303 DOI: 10.1016/j.dnarep.2023.103482] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
Ionic strength affects many cellular processes including the packaging of genetic material in eukaryotes. For example, chromatin fibers are compacted in high ionic strength environments as are the minimal unit of packaging in chromatin, nucleosome core particles (NCPs). Furthermore, ionic strength is known to modulate several aspects of NCP dynamics including transient unwrapping of DNA from the histone protein core, nucleosome gaping, and intra- and internucleosomal interactions of the N-terminal histone tails. Changes in NCP structure may also impact interactions of transcriptional, repair, and other cellular machinery with nucleosomal DNA. One repair process, base excision repair (BER), is impacted by NCP structure and may be further influenced by changes in ionic strength. Here we examine the effects of ionic strength on the initiation of BER using biochemical assays. Using a population of NCPs containing uracil (U) at dozens of geometric locations, excision of U by single-strand selective monofunctional uracil DNA glycosylase (SMUG1) is assessed at higher and lower ionic strengths. SMUG1 has increased excision activity in the lower ionic strength conditions. On duplex DNA, however, SMUG1 activity is largely unaffected by ionic strength except at short incubation times, suggesting that changes in SMUG1 activity are likely due to alterations in NCP structure and dynamics. These results allow us to further understand the cellular role of SMUG1 in a changing ionic environment and broadly contribute to the understanding of BER on chromatin and genomic stability.
Collapse
Affiliation(s)
- Katelyn L Rioux
- Department of Chemistry, Brown University, Providence, RI, USA
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
8
|
Baljinnyam T, Sowers ML, Hsu CW, Conrad JW, Herring JL, Hackfeld LC, Sowers LC. Chemical and enzymatic modifications of 5-methylcytosine at the intersection of DNA damage, repair, and epigenetic reprogramming. PLoS One 2022; 17:e0273509. [PMID: 36037209 PMCID: PMC9423628 DOI: 10.1371/journal.pone.0273509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/09/2022] [Indexed: 11/19/2022] Open
Abstract
The DNA of all living organisms is persistently damaged by endogenous reactions including deamination and oxidation. Such damage, if not repaired correctly, can result in mutations that drive tumor development. In addition to chemical damage, recent studies have established that DNA bases can be enzymatically modified, generating many of the same modified bases. Irrespective of the mechanism of formation, modified bases can alter DNA-protein interactions and therefore modulate epigenetic control of gene transcription. The simultaneous presence of both chemically and enzymatically modified bases in DNA suggests a potential intersection, or collision, between DNA repair and epigenetic reprogramming. In this paper, we have prepared defined sequence oligonucleotides containing the complete set of oxidized and deaminated bases that could arise from 5-methylcytosine. We have probed these substrates with human glycosylases implicated in DNA repair and epigenetic reprogramming. New observations reported here include: SMUG1 excises 5-carboxyuracil (5caU) when paired with A or G. Both TDG and MBD4 cleave 5-formyluracil and 5caU when mispaired with G. Further, TDG not only removes 5-formylcytosine and 5-carboxycytosine when paired with G, but also when mispaired with A. Surprisingly, 5caU is one of the best substrates for human TDG, SMUG1 and MBD4, and a much better substrate than T. The data presented here introduces some unexpected findings that pose new questions on the interactions between endogenous DNA damage, repair, and epigenetic reprogramming pathways.
Collapse
Affiliation(s)
- Tuvshintugs Baljinnyam
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Mark L. Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
- MD-PhD Combined Degree Program, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Chia Wei Hsu
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
- MD-PhD Combined Degree Program, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - James W. Conrad
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jason L. Herring
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Linda C. Hackfeld
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lawrence C. Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
9
|
Torgasheva NA, Diatlova EA, Grin IR, Endutkin AV, Mechetin GV, Vokhtantsev IP, Yudkina AV, Zharkov DO. Noncatalytic Domains in DNA Glycosylases. Int J Mol Sci 2022; 23:ijms23137286. [PMID: 35806289 PMCID: PMC9266487 DOI: 10.3390/ijms23137286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Many proteins consist of two or more structural domains: separate parts that have a defined structure and function. For example, in enzymes, the catalytic activity is often localized in a core fragment, while other domains or disordered parts of the same protein participate in a number of regulatory processes. This situation is often observed in many DNA glycosylases, the proteins that remove damaged nucleobases thus initiating base excision DNA repair. This review covers the present knowledge about the functions and evolution of such noncatalytic parts in DNA glycosylases, mostly concerned with the human enzymes but also considering some unique members of this group coming from plants and prokaryotes.
Collapse
Affiliation(s)
- Natalia A. Torgasheva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
| | - Evgeniia A. Diatlova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Street, 630090 Novosibirsk, Russia
| | - Inga R. Grin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
| | - Anton V. Endutkin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
| | - Grigory V. Mechetin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
| | - Ivan P. Vokhtantsev
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Street, 630090 Novosibirsk, Russia
| | - Anna V. Yudkina
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
| | - Dmitry O. Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Street, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
10
|
Histone variants H3.3 and H2A.Z/H3.3 facilitate excision of uracil from nucleosome core particles. DNA Repair (Amst) 2022; 116:103355. [PMID: 35717761 PMCID: PMC9262417 DOI: 10.1016/j.dnarep.2022.103355] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022]
Abstract
At the most fundamental level of chromatin organization, DNA is packaged as nucleosome core particles (NCPs) where DNA is wound around a core of histone proteins. This ubiquitous sequestration of DNA within NCPs presents a significant barrier to many biological processes, including DNA repair. We previously demonstrated that histone variants from the H2A family facilitate excision of uracil (U) lesions by DNA base excision repair (BER) glycosylases. Here, we consider how the histone variant H3.3 and double-variant H2A.Z/H3.3 modulate the BER enzymes uracil DNA glycosylase (UDG) and single-strand selective monofunctional uracil DNA glycosylase (SMUG1). Using an NCP model system with U:G base pairs at a wide variety of geometric positions we generate the global repair profile for both glycosylases. Enhanced excision of U by UDG and SMUG1 is observed with the H3.3 variant. We demonstrate that these H3.3-containing NCPs form two species: (1) octasomes, which contain the full complement of eight histone proteins and (2) hexasomes which are sub-nucleosomal particles that contain six histones. Both the octasome and hexasome species facilitate excision activity of UDG and SMUG1, with the largest impacts observed at sterically-occluded lesion sites and in terminal regions of DNA of the hexasome that do not closely interact with histones. For the double-variant H2A.Z/H3.3 NCPs, which exist as octasomes, the global repair profile reveals that UDG but not SMUG1 has increased U excision activity. The enhanced glycosylase activity reveals potential functions for these histone variants to facilitate BER in packaged DNA and contributes to our understanding of DNA repair in chromatin and its significance regarding mutagenesis and genomic integrity.
Collapse
|
11
|
Species variations in XRCC1 recruitment strategies for FHA domain-containing proteins. DNA Repair (Amst) 2022; 110:103263. [PMID: 35026705 PMCID: PMC9282668 DOI: 10.1016/j.dnarep.2021.103263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/07/2021] [Accepted: 12/21/2021] [Indexed: 02/03/2023]
Abstract
DNA repair scaffolds XRCC1 and XRCC4 utilize a phosphopeptide FHA domain binding motif (FBM) of the form Y-x-x-pS-pT-D-E that supports recruitment of three identified FHA domain-containing DNA repair proteins: polynucleotide kinase/phosphatase (PNKP), aprataxin (APTX), and a third protein, APLF, that functions as a scaffold in support of non-homologous end joining (NHEJ). Mammalian dimeric XRCC4 is able to interact with two of these proteins at any given time, while monomeric XRCC1 binds only one. However, sequence analysis indicates that amphibian and teleost XRCC1 generally contain two FHA binding motifs. X1-FBM1, is similar to the single mammalian XRCC1 FBM and probably functions similarly. X1-FBM2, is more similar to mammalian XRCC4 FBM; it is located closer to the XRCC1 BRCT1 domain and probably is less discriminating among its three likely binding partners. Availability of an additional PNKP or APTX recruitment motif may alleviate the bottleneck that results from using a single FBM motif for recruitment of multiple repair factors. Alternatively, recruitment of APLF by X1-FBM2 may function to rescue a misdirected or unsuccessful SSB repair response by redirecting the damaged DNA to the NHEJ pathway, - a need that results from the ambiguity of the PARP1 signal regarding the nature of the damage. Evaluation of XRCC4 FBMs in acanthomorphs, which account for a majority of the reported teleost sequences, reveals the presence of an additional XRCC4-like paralog, distinct from other previously described members of the XRCC4 superfamily. The FBM is typically absent in acanthomorph XRCC4, but present in the XRCC4-like paralog. Modeling suggests that XRCC4 and its paralog may form homodimers or XRCC4-XRCC4-like heterodimers.
Collapse
|
12
|
dCas9 binding inhibits the initiation of base excision repair in vitro. DNA Repair (Amst) 2022; 109:103257. [PMID: 34847381 PMCID: PMC8748382 DOI: 10.1016/j.dnarep.2021.103257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 01/03/2023]
Abstract
Cas9 targets DNA during genome editing by forming an RNA:DNA heteroduplex (R-loop) between the Cas9-bound guide RNA and the targeted DNA strand. We have recently demonstrated that R-loop formation by catalytically inactive Cas9 (dCas9) is inherently mutagenic, in part, by promoting spontaneous cytosine deamination within the non-targeted single-stranded DNA of the dCas9-induced R-loop. However, the extent to which dCas9 binding and R-loop formation affect the subsequent repair of uracil lesions or other damaged DNA bases is unclear. Here, we show that DNA binding by dCas9 inhibits initiation of base excision repair (BER) for uracil lesions in vitro. Our data indicate that cleavage of uracil lesions by Uracil-DNA glycosylase (UDG) is generally inhibited at dCas9-bound DNA, in both the dCas9:sgRNA-bound target strand (TS) or the single-stranded non-target strand (NT). However, cleavage of a uracil lesion within the base editor window of the NT strand was less inhibited than at other locations, indicating that this site is more permissive to UDG activity. Furthermore, our data suggest that dCas9 binding to PAM sites can inhibit UDG activity. However, this non-specific inhibition can be relieved with the addition of an sgRNA lacking sequence complementarity to the DNA substrate. Moreover, we show that dCas9 binding also inhibits human single-strand selective monofunctional uracil-DNA glycosylase (SMUG1). Structural analysis of a Cas9-bound target site subsequently suggests a molecular mechanism for BER inhibition. Taken together, our results imply that dCas9 (or Cas9) binding may promote background mutagenesis by inhibiting the removal of DNA base lesions by BER.
Collapse
|
13
|
Evolutionary Origins of DNA Repair Pathways: Role of Oxygen Catastrophe in the Emergence of DNA Glycosylases. Cells 2021; 10:cells10071591. [PMID: 34202661 PMCID: PMC8307549 DOI: 10.3390/cells10071591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/23/2022] Open
Abstract
It was proposed that the last universal common ancestor (LUCA) evolved under high temperatures in an oxygen-free environment, similar to those found in deep-sea vents and on volcanic slopes. Therefore, spontaneous DNA decay, such as base loss and cytosine deamination, was the major factor affecting LUCA’s genome integrity. Cosmic radiation due to Earth’s weak magnetic field and alkylating metabolic radicals added to these threats. Here, we propose that ancient forms of life had only two distinct repair mechanisms: versatile apurinic/apyrimidinic (AP) endonucleases to cope with both AP sites and deaminated residues, and enzymes catalyzing the direct reversal of UV and alkylation damage. The absence of uracil–DNA N-glycosylases in some Archaea, together with the presence of an AP endonuclease, which can cleave uracil-containing DNA, suggests that the AP endonuclease-initiated nucleotide incision repair (NIR) pathway evolved independently from DNA glycosylase-mediated base excision repair. NIR may be a relic that appeared in an early thermophilic ancestor to counteract spontaneous DNA damage. We hypothesize that a rise in the oxygen level in the Earth’s atmosphere ~2 Ga triggered the narrow specialization of AP endonucleases and DNA glycosylases to cope efficiently with a widened array of oxidative base damage and complex DNA lesions.
Collapse
|
14
|
Alekseeva IV, Bakman AS, Iakovlev DA, Kuznetsov NA, Fedorova OS. Comparative Analysis of the Activity of the Polymorphic Variants of Human Uracil-DNA-Glycosylases SMUG1 and MBD4. Mol Biol 2021. [DOI: 10.1134/s0026893321020035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Detection of Genomic Uracil Patterns. Int J Mol Sci 2021; 22:ijms22083902. [PMID: 33918885 PMCID: PMC8070346 DOI: 10.3390/ijms22083902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/28/2021] [Accepted: 04/05/2021] [Indexed: 01/06/2023] Open
Abstract
The appearance of uracil in the deoxyuridine moiety of DNA is among the most frequently occurring genomic modifications. Three different routes can result in genomic uracil, two of which do not require specific enzymes: spontaneous cytosine deamination due to the inherent chemical reactivity of living cells, and thymine-replacing incorporation upon nucleotide pool imbalances. There is also an enzymatic pathway of cytosine deamination with multiple DNA (cytosine) deaminases involved in this process. In order to describe potential roles of genomic uracil, it is of key importance to utilize efficient uracil-DNA detection methods. In this review, we provide a comprehensive and critical assessment of currently available uracil detection methods with special focus on genome-wide mapping solutions. Recent developments in PCR-based and in situ detection as well as the quantitation of genomic uracil are also discussed.
Collapse
|
16
|
Kladova OA, Kuznetsov NA, Fedorova OS. Initial stages of DNA Base Excision Repair in Nucleosomes. Mol Biol 2021. [DOI: 10.1134/s0026893321020096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Raja S, Van Houten B. The Multiple Cellular Roles of SMUG1 in Genome Maintenance and Cancer. Int J Mol Sci 2021; 22:ijms22041981. [PMID: 33671338 PMCID: PMC7922111 DOI: 10.3390/ijms22041981] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/20/2022] Open
Abstract
Single-strand selective monofunctional uracil DNA glycosylase 1 (SMUG1) works to remove uracil and certain oxidized bases from DNA during base excision repair (BER). This review provides a historical characterization of SMUG1 and 5-hydroxymethyl-2′-deoxyuridine (5-hmdU) one important substrate of this enzyme. Biochemical and structural analyses provide remarkable insight into the mechanism of this glycosylase: SMUG1 has a unique helical wedge that influences damage recognition during repair. Rodent studies suggest that, while SMUG1 shares substrate specificity with another uracil glycosylase UNG2, loss of SMUG1 can have unique cellular phenotypes. This review highlights the multiple roles SMUG1 may play in preserving genome stability, and how the loss of SMUG1 activity may promote cancer. Finally, we discuss recent studies indicating SMUG1 has moonlighting functions beyond BER, playing a critical role in RNA processing including the RNA component of telomerase.
Collapse
Affiliation(s)
- Sripriya Raja
- Molecular Pharmacology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bennett Van Houten
- Molecular Pharmacology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Correspondence: ; Tel.: +1412-623-7762; Fax: +1-412-623-7761
| |
Collapse
|
18
|
Iakovlev DA, Alekseeva IV, Kuznetsov NA, Fedorova OS. Role of Arg243 and His239 Residues in the Recognition of Damaged Nucleotides by Human Uracil-DNA Glycosylase SMUG1. BIOCHEMISTRY (MOSCOW) 2021; 85:594-603. [PMID: 32571189 DOI: 10.1134/s0006297920050089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Human uracil-DNA glycosylase SMUG1 removes uracil residues and some other noncanonical or damaged bases from DNA. Despite the functional importance of this enzyme, its X-ray structure is still unavailable. Previously, we performed homology modeling of human SMUG1 structure and suggested the roles of some amino acid residues in the recognition of damaged nucleotides and their removal from DNA. In this study, we investigated the kinetics of conformational transitions in the protein and in various DNA substrates during enzymatic catalysis using the stopped-flow method based on changes in the fluorescence intensity of enzyme's tryptophan residues and 2-aminopurine in DNA or fluorescence resonance energy transfer (FRET) between fluorophores in DNA. The kinetic mechanism of interactions between reaction intermediates was identified, and kinetic parameters of the intermediate formation and dissociation were calculated. The obtained data help in elucidating the functions of His239 and Arg243 residues in the recognition and removal of damaged nucleotides by SMUG1.
Collapse
Affiliation(s)
- D A Iakovlev
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.,Novosibirsk State University, Department of Natural Sciences, Novosibirsk, 630090, Russia
| | - I V Alekseeva
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - N A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - O S Fedorova
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| |
Collapse
|
19
|
Jia Q, Zeng H, Tu J, Sun L, Cao W, Xie W. Structural insights into an MsmUdgX mutant capable of both crosslinking and uracil excision capability. DNA Repair (Amst) 2020; 97:103008. [PMID: 33248387 DOI: 10.1016/j.dnarep.2020.103008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 11/30/2022]
Abstract
UdgX from Mycobacterium smegmatis (MsmUdgX) is a prototypical enzyme representing a new class of uracil-DNA glycosylases (UDG) closely related to the family 4 enzymes. It possesses a unique R-loop rich in positive residues and forms a covalent bond with single-stranded uracil-containing DNAs (ssDNA-Us) that is resistant to denaturants after the removal of the target uracil. We previously identified the H109E mutant of MsmUdgX that forms a weak covalent complex with ssDNA-U and yet possesses moderate uracil excision activity, but the mechanism of its action is not fully understood. To further study the catalytic process of MsmUdgX, we solved the high-resolution crystal structures of H109E in the free and DNA-bound forms, respectively. We found that the key residue Glu109 adopts a similar conformation to that of WT to form the covalent bond, suggesting that it still employs the same "excision-inhibition" mechanism to that of the WT enzyme. The enzyme remains nearly intact before and after the crosslinking reaction, but the first half of the R-loop exhibits large structural differences while the rest of the loop barely moves, owing to the salt-bridge interaction formed via Arg107. Additionally, Arg107, along with Gln53 was found to play important roles in the biochemical properties of MsmUdgX. Our studies provide new insights into the MsmUdgX catalysis and improve our understanding on this unique enzyme.
Collapse
Affiliation(s)
- Qian Jia
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Hui Zeng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Jie Tu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Litao Sun
- School of Public Health (Shenzhen), The Sun Yat-sen University, Guangdong, 518107, China
| | - Weiguo Cao
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA
| | - Wei Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
20
|
Tran A, Zheng S, White DS, Curry AM, Cen Y. Retracted Article: Divergent synthesis of 5-substituted pyrimidine 2'-deoxynucleosides and their incorporation into oligodeoxynucleotides for the survey of uracil DNA glycosylases. Chem Sci 2020; 11:11818-11826. [PMID: 34123208 PMCID: PMC8162711 DOI: 10.1039/d0sc04161k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/07/2020] [Indexed: 11/21/2022] Open
Abstract
Recent studies have indicated that 5-methylcytosine (5mC) residues in DNA can be oxidized and potentially deaminated to the corresponding thymine analogs. Some of these oxidative DNA damages have been implicated as new epigenetic markers that could have profound influences on chromatin function as well as disease pathology. In response to oxidative damage, the cells have a complex network of repair systems that recognize, remove and rebuild the lesions. However, how the modified nucleobases are detected and repaired remains elusive, largely due to the limited availability of synthetic oligodeoxynucleotides (ODNs) containing these novel DNA modifications. A concise and divergent synthetic strategy to 5mC derivatives has been developed. These derivatives were further elaborated to the corresponding phosphoramidites to enable the site-specific incorporation of modified nucleobases into ODNs using standard solid-phase DNA synthesis. The synthetic methodology, along with the panel of ODNs, is of great value to investigate the biological functions of epigenetically important nucleobases, and to elucidate the diversity in chemical lesion repair.
Collapse
Affiliation(s)
- Ai Tran
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences Colchester VT 05446 USA
| | - Song Zheng
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences Colchester VT 05446 USA
| | - Dawanna S White
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1-804-828-7405
| | - Alyson M Curry
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1-804-828-7405
| | - Yana Cen
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1-804-828-7405
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University Richmond VA 23219 USA
| |
Collapse
|
21
|
Grøsvik K, Tesfahun AN, Muruzábal-Lecumberri I, Haugland GT, Leiros I, Ruoff P, Kvaløy JT, Knævelsrud I, Ånensen H, Alexeeva M, Sato K, Matsuda A, Alseth I, Klungland A, Bjelland S. The Escherichia coli alkA Gene Is Activated to Alleviate Mutagenesis by an Oxidized Deoxynucleoside. Front Microbiol 2020; 11:263. [PMID: 32158436 PMCID: PMC7051996 DOI: 10.3389/fmicb.2020.00263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/04/2020] [Indexed: 12/01/2022] Open
Abstract
The cellular methyl donor S-adenosylmethionine (SAM) and other endo/exogenous agents methylate DNA bases non-enzymatically into products interfering with replication and transcription. An important product is 3-methyladenine (m3A), which in Escherichia coli is removed by m3A-DNA glycosylase I (Tag) and II (AlkA). The tag gene is constitutively expressed, while alkA is induced by sub-lethal concentrations of methylating agents. We previously found that AlkA exhibits activity for the reactive oxygen-induced thymine (T) lesion 5-formyluracil (fU) in vitro. Here, we provide evidence for AlkA involvement in the repair of oxidized bases by showing that the adenine (A) ⋅ T → guanine (G) ⋅ cytosine (C) mutation rate increased 10-fold in E. coli wild-type and alkA– cells exposed to 0.1 mM 5-formyl-2′-deoxyuridine (fdU) compared to a wild-type specific reduction of the mutation rate at 0.2 mM fdU, which correlated with alkA gene induction. G⋅C → A⋅T alleviation occurred without alkA induction (at 0.1 mM fdU), correlating with a much higher AlkA efficiency for fU opposite to G than for that to A. The common keto form of fU is the AlkA substrate. Mispairing with G by ionized fU is favored by its exclusion from the AlkA active site.
Collapse
Affiliation(s)
- Kristin Grøsvik
- Department of Chemistry, Bioscience and Environmental Technology, Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Almaz Nigatu Tesfahun
- Department of Chemistry, Bioscience and Environmental Technology, Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Izaskun Muruzábal-Lecumberri
- Department of Chemistry, Bioscience and Environmental Technology, Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | | | - Ingar Leiros
- The Norwegian Structural Biology Centre, Department of Chemistry, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Peter Ruoff
- Department of Chemistry, Bioscience and Environmental Technology, Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Jan Terje Kvaløy
- Department of Mathematics and Physics, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Ingeborg Knævelsrud
- Department of Chemistry, Bioscience and Environmental Technology, Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Hilde Ånensen
- Department of Chemistry, Bioscience and Environmental Technology, Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Marina Alexeeva
- Department of Chemistry, Bioscience and Environmental Technology, Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Kousuke Sato
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Tobetsu, Japan
| | - Akira Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Ingrun Alseth
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Arne Klungland
- Department of Microbiology, Oslo University Hospital, Oslo, Norway.,Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Svein Bjelland
- Department of Chemistry, Bioscience and Environmental Technology, Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| |
Collapse
|
22
|
Single-stranded DNA damage: Protecting the single-stranded DNA from chemical attack. DNA Repair (Amst) 2020; 87:102804. [PMID: 31981739 DOI: 10.1016/j.dnarep.2020.102804] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/18/2020] [Accepted: 01/18/2020] [Indexed: 01/08/2023]
Abstract
Cellular processes, such as DNA replication, recombination and transcription, require DNA strands separation and single-stranded DNA is formation. The single-stranded DNA is promptly wrapped by human single-stranded DNA binding proteins, replication protein A (RPA) complex. RPA binding not only prevent nuclease degradation and annealing, but it also coordinates cell-cycle checkpoint activation and DNA repair. However, RPA binding offers little protection against the chemical modification of DNA bases. This review focuses on the type of DNA base damage that occurs in single-stranded DNA and how the damage is rectified in human cells. The discovery of DNA repair proteins, such as ALKBH3, AGT, UNG2, NEIL3, being able to repair the damaged base in the single-stranded DNA, renewed the interest to study single-stranded DNA repair. These mechanistically different proteins work independently from each other with the overarching goal of increasing fidelity of recombination and promoting error-free replication.
Collapse
|
23
|
Iakovlev DA, Alekseeva IV, Vorobjev YN, Kuznetsov NA, Fedorova OS. The Role of Active-Site Residues Phe98, His239, and Arg243 in DNA Binding and in the Catalysis of Human Uracil-DNA Glycosylase SMUG1. Molecules 2019; 24:molecules24173133. [PMID: 31466351 PMCID: PMC6749576 DOI: 10.3390/molecules24173133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 11/16/2022] Open
Abstract
Human SMUG1 (hSMUG1) hydrolyzes the N-glycosidic bond of uracil and some uracil lesions formed in the course of epigenetic regulation. Despite the functional importance of hSMUG1 in the DNA repair pathway, the damage recognition mechanism has been elusive to date. In the present study, our objective was to build a model structure of the enzyme-DNA complex of wild-type hSMUG1 and several hSMUG1 mutants containing substitution F98W, H239A, or R243A. Enzymatic activity of these mutant enzymes was examined by polyacrylamide gel electrophoresis analysis of the reaction product formation and pre-steady-state analysis of DNA conformational changes during enzyme-DNA complex formation. It was shown that substitutions F98W and H239A disrupt specific contacts generated by the respective wild-type residues, namely stacking with a flipped out Ura base in the damaged base-binding pocket or electrostatic interactions with DNA in cases of Phe98 and His239, respectively. A loss of the Arg side chain in the case of R243A reduced the rate of DNA bending and increased the enzyme turnover rate, indicating facilitation of the product release step.
Collapse
Affiliation(s)
- Danila A Iakovlev
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of Russian Academy of Sciences, 8 Lavrentyev Ave., Novosibirsk 630090, Russia
| | - Irina V Alekseeva
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of Russian Academy of Sciences, 8 Lavrentyev Ave., Novosibirsk 630090, Russia
| | - Yury N Vorobjev
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of Russian Academy of Sciences, 8 Lavrentyev Ave., Novosibirsk 630090, Russia
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of Russian Academy of Sciences, 8 Lavrentyev Ave., Novosibirsk 630090, Russia.
- Department of Natural Sciences, Novosibirsk State University (NSU), 2 Pirogova St., Novosibirsk 630090, Russia.
| | - Olga S Fedorova
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of Russian Academy of Sciences, 8 Lavrentyev Ave., Novosibirsk 630090, Russia.
- Department of Natural Sciences, Novosibirsk State University (NSU), 2 Pirogova St., Novosibirsk 630090, Russia.
| |
Collapse
|
24
|
Alexeeva M, Moen MN, Grøsvik K, Tesfahun AN, Xu XM, Muruzábal-Lecumberri I, Olsen KM, Rasmussen A, Ruoff P, Kirpekar F, Klungland A, Bjelland S. Excision of uracil from DNA by hSMUG1 includes strand incision and processing. Nucleic Acids Res 2019; 47:779-793. [PMID: 30496516 PMCID: PMC6344882 DOI: 10.1093/nar/gky1184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 11/08/2018] [Indexed: 12/22/2022] Open
Abstract
Uracil arises in DNA by hydrolytic deamination of cytosine (C) and by erroneous incorporation of deoxyuridine monophosphate opposite adenine, where the former event is devastating by generation of C → thymine transitions. The base excision repair (BER) pathway replaces uracil by the correct base. In human cells two uracil-DNA glycosylases (UDGs) initiate BER by excising uracil from DNA; one is hSMUG1 (human single-strand-selective mono-functional UDG). We report that repair initiation by hSMUG1 involves strand incision at the uracil site resulting in a 3′-α,β-unsaturated aldehyde designated uracil-DNA incision product (UIP), and a 5′-phosphate. UIP is removed from the 3′-end by human apurinic/apyrimidinic (AP) endonuclease 1 preparing for single-nucleotide insertion. hSMUG1 also incises DNA or processes UIP to a 3′-phosphate designated uracil-DNA processing product (UPP). UIP and UPP were indirectly identified and quantified by polyacrylamide gel electrophoresis and chemically characterised by matrix-assisted laser desorption/ionisation time-of-flight mass-spectrometric analysis of DNA from enzyme reactions using 18O- or 16O-water. The formation of UIP accords with an elimination (E2) reaction where deprotonation of C2′ occurs via the formation of a C1′ enolate intermediate. A three-phase kinetic model explains rapid uracil excision in phase 1, slow unspecific enzyme adsorption/desorption to DNA in phase 2 and enzyme-dependent AP site incision in phase 3.
Collapse
Affiliation(s)
- Marina Alexeeva
- Department of Chemistry, Bioscience and Environmental Technology-Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, P.O. Box 8600 Forus, N-4021 Stavanger, Norway
| | - Marivi N Moen
- Department of Chemistry, Bioscience and Environmental Technology-Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, P.O. Box 8600 Forus, N-4021 Stavanger, Norway.,Department of Microbiology, Oslo University Hospital, Rikshospitalet, NO-0372 Oslo, Norway
| | - Kristin Grøsvik
- Department of Chemistry, Bioscience and Environmental Technology-Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, P.O. Box 8600 Forus, N-4021 Stavanger, Norway
| | - Almaz N Tesfahun
- Department of Chemistry, Bioscience and Environmental Technology-Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, P.O. Box 8600 Forus, N-4021 Stavanger, Norway
| | - Xiang Ming Xu
- Department of Chemistry, Bioscience and Environmental Technology-Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, P.O. Box 8600 Forus, N-4021 Stavanger, Norway
| | - Izaskun Muruzábal-Lecumberri
- Department of Chemistry, Bioscience and Environmental Technology-Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, P.O. Box 8600 Forus, N-4021 Stavanger, Norway
| | - Kristine M Olsen
- Department of Chemistry, Bioscience and Environmental Technology-Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, P.O. Box 8600 Forus, N-4021 Stavanger, Norway
| | - Anette Rasmussen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Peter Ruoff
- Department of Chemistry, Bioscience and Environmental Technology-Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, P.O. Box 8600 Forus, N-4021 Stavanger, Norway
| | - Finn Kirpekar
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Arne Klungland
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, NO-0372 Oslo, Norway.,Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, NO-0317 Oslo, Norway
| | - Svein Bjelland
- Department of Chemistry, Bioscience and Environmental Technology-Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, P.O. Box 8600 Forus, N-4021 Stavanger, Norway
| |
Collapse
|
25
|
Li C, Delaney S. Histone H2A Variants Enhance the Initiation of Base Excision Repair in Nucleosomes. ACS Chem Biol 2019; 14:1041-1050. [PMID: 31021597 DOI: 10.1021/acschembio.9b00229] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Substituting histone variants for their canonical counterparts can profoundly alter chromatin structure, thereby impacting multiple biological processes. Here, we investigate the influence of histone variants from the H2A family on the excision of uracil (U) by the base excision repair (BER) enzymes uracil DNA glycosylase (UDG) and single-strand selective monofunctional uracil DNA glycosylase. Using a DNA population with globally distributed U:G base pairs, enhanced excision is observed in H2A.Z and macroH2A-containing nucleosome core particles (NCPs). The U with reduced solution accessibility exhibit limited UDG activity in canonical NCPs but are more readily excised in variant NCPs, reflecting the ability of these variants to facilitate excision at sites that are otherwise poorly repaired. We also find that U with the largest increase in the level of excision in variant NCPs are clustered in regions with differential structural features between the variants and canonical H2A. Within 35-40 bp of the DNA terminus in macroH2A NCPs, the activities of both glycosylases are comparable to that on the free duplex. We show that this high level of activity results from two distinct species within the macroH2A NCP ensemble: octasomes and hexasomes. These observations reveal potential functions for H2A variants in promoting BER and preventing mutagenesis within the context of chromatin.
Collapse
Affiliation(s)
- Chuxuan Li
- Department of Chemistry, Brown University, 324 Brook Street, Providence, Rhode Island 02912, United States
| | - Sarah Delaney
- Department of Chemistry, Brown University, 324 Brook Street, Providence, Rhode Island 02912, United States
| |
Collapse
|
26
|
Tu J, Chen R, Yang Y, Cao W, Xie W. Suicide inactivation of the uracil DNA glycosylase UdgX by covalent complex formation. Nat Chem Biol 2019; 15:615-622. [PMID: 31101915 DOI: 10.1038/s41589-019-0290-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/10/2019] [Indexed: 01/08/2023]
Abstract
A uracil DNA glycosylase (UDG) from Mycobacterium smegmatis (MsmUdgX) shares sequence similarity with family 4 UDGs and forms exceedingly stable complexes with single-stranded uracil-containing DNAs (ssDNA-Us) that are resistant to denaturants. However, MsmUdgX has been reported to be inactive in excising uracil from ssDNA-Us and the underlying structural basis is unclear. Here, we report high-resolution crystal structures of MsmUdgX in the free, uracil- and DNA-bound forms, respectively. The structural information, supported by mutational and biochemical analyses, indicates that the conserved residue His109 located on a characteristic loop forms an irreversible covalent linkage with the deoxyribose at the apyrimidinic site of ssDNA-U, thus rendering the enzyme unable to regenerate. By proposing the catalytic pathway and molecular mechanism for MsmUdgX, our studies provide an insight into family 4 UDGs and UDGs in general.
Collapse
Affiliation(s)
- Jie Tu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ran Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ye Yang
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Weiguo Cao
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Wei Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
27
|
Tarantino ME, Dow BJ, Drohat AC, Delaney S. Nucleosomes and the three glycosylases: High, medium, and low levels of excision by the uracil DNA glycosylase superfamily. DNA Repair (Amst) 2018; 72:56-63. [PMID: 30268365 DOI: 10.1016/j.dnarep.2018.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 01/19/2023]
Abstract
Human cells express the UDG superfamily of glycosylases, which excise uracil (U) from the genome. The three members of this structural superfamily are uracil DNA glycosylase (UNG/UDG), single-strand selective monofunctional uracil DNA glycosylase (SMUG1), and thymine DNA glycosylase (TDG). We previously reported that UDG is efficient at removing U from DNA packaged into nucleosome core particles (NCP) and is minimally affected by the histone proteins when acting on an outward-facing U in the dyad region. In an effort to determine whether this high activity is a general property of the UDG superfamily of glycosylases, we compare the activity of UDG, SMUG1, and TDG on a U:G wobble base pair using NCP assembled from Xenopus laevis histones and the Widom 601 positioning sequence. We found that while UDG is highly active, SMUG1 is severely inhibited on NCP and this inhibition is independent of sequence context. Here we also provide the first report of TDG activity on an NCP, and found that TDG has an intermediate level of activity in excision of U and is severely inhibited in its excision of T. These results are discussed in the context of cellular roles for each of these enzymes.
Collapse
Affiliation(s)
- Mary E Tarantino
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02912, United States
| | - Blaine J Dow
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States
| | - Alexander C Drohat
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; University of Maryland Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, 21201, United States
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, RI, 02912, United States.
| |
Collapse
|
28
|
Li J, Svilar D, McClellan S, Kim JH, Ahn EYE, Vens C, Wilson DM, Sobol RW. DNA Repair Molecular Beacon assay: a platform for real-time functional analysis of cellular DNA repair capacity. Oncotarget 2018; 9:31719-31743. [PMID: 30167090 PMCID: PMC6114979 DOI: 10.18632/oncotarget.25859] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/12/2018] [Indexed: 12/15/2022] Open
Abstract
Numerous studies have shown that select DNA repair enzyme activities impact response and/or toxicity of genotoxins, suggesting a requirement for enzyme functional analyses to bolster precision medicine or prevention. To address this need, we developed a DNA Repair Molecular Beacon (DRMB) platform that rapidly measures DNA repair enzyme activity in real-time. The DRMB assay is applicable for discovery of DNA repair enzyme inhibitors, for the quantification of enzyme rates and is sufficiently sensitive to differentiate cellular enzymatic activity that stems from variation in expression or effects of amino acid substitutions. We show activity measures of several different base excision repair (BER) enzymes, including proteins with tumor-identified point mutations, revealing lesion-, lesion-context- and cell-type-specific repair dependence; suggesting application for DNA repair capacity analysis of tumors. DRMB measurements using lysates from isogenic control and APE1-deficient human cells suggests the major mechanism of base lesion removal by most DNA glycosylases may be mono-functional base hydrolysis. In addition, development of a microbead-conjugated DRMB assay amenable to flow cytometric analysis further advances its application. Our studies establish an analytical platform capable of evaluating the enzyme activity of select DNA repair proteins in an effort to design and guide inhibitor development and precision cancer therapy options.
Collapse
Affiliation(s)
- Jianfeng Li
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA
| | - David Svilar
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Steven McClellan
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA
| | - Jung-Hyun Kim
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA
| | | | - Conchita Vens
- The Netherlands Cancer Institute, Division of Cell Biology, Amsterdam, The Netherlands
| | - David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, IRP, NIH Baltimore, MD, USA
| | - Robert W Sobol
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA.,Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
29
|
Kuznetsova AA, Iakovlev DA, Misovets IV, Ishchenko AA, Saparbaev MK, Kuznetsov NA, Fedorova OS. Pre-steady-state kinetic analysis of damage recognition by human single-strand selective monofunctional uracil-DNA glycosylase SMUG1. MOLECULAR BIOSYSTEMS 2018; 13:2638-2649. [PMID: 29051947 DOI: 10.1039/c7mb00457e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In all organisms, DNA glycosylases initiate base excision repair pathways resulting in removal of aberrant bases from DNA. Human SMUG1 belongs to the superfamily of uracil-DNA glycosylases catalyzing the hydrolysis of the N-glycosidic bond of uridine and uridine lesions bearing oxidized groups at C5: 5-hydroxymethyluridine (5hmU), 5-formyluridine (5fU), and 5-hydroxyuridine (5hoU). An apurinic/apyrimidinic (AP) site formed as the product of an N-glycosylase reaction is tightly bound to hSMUG1, thus inhibiting the downstream action of AP-endonuclease APE1. The steady-state kinetic parameters (kcat and KM; obtained from the literature) correspond to the enzyme turnover process limited by the release of hSMUG1 from the complex with the AP-site. In the present study, our objective was to carry out a stopped-flow fluorescence analysis of the interaction of hSMUG1 with a DNA substrate containing a dU:dG base pair to follow the pre-steady-state kinetics of conformational changes in both molecules. A comparison of kinetic data obtained by means of Trp and 2-aminopurine fluorescence and Förster resonance energy transfer (FRET) detection allowed us to elucidate the stages of specific and nonspecific DNA binding, to propose the mechanism of damaged base recognition by hSMUG1, and to determine the true rate of the catalytic step. Our results shed light on the kinetic mechanism underlying the initiation of base excision repair by hSMUG1 using the "wedge" strategy for DNA lesion search.
Collapse
Affiliation(s)
- Alexandra A Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of Russian Academy of Sciences, 8 Lavrentyev Ave., Novosibirsk 630090, Russia.
| | | | | | | | | | | | | |
Collapse
|
30
|
Chembazhi UV, Patil VV, Sah S, Reeve W, Tiwari RP, Woo E, Varshney U. Uracil DNA glycosylase (UDG) activities in Bradyrhizobium diazoefficiens: characterization of a new class of UDG with broad substrate specificity. Nucleic Acids Res 2017; 45:5863-5876. [PMID: 28369586 PMCID: PMC5449639 DOI: 10.1093/nar/gkx209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 03/27/2017] [Indexed: 01/01/2023] Open
Abstract
Repair of uracils in DNA is initiated by uracil DNA glycosylases (UDGs). Family 1 UDGs (Ung) are the most efficient and ubiquitous proteins having an exquisite specificity for uracils in DNA. Ung are characterized by motifs A (GQDPY) and B (HPSPLS) sequences. We report a novel dimeric UDG, Blr0248 (BdiUng) from Bradyrhizobium diazoefficiens. Although BdiUng contains the motif A (GQDPA), it has low sequence identity to known UDGs. BdiUng prefers single stranded DNA and excises uracil, 5-hydroxymethyl-uracil or xanthine from it. BdiUng is impervious to inhibition by AP DNA, and Ugi protein that specifically inhibits family 1 UDGs. Crystal structure of BdiUng shows similarity with the family 4 UDGs in its overall fold but with family 1 UDGs in key active site residues. However, instead of a classical motif B, BdiUng has a uniquely extended protrusion explaining the lack of Ugi inhibition. Structural and mutational analyses of BdiUng have revealed the basis for the accommodation of diverse substrates into its substrate binding pocket. Phylogenetically, BdiUng belongs to a new UDG family. Bradyrhizobium diazoefficiens presents a unique scenario where the presence of at least four families of UDGs may compensate for the absence of an efficient family 1 homologue.
Collapse
Affiliation(s)
- Ullas Valiya Chembazhi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Vinod Vikas Patil
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-Ro, Yuseon-Gu, Daejeon 34141, Republic of Korea.,Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Shivjee Sah
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Wayne Reeve
- Centre for Rhizobium Studies, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Ravi P Tiwari
- Centre for Rhizobium Studies, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Euijeon Woo
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-Ro, Yuseon-Gu, Daejeon 34141, Republic of Korea.,Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.,Centre for Rhizobium Studies, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia.,Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
31
|
Li J, Yang Y, Guevara J, Wang L, Cao W. Identification of a prototypical single-stranded uracil DNA glycosylase from Listeria innocua. DNA Repair (Amst) 2017; 57:107-115. [PMID: 28719838 PMCID: PMC5568478 DOI: 10.1016/j.dnarep.2017.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 12/23/2022]
Abstract
A recent phylogenetic study on UDG superfamily estimated a new clade of family 3 enzymes (SMUG1-like), which shares a lower homology with canonic SMUG1 enzymes. The enzymatic properties of the newly found putative DNA glycosylase are unknown. To test the potential UDG activity and evaluate phylogenetic classification, we isolated one SMUG1-like glycosylase representative from Listeria innocua (Lin). A biochemical screening of DNA glycosylase activity in vitro indicates that Lin SMUG1-like glycosylase is a single-strand selective uracil DNA glycosylase. The UDG activity on DNA bubble structures provides clue to its physiological significance in vivo. Mutagenesis and molecular modeling analyses reveal that Lin SMUG1-like glycosylase has similar functional motifs with SMUG1 enzymes; however, it contains a distinct catalytic doublet S67-S68 in motif 1 that is not found in any families in the UDG superfamily. Experimental investigation shows that the S67M-S68N double mutant is catalytically more active than either S67M or S68N single mutant. Coupled with mutual information analysis, the results indicate a high degree of correlation in the evolution of SMUG1-like enzymes. This study underscores the functional and catalytic diversity in the evolution of enzymes in UDG superfamily.
Collapse
Affiliation(s)
- Jing Li
- Department of Genetics and Biochemistry, Clemson University, Room 060 Life Sciences Facility, 190 Collings Street, Clemson, SC 29634, USA
| | - Ye Yang
- Department of Genetics and Biochemistry, Clemson University, Room 060 Life Sciences Facility, 190 Collings Street, Clemson, SC 29634, USA
| | - Jose Guevara
- Department of Genetics and Biochemistry, Clemson University, Room 060 Life Sciences Facility, 190 Collings Street, Clemson, SC 29634, USA
| | - Liangjiang Wang
- Department of Genetics and Biochemistry, Clemson University, Room 060 Life Sciences Facility, 190 Collings Street, Clemson, SC 29634, USA
| | - Weiguo Cao
- Department of Genetics and Biochemistry, Clemson University, Room 060 Life Sciences Facility, 190 Collings Street, Clemson, SC 29634, USA.
| |
Collapse
|
32
|
Whitaker AM, Schaich MA, Smith MR, Flynn TS, Freudenthal BD. Base excision repair of oxidative DNA damage: from mechanism to disease. Front Biosci (Landmark Ed) 2017; 22:1493-1522. [PMID: 28199214 DOI: 10.2741/4555] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Reactive oxygen species continuously assault the structure of DNA resulting in oxidation and fragmentation of the nucleobases. Both oxidative DNA damage itself and its repair mediate the progression of many prevalent human maladies. The major pathway tasked with removal of oxidative DNA damage, and hence maintaining genomic integrity, is base excision repair (BER). The aphorism that structure often dictates function has proven true, as numerous recent structural biology studies have aided in clarifying the molecular mechanisms used by key BER enzymes during the repair of damaged DNA. This review focuses on the mechanistic details of the individual BER enzymes and the association of these enzymes during the development and progression of human diseases, including cancer and neurological diseases. Expanding on these structural and biochemical studies to further clarify still elusive BER mechanisms, and focusing our efforts toward gaining an improved appreciation of how these enzymes form co-complexes to facilitate DNA repair is a crucial next step toward understanding how BER contributes to human maladies and how it can be manipulated to alter patient outcomes.
Collapse
Affiliation(s)
- Amy M Whitaker
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160
| | - Matthew A Schaich
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160
| | - Mallory R Smith
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160
| | - Tony S Flynn
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160,
| |
Collapse
|
33
|
Repair of oxidatively induced DNA damage by DNA glycosylases: Mechanisms of action, substrate specificities and excision kinetics. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 771:99-127. [PMID: 28342455 DOI: 10.1016/j.mrrev.2017.02.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Indexed: 02/07/2023]
Abstract
Endogenous and exogenous reactive species cause oxidatively induced DNA damage in living organisms by a variety of mechanisms. As a result, a plethora of mutagenic and/or cytotoxic products are formed in cellular DNA. This type of DNA damage is repaired by base excision repair, although nucleotide excision repair also plays a limited role. DNA glycosylases remove modified DNA bases from DNA by hydrolyzing the glycosidic bond leaving behind an apurinic/apyrimidinic (AP) site. Some of them also possess an accompanying AP-lyase activity that cleaves the sugar-phosphate chain of DNA. Since the first discovery of a DNA glycosylase, many studies have elucidated the mechanisms of action, substrate specificities and excision kinetics of these enzymes present in all living organisms. For this purpose, most studies used single- or double-stranded oligodeoxynucleotides with a single DNA lesion embedded at a defined position. High-molecular weight DNA with multiple base lesions has been used in other studies with the advantage of the simultaneous investigation of many DNA base lesions as substrates. Differences between the substrate specificities and excision kinetics of DNA glycosylases have been found when these two different substrates were used. Some DNA glycosylases possess varying substrate specificities for either purine-derived lesions or pyrimidine-derived lesions, whereas others exhibit cross-activity for both types of lesions. Laboratory animals with knockouts of the genes of DNA glycosylases have also been used to provide unequivocal evidence for the substrates, which had previously been found in in vitro studies, to be the actual substrates in vivo as well. On the basis of the knowledge gained from the past studies, efforts are being made to discover small molecule inhibitors of DNA glycosylases that may be used as potential drugs in cancer therapy.
Collapse
|
34
|
Yu Y, Cui Y, Niedernhofer LJ, Wang Y. Occurrence, Biological Consequences, and Human Health Relevance of Oxidative Stress-Induced DNA Damage. Chem Res Toxicol 2016; 29:2008-2039. [PMID: 27989142 DOI: 10.1021/acs.chemrestox.6b00265] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A variety of endogenous and exogenous agents can induce DNA damage and lead to genomic instability. Reactive oxygen species (ROS), an important class of DNA damaging agents, are constantly generated in cells as a consequence of endogenous metabolism, infection/inflammation, and/or exposure to environmental toxicants. A wide array of DNA lesions can be induced by ROS directly, including single-nucleobase lesions, tandem lesions, and hypochlorous acid (HOCl)/hypobromous acid (HOBr)-derived DNA adducts. ROS can also lead to lipid peroxidation, whose byproducts can also react with DNA to produce exocyclic DNA lesions. A combination of bioanalytical chemistry, synthetic organic chemistry, and molecular biology approaches have provided significant insights into the occurrence, repair, and biological consequences of oxidatively induced DNA lesions. The involvement of these lesions in the etiology of human diseases and aging was also investigated in the past several decades, suggesting that the oxidatively induced DNA adducts, especially bulky DNA lesions, may serve as biomarkers for exploring the role of oxidative stress in human diseases. The continuing development and improvement of LC-MS/MS coupled with the stable isotope-dilution method for DNA adduct quantification will further promote research about the clinical implications and diagnostic applications of oxidatively induced DNA adducts.
Collapse
Affiliation(s)
| | | | - Laura J Niedernhofer
- Department of Metabolism and Aging, The Scripps Research Institute Florida , Jupiter, Florida 33458, United States
| | | |
Collapse
|
35
|
Zhang Z, Shen J, Yang Y, Li J, Cao W, Xie W. Structural Basis of Substrate Specificity in Geobacter metallireducens SMUG1. ACS Chem Biol 2016; 11:1729-36. [PMID: 27071000 DOI: 10.1021/acschembio.6b00164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Base deamination is a common type of DNA damage that occurs in all organisms. DNA repair mechanisms are critical to maintain genome integrity, in which the base excision repair pathway plays an essential role. In the BER pathway, the uracil DNA glycosylase superfamily is responsible for removing the deaminated bases from DNA and generates apurinic/apyrimidinic (AP) sites. Geobacter metallireducens SMUG1 (GmeSMUG1) is an interesting family 3 enzyme in the UDG superfamily, with dual substrate specificities for DNA with uracil or xanthine. In contrast, the mutant G63P of GmeSMUG1 has exclusive activity for uracil, while N58D is inactive for both substrates, as we have reported previously. However, the structural bases for these substrate specificities are not well understood. In this study, we solved a series of crystal structures of WT and mutants of GmeSMUG1 at relatively high resolutions. These structures provide insight on the molecular mechanism of xanthine recognition for GmeSMUG1 and indicate that H210 plays a key role in xanthine recognition, which is in good agreement with the results of our EMSA and activity assays. More importantly, our mutant structures allow us to build models to rationalize our previous experimental observations of altered substrate activities of these mutants.
Collapse
Affiliation(s)
- Zhemin Zhang
- State
Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, 135 W. Xingang Rd., Guangzhou, Guangdong 510275, People’s Republic of China
- Center for Cellular & Structural Biology, The Sun Yat-Sen University, 132 E. Circle Rd., University City, Guangzhou, Guangdong 510006, People’s Republic of China
| | - Jiemin Shen
- State
Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, 135 W. Xingang Rd., Guangzhou, Guangdong 510275, People’s Republic of China
- Center for Cellular & Structural Biology, The Sun Yat-Sen University, 132 E. Circle Rd., University City, Guangzhou, Guangdong 510006, People’s Republic of China
| | - Ye Yang
- Department
of Genetics and Biochemistry, Clemson University, South Carolina Experiment Station,
190 Collings Street, Clemson, South Carolina 29634, United States
| | - Jing Li
- Department
of Genetics and Biochemistry, Clemson University, South Carolina Experiment Station,
190 Collings Street, Clemson, South Carolina 29634, United States
| | - Weiguo Cao
- Department
of Genetics and Biochemistry, Clemson University, South Carolina Experiment Station,
190 Collings Street, Clemson, South Carolina 29634, United States
| | - Wei Xie
- State
Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, 135 W. Xingang Rd., Guangzhou, Guangdong 510275, People’s Republic of China
- Center for Cellular & Structural Biology, The Sun Yat-Sen University, 132 E. Circle Rd., University City, Guangzhou, Guangdong 510006, People’s Republic of China
| |
Collapse
|
36
|
Twist-open mechanism of DNA damage recognition by the Rad4/XPC nucleotide excision repair complex. Proc Natl Acad Sci U S A 2016; 113:E2296-305. [PMID: 27035942 DOI: 10.1073/pnas.1514666113] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
DNA damage repair starts with the recognition of damaged sites from predominantly normal DNA. In eukaryotes, diverse DNA lesions from environmental sources are recognized by the xeroderma pigmentosum C (XPC) nucleotide excision repair complex. Studies of Rad4 (radiation-sensitive 4; yeast XPC ortholog) showed that Rad4 "opens" up damaged DNA by inserting a β-hairpin into the duplex and flipping out two damage-containing nucleotide pairs. However, this DNA lesion "opening" is slow (˜5-10 ms) compared with typical submillisecond residence times per base pair site reported for various DNA-binding proteins during 1D diffusion on DNA. To address the mystery as to how Rad4 pauses to recognize lesions during diffusional search, we examine conformational dynamics along the lesion recognition trajectory using temperature-jump spectroscopy. Besides identifying the ˜10-ms step as the rate-limiting bottleneck towards opening specific DNA site, we uncover an earlier ˜100- to 500-μs step that we assign to nonspecific deformation (unwinding/"twisting") of DNA by Rad4. The β-hairpin is not required to unwind or to overcome the bottleneck but is essential for full nucleotide-flipping. We propose that Rad4 recognizes lesions in a step-wise "twist-open" mechanism, in which preliminary twisting represents Rad4 interconverting between search and interrogation modes. Through such conformational switches compatible with rapid diffusion on DNA, Rad4 may stall preferentially at a lesion site, offering time to open DNA. This study represents the first direct observation, to our knowledge, of dynamical DNA distortions during search/interrogation beyond base pair breathing. Submillisecond interrogation with preferential stalling at cognate sites may be common to various DNA-binding proteins.
Collapse
|
37
|
Hussain S. A new conceptual framework for investigating complex genetic disease. Front Genet 2015; 6:327. [PMID: 26583033 PMCID: PMC4631989 DOI: 10.3389/fgene.2015.00327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/21/2015] [Indexed: 01/17/2023] Open
Abstract
Some common diseases are known to have an inherited component, however, their population- and familial-incidence patterns do not conform to any known monogenic Mendelian pattern of inheritance and instead they are currently much better explained if an underlying polygenic architecture is posited. Studies that have attempted to identify the causative genetic factors have been designed on this polygenic framework, but so far the yield has been largely unsatisfactory. Based on accumulating recent observations concerning the roles of somatic mosaicism in disease, in this article a second framework which posits a single gene-two hit model which can be modulated by a mutator/anti-mutator genetic background is suggested. I discuss whether such a model can be considered a viable alternative based on current knowledge, its advantages over the current polygenic framework, and describe practical routes via which the new framework can be investigated.
Collapse
Affiliation(s)
- Shobbir Hussain
- Department of Biology and Biochemistry, University of BathBath, UK
| |
Collapse
|
38
|
Malik SS, Coey CT, Varney KM, Pozharski E, Drohat AC. Thymine DNA glycosylase exhibits negligible affinity for nucleobases that it removes from DNA. Nucleic Acids Res 2015; 43:9541-52. [PMID: 26358812 PMCID: PMC4627079 DOI: 10.1093/nar/gkv890] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/26/2015] [Indexed: 01/07/2023] Open
Abstract
Thymine DNA Glycosylase (TDG) performs essential functions in maintaining genetic integrity and epigenetic regulation. Initiating base excision repair, TDG removes thymine from mutagenic G·T mispairs caused by 5-methylcytosine (mC) deamination and other lesions including uracil (U) and 5-hydroxymethyluracil (hmU). In DNA demethylation, TDG excises 5-formylcytosine (fC) and 5-carboxylcytosine (caC), which are generated from mC by Tet (ten–eleven translocation) enzymes. Using improved crystallization conditions, we solved high-resolution (up to 1.45 Å) structures of TDG enzyme–product complexes generated from substrates including G·U, G·T, G·hmU, G·fC and G·caC. The structures reveal many new features, including key water-mediated enzyme–substrate interactions. Together with nuclear magnetic resonance experiments, the structures demonstrate that TDG releases the excised base from its tight product complex with abasic DNA, contrary to previous reports. Moreover, DNA-free TDG exhibits no significant binding to free nucleobases (U, T, hmU), indicating a Kd >> 10 mM. The structures reveal a solvent-filled channel to the active site, which might facilitate dissociation of the excised base and enable caC excision, which involves solvent-mediated acid catalysis. Dissociation of the excised base allows TDG to bind the beta rather than the alpha anomer of the abasic sugar, which might stabilize the enzyme–product complex.
Collapse
Affiliation(s)
- Shuja S Malik
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Christopher T Coey
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kristen M Varney
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA University of Maryland Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA Center for Biomolecular Therapeutics, Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Edwin Pozharski
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA University of Maryland Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA Center for Biomolecular Therapeutics, Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Alexander C Drohat
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA University of Maryland Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
39
|
Sang PB, Srinath T, Patil AG, Woo EJ, Varshney U. A unique uracil-DNA binding protein of the uracil DNA glycosylase superfamily. Nucleic Acids Res 2015; 43:8452-63. [PMID: 26304551 PMCID: PMC4787834 DOI: 10.1093/nar/gkv854] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/11/2015] [Indexed: 11/19/2022] Open
Abstract
Uracil DNA glycosylases (UDGs) are an important group of DNA repair enzymes, which pioneer the base excision repair pathway by recognizing and excising uracil from DNA. Based on two short conserved sequences (motifs A and B), UDGs have been classified into six families. Here we report a novel UDG, UdgX, from Mycobacterium smegmatis and other organisms. UdgX specifically recognizes uracil in DNA, forms a tight complex stable to sodium dodecyl sulphate, 2-mercaptoethanol, urea and heat treatment, and shows no detectable uracil excision. UdgX shares highest homology to family 4 UDGs possessing Fe-S cluster. UdgX possesses a conserved sequence, KRRIH, which forms a flexible loop playing an important role in its activity. Mutations of H in the KRRIH sequence to S, G, A or Q lead to gain of uracil excision activity in MsmUdgX, establishing it as a novel member of the UDG superfamily. Our observations suggest that UdgX marks the uracil-DNA for its repair by a RecA dependent process. Finally, we observed that the tight binding activity of UdgX is useful in detecting uracils in the genomes.
Collapse
Affiliation(s)
- Pau Biak Sang
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Thiruneelakantan Srinath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Aravind Goud Patil
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Eui-Jeon Woo
- Functional Genomic Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahakro, Yuseongu, Daejeon, South Korea
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| |
Collapse
|
40
|
Hashimoto H, Zhang X, Vertino PM, Cheng X. The Mechanisms of Generation, Recognition, and Erasure of DNA 5-Methylcytosine and Thymine Oxidations. J Biol Chem 2015; 290:20723-20733. [PMID: 26152719 DOI: 10.1074/jbc.r115.656884] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
One of the most fundamental questions in the control of gene expression in mammals is how the patterns of epigenetic modifications of DNA are generated, recognized, and erased. This includes covalent cytosine methylation of DNA and its associated oxidation states. An array of AdoMet-dependent methyltransferases, Fe(II)- and α-ketoglutarate-dependent dioxygenases, base excision glycosylases, and sequence-specific transcription factors is responsible for changing, maintaining, and interpreting the modification status of specific regions of chromatin. This review focuses on recent developments in characterizing the functional and structural links between the modification status of two DNA bases 5-methylcytosine and thymine (5-methyluracil).
Collapse
Affiliation(s)
- Hideharu Hashimoto
- Departments of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, Georgia 30322
| | - Xing Zhang
- Departments of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, Georgia 30322
| | - Paula M Vertino
- Departments of Radiation Oncology, Emory University School of Medicine, Emory University, Atlanta, Georgia 30322; Winship Cancer Institute, Emory University, Atlanta, Georgia 30322
| | - Xiaodong Cheng
- Departments of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, Georgia 30322; Winship Cancer Institute, Emory University, Atlanta, Georgia 30322.
| |
Collapse
|
41
|
Drohat AC, Maiti A. Mechanisms for enzymatic cleavage of the N-glycosidic bond in DNA. Org Biomol Chem 2015; 12:8367-78. [PMID: 25181003 DOI: 10.1039/c4ob01063a] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
DNA glycosylases remove damaged or enzymatically modified nucleobases from DNA, thereby initiating the base excision repair (BER) pathway, which is found in all forms of life. These ubiquitous enzymes promote genomic integrity by initiating repair of mutagenic and/or cytotoxic lesions that arise continuously due to alkylation, deamination, or oxidation of the normal bases in DNA. Glycosylases also perform essential roles in epigenetic regulation of gene expression, by targeting enzymatically-modified forms of the canonical DNA bases. Monofunctional DNA glycosylases hydrolyze the N-glycosidic bond to liberate the target base, while bifunctional glycosylases mediate glycosyl transfer using an amine group of the enzyme, generating a Schiff base intermediate that facilitates their second activity, cleavage of the DNA backbone. Here we review recent advances in understanding the chemical mechanism of monofunctional DNA glycosylases, with an emphasis on how the reactions are influenced by the properties of the nucleobase leaving-group, the moiety that varies across the vast range of substrates targeted by these enzymes.
Collapse
Affiliation(s)
- Alexander C Drohat
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | |
Collapse
|
42
|
Horton JR, Zhang X, Blumenthal RM, Cheng X. Structures of Escherichia coli DNA adenine methyltransferase (Dam) in complex with a non-GATC sequence: potential implications for methylation-independent transcriptional repression. Nucleic Acids Res 2015; 43:4296-308. [PMID: 25845600 PMCID: PMC4417163 DOI: 10.1093/nar/gkv251] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 11/21/2014] [Accepted: 03/11/2015] [Indexed: 12/31/2022] Open
Abstract
DNA adenine methyltransferase (Dam) is widespread and conserved among the γ-proteobacteria. Methylation of the Ade in GATC sequences regulates diverse bacterial cell functions, including gene expression, mismatch repair and chromosome replication. Dam also controls virulence in many pathogenic Gram-negative bacteria. An unexplained and perplexing observation about Escherichia coli Dam (EcoDam) is that there is no obvious relationship between the genes that are transcriptionally responsive to Dam and the promoter-proximal presence of GATC sequences. Here, we demonstrate that EcoDam interacts with a 5-base pair non-cognate sequence distinct from GATC. The crystal structure of a non-cognate complex allowed us to identify a DNA binding element, GTYTA/TARAC (where Y = C/T and R = A/G). This element immediately flanks GATC sites in some Dam-regulated promoters, including the Pap operon which specifies pyelonephritis-associated pili. In addition, Dam interacts with near-cognate GATC sequences (i.e. 3/4-site ATC and GAT). Taken together, these results imply that Dam, in addition to being responsible for GATC methylation, could also function as a methylation-independent transcriptional repressor.
Collapse
Affiliation(s)
- John R Horton
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xing Zhang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
43
|
Meng H, Cao Y, Qin J, Song X, Zhang Q, Shi Y, Cao L. DNA methylation, its mediators and genome integrity. Int J Biol Sci 2015; 11:604-17. [PMID: 25892967 PMCID: PMC4400391 DOI: 10.7150/ijbs.11218] [Citation(s) in RCA: 208] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/02/2015] [Indexed: 12/18/2022] Open
Abstract
DNA methylation regulates many cellular processes, including embryonic development, transcription, chromatin structure, X-chromosome inactivation, genomic imprinting and chromosome stability. DNA methyltransferases establish and maintain the presence of 5-methylcytosine (5mC), and ten-eleven translocation cytosine dioxygenases (TETs) oxidise 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), which can be removed by base excision repair (BER) proteins. Multiple forms of DNA methylation are recognised by methyl-CpG binding proteins (MeCPs), which play vital roles in chromatin-based transcriptional regulation, DNA repair and replication. Accordingly, defects in DNA methylation and its mediators may cause silencing of tumour suppressor genes and misregulation of multiple cell cycles, DNA repair and chromosome stability genes, and hence contribute to genome instability in various human diseases, including cancer. Thus, understanding functional genetic mutations and aberrant expression of these DNA methylation mediators is critical to deciphering the crosstalk between concurrent genetic and epigenetic alterations in specific cancer types and to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Huan Meng
- 1. Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110001, China; ; 2. MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, China
| | - Ying Cao
- 2. MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, China
| | - Jinzhong Qin
- 2. MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, China
| | - Xiaoyu Song
- 1. Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110001, China
| | - Qing Zhang
- 2. MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, China
| | - Yun Shi
- 2. MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, China
| | - Liu Cao
- 1. Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110001, China
| |
Collapse
|
44
|
Schormann N, Ricciardi R, Chattopadhyay D. Uracil-DNA glycosylases-structural and functional perspectives on an essential family of DNA repair enzymes. Protein Sci 2014; 23:1667-85. [PMID: 25252105 DOI: 10.1002/pro.2554] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 09/16/2014] [Indexed: 12/26/2022]
Abstract
Uracil-DNA glycosylases (UDGs) are evolutionarily conserved DNA repair enzymes that initiate the base excision repair pathway and remove uracil from DNA. The UDG superfamily is classified into six families based on their substrate specificity. This review focuses on the family I enzymes since these are the most extensively studied members of the superfamily. The structural basis for substrate specificity and base recognition as well as for DNA binding, nucleotide flipping and catalytic mechanism is discussed in detail. Other topics include the mechanism of lesion search and molecular mimicry through interaction with uracil-DNA glycosylase inhibitors. The latest studies and findings detailing structure and function in the UDG superfamily are presented.
Collapse
Affiliation(s)
- N Schormann
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | | | | |
Collapse
|
45
|
Krokan HE, Sætrom P, Aas PA, Pettersen HS, Kavli B, Slupphaug G. Error-free versus mutagenic processing of genomic uracil—Relevance to cancer. DNA Repair (Amst) 2014; 19:38-47. [DOI: 10.1016/j.dnarep.2014.03.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Çırak Ç, Sert Y, Ucun F. Effect of intermolecular hydrogen bonding, vibrational analysis and molecular structure of a biomolecule: 5-Hydroxymethyluracil. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 127:41-46. [PMID: 24632154 DOI: 10.1016/j.saa.2014.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 01/26/2014] [Accepted: 02/09/2014] [Indexed: 06/03/2023]
Abstract
In the present work, the experimental and theoretical vibrational spectra of 5-hydroxymethyluracil were investigated. The FT-IR (4000-400cm(-1)) spectrum of the molecule in the solid phase was recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared intensities of the title molecule in the ground state were calculated using density functional B3LYP and M06-2X methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data, and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 5-hydroxymethyluracil molecule was also simulated to evaluate the effect of intermolecular hydrogen bonding on its vibrational frequencies. It was observed that the NH stretching modes shifted to lower frequencies, while its in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular NH⋯O hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented.
Collapse
Affiliation(s)
- Çağrı Çırak
- Department of Physics, Faculty of Art & Sciences, Erzincan University, Erzincan, Turkey.
| | - Yusuf Sert
- Department of Physics, Faculty of Art & Sciences, Bozok University, Yozgat, Turkey; Sorgun Vocational School, Bozok University, Yozgat 66100, Turkey
| | - Fatih Ucun
- Department of Physics, Faculty of Art & Sciences, Süleyman Demirel University, Isparta, Turkey
| |
Collapse
|
47
|
Archaeal genome guardians give insights into eukaryotic DNA replication and damage response proteins. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2014; 2014:206735. [PMID: 24701133 PMCID: PMC3950489 DOI: 10.1155/2014/206735] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/27/2013] [Accepted: 11/29/2013] [Indexed: 12/28/2022]
Abstract
As the third domain of life, archaea, like the eukarya and bacteria, must have robust DNA replication and repair complexes to ensure genome fidelity. Archaea moreover display a breadth of unique habitats and characteristics, and structural biologists increasingly appreciate these features. As archaea include extremophiles that can withstand diverse environmental stresses, they provide fundamental systems for understanding enzymes and pathways critical to genome integrity and stress responses. Such archaeal extremophiles provide critical data on the periodic table for life as well as on the biochemical, geochemical, and physical limitations to adaptive strategies allowing organisms to thrive under environmental stress relevant to determining the boundaries for life as we know it. Specifically, archaeal enzyme structures have informed the architecture and mechanisms of key DNA repair proteins and complexes. With added abilities to temperature-trap flexible complexes and reveal core domains of transient and dynamic complexes, these structures provide insights into mechanisms of maintaining genome integrity despite extreme environmental stress. The DNA damage response protein structures noted in this review therefore inform the basis for genome integrity in the face of environmental stress, with implications for all domains of life as well as for biomanufacturing, astrobiology, and medicine.
Collapse
|
48
|
Jobert L, Nilsen H. Regulatory mechanisms of RNA function: emerging roles of DNA repair enzymes. Cell Mol Life Sci 2014; 71:2451-65. [PMID: 24496644 PMCID: PMC4055861 DOI: 10.1007/s00018-014-1562-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/05/2014] [Accepted: 01/10/2014] [Indexed: 12/13/2022]
Abstract
The acquisition of an appropriate set of chemical modifications is required in order to establish correct structure of RNA molecules, and essential for their function. Modification of RNA bases affects RNA maturation, RNA processing, RNA quality control, and protein translation. Some RNA modifications are directly involved in the regulation of these processes. RNA epigenetics is emerging as a mechanism to achieve dynamic regulation of RNA function. Other modifications may prevent or be a signal for degradation. All types of RNA species are subject to processing or degradation, and numerous cellular mechanisms are involved. Unexpectedly, several studies during the last decade have established a connection between DNA and RNA surveillance mechanisms in eukaryotes. Several proteins that respond to DNA damage, either to process or to signal the presence of damaged DNA, have been shown to participate in RNA quality control, turnover or processing. Some enzymes that repair DNA damage may also process modified RNA substrates. In this review, we give an overview of the DNA repair proteins that function in RNA metabolism. We also discuss the roles of two base excision repair enzymes, SMUG1 and APE1, in RNA quality control.
Collapse
Affiliation(s)
- Laure Jobert
- Division of Medicine, Department of Clinical Molecular Biology, Akershus University Hospital, Nordbyhagen, 1478 Lørenskog, Norway
| | - Hilde Nilsen
- Division of Medicine, Department of Clinical Molecular Biology, Akershus University Hospital, Nordbyhagen, 1478 Lørenskog, Norway
- Department of Clinical Molecular Biology, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Blindern, P.O.Box 1171, 0318 Oslo, Norway
| |
Collapse
|
49
|
A short review on the implications of base excision repair pathway for neurons: relevance to neurodegenerative diseases. Mitochondrion 2013; 16:38-49. [PMID: 24220222 DOI: 10.1016/j.mito.2013.10.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/31/2013] [Accepted: 10/31/2013] [Indexed: 12/13/2022]
Abstract
Oxidative DNA damage results from the attack by reactive oxygen and nitrogen species (ROS/RNS) on human genome. This includes base modifications such as oxidized bases, abasic (AP) sites, and single-strand breaks (SSBs), all of which are repaired by the base excision repair (BER) pathway, one among the six known repair pathways. BER-pathway in mammalian cells involves several evolutionarily conserved proteins and is also linked to genome replication and transcription. The BER-pathway enzymes, namely, DNA glycosylases (DGs) and the end-processing proteins such as abasic endonuclease (APE1), form complexes with downstream repair enzymes via protein-protein and DNA-protein interactions. An emerging concept for BER proteins is their involvement in non-canonical functions associated to RNA metabolism, which is opening new interesting perspectives. Various mechanisms that are underlined in maintaining neuronal cell genome integrity are identified, but are inconclusive in providing protection against oxidative damage in neurodegenerative disorders, main emphasis is given towards the role played by the proteins of BER-pathway that is discussed. In addition, mechanisms of action of BER-pathway in nuclear vs. mitochondria as well as the non-canonical functions are discussed in connection to human neurodegenerative diseases.
Collapse
|
50
|
Activity and crystal structure of human thymine DNA glycosylase mutant N140A with 5-carboxylcytosine DNA at low pH. DNA Repair (Amst) 2013; 12:535-40. [PMID: 23680598 DOI: 10.1016/j.dnarep.2013.04.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/04/2013] [Accepted: 04/16/2013] [Indexed: 12/20/2022]
Abstract
The mammalian thymine DNA glycosylase (TDG) excises 5-carboxylcytosine (5caC) when paired with a guanine in a CpG sequence, in addition to mismatched bases. Here we present a complex structure of the human TDG catalytic mutant, asparagine 140 to alanine (N140A), with a 28-base pair DNA containing a G:5caC pair at pH 4.6. TDG interacts with the carboxylate moiety of target nucleotide 5caC using the side chain of asparagine 230 (N230), instead of asparagine 157 (N157) as previously reported. Mutation of either N157 or N230 residues to aspartate has minimal effect on G:5caC activity while significantly reducing activity on G:U substrate. Combination of both the asparagine-to-aspartate mutations (N157D/N230D) resulted in complete loss of activity on G:5caC while retaining measurable activity on G:U, implying that 5caC can adopt alternative conformations (either N157-interacting or N230-interacting) in the TDG active site to interact with either of the two asparagine side chain for 5caC excision.
Collapse
|