1
|
Wang Y, Hess JD, Wang C, Ma L, Luo M, Jossart J, Perry JJ, Kwon D, Wang Z, Pei X, Shen C, Wang Y, Zhou M, Yin H, Horne D, Nussenzweig A, Zheng L, Shen B. Discovery and Characterization of Small Molecule Inhibitors Targeting Exonuclease 1 for Homologous Recombination-Deficient Cancer Therapy. ACS Chem Biol 2025. [PMID: 40378357 DOI: 10.1021/acschembio.5c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Human exonuclease 1 (EXO1), a member of the structure-specific nuclease family, plays a critical role in maintaining genome stability by processing DNA double-strand breaks (DSBs), nicks, and replication intermediates during DNA replication and repair. As its exonuclease activity is essential for homologous recombination (HR) and replication fork processing, EXO1 has emerged as a compelling therapeutic target, especially in cancers marked by heightened DNA damage and replication stress. Through high-throughput screening of 45,000 compounds, we identified seven distinct chemical scaffolds that demonstrated effective and selective inhibition of EXO1. Representative compounds from two of the most potent scaffolds, C200 and F684, underwent a comprehensive docking analysis and subsequent site-directed mutagenesis studies to evaluate their binding mechanisms. Biochemical assays further validated their potent and selective inhibition of the EXO1 nuclease activity. Tumor cell profiling experiments revealed that these inhibitors exploit synthetic lethality in BRCA1-deficient cells, emphasizing their specificity and therapeutic potential for targeting genetically HR-deficient (HRD) cancers driven by deleterious mutations in HR genes like BRCA1/2. Mechanistically, EXO1 inhibition suppressed DNA end resection, stimulated the accumulation of DNA double-strand breaks, and triggered S-phase PARylation, effectively disrupting DNA repair pathways that are essential for cancer cell survival. These findings establish EXO1 inhibitors as promising candidates for the treatment of HRD cancers and lay the groundwork for the further optimization and development of these compounds as targeted therapeutics.
Collapse
Affiliation(s)
- Yixing Wang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Jessica D Hess
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Chen Wang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Lingzi Ma
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Megan Luo
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Jennifer Jossart
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - John J Perry
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - David Kwon
- Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Zhe Wang
- Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Xinyu Pei
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Changxian Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Yingying Wang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Mian Zhou
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Holly Yin
- Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute NIH, Bethesda, Maryland 20892, United States
| | - Li Zheng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| |
Collapse
|
2
|
Mentani A, Maresca M, Shiriaeva A. Prime Editing: Mechanistic Insights and DNA Repair Modulation. Cells 2025; 14:277. [PMID: 39996750 PMCID: PMC11853414 DOI: 10.3390/cells14040277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/15/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
Prime editing is a genome editing technique that allows precise modifications of cellular DNA without relying on donor DNA templates. Recently, several different prime editor proteins have been published in the literature, relying on single- or double-strand breaks. When prime editing occurs, the DNA undergoes one of several DNA repair pathways, and these processes can be modulated with the use of inhibitors. Firstly, this review provides an overview of several DNA repair mechanisms and their modulation by known inhibitors. In addition, we summarize different published prime editors and provide a comprehensive overview of associated DNA repair mechanisms. Finally, we discuss the delivery and safety aspects of prime editing.
Collapse
Affiliation(s)
- Astrid Mentani
- Genome Engineering, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, 43183 Mölndal, Sweden;
| | | | - Anna Shiriaeva
- Genome Engineering, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, 43183 Mölndal, Sweden;
| |
Collapse
|
3
|
Hayward BE, Kim GY, Miller CJ, McCann C, Lowery MG, Wood RD, Usdin K. Repeat expansion in a fragile X model is independent of double strand break repair mediated by Pol θ, RAD52, RAD54 or RAD54B. Sci Rep 2025; 15:5033. [PMID: 39934227 PMCID: PMC11814403 DOI: 10.1038/s41598-025-87541-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
Microsatellite instability is responsible for the human repeat expansion diseases (REDs). The mutagenic process differs from classical cancer-associated microsatellite instability (MSI) in that it requires the mismatch repair proteins that normally protect against MSI. LIG4, an enzyme essential for non-homologous end-joining (NHEJ), the major pathway for double-strand break repair (DSBR) in mammalian cells, protects against expansion in mouse models. Thus, NHEJ may compete with the expansion pathway for access to a common intermediate. This raises the possibility that expansion involves an NHEJ-independent form of DSBR. Pol θ, a polymerase involved in the theta-mediated end joining (TMEJ) DSBR pathway, has been proposed to play a role in repeat expansion. Here we examine the effect of the loss of Pol θ on expansion in FXD mouse embryonic stem cells (mESCs), along with the effects of mutations in Rad52, Rad54l and Rad54b, genes important for multiple DSBR pathways. None of these mutations significantly affected repeat expansion. These observations put major constraints on what pathways are likely to drive expansion. Together with our previous demonstration of the protective effect of nucleases like EXO1 and FAN1, and the importance of Pol β, they suggest a plausible model for late steps in the expansion process.
Collapse
Affiliation(s)
- Bruce E Hayward
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Geum-Yi Kim
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Carson J Miller
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cai McCann
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Megan G Lowery
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, PO Box 301429, Unit 1951, Houston, TX, 77230, USA
| | - Richard D Wood
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, PO Box 301429, Unit 1951, Houston, TX, 77230, USA
| | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
- National Institutes of Health, 8 Center Drive MSC 0830, Building 8, Room 2A19, Bethesda, MD, USA.
| |
Collapse
|
4
|
Zhao K, Wang J, Wang Z, Wang M, Li C, Xu Z, Zhan Q, Guo F, Cheng X, Xia Y. Hepatitis B virus hijacks MRE11-RAD50-NBS1 complex to form its minichromosome. PLoS Pathog 2025; 21:e1012824. [PMID: 39752632 PMCID: PMC11734937 DOI: 10.1371/journal.ppat.1012824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/15/2025] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Chronic hepatitis B virus (HBV) infection can significantly increase the incidence of cirrhosis and liver cancer, and there is no curative treatment. The persistence of HBV covalently closed circular DNA (cccDNA) is the major obstacle of antiviral treatments. cccDNA is formed through repairing viral partially double-stranded relaxed circular DNA (rcDNA) by varies host factors. However, the detailed mechanisms are not well characterized. To dissect the biogenesis of cccDNA, we took advantage of an in vitro rcDNA repair system to precipitate host factors interacting with rcDNA and identified co-precipitated proteins by mass spectrometry. Results revealed the MRE11-RAD50-NBS1 (MRN) complex as a potential factor. Transiently or stably knockdown of MRE11, RAD50 or NBS1 in hepatocytes before HBV infection significantly decreased viral markers, including cccDNA, while reconstitution reversed the effect. Chromatin immunoprecipitation assay further validated the interaction of MRN complex and HBV DNA. However, MRN knockdown after HBV infection showed no effect on viral replication, which indicated that MRN complex inhibited the formation of cccDNA without affecting its stability or transcriptional activity. Interestingly, Mirin, a MRN complex inhibitor which can inhibit the exonuclease activity of MRE11 and MRN-dependent activation of ATM, but not ATM kinase inhibitor KU55933, could decrease cccDNA level. Likewise, the MRE11 endonuclease activity inhibitor PFM01 treatment decreased cccDNA. MRE11 nuclease assays indicated that rcDNA is a substrate of MRE11. Furthermore, the inhibition of ATR-CHK1 pathway, which is known to be involved in cccDNA formation, impaired the effect of MRN complex on cccDNA. Similarly, inhibition of MRE11 endonuclease activity mitigated the effect of ATR-CHK1 pathway on cccDNA. These findings indicate that MRN complex cooperates with ATR-CHK1 pathway to regulate the formation of HBV cccDNA. In summary, we identified host factors, specifically the MRN complex, regulating cccDNA formation during HBV infection. These findings provide insights into how HBV hijacks host enzymes to establish chronic infection and reveal new therapeutic opportunities.
Collapse
Affiliation(s)
- Kaitao Zhao
- State Key Laboratory of Virology and Biosafety and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Jingjing Wang
- State Key Laboratory of Virology and Biosafety and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Zichen Wang
- State Key Laboratory of Virology and Biosafety and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Mengfei Wang
- State Key Laboratory of Virology and Biosafety and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Chen Li
- State Key Laboratory of Virology and Biosafety and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Zaichao Xu
- State Key Laboratory of Virology and Biosafety and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Qiong Zhan
- State Key Laboratory of Virology and Biosafety and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Fangteng Guo
- State Key Laboratory of Virology and Biosafety and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Xiaoming Cheng
- State Key Laboratory of Virology and Biosafety and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China
- Wuhan University Center for Pathology and Molecular Diagnostics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Yuchen Xia
- State Key Laboratory of Virology and Biosafety and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
- Pingyuan Laboratory, Henan, China
| |
Collapse
|
5
|
Trost H, Lopezcolorado FW, Merkell A, Stark JM. Functions of PMS2 and MLH1 important for regulation of divergent repeat-mediated deletions. DNA Repair (Amst) 2025; 145:103791. [PMID: 39615226 DOI: 10.1016/j.dnarep.2024.103791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 01/25/2025]
Abstract
Repeat-mediated deletions (RMDs) are a type of deletion rearrangement that utilizes two repetitive elements to bridge a DNA double-strand break (DSB) that leads to loss of the intervening sequence and one of the repeats. Sequence divergence between repeats causes RMD suppression and indeed this divergence must be resolved in the RMD products. The mismatch repair factor, MLH1, was shown to be critical for both RMD suppression and a polarity of sequence divergence resolution in RMDs. Here, we sought to study the interrelationship between these two aspects of RMD regulation (i.e., RMD suppression and polar divergence resolution), by examining several mutants of MLH1 and its binding partner PMS2. To begin with, we show that PMS2 is also critical for both RMD suppression and polar resolution of sequence divergence in RMD products. Then, with six mutants of the MLH1-PMS2 heterodimer, we found several different patterns: three mutants showed defects in both functions, one mutant showed loss of RMD suppression but not polar divergence resolution, whereas another mutant showed the opposite, and finally one mutant showed loss of RMD suppression but had a complex effect on polar divergence resolution. These findings indicate that RMD suppression vs. polar resolution of sequence divergence are distinct functions of MLH1-PMS2.
Collapse
Affiliation(s)
- Hannah Trost
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | - Arianna Merkell
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
6
|
Collingwood BW, Witte SJ, Manhart CM. Action-At-A-Distance in DNA Mismatch Repair: Mechanistic Insights and Models for How DNA and Repair Proteins Facilitate Long-Range Communication. Biomolecules 2024; 14:1442. [PMID: 39595618 PMCID: PMC11592386 DOI: 10.3390/biom14111442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Many DNA metabolic pathways, including DNA repair, require the transmission of signals across long stretches of DNA or between DNA molecules. Solutions to this signaling challenge involve various mechanisms: protein factors can travel between these sites, loop DNA between sites, or form oligomers that bridge the spatial gaps. This review provides an overview of how these paradigms have been used to explain DNA mismatch repair, which involves several steps that require action-at-a-distance. Here, we describe these models in detail and how current data fit into these descriptions. We also outline regulation steps that remain unanswered in how the action is communicated across long distances along a DNA contour in DNA mismatch repair.
Collapse
Affiliation(s)
| | | | - Carol M. Manhart
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA; (B.W.C.); (S.J.W.)
| |
Collapse
|
7
|
Trost H, Lopezcolorado FW, Merkell A, Stark JM. Functions of PMS2 and MLH1 important for regulation of divergent repeat-mediated deletions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606388. [PMID: 39149360 PMCID: PMC11326157 DOI: 10.1101/2024.08.05.606388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Repeat-mediated deletions (RMDs) are a type of deletion rearrangement that utilizes two repetitive elements to bridge a DNA double-strand break (DSB) that leads to loss of the intervening sequence and one of the repeats. Sequence divergence between repeats causes RMD suppression and indeed this divergence must be resolved in the RMD products. The mismatch repair factor, MLH1, was shown to be critical for both RMD suppression and a polarity of sequence divergence resolution in RMDs. Here, we sought to study the interrelationship between these two aspects of RMD regulation (i.e., RMD suppression and polar divergence resolution), by examining several mutants of MLH1 and its binding partner PMS2. To begin with, we show that PMS2 is also critical for both RMD suppression and polar resolution of sequence divergence in RMD products. Then, with six mutants of the MLH1-PMS2 heterodimer, we found several different patterns: three mutants showed defects in both functions, one mutant showed loss of RMD suppression but not polar divergence resolution, whereas another mutant showed the opposite, and finally one mutant showed loss of RMD suppression but had a complex effect on polar divergence resolution. These findings indicate that RMD suppression vs. polar resolution of sequence divergence are distinct functions of MLH1-PMS2.
Collapse
Affiliation(s)
- Hannah Trost
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | - Felicia Wednesday Lopezcolorado
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | - Arianna Merkell
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | - Jeremy M. Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| |
Collapse
|
8
|
Kadyrova LY, Mieczkowski PA, Kadyrov FA. MutLα suppresses error-prone DNA mismatch repair and preferentially protects noncoding DNA from mutations. J Biol Chem 2024; 300:107406. [PMID: 38782208 PMCID: PMC11231602 DOI: 10.1016/j.jbc.2024.107406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
The DNA mismatch repair (MMR) system promotes genome stability and protects humans from certain types of cancer. Its primary function is the correction of DNA polymerase errors. MutLα is an important eukaryotic MMR factor. We have examined the contributions of MutLα to maintaining genome stability. We show here that loss of MutLα in yeast increases the genome-wide mutation rate by ∼130-fold and generates a genome-wide mutation spectrum that consists of small indels and base substitutions. We also show that loss of yeast MutLα leads to error-prone MMR that produces T > C base substitutions in 5'-ATA-3' sequences. In agreement with this finding, our examination of human whole-genome DNA sequencing data has revealed that loss of MutLα in induced pluripotent stem cells triggers error-prone MMR that leads to the formation of T > C mutations in 5'-NTN-3' sequences. Our further analysis has shown that MutLα-independent MMR plays a role in suppressing base substitutions in N3 homopolymeric runs. In addition, we describe that MutLα preferentially protects noncoding DNA from mutations. Our study defines the contributions of MutLα-dependent and independent mechanisms to genome-wide MMR.
Collapse
Affiliation(s)
- Lyudmila Y Kadyrova
- Division of Biochemistry and Molecular Biology, Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Piotr A Mieczkowski
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Farid A Kadyrov
- Division of Biochemistry and Molecular Biology, Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, Illinois, USA.
| |
Collapse
|
9
|
Rona G, Miwatani-Minter B, Zhang Q, Goldberg HV, Kerzhnerman MA, Howard JB, Simoneschi D, Lane E, Hobbs JW, Sassani E, Wang AA, Keegan S, Laverty DJ, Piett CG, Pongor LS, Xu ML, Andrade J, Thomas A, Sicinski P, Askenazi M, Ueberheide B, Fenyö D, Nagel ZD, Pagano M. CDK-independent role of D-type cyclins in regulating DNA mismatch repair. Mol Cell 2024; 84:1224-1242.e13. [PMID: 38458201 PMCID: PMC10997477 DOI: 10.1016/j.molcel.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/04/2024] [Accepted: 02/09/2024] [Indexed: 03/10/2024]
Abstract
Although mismatch repair (MMR) is essential for correcting DNA replication errors, it can also recognize other lesions, such as oxidized bases. In G0 and G1, MMR is kept in check through unknown mechanisms as it is error-prone during these cell cycle phases. We show that in mammalian cells, D-type cyclins are recruited to sites of oxidative DNA damage in a PCNA- and p21-dependent manner. D-type cyclins inhibit the proteasomal degradation of p21, which competes with MMR proteins for binding to PCNA, thereby inhibiting MMR. The ability of D-type cyclins to limit MMR is CDK4- and CDK6-independent and is conserved in G0 and G1. At the G1/S transition, the timely, cullin-RING ubiquitin ligase (CRL)-dependent degradation of D-type cyclins and p21 enables MMR activity to efficiently repair DNA replication errors. Persistent expression of D-type cyclins during S-phase inhibits the binding of MMR proteins to PCNA, increases the mutational burden, and promotes microsatellite instability.
Collapse
Affiliation(s)
- Gergely Rona
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Bearach Miwatani-Minter
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Qingyue Zhang
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Hailey V Goldberg
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Marc A Kerzhnerman
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jesse B Howard
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Daniele Simoneschi
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ethan Lane
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - John W Hobbs
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Elizabeth Sassani
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Andrew A Wang
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Sarah Keegan
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Daniel J Laverty
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Cortt G Piett
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Lorinc S Pongor
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Cancer Genomics and Epigenetics Core Group, Hungarian Centre of Excellence for Molecular Medicine, Szeged 6728, Hungary
| | - Miranda Li Xu
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Joshua Andrade
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland
| | - Manor Askenazi
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Biomedical Hosting LLC, 33 Lewis Avenue, Arlington, MA 02474, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - David Fenyö
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Zachary D Nagel
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
10
|
Kadyrova LY, Mieczkowski PA, Kadyrov FA. MutLα suppresses error-prone DNA mismatch repair and preferentially protects noncoding DNA from mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587563. [PMID: 38617288 PMCID: PMC11014525 DOI: 10.1101/2024.04.01.587563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The DNA mismatch repair (MMR) system promotes genome stability and protects humans from certain types of cancer. Its primary function is the correction of DNA polymerase errors. MutLα is an important eukaryotic MMR factor. We have examined the contributions of MutLα to maintaining genome stability. We show here that loss of MutLα in yeast increases the genome-wide mutation rate by ~130-fold and generates a genome-wide mutation spectrum that consists of small indels and base substitutions. We also show that loss of yeast MutLα leads to error-prone MMR that produces T>C base substitutions in 5'-ATA-3' sequences. In agreement with this finding, our examination of human whole genome DNA sequencing data has revealed that loss of MutLα in induced pluripotent stem cells triggers error-prone MMR that leads to the formation of T>C mutations in 5'-NTN-3' sequences. Our further analysis has shown that MutLα-independent MMR plays a role in suppressing base substitutions in N3 homopolymeric runs. In addition, we describe that MutLα preferentially defends noncoding DNA from mutations. Our study defines the contributions of MutLα-dependent and independent mechanisms to genome-wide MMR.
Collapse
Affiliation(s)
- Lyudmila Y. Kadyrova
- Division of Biochemistry and Molecular Biology, Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Piotr A. Mieczkowski
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Farid A. Kadyrov
- Division of Biochemistry and Molecular Biology, Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| |
Collapse
|
11
|
Rona G, Miwatani-Minter B, Zhang Q, Goldberg HV, Kerzhnerman MA, Howard JB, Simoneschi D, Lane E, Hobbs JW, Sassani E, Wang AA, Keegan S, Laverty DJ, Piett CG, Pongor LS, Xu ML, Andrade J, Thomas A, Sicinski P, Askenazi M, Ueberheide B, Fenyö D, Nagel ZD, Pagano M. D-type cyclins regulate DNA mismatch repair in the G1 and S phases of the cell cycle, maintaining genome stability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575420. [PMID: 38260436 PMCID: PMC10802603 DOI: 10.1101/2024.01.12.575420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The large majority of oxidative DNA lesions occurring in the G1 phase of the cell cycle are repaired by base excision repair (BER) rather than mismatch repair (MMR) to avoid long resections that can lead to genomic instability and cell death. However, the molecular mechanisms dictating pathway choice between MMR and BER have remained unknown. Here, we show that, during G1, D-type cyclins are recruited to sites of oxidative DNA damage in a PCNA- and p21-dependent manner. D-type cyclins shield p21 from its two ubiquitin ligases CRL1SKP2 and CRL4CDT2 in a CDK4/6-independent manner. In turn, p21 competes through its PCNA-interacting protein degron with MMR components for their binding to PCNA. This inhibits MMR while not affecting BER. At the G1/S transition, the CRL4AMBRA1-dependent degradation of D-type cyclins renders p21 susceptible to proteolysis. These timely degradation events allow the proper binding of MMR proteins to PCNA, enabling the repair of DNA replication errors. Persistent expression of cyclin D1 during S-phase increases the mutational burden and promotes microsatellite instability. Thus, the expression of D-type cyclins inhibits MMR in G1, whereas their degradation is necessary for proper MMR function in S.
Collapse
Affiliation(s)
- Gergely Rona
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Bearach Miwatani-Minter
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Qingyue Zhang
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Hailey V. Goldberg
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Marc A. Kerzhnerman
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jesse B. Howard
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Daniele Simoneschi
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ethan Lane
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - John W. Hobbs
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Elizabeth Sassani
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Andrew A. Wang
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Sarah Keegan
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | | | - Cortt G. Piett
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Lorinc S. Pongor
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Hungarian Centre of Excellence for Molecular Medicine, University of Szeged, Szeged, H-6728, Hungary
| | - Miranda Li Xu
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Joshua Andrade
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
- Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland
| | - Manor Askenazi
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Biomedical Hosting LLC, 33 Lewis Avenue, Arlington, MA 02474, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - David Fenyö
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Zachary D. Nagel
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
12
|
Rajagopal S, Donaldson J, Flower M, Hensman Moss DJ, Tabrizi SJ. Genetic modifiers of repeat expansion disorders. Emerg Top Life Sci 2023; 7:325-337. [PMID: 37861103 PMCID: PMC10754329 DOI: 10.1042/etls20230015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/20/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Repeat expansion disorders (REDs) are monogenic diseases caused by a sequence of repetitive DNA expanding above a pathogenic threshold. A common feature of the REDs is a strong genotype-phenotype correlation in which a major determinant of age at onset (AAO) and disease progression is the length of the inherited repeat tract. Over a disease-gene carrier's life, the length of the repeat can expand in somatic cells, through the process of somatic expansion which is hypothesised to drive disease progression. Despite being monogenic, individual REDs are phenotypically variable, and exploring what genetic modifying factors drive this phenotypic variability has illuminated key pathogenic mechanisms that are common to this group of diseases. Disease phenotypes are affected by the cognate gene in which the expansion is found, the location of the repeat sequence in coding or non-coding regions and by the presence of repeat sequence interruptions. Human genetic data, mouse models and in vitro models have implicated the disease-modifying effect of DNA repair pathways via the mechanisms of somatic mutation of the repeat tract. As such, developing an understanding of these pathways in the context of expanded repeats could lead to future disease-modifying therapies for REDs.
Collapse
Affiliation(s)
- Sangeerthana Rajagopal
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, U.K
- UK Dementia Research Institute, University College London, London WCC1N 3BG, U.K
| | - Jasmine Donaldson
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, U.K
- UK Dementia Research Institute, University College London, London WCC1N 3BG, U.K
| | - Michael Flower
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, U.K
- UK Dementia Research Institute, University College London, London WCC1N 3BG, U.K
| | - Davina J Hensman Moss
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, U.K
- UK Dementia Research Institute, University College London, London WCC1N 3BG, U.K
- St George's University of London, London SW17 0RE, U.K
| | - Sarah J Tabrizi
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, U.K
- UK Dementia Research Institute, University College London, London WCC1N 3BG, U.K
| |
Collapse
|
13
|
Zhao Y, Hou K, Li Y, Hao S, Liu Y, Na Y, Li C, Cui J, Xu X, Wu X, Wang H. Human HELQ regulates DNA end resection at DNA double-strand breaks and stalled replication forks. Nucleic Acids Res 2023; 51:12207-12223. [PMID: 37897354 PMCID: PMC10711563 DOI: 10.1093/nar/gkad940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/15/2023] [Accepted: 10/11/2023] [Indexed: 10/30/2023] Open
Abstract
Following a DNA double strand break (DSB), several nucleases and helicases coordinate to generate single-stranded DNA (ssDNA) with 3' free ends, facilitating precise DNA repair by homologous recombination (HR). The same nucleases can act on stalled replication forks, promoting nascent DNA degradation and fork instability. Interestingly, some HR factors, such as CtIP and BRCA1, have opposite regulatory effects on the two processes, promoting end resection at DSB but inhibiting the degradation of nascent DNA on stalled forks. However, the reason why nuclease actions are regulated by different mechanisms in two DNA metabolism is poorly understood. We show that human HELQ acts as a DNA end resection regulator, with opposing activities on DNA end resection at DSBs and on stalled forks as seen for other regulators. Mechanistically, HELQ helicase activity is required for EXO1-mediated DSB end resection, while ssDNA-binding capacity of HELQ is required for its recruitment to stalled forks, facilitating fork protection and preventing chromosome aberrations caused by replication stress. Here, HELQ synergizes with CtIP but not BRCA1 or BRCA2 to protect stalled forks. These findings reveal an unanticipated role of HELQ in regulating DNA end resection at DSB and stalled forks, which is important for maintaining genome stability.
Collapse
Affiliation(s)
- Yuqin Zhao
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Kaiping Hou
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Youhang Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Shuailin Hao
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yu Liu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yinan Na
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Chao Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jian Cui
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, China Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Xiaohua Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hailong Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
14
|
Gall-Duncan T, Luo J, Jurkovic CM, Fischer LA, Fujita K, Deshmukh AL, Harding RJ, Tran S, Mehkary M, Li V, Leib DE, Chen R, Tanaka H, Mason AG, Lévesque D, Khan M, Razzaghi M, Prasolava T, Lanni S, Sato N, Caron MC, Panigrahi GB, Wang P, Lau R, Castel AL, Masson JY, Tippett L, Turner C, Spies M, La Spada AR, Campos EI, Curtis MA, Boisvert FM, Faull RLM, Davidson BL, Nakamori M, Okazawa H, Wold MS, Pearson CE. Antagonistic roles of canonical and Alternative-RPA in disease-associated tandem CAG repeat instability. Cell 2023; 186:4898-4919.e25. [PMID: 37827155 PMCID: PMC11209935 DOI: 10.1016/j.cell.2023.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 06/30/2023] [Accepted: 09/09/2023] [Indexed: 10/14/2023]
Abstract
Expansions of repeat DNA tracts cause >70 diseases, and ongoing expansions in brains exacerbate disease. During expansion mutations, single-stranded DNAs (ssDNAs) form slipped-DNAs. We find the ssDNA-binding complexes canonical replication protein A (RPA1, RPA2, and RPA3) and Alternative-RPA (RPA1, RPA3, and primate-specific RPA4) are upregulated in Huntington disease and spinocerebellar ataxia type 1 (SCA1) patient brains. Protein interactomes of RPA and Alt-RPA reveal unique and shared partners, including modifiers of CAG instability and disease presentation. RPA enhances in vitro melting, FAN1 excision, and repair of slipped-CAGs and protects against CAG expansions in human cells. RPA overexpression in SCA1 mouse brains ablates expansions, coincident with decreased ATXN1 aggregation, reduced brain DNA damage, improved neuron morphology, and rescued motor phenotypes. In contrast, Alt-RPA inhibits melting, FAN1 excision, and repair of slipped-CAGs and promotes CAG expansions. These findings suggest a functional interplay between the two RPAs where Alt-RPA may antagonistically offset RPA's suppression of disease-associated repeat expansions, which may extend to other DNA processes.
Collapse
Affiliation(s)
- Terence Gall-Duncan
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jennifer Luo
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | - Laura A Fischer
- Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyota Fujita
- Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Amit L Deshmukh
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rachel J Harding
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada; Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Stephanie Tran
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Mustafa Mehkary
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Vanessa Li
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - David E Leib
- Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA
| | - Ran Chen
- Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hikari Tanaka
- Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Amanda G Mason
- Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Dominique Lévesque
- Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mahreen Khan
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Mortezaali Razzaghi
- Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Tanya Prasolava
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stella Lanni
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Nozomu Sato
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Marie-Christine Caron
- CHU de Québec-Université Laval, Oncology Division, Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec, QC, Canada
| | - Gagan B Panigrahi
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Peixiang Wang
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rachel Lau
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Jean-Yves Masson
- CHU de Québec-Université Laval, Oncology Division, Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec, QC, Canada
| | - Lynette Tippett
- School of Psychology, University of Auckland, Auckland, New Zealand; University Research Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Clinton Turner
- Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Maria Spies
- Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Albert R La Spada
- Pathology & Laboratory Medicine, Neurology, and Biological Chemistry, University of California, Irvine School of Medicine, Irvine, CA, USA; Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA; Center for Neurotherapeutics, University of California, Irvine, Irvine, CA 92697, USA
| | - Eric I Campos
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Maurice A Curtis
- University Research Centre for Brain Research, University of Auckland, Auckland, New Zealand; Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | | | - Richard L M Faull
- University Research Centre for Brain Research, University of Auckland, Auckland, New Zealand; Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Beverly L Davidson
- Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA
| | - Masayuki Nakamori
- Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hitoshi Okazawa
- Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Marc S Wold
- Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Christopher E Pearson
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
15
|
Oh JM, Kang Y, Park J, Sung Y, Kim D, Seo Y, Lee E, Ra J, Amarsanaa E, Park YU, Lee S, Hwang J, Kim H, Schärer O, Cho S, Lee C, Takata KI, Lee J, Myung K. MSH2-MSH3 promotes DNA end resection during homologous recombination and blocks polymerase theta-mediated end-joining through interaction with SMARCAD1 and EXO1. Nucleic Acids Res 2023; 51:5584-5602. [PMID: 37140056 PMCID: PMC10287916 DOI: 10.1093/nar/gkad308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 04/04/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023] Open
Abstract
DNA double-strand break (DSB) repair via homologous recombination is initiated by end resection. The extent of DNA end resection determines the choice of the DSB repair pathway. Nucleases for end resection have been extensively studied. However, it is still unclear how the potential DNA structures generated by the initial short resection by MRE11-RAD50-NBS1 are recognized and recruit proteins, such as EXO1, to DSB sites to facilitate long-range resection. We found that the MSH2-MSH3 mismatch repair complex is recruited to DSB sites through interaction with the chromatin remodeling protein SMARCAD1. MSH2-MSH3 facilitates the recruitment of EXO1 for long-range resection and enhances its enzymatic activity. MSH2-MSH3 also inhibits access of POLθ, which promotes polymerase theta-mediated end-joining (TMEJ). Collectively, we present a direct role of MSH2-MSH3 in the initial stages of DSB repair by promoting end resection and influencing the DSB repair pathway by favoring homologous recombination over TMEJ.
Collapse
Affiliation(s)
- Jung-Min Oh
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yujin Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Jumi Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Yubin Sung
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Dayoung Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Yuri Seo
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Eun A Lee
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Jae Sun Ra
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Enkhzul Amarsanaa
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Young-Un Park
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Seon Young Lee
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Jung Me Hwang
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Hongtae Kim
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Orlando Schärer
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Seung Woo Cho
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Changwook Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Kei-ichi Takata
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Ja Yil Lee
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| |
Collapse
|
16
|
Kadyrova LY, Mieczkowski PA, Kadyrov FA. Genome-wide contributions of the MutSα- and MutSβ-dependent DNA mismatch repair pathways to the maintenance of genetic stability in S. cerevisiae. J Biol Chem 2023; 299:104705. [PMID: 37059180 DOI: 10.1016/j.jbc.2023.104705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/16/2023] Open
Abstract
The DNA mismatch repair (MMR) system is a major DNA repair system that suppresses inherited and sporadic cancers in humans. In eukaryotes the MutSα-dependent and MutSβ-dependent MMR pathways correct DNA polymerase errors. Here, we investigated these two pathways on a whole-genome level in S. cerevisiae. We found that inactivation of MutSα-dependent MMR by deletion of the MSH6 gene increases the genome-wide mutation rate by ∼17-fold, and loss of MutSβ-dependent MMR via deletion of MSH3 elevates the genome-wide mutation rate by ∼4-fold. We also found that MutSα-dependent MMR does not show a preference for protecting coding or noncoding DNA from mutations, whereas MutSβ-dependent MMR preferentially protects noncoding DNA from mutations. The most frequent mutations in the msh6Δ strain are C>T transitions, whereas 1-6-bp deletions are the most common genetic alterations in the msh3Δ strain. Strikingly, MutSα-dependent MMR is more important than MutSβ-dependent MMR for protection from 1-bp insertions, while MutSβ-dependent MMR has a more critical role in the defense against 1-bp deletions and 2-6-bp indels. We also determined that a mutational signature of yeast MSH6 loss is similar to mutational signatures of human MMR deficiency. Furthermore, our analysis showed that compared to other 5'-NCN-3' trinucleotides, 5'-GCA-3' trinucleotides are at the highest risk of accumulating C>T transitions at the central position in the msh6Δ cells and that the presence of a G/A base at the -1 position is important for the efficient MutSα-dependent suppression of C>T transitions. Our results highlight key differences between the roles of the MutSα-dependent and MutSβ-dependent MMR pathways.
Collapse
Affiliation(s)
- Lyudmila Y Kadyrova
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Piotr A Mieczkowski
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Farid A Kadyrov
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA.
| |
Collapse
|
17
|
Klassen R, Gangavarapu V, Johnson RE, Prakash L, Prakash S. Mismatch repair operates at the replication fork in direct competition with mismatch extension by DNA polymerase δ. J Biol Chem 2023; 299:104598. [PMID: 36898578 PMCID: PMC10124943 DOI: 10.1016/j.jbc.2023.104598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
DNA mismatch repair (MMR) in eukaryotes is believed to occur post-replicatively, wherein nicks or gaps in the nascent DNA strand are suggested to serve as strand discrimination signals. However, how such signals are generated in the nascent leading strand has remained unclear. Here we examine the alternative possibility that MMR occurs in conjunction with the replication fork. To this end, we utilize mutations in the PCNA interacting peptide (PIP) domain of the Pol3 or Pol32 subunit of DNA polymerase δ (Polδ) and show that these pip mutations suppress the greatly elevated mutagenesis in yeast strains harboring the pol3-01 mutation defective in Polδ proofreading activity. And strikingly, they suppress the synthetic lethality of pol3-01 pol2-4 double mutant strains, which arises from the vastly enhanced mutability due to defects in the proofreading functions of both Polδ and Polε. Our finding that suppression of elevated mutagenesis in pol3-01 by the Polδ pip mutations requires intact MMR supports the conclusion that MMR operates at the replication fork in direct competition with other mismatch removal processes and with extension of synthesis from the mispair by Polδ. Furthermore, the evidence that Polδ pip mutations eliminate almost all the mutability of pol2-4 msh2Δ or pol3-01 pol2-4 adds strong support for a major role of Polδ in replication of both the leading and lagging DNA strands.
Collapse
Affiliation(s)
- Roland Klassen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Venkat Gangavarapu
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Robert E Johnson
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Louise Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Satya Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
18
|
Gioia M, Payero L, Salim S, Fajish V. G, Farnaz AF, Pannafino G, Chen JJ, Ajith VP, Momoh S, Scotland M, Raghavan V, Manhart CM, Shinohara A, Nishant KT, Alani E. Exo1 protects DNA nicks from ligation to promote crossover formation during meiosis. PLoS Biol 2023; 21:e3002085. [PMID: 37079643 PMCID: PMC10153752 DOI: 10.1371/journal.pbio.3002085] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/02/2023] [Accepted: 03/17/2023] [Indexed: 04/21/2023] Open
Abstract
In most sexually reproducing organisms crossing over between chromosome homologs during meiosis is essential to produce haploid gametes. Most crossovers that form in meiosis in budding yeast result from the biased resolution of double Holliday junction (dHJ) intermediates. This dHJ resolution step involves the actions of Rad2/XPG family nuclease Exo1 and the Mlh1-Mlh3 mismatch repair endonuclease. Here, we provide genetic evidence in baker's yeast that Exo1 promotes meiotic crossing over by protecting DNA nicks from ligation. We found that structural elements in Exo1 that interact with DNA, such as those required for the bending of DNA during nick/flap recognition, are critical for its role in crossing over. Consistent with these observations, meiotic expression of the Rad2/XPG family member Rad27 partially rescued the crossover defect in exo1 null mutants, and meiotic overexpression of Cdc9 ligase reduced the crossover levels of exo1 DNA-binding mutants to levels that approached the exo1 null. In addition, our work identified a role for Exo1 in crossover interference. Together, these studies provide experimental evidence for Exo1-protected nicks being critical for the formation of meiotic crossovers and their distribution.
Collapse
Affiliation(s)
- Michael Gioia
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Lisette Payero
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Sagar Salim
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum, India
| | - Ghanim Fajish V.
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Amamah F. Farnaz
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum, India
| | - Gianno Pannafino
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Jun Jie Chen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - V. P. Ajith
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum, India
| | - Sherikat Momoh
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Michelle Scotland
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Vandana Raghavan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Carol M. Manhart
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - K. T. Nishant
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum, India
- Center for High-Performance Computing, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum, India
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
19
|
Sible E, Attaway M, Fiorica G, Michel G, Chaudhuri J, Vuong BQ. Ataxia Telangiectasia Mutated and MSH2 Control Blunt DNA End Joining in Ig Class Switch Recombination. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:369-376. [PMID: 36603026 PMCID: PMC9915862 DOI: 10.4049/jimmunol.2200590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023]
Abstract
Class-switch recombination (CSR) produces secondary Ig isotypes and requires activation-induced cytidine deaminase (AID)-dependent DNA deamination of intronic switch regions within the IgH (Igh) gene locus. Noncanonical repair of deaminated DNA by mismatch repair (MMR) or base excision repair (BER) creates DNA breaks that permit recombination between distal switch regions. Ataxia telangiectasia mutated (ATM)-dependent phosphorylation of AID at serine 38 (pS38-AID) promotes its interaction with apurinic/apyrimidinic endonuclease 1 (APE1), a BER protein, suggesting that ATM regulates CSR through BER. However, pS38-AID may also function in MMR during CSR, although the mechanism remains unknown. To examine whether ATM modulates BER- and/or MMR-dependent CSR, Atm-/- mice were bred to mice deficient for the MMR gene mutS homolog 2 (Msh2). Surprisingly, the predicted Mendelian frequencies of Atm-/-Msh2-/- adult mice were not obtained. To generate ATM and MSH2-deficient B cells, Atm was conditionally deleted on an Msh2-/- background using a floxed ATM allele (Atmf) and B cell-specific Cre recombinase expression (CD23-cre) to produce a deleted ATM allele (AtmD). As compared with AtmD/D and Msh2-/- mice and B cells, AtmD/DMsh2-/- mice and B cells display a reduced CSR phenotype. Interestingly, Sμ-Sγ1 junctions from AtmD/DMsh2-/- B cells that were induced to switch to IgG1 in vitro showed a significant loss of blunt end joins and an increase in insertions as compared with wild-type, AtmD/D, or Msh2-/- B cells. These data indicate that the absence of both ATM and MSH2 blocks nonhomologous end joining, leading to inefficient CSR. We propose a model whereby ATM and MSH2 function cooperatively to regulate end joining during CSR through pS38-AID.
Collapse
Affiliation(s)
- Emily Sible
- Biology PhD Program, The Graduate Center, The City University of New York, New York, NY
- Department of Biology, City College of New York, The City University of New York, New York, NY; and
| | - Mary Attaway
- Department of Biology, City College of New York, The City University of New York, New York, NY; and
| | - Giuseppe Fiorica
- Department of Biology, City College of New York, The City University of New York, New York, NY; and
| | - Genesis Michel
- Department of Biology, City College of New York, The City University of New York, New York, NY; and
| | | | - Bao Q. Vuong
- Biology PhD Program, The Graduate Center, The City University of New York, New York, NY
- Department of Biology, City College of New York, The City University of New York, New York, NY; and
| |
Collapse
|
20
|
Trost H, Merkell A, Lopezcolorado FW, Stark J. Resolution of sequence divergence for repeat-mediated deletions shows a polarity that is mediated by MLH1. Nucleic Acids Res 2023; 51:650-667. [PMID: 36620890 PMCID: PMC9881173 DOI: 10.1093/nar/gkac1240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/07/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
Repeat-mediated deletions (RMDs) are a type of chromosomal rearrangement between two homologous sequences that causes loss of the sequence between the repeats, along with one of the repeats. Sequence divergence between repeats suppresses RMDs; the mechanisms of such suppression and of resolution of the sequence divergence remains poorly understood. We identified RMD regulators using a set of reporter assays in mouse cells that test two key parameters: repeat sequence divergence and the distances between one repeat and the initiating chromosomal break. We found that the mismatch repair factor MLH1 suppresses RMDs with sequence divergence in the same pathway as MSH2 and MSH6, and which is dependent on residues in MLH1 and its binding partner PMS2 that are important for nuclease activity. Additionally, we found that the resolution of sequence divergence in the RMD product has a specific polarity, where divergent bases that are proximal to the chromosomal break end are preferentially removed. Moreover, we found that the domain of MLH1 that forms part of the MLH1-PMS2 endonuclease is important for polarity of resolution of sequence divergence. We also identified distinctions between MLH1 versus TOP3α in regulation of RMDs. We suggest that MLH1 suppresses RMDs with sequence divergence, while also promoting directional resolution of sequence divergence in the RMD product.
Collapse
Affiliation(s)
- Hannah Trost
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Arianna Merkell
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | - Jeremy M Stark
- To whom correspondence should be addressed. Tel: +1 626 218-6346; Fax: +1 626 218 8892;
| |
Collapse
|
21
|
Dey A, Flajšhans M, Pšenička M, Gazo I. DNA repair genes play a variety of roles in the development of fish embryos. Front Cell Dev Biol 2023; 11:1119229. [PMID: 36936683 PMCID: PMC10014602 DOI: 10.3389/fcell.2023.1119229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
Embryogenesis is one of the most important life stages because it determines an organism's healthy growth. However, embryos of externally fertilizing species, such as most fish, are directly exposed to the environment during development and may be threatened by DNA damaging factors (pollutants, UV, reactive oxygen species). To counteract the negative effects of DNA fragmentation, fish embryos evolved complex damage response pathways. DNA repair pathways have been extensively studied in some fish species, such as zebrafish (Danio rerio). Our literature review, on the other hand, revealed a paucity of knowledge about DNA damage response and repair in non-model aquaculture fish species. Further, several pieces of evidence underlie the additional role of DNA repair genes and proteins in organogenesis, spatiotemporal localization in different tissue, and its indispensability for normal embryo development. In this review, we will summarize features of different DNA repair pathways in course of fish embryo development. We describe how the expression of DNA repair genes and proteins is regulated during development, their organogenetic roles, and how the expression of DNA repair genes changes in response to genotoxic stress. This will aid in addressing the link between genotoxic stress and embryo phenotype. Furthermore, available data indicate that embryos can repair damaged DNA, but the effects of early-life stress may manifest later in life as behavioral changes, neoplasia, or neurodegeneration. Overall, we conclude that more research on DNA repair in fish embryos is needed.
Collapse
|
22
|
DNA Damage Response in Cancer Therapy and Resistance: Challenges and Opportunities. Int J Mol Sci 2022; 23:ijms232314672. [PMID: 36499000 PMCID: PMC9735783 DOI: 10.3390/ijms232314672] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Resistance to chemo- and radiotherapy is a common event among cancer patients and a reason why new cancer therapies and therapeutic strategies need to be in continuous investigation and development. DNA damage response (DDR) comprises several pathways that eliminate DNA damage to maintain genomic stability and integrity, but different types of cancers are associated with DDR machinery defects. Many improvements have been made in recent years, providing several drugs and therapeutic strategies for cancer patients, including those targeting the DDR pathways. Currently, poly (ADP-ribose) polymerase inhibitors (PARP inhibitors) are the DDR inhibitors (DDRi) approved for several cancers, including breast, ovarian, pancreatic, and prostate cancer. However, PARPi resistance is a growing issue in clinical settings that increases disease relapse and aggravate patients' prognosis. Additionally, resistance to other DDRi is also being found and investigated. The resistance mechanisms to DDRi include reversion mutations, epigenetic modification, stabilization of the replication fork, and increased drug efflux. This review highlights the DDR pathways in cancer therapy, its role in the resistance to conventional treatments, and its exploitation for anticancer treatment. Biomarkers of treatment response, combination strategies with other anticancer agents, resistance mechanisms, and liabilities of treatment with DDR inhibitors are also discussed.
Collapse
|
23
|
Meas R, Nititham J, Taylor KE, Maher S, Clairmont K, Carufe KEW, Kashgarian M, Nottoli T, Cheong A, Nagel ZD, Gaffney PM, Criswell LA, Sweasy JB. A Human MSH6 Germline Variant Associated With Systemic Lupus Erythematosus Induces Lupus-like Disease in Mice. ACR Open Rheumatol 2022; 4:760-770. [PMID: 35708944 PMCID: PMC9469486 DOI: 10.1002/acr2.11471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 02/09/2022] [Accepted: 02/22/2022] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE To determine if single-nucleotide polymorphisms (SNPs) in DNA repair genes are enriched in individuals with systemic lupus erythematosus (SLE) and if they are sufficient to confer a disease phenotype in a mouse model. METHODS Human exome chip data of 2499 patients with SLE and 1230 healthy controls were analyzed to determine if variants in 10 different mismatch repair genes (MSH4, EXO1, MSH2, MSH6, MLH1, MSH3, POLH, PMS2, ML3, and APEX2) were enriched in individuals with SLE. A mouse model of the MSH6 SNP, which was found to be enriched in individuals with SLE, was created using CRISPR/Cas9 gene targeting. Wildtype mice and mice heterozygous and homozygous for the MSH6 variant were then monitored for 2 years for the development of autoimmune phenotypes, including the presence of high levels of antinuclear antibodies (ANA). Additionally, somatic hypermutation frequencies and spectra of the intronic region downstream of the VH J558-rearranged JH4 immunoglobulin gene was characterized from Peyer's patches. RESULTS Based on the human exome chip data, the MSH6 variant (rs63750897, p.Ser503Cys) is enriched among patients with SLE versus controls after we corrected for ancestry (odds ratio = 8.39, P = 0.0398). Mice homozygous for the MSH6 variant (Msh6S502C/S502C ) harbor significantly increased levels of ANA. Additionally, the Msh6S502C/S502C mice display a significant increase in the infiltration of CD68+ cells (a marker for monocytes and macrophages) into the lung alveolar space as well as apoptotic cells. Furthermore, characterization of somatic hypermutation in these mice reveals an increase in the DNA polymerase η mutational signature. CONCLUSION An MSH6 mutation that is enriched in humans diagnosed with lupus was identified. Mice harboring this Msh6 mutation develop increased autoantibodies and an inflammatory lung disease. These results suggest that the human MSH6 variant is linked to the development of SLE.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ana Cheong
- Harvard School of Public HealthBostonMassachusettsUSA
| | | | | | - Lindsey A. Criswell
- National Institute of Arthritis and Musculoskeletal and Skin DiseasesBethesdaMarylandUSA
| | | |
Collapse
|
24
|
Hasan A, Rizvi SF, Parveen S, Mir SS. Molecular chaperones in DNA repair mechanisms: Role in genomic instability and proteostasis in cancer. Life Sci 2022; 306:120852. [DOI: 10.1016/j.lfs.2022.120852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 01/09/2023]
|
25
|
Borsellini A, Lebbink JHG, Lamers MH. MutL binds to 3' resected DNA ends and blocks DNA polymerase access. Nucleic Acids Res 2022; 50:6224-6234. [PMID: 35670670 PMCID: PMC9226502 DOI: 10.1093/nar/gkac432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/20/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022] Open
Abstract
DNA mismatch repair removes mis-incorporated bases after DNA replication and reduces the error rate a 100–1000-fold. After recognition of a mismatch, a large section of up to a thousand nucleotides is removed from the daughter strand followed by re-synthesis. How these opposite activities are coordinated is poorly understood. Here we show that the Escherichia coli MutL protein binds to the 3′ end of the resected strand and blocks access of Pol I and Pol III. The cryo-EM structure of an 85-kDa MutL-DNA complex, determined to 3.7 Å resolution, reveals a unique DNA binding mode that positions MutL at the 3′ end of a primer-template, but not at a 5′ resected DNA end or a blunt DNA end. Hence, our work reveals a novel role for MutL in the final stages of mismatch repair by preventing premature DNA synthesis during removal of the mismatched strand.
Collapse
Affiliation(s)
- Alessandro Borsellini
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Joyce H G Lebbink
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Meindert H Lamers
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
26
|
Orc6 is a component of the replication fork and enables efficient mismatch repair. Proc Natl Acad Sci U S A 2022; 119:e2121406119. [PMID: 35622890 DOI: 10.1073/pnas.2121406119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Significance Origin recognition complex (ORC) is required for the initiation of DNA replication. Unlike other ORC components, the role of human Orc6 in replication remains to be resolved. We identified an unexpected role for hOrc6, which is to promote S-phase progression after prereplication complex assembly and DNA damage response. Orc6 localizes at the replication fork, is an accessory factor of the mismatch repair complex, and plays a fundamental role in genome surveillance during S phase.
Collapse
|
27
|
Genome Integrity and Neurological Disease. Int J Mol Sci 2022; 23:ijms23084142. [PMID: 35456958 PMCID: PMC9025063 DOI: 10.3390/ijms23084142] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
Neurological complications directly impact the lives of hundreds of millions of people worldwide. While the precise molecular mechanisms that underlie neuronal cell loss remain under debate, evidence indicates that the accumulation of genomic DNA damage and consequent cellular responses can promote apoptosis and neurodegenerative disease. This idea is supported by the fact that individuals who harbor pathogenic mutations in DNA damage response genes experience profound neuropathological manifestations. The review article here provides a general overview of the nervous system, the threats to DNA stability, and the mechanisms that protect genomic integrity while highlighting the connections of DNA repair defects to neurological disease. The information presented should serve as a prelude to the Special Issue “Genome Stability and Neurological Disease”, where experts discuss the role of DNA repair in preserving central nervous system function in greater depth.
Collapse
|
28
|
The nuclease activity of DNA2 promotes exonuclease 1-independent mismatch repair. J Biol Chem 2022; 298:101831. [PMID: 35300981 PMCID: PMC9036127 DOI: 10.1016/j.jbc.2022.101831] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/03/2022] Open
Abstract
The DNA mismatch repair (MMR) system is a major DNA repair system that corrects DNA replication errors. In eukaryotes, the MMR system functions via mechanisms both dependent on and independent of exonuclease 1 (EXO1), an enzyme that has multiple roles in DNA metabolism. Although the mechanism of EXO1-dependent MMR is well understood, less is known about EXO1-independent MMR. Here, we provide genetic and biochemical evidence that the DNA2 nuclease/helicase has a role in EXO1-independent MMR. Biochemical reactions reconstituted with purified human proteins demonstrated that the nuclease activity of DNA2 promotes an EXO1-independent MMR reaction via a mismatch excision-independent mechanism that involves DNA polymerase δ. We show that DNA polymerase ε is not able to replace DNA polymerase δ in the DNA2-promoted MMR reaction. Unlike its nuclease activity, the helicase activity of DNA2 is dispensable for the ability of the protein to enhance the MMR reaction. Further examination established that DNA2 acts in the EXO1-independent MMR reaction by increasing the strand-displacement activity of DNA polymerase δ. These data reveal a mechanism for EXO1-independent mismatch repair.
Collapse
|
29
|
Rad27 and Exo1 function in different excision pathways for mismatch repair in Saccharomyces cerevisiae. Nat Commun 2021; 12:5568. [PMID: 34552065 PMCID: PMC8458276 DOI: 10.1038/s41467-021-25866-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/31/2021] [Indexed: 11/20/2022] Open
Abstract
Eukaryotic DNA Mismatch Repair (MMR) involves redundant exonuclease 1 (Exo1)-dependent and Exo1-independent pathways, of which the Exo1-independent pathway(s) is not well understood. The exo1Δ440-702 mutation, which deletes the MutS Homolog 2 (Msh2) and MutL Homolog 1 (Mlh1) interacting peptides (SHIP and MIP boxes, respectively), eliminates the Exo1 MMR functions but is not lethal in combination with rad27Δ mutations. Analyzing the effect of different combinations of the exo1Δ440-702 mutation, a rad27Δ mutation and the pms1-A99V mutation, which inactivates an Exo1-independent MMR pathway, demonstrated that each of these mutations inactivates a different MMR pathway. Furthermore, it was possible to reconstitute a Rad27- and Msh2-Msh6-dependent MMR reaction in vitro using a mispaired DNA substrate and other MMR proteins. Our results demonstrate Rad27 defines an Exo1-independent eukaryotic MMR pathway that is redundant with at least two other MMR pathways. Defects in DNA mismatch repair (MMR) have been linked to inherited and sporadic cancers. Here the authors demonstrate that the DNA repair protein Rad27 (human FEN1) functions in one of three redundant mispair excision pathways, where its flap endonuclease activity catalyzes mispair excision.
Collapse
|
30
|
Kratz K, Artola-Borán M, Kobayashi-Era S, Koh G, Oliveira G, Kobayashi S, Oliveira A, Zou X, Richter J, Tsuda M, Sasanuma H, Takeda S, Loizou JI, Sartori AA, Nik-Zainal S, Jiricny J. FANCD2-Associated Nuclease 1 Partially Compensates for the Lack of Exonuclease 1 in Mismatch Repair. Mol Cell Biol 2021; 41:e0030321. [PMID: 34228493 PMCID: PMC8384067 DOI: 10.1128/mcb.00303-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 11/20/2022] Open
Abstract
Germline mutations in the mismatch repair (MMR) genes MSH2, MSH6, MLH1, and PMS2 are linked to cancer of the colon and other organs, characterized by microsatellite instability and a large increase in mutation frequency. Unexpectedly, mutations in EXO1, encoding the only exonuclease genetically implicated in MMR, are not linked to familial cancer and cause a substantially weaker mutator phenotype. This difference could be explained if eukaryotic cells possessed additional exonucleases redundant with EXO1. Analysis of the MLH1 interactome identified FANCD2-associated nuclease 1 (FAN1), a novel enzyme with biochemical properties resembling EXO1. We now show that FAN1 efficiently substitutes for EXO1 in MMR assays and that this functional complementation is modulated by its interaction with MLH1. FAN1 also contributes to MMR in vivo; cells lacking both EXO1 and FAN1 have an MMR defect and display resistance to N-methyl-N-nitrosourea (MNU) and 6-thioguanine (TG). Moreover, FAN1 loss amplifies the mutational profile of EXO1-deficient cells, suggesting that the two nucleases act redundantly in the same antimutagenic pathway. However, the increased drug resistance and mutator phenotype of FAN1/EXO1-deficient cells are less prominent than those seen in cells lacking MSH6 or MLH1. Eukaryotic cells thus apparently possess additional mechanisms that compensate for the loss of EXO1.
Collapse
Affiliation(s)
- Katja Kratz
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Mariela Artola-Borán
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Saho Kobayashi-Era
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
- Institute of Biochemistry of the ETH Zurich, Zurich, Switzerland
| | - Gene Koh
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Academic Department of Medical Genetics, The Clinical School, University of Cambridge, Cambridge, United Kingdom
- MRC Cancer Unit, The Clinical School, University of Cambridge, Cambridge, United Kingdom
| | - Goncalo Oliveira
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria
| | - Shunsuke Kobayashi
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
- Institute of Biochemistry of the ETH Zurich, Zurich, Switzerland
| | - Andreia Oliveira
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
- Institute of Biochemistry of the ETH Zurich, Zurich, Switzerland
| | - Xueqing Zou
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Academic Department of Medical Genetics, The Clinical School, University of Cambridge, Cambridge, United Kingdom
- MRC Cancer Unit, The Clinical School, University of Cambridge, Cambridge, United Kingdom
| | - Julia Richter
- Institute of Biochemistry of the ETH Zurich, Zurich, Switzerland
| | - Masataka Tsuda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Joanna I. Loizou
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria
| | | | - Serena Nik-Zainal
- Academic Department of Medical Genetics, The Clinical School, University of Cambridge, Cambridge, United Kingdom
- MRC Cancer Unit, The Clinical School, University of Cambridge, Cambridge, United Kingdom
| | - Josef Jiricny
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
- Institute of Biochemistry of the ETH Zurich, Zurich, Switzerland
| |
Collapse
|
31
|
Strand discrimination in DNA mismatch repair. DNA Repair (Amst) 2021; 105:103161. [PMID: 34171627 DOI: 10.1016/j.dnarep.2021.103161] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/24/2022]
Abstract
DNA mismatch repair (MMR) corrects non-Watson-Crick basepairs generated by replication errors, recombination intermediates, and some forms of chemical damage to DNA. In MutS and MutL homolog-dependent MMR, damaged bases do not identify the error-containing daughter strand that must be excised and resynthesized. In organisms like Escherichia coli that use methyl-directed MMR, transient undermethylation identifies the daughter strand. For other organisms, growing in vitro and in vivo evidence suggest that strand discrimination is mediated by DNA replication-associated daughter strand nicks that direct asymmetric loading of the replicative clamp (the β-clamp in bacteria and the proliferating cell nuclear antigen, PCNA, in eukaryotes). Structural modeling suggests that replicative clamps mediate strand specificity either through the ability of MutL homologs to recognize the fixed orientation of the daughter strand relative to one face of the replicative clamps or through parental strand-specific diffusion of replicative clamps on DNA, which places the daughter strand in the MutL homolog endonuclease active site. Finally, identification of bacteria that appear to lack strand discrimination mediated by a replicative clamp and a pre-existing nick suggest that other strand discrimination mechanisms exist or that these organisms perform MMR by generating a double-stranded DNA break intermediate, which may be analogous to NucS-mediated MMR.
Collapse
|
32
|
Zou X, Koh GCC, Nanda AS, Degasperi A, Urgo K, Roumeliotis TI, Agu CA, Badja C, Momen S, Young J, Amarante TD, Side L, Brice G, Perez-Alonso V, Rueda D, Gomez C, Bushell W, Harris R, Choudhary JS, Jiricny J, Skarnes WC, Nik-Zainal S. A systematic CRISPR screen defines mutational mechanisms underpinning signatures caused by replication errors and endogenous DNA damage. NATURE CANCER 2021; 2:643-657. [PMID: 34164627 PMCID: PMC7611045 DOI: 10.1038/s43018-021-00200-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/17/2021] [Indexed: 02/02/2023]
Abstract
Mutational signatures are imprints of pathophysiological processes arising through tumorigenesis. We generated isogenic CRISPR-Cas9 knockouts (Δ) of 43 genes in human induced pluripotent stem cells, cultured them in the absence of added DNA damage, and performed whole-genome sequencing of 173 subclones. ΔOGG1, ΔUNG, ΔEXO1, ΔRNF168, ΔMLH1, ΔMSH2, ΔMSH6, ΔPMS1, and ΔPMS2 produced marked mutational signatures indicative of being critical mitigators of endogenous DNA modifications. Detailed analyses revealed mutational mechanistic insights, including how 8-oxo-dG elimination is sequence-context-specific while uracil clearance is sequence-context-independent. Mismatch repair (MMR) deficiency signatures are engendered by oxidative damage (C>A transversions), differential misincorporation by replicative polymerases (T>C and C>T transitions), and we propose a 'reverse template slippage' model for T>A transversions. ΔMLH1, ΔMSH6, and ΔMSH2 signatures were similar to each other but distinct from ΔPMS2. Finally, we developed a classifier, MMRDetect, where application to 7,695 WGS cancers showed enhanced detection of MMR-deficient tumors, with implications for responsiveness to immunotherapies.
Collapse
Affiliation(s)
- Xueqing Zou
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- MRC Cancer Unit, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Gene Ching Chiek Koh
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- MRC Cancer Unit, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Arjun Scott Nanda
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- MRC Cancer Unit, University of Cambridge, Cambridge, UK
| | - Andrea Degasperi
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- MRC Cancer Unit, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
| | | | | | | | - Cherif Badja
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- MRC Cancer Unit, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Sophie Momen
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- MRC Cancer Unit, University of Cambridge, Cambridge, UK
| | - Jamie Young
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Tauanne Dias Amarante
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- MRC Cancer Unit, University of Cambridge, Cambridge, UK
| | - Lucy Side
- UCL Institute for Women's Health, Great Ormond Street Hospital, London, UK
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - Glen Brice
- Southwest Thames Regional Genetics Service, St George's University of London, London, UK
| | - Vanesa Perez-Alonso
- Pediatrics Department, Doce de Octubre University Hospital, i+12 Research Institute, Madrid, Spain
| | - Daniel Rueda
- Hereditary Cancer Laboratory, Doce de Octubre University Hospital, i+12 Research Institute, Madrid, Spain
| | | | | | - Rebecca Harris
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Jyoti S Choudhary
- The Institute of Cancer Research, Chester Beatty Laboratories, London, UK
| | - Josef Jiricny
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - William C Skarnes
- Wellcome Sanger Institute, Hinxton, UK
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Serena Nik-Zainal
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
- MRC Cancer Unit, University of Cambridge, Cambridge, UK.
- Wellcome Sanger Institute, Hinxton, UK.
| |
Collapse
|
33
|
Ortega J, Lee GS, Gu L, Yang W, Li GM. Mispair-bound human MutS-MutL complex triggers DNA incisions and activates mismatch repair. Cell Res 2021; 31:542-553. [PMID: 33510387 PMCID: PMC8089094 DOI: 10.1038/s41422-021-00468-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/17/2020] [Indexed: 01/30/2023] Open
Abstract
DNA mismatch repair (MMR) relies on MutS and MutL ATPases for mismatch recognition and strand-specific nuclease recruitment to remove mispaired bases in daughter strands. However, whether the MutS-MutL complex coordinates MMR by ATP-dependent sliding on DNA or protein-protein interactions between the mismatch and strand discrimination signal is ambiguous. Using functional MMR assays and systems preventing proteins from sliding, we show that sliding of human MutSα is required not for MMR initiation, but for final mismatch removal. MutSα recruits MutLα to form a mismatch-bound complex, which initiates MMR by nicking the daughter strand 5' to the mismatch. Exonuclease 1 (Exo1) is then recruited to the nick and conducts 5' → 3' excision. ATP-dependent MutSα dissociation from the mismatch is necessary for Exo1 to remove the mispaired base when the excision reaches the mismatch. Therefore, our study has resolved a long-standing puzzle, and provided new insights into the mechanism of MMR initiation and mispair removal.
Collapse
Affiliation(s)
- Janice Ortega
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Grace Sanghee Lee
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY USA ,Present Address: Division of Viral Hepatitis, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Liya Gu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD USA
| | - Guo-Min Li
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX USA ,Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY USA
| |
Collapse
|
34
|
Gu S, Bodai Z, Cowan QT, Komor AC. Base Editors: Expanding the Types of DNA Damage Products Harnessed for Genome Editing. ACTA ACUST UNITED AC 2021; 1. [PMID: 34368792 DOI: 10.1016/j.ggedit.2021.100005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Base editors are an innovative addition to the genome editing toolbox that introduced a new genome editing strategy to the field. Instead of using double-stranded DNA breaks, base editors use nucleobase modification chemistry to efficiently and precisely incorporate single nucleotide variants (SNVs) into the genome of living cells. Two classes of DNA base editors currently exist: deoxycytidine deamination-derived editors (CBEs, which facilitate C•G to T•A mutations) and deoxyadenosine deamination-derived base editors (ABEs, which facilitate A•T to G•C mutations). More recently, the development of mitochondrial base editors allowed the introduction of C•G to T•A mutations into mitochondrial DNA as well. Base editors show great potential as therapeutic agents and research tools, and extensive studies have been carried out to improve upon the original base editor constructs to aid researchers in a variety of disciplines. Despite their widespread use, there are few publications that focus on elucidating the biological pathways involved during the processing of base editor intermediates. Because base editors introduce unique types of DNA damage products (a U•G mismatch with a DNA backbone nick for CBEs, and an I•T mismatch with a DNA backbone nick for ABEs) to facilitate genome editing, a deep understanding of the DNA damage repair pathways that facilitate or impede base editing represents an important aspect for the further expansion and improvement of the technologies. Here, we first review canonical deoxyuridine, deoxyinosine, and single-stranded break repair. Then, we discuss how interactions among these different repair processes can lead to different base editing outcomes. Through this review, we hope to promote thoughtful discussions on the DNA repair mechanisms of base editing, as well as help researchers in the improvement of the current base editors and the development of new base editors.
Collapse
Affiliation(s)
- Sifeng Gu
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Zsolt Bodai
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Quinn T Cowan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Alexis C Komor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
35
|
Young SJ, West SC. Coordinated roles of SLX4 and MutSβ in DNA repair and the maintenance of genome stability. Crit Rev Biochem Mol Biol 2021; 56:157-177. [PMID: 33596761 PMCID: PMC7610648 DOI: 10.1080/10409238.2021.1881433] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/06/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022]
Abstract
SLX4 provides a molecular scaffold for the assembly of multiple protein complexes required for the maintenance of genome stability. It is involved in the repair of DNA crosslinks, the resolution of recombination intermediates, the response to replication stress and the maintenance of telomere length. To carry out these diverse functions, SLX4 interacts with three structure-selective endonucleases, MUS81-EME1, SLX1 and XPF-ERCC1, as well as the telomere binding proteins TRF2, RTEL1 and SLX4IP. Recently, SLX4 was shown to interact with MutSβ, a heterodimeric protein involved in DNA mismatch repair, trinucleotide repeat instability, crosslink repair and recombination. Importantly, MutSβ promotes the pathogenic expansion of CAG/CTG trinucleotide repeats, which is causative of myotonic dystrophy and Huntington's disease. The colocalization and specific interaction of MutSβ with SLX4, together with their apparently overlapping functions, are suggestive of a common role in reactions that promote DNA maintenance and genome stability. This review will focus on the role of SLX4 in DNA repair, the interplay between MutSβ and SLX4, and detail how they cooperate to promote recombinational repair and DNA crosslink repair. Furthermore, we speculate that MutSβ and SLX4 may provide an alternative cellular mechanism that modulates trinucleotide instability.
Collapse
Affiliation(s)
- Sarah J Young
- DNA Recombination and Repair Laboratory, The Francis Crick Institute, London, UK
| | - Stephen C West
- DNA Recombination and Repair Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
36
|
Abstract
DNA mismatch repair (MMR) is a highly conserved genome stabilizing pathway that corrects DNA replication errors, limits chromosomal rearrangements, and mediates the cellular response to many types of DNA damage. Counterintuitively, MMR is also involved in the generation of mutations, as evidenced by its role in causing somatic triplet repeat expansion in Huntington’s disease (HD) and other neurodegenerative disorders. In this review, we discuss the current state of mechanistic knowledge of MMR and review the roles of key enzymes in this pathway. We also present the evidence for mutagenic function of MMR in CAG repeat expansion and consider mechanistic hypotheses that have been proposed. Understanding the role of MMR in CAG expansion may shed light on potential avenues for therapeutic intervention in HD.
Collapse
Affiliation(s)
- Ravi R Iyer
- CHDI Management/CHDI Foundation, Princeton, NJ, USA
| | - Anna Pluciennik
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
37
|
Monakhova MV, Milakina MA, Trikin RM, Oretskaya TS, Kubareva EA. Functional Specifics of the MutL Protein of the DNA Mismatch Repair System in Different Organisms. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020060217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
The Dark Side of UV-Induced DNA Lesion Repair. Genes (Basel) 2020; 11:genes11121450. [PMID: 33276692 PMCID: PMC7761550 DOI: 10.3390/genes11121450] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022] Open
Abstract
In their life cycle, plants are exposed to various unfavorable environmental factors including ultraviolet (UV) radiation emitted by the Sun. UV-A and UV-B, which are partially absorbed by the ozone layer, reach the surface of the Earth causing harmful effects among the others on plant genetic material. The energy of UV light is sufficient to induce mutations in DNA. Some examples of DNA damage induced by UV are pyrimidine dimers, oxidized nucleotides as well as single and double-strand breaks. When exposed to light, plants can repair major UV-induced DNA lesions, i.e., pyrimidine dimers using photoreactivation. However, this highly efficient light-dependent DNA repair system is ineffective in dim light or at night. Moreover, it is helpless when it comes to the repair of DNA lesions other than pyrimidine dimers. In this review, we have focused on how plants cope with deleterious DNA damage that cannot be repaired by photoreactivation. The current understanding of light-independent mechanisms, classified as dark DNA repair, indispensable for the maintenance of plant genetic material integrity has been presented.
Collapse
|
39
|
Umar AA, Liddell S, Hussain R, Siligardi G, Harris G, Carr S, Asiani K, Gowers DM, Odell M, Scott DJ. Allosteric inhibition of human exonuclease1 (hExo1) through a novel extended β-sheet conformation. Biochim Biophys Acta Gen Subj 2020; 1864:129730. [PMID: 32926959 DOI: 10.1016/j.bbagen.2020.129730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/21/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Human Exonuclease1 (hExo1) participates in the resection of DNA double-strand breaks by generating long 3'-single-stranded DNA overhangs, critical for homology-based DNA repair and activation of the ATR-dependent checkpoint. The C-terminal region is essential for modulating the activity of hExo1, containing numerous sites of post-translational modification and binding sites for partner proteins. METHODS Analytical Ultracentrifugation (AUC), Dynamic Light Scattering (DLS), Circular Dichroism (CD) spectroscopy and enzymatic assays. RESULTS AUC and DLS indicates the C-terminal region has a highly extended structure while CD suggest a tendency to adopt a novel left-handed β-sheet structure, together implying the C-terminus may exhibit a transient fluctuating structure that could play a role in binding partner proteins known to regulate the activity of hExo1. Interaction with 14-3-3 protein has a cooperative inhibitory effect upon DNA resection activity, which indicates an allosteric transition occurs upon binding partner proteins. CONCLUSIONS This study has uncovered that hExo1 consist of a folded N-terminal nuclease domain and a highly extended C-terminal region which is known to interact with partner proteins that regulates the activity of hExo1. A positively cooperative mechanism of binding allows for stringent control of hExo1 activity. Such a transition would coordinate the control of hExo1 by hExo1 regulators and hence allow careful coordination of the process of DNA end resection. SIGNIFICANCE The assays presented herein could be readily adapted to rapidly identify and characterise the effects of modulators of the interaction between the 14-3-3 proteins and hExo1. It is conceivable that small molecule modulators of 14-3-3 s-hExo1 interaction may serve as effective chemosensitizers for cancer therapy.
Collapse
Affiliation(s)
- Aminu Argungu Umar
- School of Biosciences, University of Nottingham Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom; Department of Biochemistry, Kebbi State University of Science and Technology, Aliero, P.M.B 1144, Birnin Kebbi, Nigeria.
| | - Susan Liddell
- School of Biosciences, University of Nottingham Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom
| | - Rohanah Hussain
- Diamond Light Source, Rutherford Appleton Laboratory, Oxfordshire OX11 0DE, United Kingdom
| | - Giuliano Siligardi
- Diamond Light Source, Rutherford Appleton Laboratory, Oxfordshire OX11 0DE, United Kingdom
| | - Gemma Harris
- Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire OX11 0FA, United Kingdom
| | - Stephen Carr
- Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire OX11 0FA, United Kingdom
| | - Karishma Asiani
- School of Biosciences, University of Nottingham Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom
| | - Darren M Gowers
- School of Biological Science, King Henry Building, King Henry 1(st) Street, Portsmouth, Hampshire PO1 2DY, United Kingdom
| | - Mark Odell
- Department of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, United Kingdom
| | - David J Scott
- School of Biosciences, University of Nottingham Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom; Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire OX11 0FA, United Kingdom; ISIS Spallation Neutron and Muon source, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, United Kingdom
| |
Collapse
|
40
|
Tisi R, Vertemara J, Zampella G, Longhese MP. Functional and structural insights into the MRX/MRN complex, a key player in recognition and repair of DNA double-strand breaks. Comput Struct Biotechnol J 2020; 18:1137-1152. [PMID: 32489527 PMCID: PMC7260605 DOI: 10.1016/j.csbj.2020.05.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 01/20/2023] Open
Abstract
Chromosomal DNA double-strand breaks (DSBs) are potentially lethal DNA lesions that pose a significant threat to genome stability and therefore need to be repaired to preserve genome integrity. Eukaryotic cells possess two main mechanisms for repairing DSBs: non-homologous end-joining (NHEJ) and homologous recombination (HR). HR requires that the 5' terminated strands at both DNA ends are nucleolytically degraded by a concerted action of nucleases in a process termed DNA-end resection. This degradation leads to the formation of 3'-ended single-stranded DNA (ssDNA) ends that are essential to use homologous DNA sequences for repair. The evolutionarily conserved Mre11-Rad50-Xrs2/NBS1 complex (MRX/MRN) has enzymatic and structural activities to initiate DSB resection and to maintain the DSB ends tethered to each other for their repair. Furthermore, it is required to recruit and activate the protein kinase Tel1/ATM, which plays a key role in DSB signaling. All these functions depend on ATP-regulated DNA binding and nucleolytic activities of the complex. Several structures have been obtained in recent years for Mre11 and Rad50 subunits from archaea, and a few from the bacterial and eukaryotic orthologs. Nevertheless, the mechanism of activation of this protein complex is yet to be fully elucidated. In this review, we focused on recent biophysical and structural insights on the MRX complex and their interplay.
Collapse
Affiliation(s)
- Renata Tisi
- Dipartimento di Biotecnologie and Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Jacopo Vertemara
- Dipartimento di Biotecnologie and Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Giuseppe Zampella
- Dipartimento di Biotecnologie and Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie and Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy
| |
Collapse
|
41
|
Choi JE, Matthews AJ, Michel G, Vuong BQ. AID Phosphorylation Regulates Mismatch Repair-Dependent Class Switch Recombination and Affinity Maturation. THE JOURNAL OF IMMUNOLOGY 2020; 204:13-22. [PMID: 31757865 DOI: 10.4049/jimmunol.1900809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/25/2019] [Indexed: 01/01/2023]
Abstract
Activation-induced cytidine deaminase (AID) generates U:G mismatches in Ig genes that can be converted into untemplated mutations during somatic hypermutation or DNA double-strand breaks during class switch recombination (CSR). Null mutations in UNG and MSH2 demonstrate the complementary roles of the base excision repair (BER) and mismatch repair pathways, respectively, in CSR. Phosphorylation of AID at serine 38 was previously hypothesized to regulate BER during CSR, as the AID phosphorylation mutant, AID(S38A), cannot interact with APE1, a BER protein. Consistent with these findings, we observe a complete block in CSR in AIDS38A/S38AMSH2-/- mouse B cells that correlates with an impaired mutation frequency at 5'Sμ. Similarly, somatic hypermutation is almost negligible at the JH4 intron in AIDS38A/S38AMSH2-/- mouse B cells, and, consistent with this, NP-specific affinity maturation in AIDS38A/S38AMSH2-/- mice is not significantly elevated in response to NP-CGG immunization. Surprisingly, AIDS38A/S38AUNG-/- mouse B cells also cannot complete CSR or affinity maturation despite accumulating significant mutations in 5'Sμ as well as the JH4 intron. These data identify a novel role for phosphorylation of AID at serine 38 in mismatch repair-dependent CSR and affinity maturation.
Collapse
Affiliation(s)
- Jee Eun Choi
- The City College of New York, The City University of New York, New York, NY 10031; and
| | - Allysia J Matthews
- The City College of New York, The City University of New York, New York, NY 10031; and
| | - Genesis Michel
- The City College of New York, The City University of New York, New York, NY 10031; and
| | - Bao Q Vuong
- The Graduate Center, The City University of New York, New York, NY 10016
| |
Collapse
|
42
|
Liu J, Lee R, Britton BM, London JA, Yang K, Hanne J, Lee JB, Fishel R. MutL sliding clamps coordinate exonuclease-independent Escherichia coli mismatch repair. Nat Commun 2019; 10:5294. [PMID: 31757945 PMCID: PMC6876574 DOI: 10.1038/s41467-019-13191-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 10/22/2019] [Indexed: 01/09/2023] Open
Abstract
A shared paradigm of mismatch repair (MMR) across biology depicts extensive exonuclease-driven strand-specific excision that begins at a distant single-stranded DNA (ssDNA) break and proceeds back past the mismatched nucleotides. Historical reconstitution studies concluded that Escherichia coli (Ec) MMR employed EcMutS, EcMutL, EcMutH, EcUvrD, EcSSB and one of four ssDNA exonucleases to accomplish excision. Recent single-molecule images demonstrated that EcMutS and EcMutL formed cascading sliding clamps on a mismatched DNA that together assisted EcMutH in introducing ssDNA breaks at distant newly replicated GATC sites. Here we visualize the complete strand-specific excision process and find that long-lived EcMutL sliding clamps capture EcUvrD helicase near the ssDNA break, significantly increasing its unwinding processivity. EcSSB modulates the EcMutL–EcUvrD unwinding dynamics, which is rarely accompanied by extensive ssDNA exonuclease digestion. Together these observations are consistent with an exonuclease-independent MMR strand excision mechanism that relies on EcMutL–EcUvrD helicase-driven displacement of ssDNA segments between adjacent EcMutH–GATC incisions. The mechanics of MMR strand specific excision that begins at a distant ssDNA break are not yet clear. Here the authors have used multiple single molecule imaging techniques to visualize the behavior of MMR components on mismatched DNA substrates and reveal an exonuclease-independent mechanism for E.coli MMR.
Collapse
Affiliation(s)
- Jiaquan Liu
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Ryanggeun Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Korea
| | - Brooke M Britton
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - James A London
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Keunsang Yang
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, Gyeongbuk, 37673, Korea
| | - Jeungphill Hanne
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Jong-Bong Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Korea. .,School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, Gyeongbuk, 37673, Korea.
| | - Richard Fishel
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
43
|
Mota MBS, Carvalho MA, Monteiro ANA, Mesquita RD. DNA damage response and repair in perspective: Aedes aegypti, Drosophila melanogaster and Homo sapiens. Parasit Vectors 2019; 12:533. [PMID: 31711518 PMCID: PMC6849265 DOI: 10.1186/s13071-019-3792-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/05/2019] [Indexed: 01/18/2023] Open
Abstract
Background The maintenance of genomic integrity is the responsibility of a complex network, denominated the DNA damage response (DDR), which controls the lesion detection and DNA repair. The main repair pathways are base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), homologous recombination repair (HR) and non-homologous end joining repair (NHEJ). They correct double-strand breaks (DSB), single-strand breaks, mismatches and others, or when the damage is quite extensive and repair insufficient, apoptosis is activated. Methods In this study we used the BLAST reciprocal best-hit methodology to search for DDR orthologs proteins in Aedes aegypti. We also provided a comparison between Ae. aegypti, D. melanogaster and human DDR network. Results Our analysis revealed the presence of ATR and ATM signaling, including the H2AX ortholog, in Ae. aegypti. Key DDR proteins (orthologs to RAD51, Ku and MRN complexes, XP-components, MutS and MutL) were also identified in this insect. Other proteins were not identified in both Ae. aegypti and D. melanogaster, including BRCA1 and its partners from BRCA1-A complex, TP53BP1, PALB2, POLk, CSA, CSB and POLβ. In humans, their absence affects DSB signaling, HR and sub-pathways of NER and BER. Seven orthologs not known in D. melanogaster were found in Ae. aegypti (RNF168, RIF1, WRN, RAD54B, RMI1, DNAPKcs, ARTEMIS). Conclusions The presence of key DDR proteins in Ae. aegypti suggests that the main DDR pathways are functional in this insect, and the identification of proteins not known in D. melanogaster can help fill gaps in the DDR network. The mapping of the DDR network in Ae. aegypti can support mosquito biology studies and inform genetic manipulation approaches applied to this vector.
Collapse
Affiliation(s)
- Maria Beatriz S Mota
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcelo Alex Carvalho
- Instituto Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Câncer, Divisão de Pesquisa Clínica, Rio de Janeiro, RJ, Brazil
| | - Alvaro N A Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Rafael D Mesquita
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil. .,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
44
|
Li Y, Shen J, Niu H. DNA duplex recognition activates Exo1 nuclease activity. J Biol Chem 2019; 294:11559-11567. [PMID: 31182486 DOI: 10.1074/jbc.ra119.008549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/09/2019] [Indexed: 11/06/2022] Open
Abstract
Exonuclease 1 (Exo1) is an evolutionarily conserved eukaryotic nuclease that plays a multifaceted role in maintaining genome stability. The biochemical attributes of Exo1 have been extensively characterized via conventional assays. However, the key step governing its activation remains elusive. Extending the previous finding that Exo1 can digest a randomly selected single-stranded DNA (ssDNA) but not a poly(dT) oligonucleotide and using purified recombinant Exo1 and nuclease and electrophoretic mobility shift assays, here we determined that DNA hairpins with a stem size of 4 bp or longer are able to activate Exo1-mediated digestion of ssDNA. We further provide evidence suggesting that Exo1 uses an evolutionarily conserved residue, Lys185 This residue interacted with the phosphate group bridging the third and fourth nucleotide on the digestion strand of the substrate DNA for duplex recognition, critical for Exo1 activation on not only ssDNA but also dsDNA. Additionally, the defect of an exo1-K185A mutant in duplex digestion was partially rescued by longer overhanging DNA. However, we noted that the enhanced Exo1 nuclease activity by longer overhanging DNA is largely eliminated by replication protein A (RPA), likely because of the previously reported RPA activity that strips Exo1 off the ssDNA. We conclude that duplex DNA contact by Exo1 is a general mechanism that controls its activation and that this mechanism is particularly important for digestion of duplex DNA whose nascent ssDNA is bound by RPA.
Collapse
Affiliation(s)
- Yuxi Li
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405.,Interdisciplinary Biochemistry Program, Indiana University, Bloomington, Indiana 47405
| | - Jiangchuan Shen
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405
| | - Hengyao Niu
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
45
|
Gupta D, Heinen CD. The mismatch repair-dependent DNA damage response: Mechanisms and implications. DNA Repair (Amst) 2019; 78:60-69. [PMID: 30959407 DOI: 10.1016/j.dnarep.2019.03.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/25/2019] [Accepted: 03/16/2019] [Indexed: 12/22/2022]
Abstract
An important role for the DNA mismatch repair (MMR) pathway in maintaining genomic stability is embodied in its conservation through evolution and the link between loss of MMR function and tumorigenesis. The latter is evident as inheritance of mutations within the major MMR genes give rise to the cancer predisposition condition, Lynch syndrome. Nonetheless, how MMR loss contributes to tumorigenesis is not completely understood. In addition to preventing the accumulation of mutations, MMR also directs cellular responses, such as cell cycle checkpoint or apoptosis activation, to different forms of DNA damage. Understanding this MMR-dependent DNA damage response may provide insight into the full tumor suppressing capabilities of the MMR pathway. Here, we delve into the proposed mechanisms for the MMR-dependent response to DNA damaging agents. We discuss how these pre-clinical findings extend to the clinical treatment of cancers, emphasizing MMR status as a crucial variable in selection of chemotherapeutic regimens. Also, we discuss how loss of the MMR-dependent damage response could promote tumorigenesis via the establishment of a survival advantage to endogenous levels of stress in MMR-deficient cells.
Collapse
Affiliation(s)
- Dipika Gupta
- Center for Molecular Oncology, UConn Health, Farmington, CT 06030, USA
| | | |
Collapse
|
46
|
Pilzecker B, Jacobs H. Mutating for Good: DNA Damage Responses During Somatic Hypermutation. Front Immunol 2019; 10:438. [PMID: 30915081 PMCID: PMC6423074 DOI: 10.3389/fimmu.2019.00438] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/19/2019] [Indexed: 11/13/2022] Open
Abstract
Somatic hypermutation (SHM) of immunoglobulin (Ig) genes plays a key role in antibody mediated immunity. SHM in B cells provides the molecular basis for affinity maturation of antibodies. In this way SHM is key in optimizing antibody dependent immune responses. SHM is initiated by targeting the Activation-Induced Cytidine Deaminase (AID) to rearranged V(D)J and switch regions of Ig genes. The mutation rate of this programmed mutagenesis is ~10-3 base pairs per generation, a million-fold higher than the non-AID targeted genome of B cells. AID is a processive enzyme that binds single-stranded DNA and deaminates cytosines in DNA. Cytosine deamination generates highly mutagenic deoxy-uracil (U) in the DNA of both strands of the Ig loci. Mutagenic processing of the U by the DNA damage response generates the entire spectrum of base substitutions characterizing SHM at and around the initial U lesion. Starting from the U as a primary lesion, currently five mutagenic DNA damage response pathways have been identified in generating a well-defined SHM spectrum of C/G transitions, C/G transversions, and A/T mutations around this initial lesion. These pathways include (1) replication opposite template U generates transitions at C/G, (2) UNG2-dependent translesion synthesis (TLS) generates transversions at C/G, (3) a hybrid pathway comprising non-canonical mismatch repair (ncMMR) and UNG2-dependent TLS generates transversions at C/G, (4) ncMMR generates mutations at A/T, and (5) UNG2- and PCNA Ubiquitination (PCNA-Ub)-dependent mutations at A/T. Furthermore, specific strand-biases of SHM spectra arise as a consequence of a biased AID targeting, ncMMR, and anti-mutagenic repriming. Here, we review mammalian SHM with special focus on the mutagenic DNA damage response pathways involved in processing AID induced Us, the origin of characteristic strand biases, and relevance of the cell cycle.
Collapse
Affiliation(s)
| | - Heinz Jacobs
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
47
|
Shuen AY, Lanni S, Panigrahi GB, Edwards M, Yu L, Campbell BB, Mandel A, Zhang C, Zhukova N, Alharbi M, Bernstein M, Bowers DC, Carroll S, Cole KA, Constantini S, Crooks B, Dvir R, Farah R, Hijiya N, George B, Laetsch TW, Larouche V, Lindhorst S, Luiten RC, Magimairajan V, Mason G, Mason W, Mordechai O, Mushtaq N, Nicholas G, Oren M, Palma L, Pedroza LA, Ramdas J, Samuel D, Wolfe Schneider K, Seeley A, Semotiuk K, Shamvil A, Sumerauer D, Toledano H, Tomboc P, Wierman M, Van Damme A, Lee YY, Zapotocky M, Bouffet E, Durno C, Aronson M, Gallinger S, Foulkes WD, Malkin D, Tabori U, Pearson CE. Functional Repair Assay for the Diagnosis of Constitutional Mismatch Repair Deficiency From Non-Neoplastic Tissue. J Clin Oncol 2019; 37:461-470. [PMID: 30608896 DOI: 10.1200/jco.18.00474] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Constitutional mismatch repair deficiency (CMMRD) is a highly penetrant cancer predisposition syndrome caused by biallelic mutations in mismatch repair (MMR) genes. As several cancer syndromes are clinically similar, accurate diagnosis is critical to cancer screening and treatment. As genetic diagnosis is confounded by 15 or more pseudogenes and variants of uncertain significance, a robust diagnostic assay is urgently needed. We sought to determine whether an assay that directly measures MMR activity could accurately diagnose CMMRD. PATIENTS AND METHODS In vitro MMR activity was quantified using a 3'-nicked G-T mismatched DNA substrate, which requires MSH2-MSH6 and MLH1-PMS2 for repair. We quantified MMR activity from 20 Epstein-Barr virus-transformed lymphoblastoid cell lines from patients with confirmed CMMRD. We also tested 20 lymphoblastoid cell lines from patients who were suspected for CMMRD. We also characterized MMR activity from patients with neurofibromatosis type 1, Li-Fraumeni syndrome, polymerase proofreading-associated cancer syndrome, and Lynch syndrome. RESULTS All CMMRD cell lines had low MMR activity (n = 20; mean, 4.14 ± 1.56%) relative to controls (n = 6; mean, 44.00 ± 8.65%; P < .001). Repair was restored by complementation with the missing protein, which confirmed MMR deficiency. All cases of patients with suspected CMMRD were accurately diagnosed. Individuals with Lynch syndrome (n = 28), neurofibromatosis type 1 (n = 5), Li-Fraumeni syndrome (n = 5), and polymerase proofreading-associated cancer syndrome (n = 3) had MMR activity that was comparable to controls. To accelerate testing, we measured MMR activity directly from fresh lymphocytes, which yielded results in 8 days. CONCLUSION On the basis of the current data set, the in vitro G-T repair assay was able to diagnose CMMRD with 100% specificity and sensitivity. Rapid diagnosis before surgery in non-neoplastic tissues could speed proper therapeutic management.
Collapse
Affiliation(s)
- Andrew Y Shuen
- 1 University of Toronto, Toronto, Ontario, Canada.,2 The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stella Lanni
- 2 The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | - Lisa Yu
- 2 The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Brittany B Campbell
- 1 University of Toronto, Toronto, Ontario, Canada.,2 The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ariane Mandel
- 2 The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Cindy Zhang
- 2 The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nataliya Zhukova
- 1 University of Toronto, Toronto, Ontario, Canada.,2 The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Mark Bernstein
- 4 Dalhousie University Faculty of Medicine, Halifax, Nova Scotia, Canada
| | - Daniel C Bowers
- 5 University of Texas Southwestern Medical Center, Dallas, TX.,6 Children's Health, Dallas, TX
| | | | - Kristina A Cole
- 8 Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA
| | - Shlomi Constantini
- 9 Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,10 Tel Aviv University, Tel Aviv, Israel
| | - Bruce Crooks
- 4 Dalhousie University Faculty of Medicine, Halifax, Nova Scotia, Canada
| | - Rina Dvir
- 10 Tel Aviv University, Tel Aviv, Israel.,11 Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Roula Farah
- 12 Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Nobuko Hijiya
- 13 Ann & Robert H. Lurie Children's Hospital/Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Ben George
- 14 Medical College of Wisconsin, Milwaukee, WI
| | - Theodore W Laetsch
- 5 University of Texas Southwestern Medical Center, Dallas, TX.,6 Children's Health, Dallas, TX
| | | | | | | | | | - Gary Mason
- 19 Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Warren Mason
- 1 University of Toronto, Toronto, Ontario, Canada.,20 Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | | | | | - Garth Nicholas
- 23 Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | - Laura Palma
- 25 McGill University Health Centre, Montréal, Quebec, Canada
| | - Luis Alberto Pedroza
- 26 Baylor College of Medicine and Texas Children's Hospital, Houston, TX.,27 Universidad San Francisco de Quito, Quito, Ecuador
| | | | | | - Kami Wolfe Schneider
- 30 Children's Hospital Colorado, Aurora, CO.,31 University of Colorado, Anschutz Medical Campus, Aurora, CO
| | | | | | | | - David Sumerauer
- 34 University Hospital Motol, Charles University, Prague, Czech Republic
| | - Helen Toledano
- 11 Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | | | | | - An Van Damme
- 36 Université Catholique de Louvain, Brussels, Belgium
| | - Yi-Yen Lee
- 37 Taipei Veterans General Hospital, Taipei, Republic of China
| | - Michal Zapotocky
- 1 University of Toronto, Toronto, Ontario, Canada.,2 The Hospital for Sick Children, Toronto, Ontario, Canada.,34 University Hospital Motol, Charles University, Prague, Czech Republic
| | - Eric Bouffet
- 1 University of Toronto, Toronto, Ontario, Canada.,2 The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Carol Durno
- 2 The Hospital for Sick Children, Toronto, Ontario, Canada.,32 Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | - Steve Gallinger
- 32 Mount Sinai Hospital, Toronto, Ontario, Canada.,38 Toronto General Hospital, Toronto, Ontario, Canada
| | | | - David Malkin
- 1 University of Toronto, Toronto, Ontario, Canada.,2 The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Uri Tabori
- 1 University of Toronto, Toronto, Ontario, Canada.,2 The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christopher E Pearson
- 1 University of Toronto, Toronto, Ontario, Canada.,2 The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
48
|
Abstract
DNA double-strand breaks (DSBs) are a potentially lethal DNA lesions that disrupt both the physical and genetic continuity of the DNA duplex. Homologous recombination (HR) is a universally conserved genome maintenance pathway that initiates via nucleolytic processing of the broken DNA ends (resection). Eukaryotic DNA resection is catalyzed by the resectosome-a multicomponent molecular machine consisting of the nucleases DNA2 or Exonuclease 1 (EXO1), Bloom's helicase (BLM), the MRE11-RAD50-NBS1 (MRN) complex, and additional regulatory factors. Here, we describe methods for purification and single-molecule imaging and analysis of EXO1, DNA2, and BLM. We also describe how to adapt resection assays to the high-throughput single-molecule DNA curtain assay. By organizing hundreds of individual molecules on the surface of a microfluidic flowcell, DNA curtains visualize protein complexes with the required spatial and temporal resolution to resolve the molecular choreography during critical DNA-processing reactions.
Collapse
|
49
|
Human Exonuclease 1 (EXO1) Regulatory Functions in DNA Replication with Putative Roles in Cancer. Int J Mol Sci 2018; 20:ijms20010074. [PMID: 30585186 PMCID: PMC6337416 DOI: 10.3390/ijms20010074] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/12/2018] [Accepted: 12/19/2018] [Indexed: 12/11/2022] Open
Abstract
Human exonuclease 1 (EXO1), a 5'→3' exonuclease, contributes to the regulation of the cell cycle checkpoints, replication fork maintenance, and post replicative DNA repair pathways. These processes are required for the resolution of stalled or blocked DNA replication that can lead to replication stress and potential collapse of the replication fork. Failure to restart the DNA replication process can result in double-strand breaks, cell-cycle arrest, cell death, or cellular transformation. In this review, we summarize the involvement of EXO1 in the replication, DNA repair pathways, cell cycle checkpoints, and the link between EXO1 and cancer.
Collapse
|
50
|
Kim D, Fishel R, Lee JB. Coordinating Multi-Protein Mismatch Repair by Managing Diffusion Mechanics on the DNA. J Mol Biol 2018; 430:4469-4480. [PMID: 29792877 PMCID: PMC6388638 DOI: 10.1016/j.jmb.2018.05.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/01/2018] [Accepted: 05/16/2018] [Indexed: 12/15/2022]
Abstract
DNA mismatch repair (MMR) corrects DNA base-pairing errors that occur during DNA replication. MMR catalyzes strand-specific DNA degradation and resynthesis by dynamic molecular coordination of sequential downstream pathways. The temporal and mechanistic order of molecular events is essential to insure interactions in MMR that occur over long distances on the DNA. Biophysical real-time studies of highly conserved components on mismatched DNA have shed light on the mechanics of MMR. Single-molecule imaging has visualized stochastically coordinated MMR interactions that are based on thermal fluctuation-driven motions. In this review, we describe the role of diffusivity and stochasticity in MMR beginning with mismatch recognition through strand-specific excision. We conclude with a perspective of the possible research directions that should solve the remaining questions in MMR.
Collapse
Affiliation(s)
- Daehyung Kim
- Department of Physics, Pohang University of Science & Technology (POSTECH), Pohang 37673, Korea
| | - Richard Fishel
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Jong-Bong Lee
- Department of Physics, Pohang University of Science & Technology (POSTECH), Pohang 37673, Korea; Interdisciplinary Bioscience & Bioengineering, POSTECH, Pohang 37673, Korea.
| |
Collapse
|