1
|
Kang MK, Bevington J, Tullman-Ercek D. Evaluation of the Salmonella type 3 secretion system (T3SS) as part of a protein production platform for space biology applications. Front Bioeng Biotechnol 2025; 13:1567596. [PMID: 40242353 PMCID: PMC12000002 DOI: 10.3389/fbioe.2025.1567596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
As interest in space exploration and in situ resource utilization grows, the potential to leverage synthetic biology and engineered microorganisms has garnered significant attention. Microorganisms provide a robust and efficient biological chassis to demonstrate the human blueprint for advancing space biology. However, progress toward these applications is hindered by the limited access to space-like environments and a lack of knowledge about how unique environmental factors affect relevant microbial systems. To address these issues, we evaluated the Salmonella Pathogenicity Island 1 (SPI-1) type Ⅲ secretion system (T3SS) as a protein production platform for space applications. Using a NASA-designed microgravity-simulating bioreactor system, we investigated the effects of simulated microgravity on cell growth, stress response, and protein secretion via SPI-1 T3SS. Our results demonstrated increased stress responses in cells grown under simulated microgravity. However, the SPI-1 T3SS maintained its ability to secrete proteins directly into the extracellular space in a single step under simulated microgravity, simplifying downstream purification processes. These findings suggest that the SPI-1 T3SS is a viable candidate for future space biology applications.
Collapse
Affiliation(s)
- Min-Kyoung Kang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
- Anti-aging Bio Cell factory Regional Leading Research Center (ABC-RLRC), Gyeongsang National University, Jinju, Republic of Korea
| | - James Bevington
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
- Interplanetary Exploration Institute Ltd., Sydney, Australia
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
| |
Collapse
|
2
|
Mylona E, Pereira-Dias J, Keane JA, Karkey A, Dongol S, Khokhar F, Tran TA, Cormie C, Higginson E, Baker S. Phenotypic variation in the lipopolysaccharide O-antigen of Salmonella Paratyphi A and implications for vaccine development. Vaccine 2024; 42:126404. [PMID: 39383552 DOI: 10.1016/j.vaccine.2024.126404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/11/2024]
Abstract
Enteric fever remains a major public health problem in South and Southeast Asia. The recent roll-out of the typhoid conjugate vaccine protecting against S. Typhi exhibits great promise for disease reduction in high burden areas. However, some endemic regions remain vulnerable to S. Paratyphi A due to a lack of licensed vaccines and inadequate WASH. Several developmental S. Paratyphi A vaccines exploit O-antigen as the target antigen. It has been hypothesised that O-antigen is under selective and environmental pressure, with mutations in O-antigen biosynthesis genes being reported, but their phenotypic effects are unknown. Here, we aimed to evaluate O-antigen variation in S. Paratyphi A originating from Nepal, and the potential effect of this variation on antibody binding. O-antigen variation was determined by measuring LPS laddering shift following electrophoresis; this analysis was complemented with genomic characterisation of the O-antigen region. We found structural O-antigen variation in <10 % of S. Paratyphi A organisms, but a direct underlying genetic cause could not be identified. High-content imaging was performed to determine antibody binding by commercial O2 monoclonal (mAb) and polyclonal antibodies, as well as polyclonal sera from convalescent patients naturally infected with S. Paratyphi A. Commercial mAbs detected only a fraction of an apparently "clonal" bacterial population, suggesting phase variation and nonuniform O-antigen composition. Notably, and despite visible subpopulation clusters, O-antigen structural changes did not appear to affect the binding ability of polyclonal human antibody considerably, which led to no obvious differences in the functionality of antibodies targeting organisms with different O-antigen conformations. Although these results need to be confirmed in organisms from alternative endemic areas, they are encouraging the use of O-antigen as the target antigen in S. Paratyphi A vaccines.
Collapse
Affiliation(s)
- Elli Mylona
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Joana Pereira-Dias
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jacqueline A Keane
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Abhilasha Karkey
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal; The Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sabina Dongol
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Fahad Khokhar
- Department of Veterinary Medicine, Cambridge Veterinary School, University of Cambridge, Cambridge, UK
| | - Tuan-Anh Tran
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Claire Cormie
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ellen Higginson
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK; Human Immunology Laboratory, IAVI, London, UK
| |
Collapse
|
3
|
Shu R, Liu G, Xu Y, Liu B, Huang Z, Wang H. AcrAB Efflux Pump Plays a Crucial Role in Bile Salts Resistance and Pathogenesis of Klebsiella pneumoniae. Antibiotics (Basel) 2024; 13:1146. [PMID: 39766536 PMCID: PMC11672700 DOI: 10.3390/antibiotics13121146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Bile salts possess innate antibacterial properties and can cause significant damage to bacteria. To survive in the mammalian gut, Klebsiella pneumoniae has developed mechanisms to tolerate bile salts; however, the specific mechanisms remain unclear. Transposon library screening revealed that the efflux pump AcrAB is involved in bile salt resistance. acrA and acrB mutants exhibited high sensitivity not only to bile salts but also to SDS and various antibiotics, with a switch-loop, comprising residues G615, F616, A617, and G618, proving to be crucial in this process. A colonization defect of acrA and acrB mutants was demonstrated to be located in the mouse small intestine, where the bile salt concentration is higher compared to the large intestine. Additionally, both acrA and acrB mutants displayed reduced virulence in the Galleria mellonella model. In conclusion, our results suggest that the Resistance-Nodulation-Cell Division efflux pump serves as a critical determinant in the pathogenesis of K. pneumoniae through various aspects.
Collapse
Affiliation(s)
- Rundong Shu
- Sanya Institute of Nanjing Agricultural University, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (R.S.); (G.L.); (Y.X.); (B.L.)
| | - Ge Liu
- Sanya Institute of Nanjing Agricultural University, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (R.S.); (G.L.); (Y.X.); (B.L.)
- Zhengzhou Agricultural Science and Technology Research Institute, Zhengzhou 450015, China
| | - Yunyu Xu
- Sanya Institute of Nanjing Agricultural University, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (R.S.); (G.L.); (Y.X.); (B.L.)
| | - Bojun Liu
- Sanya Institute of Nanjing Agricultural University, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (R.S.); (G.L.); (Y.X.); (B.L.)
| | - Zhi Huang
- Sanya Institute of Nanjing Agricultural University, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (R.S.); (G.L.); (Y.X.); (B.L.)
| | - Hui Wang
- Sanya Institute of Nanjing Agricultural University, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (R.S.); (G.L.); (Y.X.); (B.L.)
| |
Collapse
|
4
|
Krzyżewska-Dudek E, Dulipati V, Kapczyńska K, Noszka M, Chen C, Kotimaa J, Książczyk M, Dudek B, Bugla-Płoskońska G, Pawlik K, Meri S, Rybka J. Lipopolysaccharide with long O-antigen is crucial for Salmonella Enteritidis to evade complement activity and to facilitate bacterial survival in vivo in the Galleria mellonella infection model. Med Microbiol Immunol 2024; 213:8. [PMID: 38767707 PMCID: PMC11106168 DOI: 10.1007/s00430-024-00790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/19/2024] [Indexed: 05/22/2024]
Abstract
Bacterial resistance to serum is a key virulence factor for the development of systemic infections. The amount of lipopolysaccharide (LPS) and the O-antigen chain length distribution on the outer membrane, predispose Salmonella to escape complement-mediated killing. In Salmonella enterica serovar Enteritidis (S. Enteritidis) a modal distribution of the LPS O-antigen length can be observed. It is characterized by the presence of distinct fractions: low molecular weight LPS, long LPS and very long LPS. In the present work, we investigated the effect of the O-antigen modal length composition of LPS molecules on the surface of S. Enteritidis cells on its ability to evade host complement responses. Therefore, we examined systematically, by using specific deletion mutants, roles of different O-antigen fractions in complement evasion. We developed a method to analyze the average LPS lengths and investigated the interaction of the bacteria and isolated LPS molecules with complement components. Additionally, we assessed the aspect of LPS O-antigen chain length distribution in S. Enteritidis virulence in vivo in the Galleria mellonella infection model. The obtained results of the measurements of the average LPS length confirmed that the method is suitable for measuring the average LPS length in bacterial cells as well as isolated LPS molecules and allows the comparison between strains. In contrast to earlier studies we have used much more precise methodology to assess the LPS molecules average length and modal distribution, also conducted more subtle analysis of complement system activation by lipopolysaccharides of various molecular mass. Data obtained in the complement activation assays clearly demonstrated that S. Enteritidis bacteria require LPS with long O-antigen to resist the complement system and to survive in the G. mellonella infection model.
Collapse
Affiliation(s)
- Eva Krzyżewska-Dudek
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
- Department of Bacteriology and Immunology, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Vinaya Dulipati
- Department of Bacteriology and Immunology, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Katarzyna Kapczyńska
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Mateusz Noszka
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Carmen Chen
- Department of Bacteriology and Immunology, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Juha Kotimaa
- Department of Bacteriology and Immunology, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Marta Książczyk
- Department of Microbiology, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| | - Bartłomiej Dudek
- Platform for Unique Models Application (P.U.M.A), Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, Wrocław, Poland
| | | | - Krzysztof Pawlik
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Seppo Meri
- Department of Bacteriology and Immunology, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- HUSLAB Diagnostic Center, Helsinki University Central Hospital, Helsinki, Finland
| | - Jacek Rybka
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.
| |
Collapse
|
5
|
Lopes AA, Vendrell-Fernández S, Deschamps J, Georgeault S, Cokelaer T, Briandet R, Ghigo JM. Bile-induced biofilm formation in Bacteroides thetaiotaomicron requires magnesium efflux by an RND pump. mBio 2024; 15:e0348823. [PMID: 38534200 PMCID: PMC11078008 DOI: 10.1128/mbio.03488-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Bacteroides thetaiotaomicron is a prominent member of the human gut microbiota contributing to nutrient exchange, gut function, and maturation of the host's immune system. This obligate anaerobe symbiont can adopt a biofilm lifestyle, and it was recently shown that B. thetaiotaomicron biofilm formation is promoted by the presence of bile. This process also requires a B. thetaiotaomicron extracellular DNase, which is not, however, regulated by bile. Here, we showed that bile induces the expression of several Resistance-Nodulation-Division (RND) efflux pumps and that inhibiting their activity with a global competitive efflux inhibitor impaired bile-dependent biofilm formation. We then showed that, among the bile-induced RND-efflux pumps, only the tripartite BT3337-BT3338-BT3339 pump, re-named BipABC [for Bile Induced Pump A (BT3337), B (BT3338), and C (BT3339)], is required for biofilm formation. We demonstrated that BipABC is involved in the efflux of magnesium to the biofilm extracellular matrix, which leads to a decrease of extracellular DNA concentration. The release of magnesium in the biofilm matrix also impacts biofilm structure, potentially by modifying the electrostatic repulsion forces within the matrix, reducing interbacterial distance and allowing bacteria to interact more closely and form denser biofilms. Our study therefore, identified a new molecular determinant of B. thetaiotaomicron biofilm formation in response to bile salts and provides a better understanding on how an intestinal chemical cue regulates biofilm formation in a major gut symbiont.IMPORTANCEBacteroides thetaiotaomicron is a prominent member of the human gut microbiota able to degrade dietary and host polysaccharides, altogether contributing to nutrient exchange, gut function, and maturation of the host's immune system. This obligate anaerobe symbiont can adopt a biofilm community lifestyle, providing protection against environmental factors that might, in turn, protect the host from dysbiosis and dysbiosis-related diseases. It was recently shown that B. thetaiotaomicron exposure to intestinal bile promotes biofilm formation. Here, we reveal that a specific B. thetaiotaomicron membrane efflux pump is induced in response to bile, leading to the release of magnesium ions, potentially reducing electrostatic repulsion forces between components of the biofilm matrix. This leads to a reduction of interbacterial distance and strengthens the biofilm structure. Our study, therefore, provides a better understanding of how bile promotes biofilm formation in a major gut symbiont, potentially promoting microbiota resilience to stress and dysbiosis events.
Collapse
Affiliation(s)
- Anne-Aurélie Lopes
- Institut Pasteur, Université Paris-Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, Department of Microbiology, Paris, France
- Pediatric Emergency, AP-HP, Necker-Enfants-Malades University Hospital, Paris, France
| | - Sol Vendrell-Fernández
- Institut Pasteur, Université Paris-Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, Department of Microbiology, Paris, France
| | - Julien Deschamps
- INRAE, AgroParisTech, Université Paris-Saclay Institut Micalis, Paris, France
| | - Sonia Georgeault
- Plateforme IBiSA des Microscopies, Université et CHRU de Tours, Tours, France
| | - Thomas Cokelaer
- Institut Pasteur, Université Paris Cité, Plate-forme Technologique Biomics, Center for Technological Resources and Research, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Center for Technological Resources and Research, Paris, France
| | - Romain Briandet
- INRAE, AgroParisTech, Université Paris-Saclay Institut Micalis, Paris, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Université Paris-Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, Department of Microbiology, Paris, France
| |
Collapse
|
6
|
Pan SY, Zhou CB, Deng JW, Zhou YL, Liu ZH, Fang JY. The effects of pks + Escherichia coli and bile acid in colorectal tumorigenesis among people with cholelithiasis or cholecystectomy. J Gastroenterol Hepatol 2024; 39:868-879. [PMID: 38220146 DOI: 10.1111/jgh.16462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 11/20/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND AND AIM Patients with cholelithiasis (CL) or cholecystectomy (CE) would have more chances of getting colorectal adenoma (CRA) or cancer (CRC). We aimed to figure out the effects of gut microbiota and bile acid on colorectal neoplasm in CL and CE patients. METHODS This was a retrospective observational study that recruited 514 volunteers, including 199 people with normal gallbladders (normal), 152 CL, and 163 CE patients. Discovery cohort was established to explore the difference in gut microbiota through 16S rRNA and metagenomics sequencing. Validation cohort aimed to verify the results through quantitative polymerase chain reaction (qPCR). RESULTS Significant enrichment of Escherichia coli was found in patients with cholelithiasis or cholecystectomy both in the discovery cohort (16S rRNA sequencing, PNormal-CL = 0.013, PNormal-CE = 0.042; metagenomics sequencing, PNormal-CE = 0.026) and validation cohort (PNormal-CL < 0.0001, PNormal-CE < 0.0001). Pks+ E. coli was found enriched in CL and CE patients through qPCR (in discovery cohort: PNormal-CE = 0.018; in validation cohort: PNormal-CL < 0.0001, PNormal-CE < 0.0001). The differences in bile acid metabolism were found both through Tax4Fun analysis of 16S rRNA sequencing (Ko00120, primary bile acid biosynthesis, PNormal-CE = 0.014; Ko00121, secondary bile acid biosynthesis, PNormal-CE = 0.010) and through metagenomics sequencing (map 00121, PNormal-CE = 0.026). The elevation of serum total bile acid of CE patients was also found in validation cohort (PNormal-CE < 0.0001). The level of serum total bile acid was associated with the relative abundance of pks+ E. coli (r = 0.1895, P = 0.0012). CONCLUSIONS E. coli, especially pks+ species, was enriched in CL and CE patients. Pks+ E. coli and bile acid metabolism were found associated with CRA and CRC in people after cholecystectomy.
Collapse
Affiliation(s)
- Si-Yuan Pan
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Digestive Disease, Shanghai, China
- State Key, Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Disease, Shanghai, China
| | - Cheng-Bei Zhou
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Digestive Disease, Shanghai, China
- State Key, Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Disease, Shanghai, China
| | - Jia-Wen Deng
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Digestive Disease, Shanghai, China
- State Key, Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Disease, Shanghai, China
| | - Yi-Lu Zhou
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Digestive Disease, Shanghai, China
- State Key, Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Disease, Shanghai, China
| | - Zhu-Hui Liu
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Digestive Disease, Shanghai, China
- State Key, Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Disease, Shanghai, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Digestive Disease, Shanghai, China
- State Key, Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Disease, Shanghai, China
| |
Collapse
|
7
|
Machado MAM, Chapartegui-González I, Castro VS, Figueiredo EEDS, Conte-Junior CA, Torres AG. Biofilm-producing Escherichia coli O104:H4 overcomes bile salts toxicity by expressing virulence and resistance proteins. Lett Appl Microbiol 2024; 77:ovae032. [PMID: 38573831 DOI: 10.1093/lambio/ovae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/15/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024]
Abstract
We investigated bile salts' ability to induce phenotypic changes in biofilm production and protein expression of pathogenic Escherichia coli strains. For this purpose, 82 pathogenic E. coli strains isolated from humans (n = 70), and animals (n = 12), were examined for their ability to form biofilms in the presence or absence of bile salts. We also identified bacterial proteins expressed in response to bile salts using sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-electrophoresis) and liquid chromatography-mass spectrometry (LC-MS/MS). Lastly, we evaluated the ability of these strains to adhere to Caco-2 epithelial cells in the presence of bile salts. Regarding biofilm formation, two strains isolated from an outbreak in Republic of Georgia in 2009 were the only ones that showed a high and moderate capacity to form biofilm in the presence of bile salts. Further, we observed that those isolates, when in the presence of bile salts, expressed different proteins identified as outer membrane proteins (i.e. OmpC), and resistance to adverse growth conditions (i.e. F0F1, HN-S, and L7/L12). We also found that these isolates exhibited high adhesion to epithelial cells in the presence of bile salts. Together, these results contribute to the phenotypic characterization of E. coli O104: H4 strains.
Collapse
Affiliation(s)
- Maxsueli Aparecida Moura Machado
- Food Science Program (PPGCAL), Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro 21941-598, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro 21941-909, RJ, Brazil
| | - Itziar Chapartegui-González
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, United States
| | - Vinicius Silva Castro
- Animal Science Program (PPGCA). Federal University of Mato Grosso (UFMT), Cuiabá, Mato Grosso 78060-900, Brazil
- Nutrition, Food and Metabolism Program (PPGNAM). Federal University of Mato Grosso (UFMT), Cuiabá, Mato Grosso 78060-900, Brazil
| | - Eduardo Eustáquio de Souza Figueiredo
- Animal Science Program (PPGCA). Federal University of Mato Grosso (UFMT), Cuiabá, Mato Grosso 78060-900, Brazil
- Nutrition, Food and Metabolism Program (PPGNAM). Federal University of Mato Grosso (UFMT), Cuiabá, Mato Grosso 78060-900, Brazil
| | - Carlos Adam Conte-Junior
- Food Science Program (PPGCAL), Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro 21941-598, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro 21941-909, RJ, Brazil
| | - Alfredo G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, United States
| |
Collapse
|
8
|
Sun XW, Huang HJ, Wang XM, Wei RQ, Niu HY, Chen HY, Luo M, Abdugheni R, Wang YL, Liu FL, Jiang H, Liu C, Liu SJ. Christensenella strain resources, genomic/metabolomic profiling, and association with host at species level. Gut Microbes 2024; 16:2347725. [PMID: 38722028 PMCID: PMC11085954 DOI: 10.1080/19490976.2024.2347725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/15/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
The gut commensal bacteria Christensenellaceae species are negatively associated with many metabolic diseases, and have been seen as promising next-generation probiotics. However, the cultured Christensenellaceae strain resources were limited, and their beneficial mechanisms for improving metabolic diseases have yet to be explored. In this study, we developed a method that enabled the enrichment and cultivation of Christensenellaceae strains from fecal samples. Using this method, a collection of Christensenellaceae Gut Microbial Biobank (ChrisGMB) was established, composed of 87 strains and genomes that represent 14 species of 8 genera. Seven species were first described and the cultured Christensenellaceae resources have been significantly expanded at species and strain levels. Christensenella strains exerted different abilities in utilization of various complex polysaccharides and other carbon sources, exhibited host-adaptation capabilities such as acid tolerance and bile tolerance, produced a wide range of volatile probiotic metabolites and secondary bile acids. Cohort analyses demonstrated that Christensenellaceae and Christensenella were prevalent in various cohorts and the abundances were significantly reduced in T2D and OB cohorts. At species level, Christensenellaceae showed different changes among healthy and disease cohorts. C. faecalis, F. tenuis, L. tenuis, and Guo. tenuis significantly reduced in all the metabolic disease cohorts. The relative abundances of C. minuta, C. hongkongensis and C. massiliensis showed no significant change in NAFLD and ACVD. and C. tenuis and C. acetigenes showed no significant change in ACVD, and Q. tenuis and Geh. tenuis showed no significant change in NAFLD, when compared with the HC cohort. So far as we know, this is the largest collection of cultured resource and first exploration of Christensenellaceae prevalences and abundances at species level.
Collapse
Affiliation(s)
- Xin-Wei Sun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Hao-Jie Huang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Xiao-Meng Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Rui-Qi Wei
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Han-Yu Niu
- College of Veterinary Medicine, Shanxi Agr icultural University, Taigu, China
| | - Hao-Yu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Man Luo
- College of Veterinary Medicine, Shanxi Agr icultural University, Taigu, China
| | - Rashidin Abdugheni
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürűmqi, P. R. China
| | - Yu-Lin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Feng-Lan Liu
- College of Life Sciences, Hebei University, Baoding, P. R. China
| | - He Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Chang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
9
|
Cao X, van Putten JP, Wösten MM. Campylobacter jejuni benefits from the bile salt deoxycholate under low-oxygen condition in a PldA dependent manner. Gut Microbes 2023; 15:2262592. [PMID: 37768138 PMCID: PMC10540661 DOI: 10.1080/19490976.2023.2262592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Enteric bacteria need to adapt to endure the antibacterial activities of bile salts in the gut. Phospholipase A (PldA) is a key enzyme in the maintenance of bacterial membrane homeostasis. Bacteria respond to stress by modulating their membrane composition. Campylobacter jejuni is the most common cause of human worldwide. However, the mechanism by which C. jejuni adapts and survives in the gut environment is not fully understood. In this study, we investigated the roles of PldA, bile salt sodium deoxycholate (DOC), and oxygen availability in C. jejuni biology, mimicking an in vivo situation. Growth curves were used to determine the adaptation of C. jejuni to bile salts. RNA-seq and functional assays were employed to investigate the PldA-dependent and DOC-induced changes in gene expression that influence bacterial physiology. Survival studies were performed to address oxidative stress defense in C. jejuni. Here, we discovered that PldA of C. jejuni is required for optimal growth in the presence of bile salt DOC. Under high oxygen conditions, DOC is toxic to C. jejuni, but under low oxygen conditions, as is present in the lumen of the gut, C. jejuni benefits from DOC. C. jejuni PldA seems to enable the use of iron needed for optimal growth in the presence of DOC but makes the bacterium more vulnerable to oxidative stress. In conclusion, DOC stimulates C. jejuni growth under low oxygen conditions and alters colony morphology in a PldA-dependent manner. C. jejuni benefits from DOC by upregulating iron metabolism in a PldA-dependent manner.
Collapse
Affiliation(s)
- Xuefeng Cao
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jos P.M. van Putten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Marc M.S.M. Wösten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
10
|
Akritidou T, Akkermans S, Smet C, Gaspari S, Sharma C, Matthews E, Van Impe JFM. Gut microbiota of the small intestine as an antimicrobial barrier against foodborne pathogens: Impact of diet on the survival of S. Typhimurium and L. monocytogenes during in vitro digestion. Food Res Int 2023; 173:113292. [PMID: 37803689 DOI: 10.1016/j.foodres.2023.113292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 10/08/2023]
Abstract
The human gastrointestinal tract employs an assortment of chemical, enzymatic and immune barriers to impede pathogen colonization. An essential component of these barriers is the gut microbiota, which infers protection against ingested pathogens through its colonization resistance mechanisms. Specifically, the gut microbiota of the distal small intestine (ileum) renders a crucial line of defense, given that this location is regarded as an important interaction site. This study aimed to evaluate the impact of the ileal microbiota on the survival of the foodborne pathogens Salmonella enterica serotype Typhimurium and Listeria monocytogenes, utilizing an in vitro digestion model system. Moreover, the effect of diet on the gut microbiota colonization resistance mechanisms was assessed, by comparing a healthy (high fiber/low sugar) and a western diet (low fiber/high sugar). For S. Typhimurium, the results revealed that the digestion of a healthy diet led to a similar inactivation compared to the western diet, with the values of total log reduction being 0.83 and 0.82 log(CFU), respectively; yet the lack of readily accessible nutrients in the healthy diet combined with the acidic shock during gastric digestion caused the induction of stress tolerance to the pathogen. This resulted in increased pathogen survival in the presence of gut microbiota, with S. Typhimurium proliferating during the ileal phase with a maximum specific growth rate of 0.16 1/h. On the contrary, for L. monocytogenes, the healthy diet was associated with a greater inactivation than the western diet (total log reduction values: 3.08 and 1.30 log(CFU), respectively), which appeared strongly influenced by the encounter of the pathogen with the gut microbiota. Regarding the latter, the species Escherichia coli and Bacteroides thetaiotaomicron appeared to be the most prevalent in most cases. Finally, it was also demonstrated that the ileal microbiota colonization resistance mechanisms largely relied on competitive responses. The obtained knowledge of this research can contribute to the development and/or complementation of defensive strategies against pathogen infection, while also underlining the value of in vitro approaches.
Collapse
Affiliation(s)
- Theodora Akritidou
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Simen Akkermans
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Cindy Smet
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Sotiria Gaspari
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Chahat Sharma
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Eimear Matthews
- Faculty of Biomolecular Science, Technological University Dublin, Ireland
| | - Jan F M Van Impe
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium.
| |
Collapse
|
11
|
Chathuranga K, Shin Y, Uddin MB, Paek J, Chathuranga WAG, Seong Y, Bai L, Kim H, Shin JH, Chang YH, Lee JS. The novel immunobiotic Clostridium butyricum S-45-5 displays broad-spectrum antiviral activity in vitro and in vivo by inducing immune modulation. Front Immunol 2023; 14:1242183. [PMID: 37881429 PMCID: PMC10595006 DOI: 10.3389/fimmu.2023.1242183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023] Open
Abstract
Clostridium butyricum is known as a probiotic butyric acid bacterium that can improve the intestinal environment. In this study, we isolated a new strain of C. butyricum from infant feces and evaluated its physiological characteristics and antiviral efficacy by modulating the innate immune responses in vitro and in vivo. The isolated C. butyricum S-45-5 showed typical characteristics of C. butyricum including bile acid resistance, antibacterial ability, and growth promotion of various lactic acid bacteria. As an antiviral effect, C. butyricum S-45-5 markedly reduced the replication of influenza A virus (PR8), Newcastle Disease Virus (NDV), and Herpes Simplex Virus (HSV) in RAW264.7 cells in vitro. This suppression can be explained by the induction of antiviral state in cells by the induction of antiviral, IFN-related genes and secretion of IFNs and pro-inflammatory cytokines. In vivo, oral administration of C. butyricum S-45-5 exhibited prophylactic effects on BALB/c mice against fatal doses of highly pathogenic mouse-adapted influenza A subtypes (H1N1, H3N2, and H9N2). Before challenge with influenza virus, C. butyricum S-45-5-treated BALB/c mice showed increased levels of IFN-β, IFN-γ, IL-6, and IL-12 in serum, the small intestine, and bronchoalveolar lavage fluid (BALF), which correlated with observed prophylactic effects. Interestingly, after challenge with influenza virus, C. butyricum S-45-5-treated BALB/c mice showed reduced levels of pro-inflammatory cytokines and relatively higher levels of anti-inflammatory cytokines at day 7 post-infection. Taken together, these findings suggest that C. butyricum S-45-5 plays an antiviral role in vitro and in vivo by inducing an antiviral state and affects immune modulation to alleviate local and systemic inflammatory responses caused by influenza virus infection. Our study provides the beneficial effects of the new C. butyricum S-45-5 with antiviral effects as a probiotic.
Collapse
Affiliation(s)
- Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yeseul Shin
- Access to Genetic Resources and Benefit-Sharing (ABS) Research Support Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Md Bashir Uddin
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Medicine, Sylhet Agricultural University, Sylhet, Bangladesh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jayoung Paek
- Access to Genetic Resources and Benefit-Sharing (ABS) Research Support Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | | | - Yebin Seong
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Lu Bai
- Access to Genetic Resources and Benefit-Sharing (ABS) Research Support Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Hongik Kim
- Research and Development Division, Vitabio, Inc., Daejeon, Republic of Korea
| | - Jeong Hwan Shin
- Department of Laboratory Medicine, Inje University College of Medicine, Busan, Republic of Korea
| | - Young-Hyo Chang
- Access to Genetic Resources and Benefit-Sharing (ABS) Research Support Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
12
|
Gubensäk N, Sagmeister T, Buhlheller C, Geronimo BD, Wagner GE, Petrowitsch L, Gräwert MA, Rotzinger M, Berger TMI, Schäfer J, Usón I, Reidl J, Sánchez-Murcia PA, Zangger K, Pavkov-Keller T. Vibrio cholerae's ToxRS bile sensing system. eLife 2023; 12:e88721. [PMID: 37768326 PMCID: PMC10624426 DOI: 10.7554/elife.88721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/27/2023] [Indexed: 09/29/2023] Open
Abstract
The seventh pandemic of the diarrheal cholera disease, which began in 1960, is caused by the Gram-negative bacterium Vibrio cholerae. Its environmental persistence provoking recurring sudden outbreaks is enabled by V. cholerae's rapid adaption to changing environments involving sensory proteins like ToxR and ToxS. Located at the inner membrane, ToxR and ToxS react to environmental stimuli like bile acid, thereby inducing survival strategies for example bile resistance and virulence regulation. The presented crystal structure of the sensory domains of ToxR and ToxS in combination with multiple bile acid interaction studies, reveals that a bile binding pocket of ToxS is only properly folded upon binding to ToxR. Our data proposes an interdependent functionality between ToxR transcriptional activity and ToxS sensory function. These findings support the previously suggested link between ToxRS and VtrAC-like co-component systems. Besides VtrAC, ToxRS is now the only experimentally determined structure within this recently defined superfamily, further emphasizing its significance. In-depth analysis of the ToxRS complex reveals its remarkable conservation across various Vibrio species, underlining the significance of conserved residues in the ToxS barrel and the more diverse ToxR sensory domain. Unravelling the intricate mechanisms governing ToxRS's environmental sensing capabilities, provides a promising tool for disruption of this vital interaction, ultimately inhibiting Vibrio's survival and virulence. Our findings hold far-reaching implications for all Vibrio strains that rely on the ToxRS system as a shared sensory cornerstone for adapting to their surroundings.
Collapse
Affiliation(s)
- Nina Gubensäk
- Institute of Molecular Biosciences, University of GrazGrazAustria
| | - Theo Sagmeister
- Institute of Molecular Biosciences, University of GrazGrazAustria
| | | | - Bruno Di Geronimo
- Laboratory of Computer-Aided Molecular Design, Division of Medicinal Chemistry, Otto-Loewi Research Center, Medical University of GrazGrazAustria
| | - Gabriel E Wagner
- Institute of Chemistry / Organic and Bioorganic Chemistry, Medical University of GrazGrazAustria
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of GrazGrazAustria
| | | | | | - Markus Rotzinger
- Institute of Chemistry / Organic and Bioorganic Chemistry, Medical University of GrazGrazAustria
| | | | | | - Isabel Usón
- Institute of Molecular Biology of BarcelonaBarcelonaSpain
- ICREA, Institució Catalana de Recerca i Estudis AvançatsBarcelonaSpain
| | - Joachim Reidl
- Institute of Molecular Biosciences, University of GrazGrazAustria
- BioHealth Field of Excellence, University of GrazGrazAustria
- BioTechMed-GrazGrazAustria
| | - Pedro A Sánchez-Murcia
- Laboratory of Computer-Aided Molecular Design, Division of Medicinal Chemistry, Otto-Loewi Research Center, Medical University of GrazGrazAustria
| | - Klaus Zangger
- Institute of Chemistry / Organic and Bioorganic Chemistry, Medical University of GrazGrazAustria
- BioHealth Field of Excellence, University of GrazGrazAustria
- BioTechMed-GrazGrazAustria
| | - Tea Pavkov-Keller
- Institute of Molecular Biosciences, University of GrazGrazAustria
- BioHealth Field of Excellence, University of GrazGrazAustria
- BioTechMed-GrazGrazAustria
| |
Collapse
|
13
|
Mateus C, Maia CJ, Domingues F, Bücker R, Oleastro M, Ferreira S. Evaluation of Bile Salts on the Survival and Modulation of Virulence of Aliarcobacter butzleri. Antibiotics (Basel) 2023; 12:1387. [PMID: 37760684 PMCID: PMC10525121 DOI: 10.3390/antibiotics12091387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Aliarcobacter butzleri is a Gram-negative bacterium associated with infections of the gastrointestinal tract and widely distributed in various environments. For successful infection, A. butzleri should be able to tolerate various stresses during gastrointestinal passage, such as bile. Bile represents an antimicrobial host barrier that acts against external noxious agents and consists of a variety of bile salts. The intestinal bile salts act as detergents involved in the antimicrobial host defense; although, on the bacterial side, they could also serve as a signal to activate virulence mechanisms. The aim of this work was to understand the effects of bile salts on the survival and virulence of A. butzleri. In our study, A. butzleri was able to survive in the presence of human physiological concentrations of bile salts. Regarding the virulence features, an increase in cellular hydrophobicity, a decrease in motility and expression of flaA gene, as well as an increase in biofilm formation with a concomitant change in the type of biofilm structure were observed in the presence of sub-inhibitory concentration of bile salts. Concerning adhesion and invasion ability, no significant difference was observed. Overall, the results demonstrated that A. butzleri is able to survive in physiological concentrations of bile salts and that exposure to bile salts could change its virulence mechanisms.
Collapse
Affiliation(s)
- Cristiana Mateus
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.M.); (C.J.M.); (F.D.)
| | - Cláudio J. Maia
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.M.); (C.J.M.); (F.D.)
| | - Fernanda Domingues
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.M.); (C.J.M.); (F.D.)
| | - Roland Bücker
- Clinical Physiology/Nutritional Medicine, Medical Department of Gastroenterology, Infectiology, Rheumatology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany;
| | - Mónica Oleastro
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal;
| | - Susana Ferreira
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.M.); (C.J.M.); (F.D.)
| |
Collapse
|
14
|
Ko D, Sung D, Kim TY, Choi G, Bang YJ, Choi SH. CarRS Two-Component System Essential for Polymyxin B Resistance of Vibrio vulnificus Responds to Multiple Host Environmental Signals. Microbiol Spectr 2023; 11:e0030523. [PMID: 37289068 PMCID: PMC10433830 DOI: 10.1128/spectrum.00305-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/15/2023] [Indexed: 06/09/2023] Open
Abstract
Enteropathogenic bacteria express two-component systems (TCSs) to sense and respond to host environments, developing resistance to host innate immune systems like cationic antimicrobial peptides (CAMPs). Although an opportunistic human pathogen Vibrio vulnificus shows intrinsic resistance to the CAMP-like polymyxin B (PMB), its TCSs responsible for resistance have barely been investigated. Here, a mutant exhibiting a reduced growth rate in the presence of PMB was screened from a random transposon mutant library of V. vulnificus, and response regulator CarR of the CarRS TCS was identified as essential for its PMB resistance. Transcriptome analysis revealed that CarR strongly activates the expression of the eptA, tolCV2, and carRS operons. In particular, the eptA operon plays a major role in developing the CarR-mediated PMB resistance. Phosphorylation of CarR by the sensor kinase CarS is required for the regulation of its downstream genes, leading to the PMB resistance. Nevertheless, CarR directly binds to specific sequences in the upstream regions of the eptA and carRS operons, regardless of its phosphorylation. Notably, the CarRS TCS alters its own activation state by responding to several environmental stresses, including PMB, divalent cations, bile salts, and pH change. Furthermore, CarR modulates the resistance of V. vulnificus to bile salts and acidic pH among the stresses, as well as PMB. Altogether, this study suggests that the CarRS TCS, in responding to multiple host environmental signals, could provide V. vulnificus with the benefit of surviving within the host by enhancing its optimal fitness during infection. IMPORTANCE Enteropathogenic bacteria have evolved multiple TCSs to recognize and appropriately respond to host environments. CAMP is one of the inherent host barriers that the pathogens encounter during the course of infection. In this study, the CarRS TCS of V. vulnificus was found to develop resistance to PMB, a CAMP-like antimicrobial peptide, by directly activating the expression of the eptA operon. Although CarR binds to the upstream regions of the eptA and carRS operons regardless of phosphorylation, phosphorylation of CarR is required for the regulation of the operons, resulting in the PMB resistance. Furthermore, the CarRS TCS determines the resistance of V. vulnificus to bile salts and acidic pH by differentially regulating its own activation state in response to these environmental stresses. Altogether, the CarRS TCS responds to multiple host-related signals, and thus could enhance the survival of V. vulnificus within the host, leading to successful infection.
Collapse
Affiliation(s)
- Duhyun Ko
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Dayoung Sung
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Tae Young Kim
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Garam Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Ye-Ji Bang
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Bernard JN, Chinnaiyan V, Almeda J, Catala-Valentin A, Andl CD. Lactobacillus sp. Facilitate the Repair of DNA Damage Caused by Bile-Induced Reactive Oxygen Species in Experimental Models of Gastroesophageal Reflux Disease. Antioxidants (Basel) 2023; 12:1314. [PMID: 37507854 PMCID: PMC10376144 DOI: 10.3390/antiox12071314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Gastroesophageal reflux disease (GERD) leads to the accumulation of bile-induced reactive oxygen species and oxidative stress in esophageal tissues, causing inflammation and DNA damage. The progression sequence from healthy esophagus to GERD and eventually cancer is associated with a microbiome shift. Lactobacillus species are commensal organisms known for their probiotic and antioxidant characteristics in the healthy esophagus. This prompted us to investigate how Lactobacilli survive in a bile-rich environment during GERD, and to identify their interaction with the bile-injured esophageal cells. To model human reflux conditions, we exposed three Lactobacillus species (L. acidophilus, L. plantarum, and L. fermentum) to bile. All species were tolerant to bile possibly enabling them to colonize the esophageal epithelium under GERD conditions. Next, we assessed the antioxidant potential of Lactobacilli and role in bile injury repair: we measured bile-induced DNA damage using the ROS marker 8-oxo guanine and COMET assay. Lactobacillus addition after bile injury accelerated repair of bile-induced DNA damage through recruitment of pH2AX/RAD51 and reduced NFκB-associated inflammation in esophageal cells. This study demonstrated anti-genotoxic and anti-inflammatory effects of Lactobacilli, making them of significant interest in the prevention of Barrett's esophagus and esophageal adenocarcinoma in patients with GERD.
Collapse
Affiliation(s)
- Joshua N Bernard
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Vikram Chinnaiyan
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Jasmine Almeda
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Alma Catala-Valentin
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Claudia D Andl
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
16
|
Pis Diez CM, Antelo GT, Dalia TN, Dalia AB, Giedroc DP, Capdevila DA. Increased intracellular persulfide levels attenuate HlyU-mediated hemolysin transcriptional activation in Vibrio cholerae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532278. [PMID: 36993174 PMCID: PMC10054925 DOI: 10.1101/2023.03.13.532278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The vertebrate host’s immune system and resident commensal bacteria deploy a range of highly reactive small molecules that provide a barrier against infections by microbial pathogens. Gut pathogens, such as Vibrio cholerae , sense and respond to these stressors by modulating the expression of exotoxins that are crucial for colonization. Here, we employ mass-spectrometry-based profiling, metabolomics, expression assays and biophysical approaches to show that transcriptional activation of the hemolysin gene hlyA in V. cholerae is regulated by intracellular reactive sulfur species (RSS), specifically sulfane sulfur. We first present a comprehensive sequence similarity network analysis of the arsenic repressor (ArsR) superfamily of transcriptional regulators where RSS and reactive oxygen species (ROS) sensors segregate into distinct clusters. We show that HlyU, transcriptional activator of hlyA in V. cholerae , belongs to the RSS-sensing cluster and readily reacts with organic persulfides, showing no reactivity and remaining DNA-bound following treatment with various ROS in vitro, including H 2 O 2 . Surprisingly, in V. cholerae cell cultures, both sulfide and peroxide treatment downregulate HlyU-dependent transcriptional activation of hlyA . However, RSS metabolite profiling shows that both sulfide and peroxide treatment raise the endogenous inorganic sulfide and disulfide levels to a similar extent, accounting for this crosstalk, and confirming that V. cholerae attenuates HlyU-mediated activation of hlyA in a specific response to intracellular RSS. These findings provide new evidence that gut pathogens may harness RSS-sensing as an evolutionary adaptation that allows them to overcome the gut inflammatory response by modulating the expression of exotoxins.
Collapse
Affiliation(s)
- Cristian M. Pis Diez
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405BWE Ciudad Autónoma de, Buenos Aires, Argentina
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Giuliano T. Antelo
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405BWE Ciudad Autónoma de, Buenos Aires, Argentina
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Triana N. Dalia
- Department of Biology, Indiana University, Bloomington, IN 47405-7102, USA
| | - Ankur B. Dalia
- Department of Biology, Indiana University, Bloomington, IN 47405-7102, USA
| | - David P. Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Daiana A. Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405BWE Ciudad Autónoma de, Buenos Aires, Argentina
| |
Collapse
|
17
|
Cho THS, Pick K, Raivio TL. Bacterial envelope stress responses: Essential adaptors and attractive targets. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119387. [PMID: 36336206 DOI: 10.1016/j.bbamcr.2022.119387] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/05/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Millions of deaths a year across the globe are linked to antimicrobial resistant infections. The need to develop new treatments and repurpose of existing antibiotics grows more pressing as the growing antimicrobial resistance pandemic advances. In this review article, we propose that envelope stress responses, the signaling pathways bacteria use to recognize and adapt to damage to the most vulnerable outer compartments of the microbial cell, are attractive targets. Envelope stress responses (ESRs) support colonization and infection by responding to a plethora of toxic envelope stresses encountered throughout the body; they have been co-opted into virulence networks where they work like global positioning systems to coordinate adhesion, invasion, microbial warfare, and biofilm formation. We highlight progress in the development of therapeutic strategies that target ESR signaling proteins and adaptive networks and posit that further characterization of the molecular mechanisms governing these essential niche adaptation machineries will be important for sparking new therapeutic approaches aimed at short-circuiting bacterial adaptation.
Collapse
Affiliation(s)
- Timothy H S Cho
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Kat Pick
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Tracy L Raivio
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
18
|
Akritidou T, Akkermans S, Smet C, Delens V, Van Impe JFM. Effect of food structure and buffering capacity on pathogen survival during in vitro digestion. Food Res Int 2023; 164:112305. [PMID: 36737908 DOI: 10.1016/j.foodres.2022.112305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
Even though a plethora of barriers are employed by the human gastrointestinal tract (GIT) to cope with invading pathogens, foodborne diseases are still a common problem. The survival of food pathogens in the GIT is known to depend on food carrier properties. The aim of this study was to investigate the influence of food buffering capacity and food structure on the survival of Salmonella Typhimurium and Listeria monocytogenes during simulated digestion, following contamination of different food model systems that had different combinations of fat and protein content. The results illustrated the strong protective properties of proteins, acting either as a strong buffering agent or as a physical barrier against gastric acidity, for both pathogens. In comparison, fat manifested a lower buffering capacity and weaker protective effects against the two pathogens. Intriguingly, a low fat content was often linked with increased microbial resistance. Nonetheless, both pathogens survived their transit through the simulated GIT in all cases, with S. Typhimurium exhibiting growth during intestinal digestion and L.monocytogenes demonstrating a healthy residual population at the end of the intestinal phase. These results corroborate the need for a deeper understanding regarding the mechanisms with which food affects bacterial survival in the human GIT.
Collapse
Affiliation(s)
- Theodora Akritidou
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Simen Akkermans
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Cindy Smet
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Valérie Delens
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Jan F M Van Impe
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium.
| |
Collapse
|
19
|
Yamasaki S, Yoneda T, Ikawa S, Hayashi-Nishino M, Nishino K. Investigating multidrug efflux pumps associated with fatty acid salt resistance in Escherichia coli. Front Microbiol 2023; 14:954304. [PMID: 36896427 PMCID: PMC9989013 DOI: 10.3389/fmicb.2023.954304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 01/24/2023] [Indexed: 02/25/2023] Open
Abstract
Fatty acids salts exert bactericidal and bacteriostatic effects that inhibit bacterial growth and survival. However, bacteria can overcome these effects and adapt to their environment. Bacterial efflux systems are associated with resistance to different toxic compounds. Here, several bacterial efflux systems were examined to determine their influence on fatty acid salt resistance in Escherichia coli. Both acrAB and tolC E. coli deletion strains were susceptible to fatty acid salts, while plasmids carrying acrAB, acrEF, mdtABC, or emrAB conferred drug resistance to the ΔacrAB mutant, which indicated complementary roles for these multidrug efflux pumps. Our data exemplify the importance of bacterial efflux systems in E. coli resistance to fatty acid salts.
Collapse
Affiliation(s)
- Seiji Yamasaki
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan
| | - Tomohiro Yoneda
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Sota Ikawa
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Mitsuko Hayashi-Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kunihiko Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| |
Collapse
|
20
|
Listeria monocytogenes-How This Pathogen Uses Its Virulence Mechanisms to Infect the Hosts. Pathogens 2022; 11:pathogens11121491. [PMID: 36558825 PMCID: PMC9783847 DOI: 10.3390/pathogens11121491] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Listeriosis is a serious food-borne illness, especially in susceptible populations, including children, pregnant women, and elderlies. The disease can occur in two forms: non-invasive febrile gastroenteritis and severe invasive listeriosis with septicemia, meningoencephalitis, perinatal infections, and abortion. Expression of each symptom depends on various bacterial virulence factors, immunological status of the infected person, and the number of ingested bacteria. Internalins, mainly InlA and InlB, invasins (invasin A, LAP), and other surface adhesion proteins (InlP1, InlP4) are responsible for epithelial cell binding, whereas internalin C (InlC) and actin assembly-inducing protein (ActA) are involved in cell-to-cell bacterial spread. L. monocytogenes is able to disseminate through the blood and invade diverse host organs. In persons with impaired immunity, the elderly, and pregnant women, the pathogen can also cross the blood-brain and placental barriers, which results in the invasion of the central nervous system and fetus infection, respectively. The aim of this comprehensive review is to summarize the current knowledge on the epidemiology of listeriosis and L. monocytogenes virulence mechanisms that are involved in host infection, with a special focus on their molecular and cellular aspects. We believe that all this information is crucial for a better understanding of the pathogenesis of L. monocytogenes infection.
Collapse
|
21
|
Effect of gastric pH and bile acids on the survival of Listeria monocytogenes and Salmonella Typhimurium during simulated gastrointestinal digestion. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Dudek B, Rybka J, Bugla-Płoskońska G, Korzeniowska-Kowal A, Futoma-Kołoch B, Pawlak A, Gamian A. Biological functions of sialic acid as a component of bacterial endotoxin. Front Microbiol 2022; 13:1028796. [PMID: 36338080 PMCID: PMC9631793 DOI: 10.3389/fmicb.2022.1028796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/05/2022] [Indexed: 11/28/2022] Open
Abstract
Lipopolysaccharide (endotoxin, LPS) is an important Gram-negative bacteria antigen. LPS of some bacteria contains sialic acid (Neu5Ac) as a component of O-antigen (O-Ag), in this review we present an overview of bacteria in which the presence of Neu5Ac has been confirmed in their outer envelope and the possible ways that bacteria can acquire Neu5Ac. We explain the role of Neu5Ac in bacterial pathogenesis, and also involvement of Neu5Ac in bacterial evading the host innate immunity response and molecular mimicry phenomenon. We also highlight the role of sialic acid in the mechanism of bacterial resistance to action of serum complement. Despite a number of studies on involvement of Neu5Ac in bacterial pathogenesis many aspects of this phenomenon are still not understood.
Collapse
Affiliation(s)
- Bartłomiej Dudek
- Department of Microbiology, University of Wrocław, Wrocław, Poland
- *Correspondence: Bartłomiej Dudek,
| | - Jacek Rybka
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | | - Agnieszka Korzeniowska-Kowal
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | | | | - Andrzej Gamian
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
- Andrzej Gamian,
| |
Collapse
|
23
|
Probiotic Characteristics of Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus as Influenced by Carao (Cassia grandis). FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Carao is considered a functional ingredient since its bioactive compounds are meaningful in nutritional, pharmacological, and medicinal applications. The objective of this study was to determine the effects of carao pulp powder on the bacterial viability, acid tolerance, bile tolerance, and protease activity of S. thermophilus STI-06 and L. bulgaricus LB-12. M17 broth with 0.5% lactose and MRS broth were used for S. thermophilus and L. bulgaricus, respectively, for determining bacterial viability, acid tolerance, and bile tolerance. Skim milk was used to study the protease activity of both bacteria. The carao was added at 0 (control), 1.3, 2.6, and 5.3 (g/L) into the broths and skim milk. The broths were enumerated for bacterial viability (every 2 h), bile tolerance (every 4 h), and acid tolerance (every 30 min), and the skim milk was analyzed for protease activity (every 12 h). The General Linear Model (PROC GLM) was used to analyze the data. The 2.6 g/L and 5.3 g/L usage level of carao improved the acid tolerance of S. thermophilus. Carao did not affect the acid tolerance of L. bulgaricus. The usage of 5.3 g/L of carao significantly improved the bile tolerance and protease activity of both bacteria. However, carao did not affect the viability of either bacteria. Overall, 5.3 g/L of carao with these probiotics could be recommended in fermentation processes.
Collapse
|
24
|
Sun H, Wang M, Liu Y, Wu P, Yao T, Yang W, Yang Q, Yan J, Yang B. Regulation of flagellar motility and biosynthesis in enterohemorrhagic Escherichia coli O157:H7. Gut Microbes 2022; 14:2110822. [PMID: 35971812 PMCID: PMC9387321 DOI: 10.1080/19490976.2022.2110822] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
ABSTARCTEnterohemorrhagic Escherichia coli (EHEC) O157:H7 is a human pathogen that causes a variety of diseases, such as hemorrhagic colitis and lethal hemolytic uremic syndrome. Flagellum-dependent motility plays diverse roles in the pathogenesis of EHEC O157:H7, including its migration to an optimal host site, adherence and colonization, survival at the infection site, and post-infection dispersal. However, it is very expensive for cellular economy in terms of the number of genes and the energy required for flagellar biosynthesis and functioning. Furthermore, the flagellar filament bears strong antigenic properties that induce a strong host immune response. Consequently, the flagellar gene expression and biosynthesis are highly regulated to occur at the appropriate time and place by different regulatory influences. The present review focuses on the regulatory mechanisms of EHEC O157:H7 motility and flagellar biosynthesis, especially in terms of flagellar gene regulation by environmental factors, regulatory proteins, and small regulatory RNAs.
Collapse
Affiliation(s)
- Hongmin Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | - Min Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | - Pan Wu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | - Ting Yao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | - Wen Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | - Qian Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | - Jun Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China,CONTACT Bin Yang TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin300457, P. R. China
| |
Collapse
|
25
|
Wicaksono WA, Buko A, Kusstatscher P, Sinkkonen A, Laitinen OH, Virtanen SM, Hyöty H, Cernava T, Berg G. Modulation of the food microbiome by apple fruit processing. Food Microbiol 2022; 108:104103. [DOI: 10.1016/j.fm.2022.104103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/04/2022]
|
26
|
Akritidou T, Smet C, Akkermans S, Tonti M, Williams J, Van de Wiele T, Van Impe JFM. A protocol for the cultivation and monitoring of ileal gut microbiota surrogates. J Appl Microbiol 2022; 133:1919-1939. [PMID: 35751580 DOI: 10.1111/jam.15684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 11/28/2022]
Abstract
AIMS This research aimed to develop and validate a cultivation and monitoring protocol that is suitable for a surrogate microbial community that accounts for the gut microbiota of the ileum of the small intestine. METHODS AND RESULTS Five bacterial species have been selected as representatives of the ileal gut microbiota and a general anaerobic medium (MS-BHI, as minimally supplemented BHI) has been constructed and validated against BCCM/LGM recommended and commercial media. Moreover, appropriate selective/differential media have been investigated for monitoring each ileal gut microbiota surrogate. Results showed that MS-BHI was highly efficient in displaying individual and collective behavior of the ileal gut microbiota species, when compared with other types of media. Likewise, the selective/differential media managed to identify and describe the behavior of their targeted species. CONCLUSIONS MS-BHI renders a highly efficient, inexpensive and easy-to-prepare cultivation and enumeration alternative for the surrogate ileal microbiota species. Additionally, the selective/differential media can identify and quantify the bacteria of the surrogate ileal microbial community. SIGNIFICANCE AND IMPACT OF STUDY The selected gut microbiota species can represent an in vitro ileal community, forming the basis for future studies on small intestinal microbiota. MS-BHI and the proposed monitoring protocol can be used as a standard for gut microbiota studies that utilize conventional microbiological techniques.
Collapse
Affiliation(s)
- Theodora Akritidou
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Cindy Smet
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Simen Akkermans
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Maria Tonti
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Jennifer Williams
- School of Biological Sciences, Faculty of Science, Dublin Institute of Technology, Dublin, Ireland
| | - Tom Van de Wiele
- Laboratory of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Jan F M Van Impe
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| |
Collapse
|
27
|
Jahan F, Chinni SV, Samuggam S, Reddy LV, Solayappan M, Su Yin L. The Complex Mechanism of the Salmonella typhi Biofilm Formation That Facilitates Pathogenicity: A Review. Int J Mol Sci 2022; 23:6462. [PMID: 35742906 PMCID: PMC9223757 DOI: 10.3390/ijms23126462] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Salmonella enterica serovar Typhi (S. typhi) is an intracellular pathogen belonging to the Enterobacteriaceae family, where biofilm (aggregation and colonization of cells) formation is one of their advantageous traits. Salmonella typhi is the causative agent of typhoid fever in the human body and is exceptionally host specific. It is transmitted through the fecal-oral route by consuming contaminated food or water. This subspecies is quite intelligent to evade the innate detection and immune response of the host body, leading to systemic dissemination. Consequently, during the period of illness, the gallbladder becomes a harbor and may develop antibiotic resistance. Afterwards, they start contributing to the continuous damage of epithelium cells and make the host asymptomatic and potential carriers of this pathogen for an extended period. Statistically, almost 5% of infected people with Salmonella typhi become chronic carriers and are ready to contribute to future transmission by biofilm formation. Biofilm development is already recognized to link with pathogenicity and plays a crucial role in persistency within the human body. This review seeks to discuss some of the crucial factors related to biofilm development and its mechanism of interaction causing pathogenicity. Understanding the connections between these things will open up a new avenue for finding therapeutic approaches to combat pathogenicity.
Collapse
Affiliation(s)
- Fahmida Jahan
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong 08100, Kedah, Malaysia; (F.J.); (S.S.); (M.S.)
| | - Suresh V. Chinni
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong 08100, Kedah, Malaysia; (F.J.); (S.S.); (M.S.)
- Biochemistry Unit, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia
| | - Sumitha Samuggam
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong 08100, Kedah, Malaysia; (F.J.); (S.S.); (M.S.)
| | | | - Maheswaran Solayappan
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong 08100, Kedah, Malaysia; (F.J.); (S.S.); (M.S.)
| | - Lee Su Yin
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong 08100, Kedah, Malaysia; (F.J.); (S.S.); (M.S.)
| |
Collapse
|
28
|
Insights into the Virulence of Campylobacter jejuni Associated with Two-Component Signal Transduction Systems and Single Regulators. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Campylobacter jejuni is one of the major aetiologies of diarrhoea. Understanding the processes and virulence factors contributing to C. jejuni fitness is a cornerstone for developing mitigation strategies. Two-component signal transduction systems, known as two-component systems (TCSs), along with single regulators with no obvious cognate histidine kinase, help pathogens in interacting with their environments, but the available literature on C. jejuni is limited. A typical TCS possesses histidine kinase and response regulator proteins. The objective of this review was to provide insights into the virulence of C. jejuni associated with TCSs and single regulators. Despite limited research, TCSs are important contributors to the pathogenicity of C. jejuni by influencing motility (FlgSR), colonisation (DccRS), nutrient acquisition (PhosSR and BumSR), and stress response (RacRS). Of the single regulators, CbrR and CosR are involved in bile resistance and oxidative stress response, respectively. Cross-talks among TCSs complicate the full elucidation of their molecular mechanisms. Although progress has been made in characterising C. jejuni TCSs, shortfalls such as triggering signals, inability to induce mutations in some genes, or developing suitable in vivo models are still being encountered. Further research is expected to shed light on the unexplored sides of the C. jejuni TCSs, which may allow new drug discoveries and better control strategies.
Collapse
|
29
|
Yoneda T, Sakata H, Yamasaki S, Hayashi-Nishino M, Nishino K. Analysis of multidrug efflux transporters in resistance to fatty acid salts reveals a TolC-independent function of EmrAB in Salmonella enterica. PLoS One 2022; 17:e0266806. [PMID: 35421142 PMCID: PMC9045224 DOI: 10.1371/journal.pone.0266806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 03/28/2022] [Indexed: 11/23/2022] Open
Abstract
Fatty acids salts exhibit bacteriostatic and bactericidal effects to inhibit
bacterial growth and survival. Bacteria adapt to their environment to overcome
these antibacterial effects through undefined mechanisms. In Gram-negative
bacteria, drug efflux systems are associated with resistance to various
substances. Studies have identified multiple drug efflux systems in
Salmonella enterica. The aim of this study was to
investigate whether drug efflux systems contribute to fatty acid salts
resistance in S. enterica. We used deletion
and overexpressing strains of S. enterica for
drug efflux transporters. Susceptibility to fatty acid salts was determined by
measuring minimum inhibitory concentrations and performing growth assays. Our
findings revealed that acrAB, acrEF,
emrAB and tolC in S.
enterica contribute resistance to fatty acid salts.
Furthermore, EmrAB, which is known to function with TolC, contributes to the
fatty acid salts resistance of S. enterica in
a TolC-independent manner. This study revealed that drug efflux systems confer
fatty acid satls resistance to S. enterica.
Notably, although EmrAB is normally associated with antimicrobial resistance in
a TolC-dependent manner, it was found to be involved in fatty acid salts
resistance in a TolC-independent manner, indicating that the utilization of TolC
by EmrAB is substrate dependent in S.
enterica.
Collapse
Affiliation(s)
- Tomohiro Yoneda
- SANKEN (The Institute of Scientific and Industrial Research), Osaka
University, Ibaraki, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita,
Osaka, Japan
| | - Hiroki Sakata
- SANKEN (The Institute of Scientific and Industrial Research), Osaka
University, Ibaraki, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita,
Osaka, Japan
| | - Seiji Yamasaki
- SANKEN (The Institute of Scientific and Industrial Research), Osaka
University, Ibaraki, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita,
Osaka, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Suita,
Osaka, Japan
| | - Mitsuko Hayashi-Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka
University, Ibaraki, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita,
Osaka, Japan
| | - Kunihiko Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka
University, Ibaraki, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita,
Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University,
Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
30
|
Xu H, Lao L, Ji C, Lu Q, Guo Y, Pan D, Wu Z. Anti-inflammation and adhesion enhancement properties of the multifunctional LPxTG-motif surface protein derived from the Lactobacillus reuteri DSM 8533. Mol Immunol 2022; 146:38-45. [PMID: 35421739 DOI: 10.1016/j.molimm.2022.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
LPxTG-motif protein (LMP) is one kind of a precursor protein that contains a conserved LPxTG-motif at the C-terminus, which can be recognized by sortase A (SrtA) and covalently bind to the bacterial peptidoglycan. In this study, LMP derived from Lactobacillus reuteri (L. reuteri) was heterologous expressed and the tolerance and intestinal colonization ability of the LMP on L. reuteri were analyzed in simulated gastrointestinal fluid. Meanwhile, the anti-inflammatory activity of LMP was also evaluated in the LPS-stimulated RAW 264.7 cell model. The results indicated that LMP can promote the intestinal survival rate and adhesion characteristics of L. reuteri and enhanced the autoinducer-2 (AI-2) signaling molecule of the Lactobacillus strains in quorum sensing. Furthermore, LMP can inhibit the expressions of inflammatory cytokine TNF-α and IL-1β via ERK-JNK related MAPK signaling cascades. These findings provide a better understanding of the multifunctional LPxTG-motif surface protein derived from L. reuteri in the gastrointestinal tract environment.
Collapse
Affiliation(s)
- Hai Xu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China; Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Lifeng Lao
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Chunyu Ji
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Qianqian Lu
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Yuxing Guo
- School of Food Science & Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Daodong Pan
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Zhen Wu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China; Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
31
|
Lyu Z, Ling J. Increase in Ribosomal Fidelity Benefits Salmonella upon Bile Salt Exposure. Genes (Basel) 2022; 13:184. [PMID: 35205229 PMCID: PMC8872077 DOI: 10.3390/genes13020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Translational fidelity is maintained by multiple quality control steps in all three domains of life. Increased translational errors (mistranslation) occur due to genetic mutations and external stresses. Severe mistranslation is generally harmful, but moderate levels of mistranslation may be favored under certain conditions. To date, little is known about the link between translational fidelity and host-pathogen interactions. Salmonella enterica can survive in the gall bladder during systemic or chronic infections due to bile resistance. Here we show that increased translational fidelity contributes to the fitness of Salmonella upon bile salt exposure, and the improved fitness depends on an increased level of intracellular adenosine triphosphate (ATP). Our work thus reveals a previously unknown linkage between translational fidelity and bacterial fitness under bile stress.
Collapse
Affiliation(s)
- Zhihui Lyu
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA
| | - Jiqiang Ling
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA
- Molecular and Cellular Biology, Bilogical Sciences Graduate Program, The University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
32
|
Olivar-Casique IB, Medina-Aparicio L, Mayo S, Gama-Martínez Y, Rebollar-Flores JE, Martínez-Batallar G, Encarnación S, Calva E, Hernández-Lucas I. The human bile salt sodium deoxycholate induces metabolic and cell envelope changes in Salmonella Typhi leading to bile resistance. J Med Microbiol 2022; 71. [PMID: 35006066 DOI: 10.1099/jmm.0.001461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Salmonella enterica serovar Typhi (S. Typhi) is the etiological agent of typhoid fever. To establish an infection in the human host, this pathogen must survive the presence of bile salts in the gut and gallbladder.Hypothesis. S. Typhi uses multiple genetic elements to resist the presence of human bile.Aims. To determine the genetic elements that S. Typhi utilizes to tolerate the human bile salt sodium deoxycholate.Methodology. A collection of S. Typhi mutant strains was evaluated for their ability to growth in the presence of sodium deoxycholate and ox-bile. Additionally, transcriptomic and proteomic responses elicited by sodium deoxycholate on S. Typhi cultures were also analysed.Results. Multiple transcriptional factors and some of their dependent genes involved in central metabolism, as well as in cell envelope, are required for deoxycholate resistance.Conclusion. These findings suggest that metabolic adaptation to bile is focused on enhancing energy production to sustain synthesis of cell envelope components exposed to damage by bile salts.
Collapse
Affiliation(s)
- Isaac B Olivar-Casique
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - Liliana Medina-Aparicio
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - Selena Mayo
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - Yitzel Gama-Martínez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - Javier E Rebollar-Flores
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - Gabriel Martínez-Batallar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - Sergio Encarnación
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - Edmundo Calva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - Ismael Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| |
Collapse
|
33
|
Vieni C, Coudray N, Isom GL, Bhabha G, Ekiert DC. Role of Ring6 in the function of the E. coli MCE protein LetB. J Mol Biol 2022; 434:167463. [PMID: 35077766 PMCID: PMC9112829 DOI: 10.1016/j.jmb.2022.167463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 10/19/2022]
Abstract
LetB is a tunnel-forming protein found in the cell envelope of some double-membraned bacteria, and is thought to be important for the transport of lipids between the inner and outer membranes. In Escherichia coli the LetB tunnel is formed from a stack of seven rings (Ring1 - Ring7), in which each ring is composed of a homo-hexameric assembly of MCE domains. The primary sequence of each MCE domain of the LetB protein is substantially divergent from the others, making each MCE ring unique in nature. The role of each MCE domain and how it contributes to the function of LetB is not well understood. Here we probed the importance of each MCE ring for the function of LetB, using a combination of bacterial growth assays and cryo-EM. Surprisingly, we find that ΔRing3 and ΔRing6 mutants, in which Ring3 and Ring6 have been deleted, confer increased resistance to membrane perturbing agents. Specific mutations in the pore-lining loops of Ring6 similarly confer increased resistance. A cryo-EM structure of the ΔRing6 mutant shows that despite the absence of Ring6, which leads to a shorter assembly, the overall architecture is maintained, highlighting the modular nature of MCE proteins. Previous work has shown that Ring6 is dynamic and in its closed state, may restrict the passage of substrate through the tunnel. Our work suggests that removal of Ring6 may relieve this restriction. The deletion of Ring6 combined with mutations in the pore-lining loops leads to a model for the tunnel gating mechanism of LetB. Together, these results provide insight into the functional roles of individual MCE domains and pore-lining loops in the LetB protein.
Collapse
|
34
|
Abstract
Mutations conferring resistance to one antibiotic can increase (cross-resistance) or decrease (collateral sensitivity) resistance to others. Antibiotic combinations displaying collateral sensitivity could be used in treatments that slow resistance evolution. However, lab-to-clinic translation requires understanding whether collateral effects are robust across different environmental conditions. Here, we isolated and characterized resistant mutants of Escherichia coli using five antibiotics, before measuring collateral effects on resistance to other paired antibiotics. During both isolation and phenotyping, we varied conditions in ways relevant in nature (pH, temperature, and bile). This revealed that local abiotic conditions modified expression of resistance against both the antibiotic used during isolation and other antibiotics. Consequently, local conditions influenced collateral sensitivity in two ways: by favoring different sets of mutants (with different collateral sensitivities) and by modifying expression of collateral effects for individual mutants. These results place collateral sensitivity in the context of environmental variation, with important implications for translation to real-world applications. IMPORTANCE When bacteria become resistant to an antibiotic, the genetic changes involved sometimes increase (cross-resistance) or decrease (collateral sensitivity) their resistance to other antibiotics. Antibiotic combinations showing repeatable collateral sensitivity could be used in treatment to slow resistance evolution. However, collateral sensitivity interactions may depend on the local environmental conditions that bacteria experience, potentially reducing repeatability and clinical application. Here, we show that variation in local conditions (pH, temperature, and bile salts) can influence collateral sensitivity in two ways: by favoring different sets of mutants during bacterial resistance evolution (with different collateral sensitivities to other antibiotics) and by modifying expression of collateral effects for individual mutants. This suggests that translation from the lab to the clinic of new approaches exploiting collateral sensitivity will be influenced by local abiotic conditions.
Collapse
|
35
|
Sharma A, Yadav SP, Sarma D, Mukhopadhaya A. Modulation of host cellular responses by gram-negative bacterial porins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:35-77. [PMID: 35034723 DOI: 10.1016/bs.apcsb.2021.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The outer membrane of a gram-negative bacteria encapsulates the plasma membrane thereby protecting it from the harsh external environment. This membrane acts as a sieving barrier due to the presence of special membrane-spanning proteins called "porins." These porins are β-barrel channel proteins that allow the passive transport of hydrophilic molecules and are impermeable to large and charged molecules. Many porins form trimers in the outer membrane. They are abundantly present on the bacterial surface and therefore play various significant roles in the host-bacteria interactions. These include the roles of porins in the adhesion and virulence mechanisms necessary for the pathogenesis, along with providing resistance to the bacteria against the antimicrobial substances. They also act as the receptors for phage and complement proteins and are involved in modulating the host cellular responses. In addition, the potential use of porins as adjuvants, vaccine candidates, therapeutic targets, and biomarkers is now being exploited. In this review, we focus briefly on the structure of the porins along with their important functions and roles in the host-bacteria interactions.
Collapse
Affiliation(s)
- Arpita Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Shashi Prakash Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Dwipjyoti Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Arunika Mukhopadhaya
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India.
| |
Collapse
|
36
|
Pazhani GP, Chowdhury G, Ramamurthy T. Adaptations of Vibrio parahaemolyticus to Stress During Environmental Survival, Host Colonization, and Infection. Front Microbiol 2021; 12:737299. [PMID: 34690978 PMCID: PMC8530187 DOI: 10.3389/fmicb.2021.737299] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/08/2021] [Indexed: 02/03/2023] Open
Abstract
Vibrio parahaemolyticus (Vp) is an aquatic Gram-negative bacterium that may infect humans and cause gastroenteritis and wound infections. The first pandemic of Vp associated infection was caused by the serovar O3:K6 and epidemics caused by the other serovars are increasingly reported. The two major virulence factors, thermostable direct hemolysin (TDH) and/or TDH-related hemolysin (TRH), are associated with hemolysis and cytotoxicity. Vp strains lacking tdh and/or trh are avirulent and able to colonize in the human gut and cause infection using other unknown factors. This pathogen is well adapted to survive in the environment and human host using several genetic mechanisms. The presence of prophages in Vp contributes to the emergence of pathogenic strains from the marine environment. Vp has two putative type-III and type-VI secretion systems (T3SS and T6SS, respectively) located on both the chromosomes. T3SS play a crucial role during the infection process by causing cytotoxicity and enterotoxicity. T6SS contribute to adhesion, virulence associated with interbacterial competition in the gut milieu. Due to differential expression, type III secretion system 2 (encoded on chromosome-2, T3SS2) and other genes are activated and transcribed by interaction with bile salts within the host. Chromosome-1 encoded T6SS1 has been predominantly identified in clinical isolates. Acquisition of genomic islands by horizontal gene transfer provides enhanced tolerance of Vp toward several antibiotics and heavy metals. Vp consists of evolutionarily conserved targets of GTPases and kinases. Expression of these genes is responsible for the survival of Vp in the host and biochemical changes during its survival. Advanced genomic analysis has revealed that various genes are encoded in Vp pathogenicity island that control and expression of virulence in the host. In the environment, the biofilm gene expression has been positively correlated to tolerance toward aerobic, anaerobic, and micro-aerobic conditions. The genetic similarity analysis of toxin/antitoxin systems of Escherichia coli with VP genome has shown a function that could induce a viable non-culturable state by preventing cell division. A better interpretation of the Vp virulence and other mechanisms that support its environmental fitness are important for diagnosis, treatment, prevention and spread of infections. This review identifies some of the common regulatory pathways of Vp in response to different stresses that influence its survival, gut colonization and virulence.
Collapse
Affiliation(s)
- Gururaja Perumal Pazhani
- School of Pharmaceutical Sciences, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Goutam Chowdhury
- ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | |
Collapse
|
37
|
Sibinelli-Sousa S, de Araújo-Silva AL, Hespanhol JT, Bayer-Santos E. Revisiting the steps of Salmonella gut infection with a focus on antagonistic interbacterial interactions. FEBS J 2021; 289:4192-4211. [PMID: 34546626 DOI: 10.1111/febs.16211] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/12/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022]
Abstract
A commensal microbial community is established in the mammalian gut during its development, and these organisms protect the host against pathogenic invaders. The hallmark of noninvasive Salmonella gut infection is the induction of inflammation via effector proteins secreted by the type III secretion system, which modulate host responses to create a new niche in which the pathogen can overcome the colonization resistance imposed by the microbiota. Several studies have shown that endogenous microbes are important to control Salmonella infection by competing for resources. However, there is limited information about antimicrobial mechanisms used by commensals and pathogens during these in vivo disputes for niche control. This review aims to revisit the steps that Salmonella needs to overcome during gut colonization-before and after the induction of inflammation-to achieve an effective infection. We focus on a series of reported and hypothetical antagonistic interbacterial interactions in which both contact-independent and contact-dependent mechanisms might define the outcome of the infection.
Collapse
Affiliation(s)
| | | | - Julia Takuno Hespanhol
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil
| | - Ethel Bayer-Santos
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil
| |
Collapse
|
38
|
Feller FM, Holert J, Yücel O, Philipp B. Degradation of Bile Acids by Soil and Water Bacteria. Microorganisms 2021; 9:1759. [PMID: 34442838 PMCID: PMC8399759 DOI: 10.3390/microorganisms9081759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Bile acids are surface-active steroid compounds with a C5 carboxylic side chain at the steroid nucleus. They are produced by vertebrates, mainly functioning as emulsifiers for lipophilic nutrients, as signaling compounds, and as an antimicrobial barrier in the duodenum. Upon excretion into soil and water, bile acids serve as carbon- and energy-rich growth substrates for diverse heterotrophic bacteria. Metabolic pathways for the degradation of bile acids are predominantly studied in individual strains of the genera Pseudomonas, Comamonas, Sphingobium, Azoarcus, and Rhodococcus. Bile acid degradation is initiated by oxidative reactions of the steroid skeleton at ring A and degradation of the carboxylic side chain before the steroid nucleus is broken down into central metabolic intermediates for biomass and energy production. This review summarizes the current biochemical and genetic knowledge on aerobic and anaerobic degradation of bile acids by soil and water bacteria. In addition, ecological and applied aspects are addressed, including resistance mechanisms against the toxic effects of bile acids.
Collapse
Affiliation(s)
- Franziska Maria Feller
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, 48149 Münster, Germany; (F.M.F.); (J.H.); (O.Y.)
| | - Johannes Holert
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, 48149 Münster, Germany; (F.M.F.); (J.H.); (O.Y.)
| | - Onur Yücel
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, 48149 Münster, Germany; (F.M.F.); (J.H.); (O.Y.)
| | - Bodo Philipp
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, 48149 Münster, Germany; (F.M.F.); (J.H.); (O.Y.)
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany
| |
Collapse
|
39
|
Rashid SA, Norman N, Teo SH, Tong WY, Leong CR, Tan WN, Noor MAM. Cholic acid: a novel steroidal uncompetitive inhibitor against β-lactamase produced by multidrug-resistant isolates. World J Microbiol Biotechnol 2021; 37:152. [PMID: 34398332 DOI: 10.1007/s11274-021-03118-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 08/02/2021] [Indexed: 11/30/2022]
Abstract
β-lactam antibiotics are the most frequently prescribed class of drugs worldwide, due to its efficacy and good safety profile. However, the emergence of β-lactamase producing bacterial strains eliminated the use of β-lactam antibiotics as a chemotherapeutic choice. To restore their usability, a non-antibiotic adjuvant in conjunction with β-lactam antibiotics is now being utilised. Cholic acid potentially acts as an adjuvant since it can blunt the pro-inflammatory activity in human. Our main objective is to scrutinise the inhibition of β-lactamase-producing bacteria by adjuvant cholic acid, synergism of the test drugs and the primary mechanism of enzymatic reaction. Antibacterial effect of the cholic acid-ampicillin (CA-AMP) on 7 β-lactamase positive isolates were evaluated accordingly to disc diffusion assay, antibiotic susceptibility test, as well as checkerboard analysis. Then, all activities were compared with ampicillin alone, penicillin alone, cholic acid alone and cholic acid-penicillin combination. The CA-AMP displayed notable antibiotic activity on all test bacteria and depicted synergistic influence by representing low fractional inhibitory concentration index (FIC ≤ 0.5). According to kinetic analyses, CA-AMP behaved as an uncompetitive inhibitor against beta lactamase, with reducing values of Michaelis constant (Km) and maximal velocity (Vmax) recorded. The inhibitor constant (Ki) of CA-AMP was equal to 4.98 ± 0.3 µM, which slightly lower than ampicillin (5.00 ± 0.1 µM).
Collapse
Affiliation(s)
- Syarifah Ab Rashid
- Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Lot 1988 Kawasan Perindustrian Bandar Vendor, Taboh Naning, 78000, Alor Gajah, Melaka, Malaysia
| | - Norhaswanie Norman
- Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Lot 1988 Kawasan Perindustrian Bandar Vendor, Taboh Naning, 78000, Alor Gajah, Melaka, Malaysia
| | - Siew Hway Teo
- Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Lot 1988 Kawasan Perindustrian Bandar Vendor, Taboh Naning, 78000, Alor Gajah, Melaka, Malaysia
| | - Woei Yenn Tong
- Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Lot 1988 Kawasan Perindustrian Bandar Vendor, Taboh Naning, 78000, Alor Gajah, Melaka, Malaysia.
| | - Chean Ring Leong
- Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Lot 1988 Kawasan Perindustrian Bandar Vendor, Taboh Naning, 78000, Alor Gajah, Melaka, Malaysia
| | - Wen-Nee Tan
- Chemistry Section, School of Distance Education, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| | - Mohd Azizan Mohd Noor
- Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Lot 1988 Kawasan Perindustrian Bandar Vendor, Taboh Naning, 78000, Alor Gajah, Melaka, Malaysia
| |
Collapse
|
40
|
Mateus C, Nunes AR, Oleastro M, Domingues F, Ferreira S. RND Efflux Systems Contribute to Resistance and Virulence of Aliarcobacter butzleri. Antibiotics (Basel) 2021; 10:823. [PMID: 34356744 PMCID: PMC8300790 DOI: 10.3390/antibiotics10070823] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
Aliarcobacter butzleri is an emergent enteropathogen that can be found in a range of environments. This bacterium presents a vast repertoire of efflux pumps, such as the ones belonging to the resistance nodulation cell division family, which may be associated with bacterial resistance, as well as virulence. Thus, this work aimed to evaluate the contribution of three RND efflux systems, AreABC, AreDEF and AreGHI, in the resistance and virulence of A. butzleri. Mutant strains were constructed by inactivation of the gene that encodes the inner membrane protein of these systems. The bacterial resistance profile of parental and mutant strains to several antimicrobials was assessed, as was the intracellular accumulation of the ethidium bromide dye. Regarding bacterial virulence, the role of these three efflux pumps on growth, strain fitness, motility, biofilm formation ability, survival in adverse conditions (oxidative stress and bile salts) and human serum and in vitro adhesion and invasion to Caco-2 cells was evaluated. We observed that the mutants from the three efflux pumps were more susceptible to several classes of antimicrobials than the parental strain and presented an increase in the accumulation of ethidium bromide, indicating a potential role of the efflux pumps in the extrusion of antimicrobials. The mutant strains had no bacterial growth defects; nonetheless, they presented a reduction in relative fitness. For the three mutants, an increase in the susceptibility to oxidative stress was observed, while only the mutant for AreGHI efflux pump showed a relevant role in bile stress survival. All the mutant strains showed an impairment in biofilm formation ability, were more susceptible to human serum and were less adherent to intestinal epithelial cells. Overall, the results support the contribution of the efflux pumps AreABC, AreDEF and AreGHI of A. butzleri to antimicrobial resistance, as well as to bacterial virulence.
Collapse
Affiliation(s)
- Cristiana Mateus
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.M.); (A.R.N.); (F.D.)
| | - Ana Rita Nunes
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.M.); (A.R.N.); (F.D.)
| | - Mónica Oleastro
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal;
| | - Fernanda Domingues
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.M.); (A.R.N.); (F.D.)
| | - Susana Ferreira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.M.); (A.R.N.); (F.D.)
| |
Collapse
|
41
|
Bile salts regulate zinc uptake and capsule synthesis in a mastitis-associated extraintestinal pathogenic Escherichia coli strain. Infect Immun 2021; 89:e0035721. [PMID: 34228495 DOI: 10.1128/iai.00357-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) are major causes of urinary and bloodstream infections. ExPEC reservoirs are not completely understood. Some mastitis-associated E. coli (MAEC) strains carry genes associated with ExPEC virulence, including metal scavenging, immune avoidance, and host attachment functions. In this study, we investigated the role of the high-affinity zinc uptake (znuABC) system in the MAEC strain M12. Elimination of znuABC moderately decreased fitness during mouse mammary gland infections. The ΔznuABC mutant strain exhibited an unexpected growth delay in the presence of bile salts, which was alleviated by the addition of excess zinc. We isolated ΔznuABC mutant suppressor mutants with improved growth of in bile salts, several of which no longer produced the K96 capsule made by strain M12. Addition of bile salts also reduced capsule production by strain M12 and ExPEC strain CP9, suggesting that capsule synthesis may be detrimental when bile salts are present. To better understand the role of the capsule, we compared the virulence of mastitis strain M12 with its unencapsulated ΔkpsCS mutant in two models of ExPEC disease. The wild type strain successfully colonized mouse bladders and kidneys and was highly virulent in intraperitoneal infections. Conversely, the ΔkpsCS mutant was unable to colonize kidneys and was unable to cause sepsis. These results demonstrate that some MAEC may be capable of causing human ExPEC illness. Virulence of strain M12 in these infections is dependent on its capsule. However, capsule may interfere with zinc homeostasis in the presence of bile salts while in the digestive tract.
Collapse
|
42
|
Lei C, Teng Y, He L, Sayed M, Mu J, Xu F, Zhang X, Kumar A, Sundaram K, Sriwastva MK, Zhang L, Chen SY, Feng W, Zhang S, Yan J, Park JW, Merchant ML, Zhang X, Zhang HG. Lemon exosome-like nanoparticles enhance stress survival of gut bacteria by RNase P-mediated specific tRNA decay. iScience 2021; 24:102511. [PMID: 34142028 PMCID: PMC8188359 DOI: 10.1016/j.isci.2021.102511] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/29/2021] [Accepted: 04/30/2021] [Indexed: 11/30/2022] Open
Abstract
Diet and bile play critical roles in shaping gut microbiota, but the molecular mechanism underlying interplay with intestinal microbiota is unclear. Here, we showed that lemon-derived exosome-like nanoparticles (LELNs) enhance lactobacilli toleration to bile. To decipher the mechanism, we used Lactobacillus rhamnosus GG (LGG) as proof of concept to show that LELNs enhance LGG bile resistance via limiting production of Msp1 and Msp3, resulting in decrease of bile accessibility to cell membrane. Furthermore, we found that decline of Msps protein levels was regulated through specific tRNAser UCC and tRNAser UCG decay. We identified RNase P, an essential housekeeping endonuclease, being responsible for LELNs-induced tRNAser UCC and tRNAser UCG decay. We further identified galacturonic acid-enriched pectin-type polysaccharide as the active factor in LELNs to increase bile resistance and downregulate tRNAser UCC and tRNAser UCG level in the LGG. Our study demonstrates a tRNA-based gene expression regulation mechanism among lactobacilli to increase bile resistance.
Collapse
Affiliation(s)
- Chao Lei
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, CTRB 309 505 Hancock Street, Louisville, KY 40202, USA
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Yun Teng
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, CTRB 309 505 Hancock Street, Louisville, KY 40202, USA
| | - Liqing He
- Kidney Disease Program and Clinical Proteomics Center, University of Louisville, Louisville, KY, USA
| | - Mohammed Sayed
- Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY 40202, USA
| | - Jingyao Mu
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, CTRB 309 505 Hancock Street, Louisville, KY 40202, USA
| | - Fangyi Xu
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, CTRB 309 505 Hancock Street, Louisville, KY 40202, USA
| | - Xiangcheng Zhang
- Department of ICU, the Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu 223300, China
| | - Anil Kumar
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, CTRB 309 505 Hancock Street, Louisville, KY 40202, USA
| | - Kumaran Sundaram
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, CTRB 309 505 Hancock Street, Louisville, KY 40202, USA
| | - Mukesh K. Sriwastva
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, CTRB 309 505 Hancock Street, Louisville, KY 40202, USA
| | - Lifeng Zhang
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, CTRB 309 505 Hancock Street, Louisville, KY 40202, USA
| | - Shao-yu Chen
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Wenke Feng
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Shuangqin Zhang
- Peeples Cancer Institute, 215 Memorial Drive, Dalton, GA 30720, USA
| | - Jun Yan
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, CTRB 309 505 Hancock Street, Louisville, KY 40202, USA
| | - Juw Won Park
- Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY 40202, USA
- KBRIN Bioinformatics Core, University of Louisville, Louisville, KY 40202, USA
| | - Michael L. Merchant
- Kidney Disease Program and Clinical Proteomics Center, University of Louisville, Louisville, KY, USA
| | - Xiang Zhang
- Kidney Disease Program and Clinical Proteomics Center, University of Louisville, Louisville, KY, USA
| | - Huang-Ge Zhang
- Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, CTRB 309 505 Hancock Street, Louisville, KY 40202, USA
| |
Collapse
|
43
|
Wahlig TA, Stanton E, Godfrey JJ, Stasic AJ, Wong ACL, Kaspar CW. A Single Nucleotide Polymorphism in lptG Increases Tolerance to Bile Salts, Acid, and Staining of Calcofluor-Binding Polysaccharides in Salmonella enterica Serovar Typhimurium E40. Front Microbiol 2021; 12:671453. [PMID: 34149657 PMCID: PMC8208086 DOI: 10.3389/fmicb.2021.671453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
The outer membrane of Salmonella enterica plays an important role in combating stress encountered in the environment and hosts. The transport and insertion of lipopolysaccharides (LPS) into the outer membrane involves lipopolysaccharide transport proteins (LptA-F) and mutations in the genes encoding for these proteins are often lethal or result in the transport of atypical LPS that can alter stress tolerance in bacteria. During studies of heterogeneity in bile salts tolerance, S. enterica serovar Typhimurium E40 was segregated into bile salts tolerant and sensitive cells by screening for growth in TSB with 10% bile salts. An isolate (E40V) with a bile salts MIC >20% was selected for further characterization. Whole-genome sequencing of E40 and E40V using Illumina and PacBio SMRT technologies revealed a non-synonymous single nucleotide polymorphism (SNP) in lptG. Leucine at residue 26 in E40 was substituted with proline in E40V. In addition to growth in the presence of 10% bile salts, E40V was susceptible to novobiocin while E40 was not. Transcriptional analysis of E40 and E40V, in the absence of bile salts, revealed significantly greater (p < 0.05) levels of transcript in three genes in E40V; yjbE (encoding for an extracellular polymeric substance production protein), yciE (encoding for a putative stress response protein), and an uncharacterized gene annotated as an acid shock protein precursor (ASPP). No transcripts of genes were present at a greater level in E40 compared to E40V. Corresponding with the greater level of these transcripts, E40V had greater survival at pH 3.35 and staining of Calcofluor-binding polysaccharide (CBPS). To confirm the SNP in lptG was associated with these phenotypes, strain E40E was engineered from E40 to encode for the variant form of LptG (L26P). E40E exhibited the same differences in gene transcripts and phenotypes as E40V, including susceptibility to novobiocin, confirming the SNP was responsible for these differences.
Collapse
Affiliation(s)
- Taylor A Wahlig
- Department of Bacteriology, University of Wisconsin, Madison, WI, United States
| | - Eliot Stanton
- Department of Bacteriology, University of Wisconsin, Madison, WI, United States
| | - Jared J Godfrey
- Department of Bacteriology, University of Wisconsin, Madison, WI, United States
| | - Andrew J Stasic
- U. S. Food and Drug Administration, Center for Biologics Evaluation and Research, Washington, DC, United States
| | - Amy C L Wong
- Department of Bacteriology, University of Wisconsin, Madison, WI, United States
| | - Charles W Kaspar
- Department of Bacteriology, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
44
|
Hahn MM, González JF, Gunn JS. Salmonella Biofilms Tolerate Hydrogen Peroxide by a Combination of Extracellular Polymeric Substance Barrier Function and Catalase Enzymes. Front Cell Infect Microbiol 2021; 11:683081. [PMID: 34095002 PMCID: PMC8171120 DOI: 10.3389/fcimb.2021.683081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/04/2021] [Indexed: 11/17/2022] Open
Abstract
The ability of Salmonella enterica subspecies enterica serovar Typhi (S. Typhi) to cause chronic gallbladder infections is dependent on biofilm growth on cholesterol gallstones. Non-typhoidal Salmonella (e.g. S. Typhimurium) also utilize the biofilm state to persist in the host and the environment. How the pathogen maintains recalcitrance to the host response, and oxidative stress in particular, during chronic infection is poorly understood. Previous experiments demonstrated that S. Typhi and S. Typhimurium biofilms are tolerant to hydrogen peroxide (H2O2), but that mutations in the biofilm extracellular polymeric substances (EPSs) O antigen capsule, colanic acid, or Vi antigen reduce tolerance. Here, biofilm-mediated tolerance to oxidative stress was investigated using a combination of EPS and catalase mutants, as catalases are important detoxifiers of H2O2. Using co-cultured biofilms of wild-type (WT) bacteria with EPS mutants, it was demonstrated that colanic acid in S. Typhimurium and Vi antigen in S. Typhi have a community function and protect all biofilm-resident bacteria rather than to only protect the individual cells producing the EPSs. However, the H2O2 tolerance deficiency of a O antigen capsule mutant was unable to be compensated for by co-culture with WT bacteria. For curli fimbriae, both WT and mutant strains are tolerant to H2O2 though unexpectedly, co-cultured WT/mutant biofilms challenged with H2O2 resulted in sensitization of both strains, suggesting a more nuanced oxidative resistance alteration in these co-cultures. Three catalase mutant (katE, katG and a putative catalase) biofilms were also examined, demonstrating significant reductions in biofilm H2O2 tolerance for the katE and katG mutants. Biofilm co-culture experiments demonstrated that catalases exhibit a community function. We further hypothesized that biofilms are tolerant to H2O2 because the physical barrier formed by EPSs slows penetration of H2O2 into the biofilm to a rate that can be mitigated by intra-biofilm catalases. Compared to WT, EPS-deficient biofilms have a heighted response even to low-dose (2.5 mM) H2O2 challenge, confirming that resident bacteria of EPS-deficient biofilms are under greater stress and have limited protection from H2O2. Thus, these data provide an explanation for how Salmonella achieves tolerance to H2O2 by a combination of an EPS-mediated barrier and enzymatic detoxification.
Collapse
Affiliation(s)
- Mark M Hahn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Juan F González
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - John S Gunn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
45
|
Kim H, Wu K, Lee C. Stress-Responsive Periplasmic Chaperones in Bacteria. Front Mol Biosci 2021; 8:678697. [PMID: 34046432 PMCID: PMC8144458 DOI: 10.3389/fmolb.2021.678697] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/19/2021] [Indexed: 01/14/2023] Open
Abstract
Periplasmic proteins are involved in a wide range of bacterial functions, including motility, biofilm formation, sensing environmental cues, and small-molecule transport. In addition, a wide range of outer membrane proteins and proteins that are secreted into the media must travel through the periplasm to reach their final destinations. Since the porous outer membrane allows for the free diffusion of small molecules, periplasmic proteins and those that travel through this compartment are more vulnerable to external environmental changes, including those that result in protein unfolding, than cytoplasmic proteins are. To enable bacterial survival under various stress conditions, a robust protein quality control system is required in the periplasm. In this review, we focus on several periplasmic chaperones that are stress responsive, including Spy, which responds to envelope-stress, DegP, which responds to temperature to modulate chaperone/protease activity, HdeA and HdeB, which respond to acid stress, and UgpB, which functions as a bile-responsive chaperone.
Collapse
Affiliation(s)
- Hyunhee Kim
- Department of Biological Sciences, Ajou University, Suwon, South Korea
- Molecular, Cellular, and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, United States
| | - Kevin Wu
- Molecular, Cellular, and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Biophysics, University of Michigan, Ann Arbor, MI, United States
| | - Changhan Lee
- Department of Biological Sciences, Ajou University, Suwon, South Korea
| |
Collapse
|
46
|
Feller FM, Marke G, Drees SL, Wöhlbrand L, Rabus R, Philipp B. Substrate Inhibition of 5β-Δ 4-3-Ketosteroid Dehydrogenase in Sphingobium sp. Strain Chol11 Acts as Circuit Breaker During Growth With Toxic Bile Salts. Front Microbiol 2021; 12:655312. [PMID: 33868213 PMCID: PMC8044976 DOI: 10.3389/fmicb.2021.655312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
In contrast to many steroid hormones and cholesterol, mammalian bile salts are 5β-steroids, which leads to a bent structure of the steroid core. Bile salts are surface-active steroids excreted into the environment in large amounts, where they are subject to bacterial degradation. Bacterial steroid degradation is initiated by the oxidation of the A-ring leading to canonical Δ4-3-keto steroids with a double bond in the A-ring. For 5β-bile salts, this Δ4-double bond is introduced into 3-keto-bile salts by a 5β-Δ4-ketosteroid dehydrogenase (5β-Δ4-KSTD). With the Nov2c019 protein from bile-salt degrading Sphingobium sp. strain Chol11, a novel 5β-Δ4-KSTD for bile-salt degradation belonging to the Old Yellow Enzyme family was identified and named 5β-Δ4-KSTD1. By heterologous production in Escherichia coli, 5β-Δ4-KSTD function could be shown for 5β-Δ4-KSTD1 as well as the homolog CasH from bile-salt degrading Rhodococcus jostii RHA1. The deletion mutant of 5β-Δ4-kstd1 had a prolonged lag-phase with cholate as sole carbon source and, in accordance with the function of 5β-Δ4-KSTD1, showed delayed 3-ketocholate transformation. Purified 5β-Δ4-KSTD1 was specific for 5β-steroids in contrast to 5α-steroids and converted steroids with a variety of hydroxy groups regardless of the presence of a side chain. 5β-Δ4-KSTD1 showed a relatively low K m for 3-ketocholate, a very high specific activity and pronounced substrate inhibition. With respect to the toxicity of bile salts, these kinetic properties indicate that 5β-Δ4-KSTD1 can achieve fast detoxification of the detergent character as well as prevention of an overflow of the catabolic pathway in presence of increased bile-salt concentrations.
Collapse
Affiliation(s)
- Franziska M Feller
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Gina Marke
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Steffen L Drees
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Lars Wöhlbrand
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Ralf Rabus
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Bodo Philipp
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany.,Fraunhofer-Institut für Molekularbiologie und Angewandte Oekologie IME, Schmallenberg, Germany
| |
Collapse
|
47
|
Fernández-Fernández R, Hernández SB, Puerta-Fernández E, Sánchez-Romero MA, Urdaneta V, Casadesús J. Evidence for Involvement of the Salmonella enterica Z-Ring Assembly Factors ZapA and ZapB in Resistance to Bile. Front Microbiol 2021; 12:647305. [PMID: 33717045 PMCID: PMC7947894 DOI: 10.3389/fmicb.2021.647305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/26/2021] [Indexed: 11/13/2022] Open
Abstract
Genes annotated as ygfE and yiiU in the genome of Salmonella enterica serovar Typhimurium encode proteins homologous to Escherichia coli cell division factors ZapA and ZapB, respectively. ZapA- and ZapB- mutants of S. enterica are bile-sensitive. The amount of zapB mRNA increases in the presence of a sublethal concentration of sodium deoxycholate (DOC) while zapA mRNA remains unaffected. Increased zapB mRNA level in the presence of DOC is not caused by upregulation of zapB transcription but by increased stability of zapB mRNA. This increase is suppressed by an hfq mutation, suggesting the involvement of a small regulatory RNA. We provide evidence that such sRNA is MicA. The ZapB protein is degraded in the presence of DOC, and degradation appears to involve the Lon protease. We propose that increased stability of zapB mRNA in the presence of DOC may counter degradation of bile-damaged ZapB, thereby providing sufficient level of functional ZapB protein to permit Z-ring assembly in the presence of bile.
Collapse
Affiliation(s)
| | - Sara B Hernández
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | | | | | - Verónica Urdaneta
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
48
|
Impact of the Resistance Responses to Stress Conditions Encountered in Food and Food Processing Environments on the Virulence and Growth Fitness of Non-Typhoidal Salmonellae. Foods 2021; 10:foods10030617. [PMID: 33799446 PMCID: PMC8001757 DOI: 10.3390/foods10030617] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 01/22/2023] Open
Abstract
The success of Salmonella as a foodborne pathogen can probably be attributed to two major features: its remarkable genetic diversity and its extraordinary ability to adapt. Salmonella cells can survive in harsh environments, successfully compete for nutrients, and cause disease once inside the host. Furthermore, they are capable of rapidly reprogramming their metabolism, evolving in a short time from a stress-resistance mode to a growth or virulent mode, or even to express stress resistance and virulence factors at the same time if needed, thanks to a complex and fine-tuned regulatory network. It is nevertheless generally acknowledged that the development of stress resistance usually has a fitness cost for bacterial cells and that induction of stress resistance responses to certain agents can trigger changes in Salmonella virulence. In this review, we summarize and discuss current knowledge concerning the effects that the development of resistance responses to stress conditions encountered in food and food processing environments (including acid, osmotic and oxidative stress, starvation, modified atmospheres, detergents and disinfectants, chilling, heat, and non-thermal technologies) exerts on different aspects of the physiology of non-typhoidal Salmonellae, with special emphasis on virulence and growth fitness.
Collapse
|
49
|
Gadishaw-Lue C, Banaag A, Birstonas S, Francis AS, Barnett Foster D. Bile Salts Differentially Enhance Resistance of Enterohemorrhagic Escherichia coli O157:H7 to Host Defense Peptides. Infect Immun 2021; 89:e00719-20. [PMID: 33229368 PMCID: PMC7822141 DOI: 10.1128/iai.00719-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 12/28/2022] Open
Abstract
During passage through the human gastrointestinal tract, enterohemorrhagic Escherichia coli (EHEC) is exposed to membrane-damaging bile in the small intestine. We previously reported that EHEC treatment with a physiological bile salt mixture upregulates basRS, encoding a two-component system, and arnBCADTEF, encoding the aminoarabinose lipid A modification pathway (J. V. Kus, A. Gebremedhin, V. Dang, S. L. Tran, A. Serbanescu, and D. Barnett Foster, J Bacteriol 193: 4509-4515, 2011, https://doi.org/10.1128/JB.00200-11). The present study examined the effect of bile salt mix (BSM) treatment on EHEC resistance to three human gastrointestinal defense peptides-HD-5, HNP-1, and LL-37-as well as the role of basRS and arnT in the respective responses. After BSM treatment, EHEC resistance to HD-5 and HNP-1 was significantly increased in a BSM-, defensin dose-dependent manner. The resistance phenotype was dependent on both basRS and arnT However, the BSM treatment did not alter EHEC resistance to LL-37, even when the ompT gene, encoding an LL-37 cleavage protease, was disrupted. Interestingly, enteropathogenic E. coli, a related pathogen that infects the small intestine, showed a similar BSM-induced resistance phenotype. Using a model of EHEC infection in Galleria mellonella, we found significantly lower survival rates in wax moth larvae infected with BSM-treated wild-type EHEC than in those infected with a BSM-treated basS mutant, suggesting that treatment with a physiological BSM enhances virulence through a basS-mediated pathway. The results of this investigation provide persuasive evidence that bile salts typically encountered during transit through the small intestine can serve as an environmental cue for EHEC, enhancing resistance to several key host defense peptides.
Collapse
Affiliation(s)
- Crystal Gadishaw-Lue
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Alyssa Banaag
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Sarah Birstonas
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Aju-Sue Francis
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Debora Barnett Foster
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
50
|
Olivera C, Le VVH, Davenport C, Rakonjac J. In vitro synergy of 5-nitrofurans, vancomycin and sodium deoxycholate against Gram-negative pathogens. J Med Microbiol 2021; 70. [PMID: 33448923 PMCID: PMC8346734 DOI: 10.1099/jmm.0.001304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Introduction There is an urgent need for effective therapies against bacterial infections, especially those caused by antibiotic-resistant Gram-negative pathogens. Hypothesis Synergistic combinations of existing antimicrobials show promise due to their enhanced efficacies and reduced dosages which can mitigate adverse effects, and therefore can be used as potential antibacterial therapy. Aim In this study, we sought to characterize the in vitro interaction of 5-nitrofurans, vancomycin and sodium deoxycholate (NVD) against pathogenic bacteria. Methodology The synergy of the NVD combination was investigated in terms of growth inhibition and bacterial killing using checkerboard and time-kill assays, respectively. Results Using a three-dimensional checkerboard assay, we showed that 5-nitrofurans, sodium deoxycholate and vancomycin interact synergistically in the growth inhibition of 15 out of 20 Gram-negative strains tested, including clinically significant pathogens such as carbapenemase-producing Escherichia coli, Klebsiella pneumoniae and Acinetobacter baumannii, and interact indifferently against the Gram-positive strains tested. The time-kill assay further confirmed that the triple combination was bactericidal in a synergistic manner. Conclusion This study demonstrates the synergistic effect of 5-nitrofurans, sodium deoxycholate and vancomycin against Gram-negative pathogens and highlights the potential of the combination as a treatment for Gram-negative and Gram-positive infections.
Collapse
Affiliation(s)
- Catrina Olivera
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Vuong Van Hung Le
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Catherine Davenport
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Jasna Rakonjac
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|