1
|
Zeng X, Liang S, Dong J, Gao G, Hu Y, Sun Y. The trade-off of Vibrio parahaemolyticus between bacteriophage resistance and growth competitiveness. Front Microbiol 2024; 15:1346251. [PMID: 38919495 PMCID: PMC11196418 DOI: 10.3389/fmicb.2024.1346251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/10/2024] [Indexed: 06/27/2024] Open
Abstract
Vibrio parahaemolyticus is a food-borne pathogen, which is often isolated from various seafood products. In this study, two kinds of bacteriophages was isolated from the offshore sediments samples. The anti-phage mutant strain were obtained after seventeen rounds of co-culture of Vibrio parahaemolyticus and mixed bacteriophage, multigroup sequencing was carried out on spontaneous the anti-phage mutant strain and the wild-type strain. We used the Sanger sequencing to verify the accuracy of the mutation sites. Biolog GEN III MicroPlates were used to evaluate the metabolic capacity of wild-type strains and the anti-phage mutant strain. In this study, we found that with flaG gene (slight homology to N terminus of multiple flagellins) mutated, making the bacteriophage unable to absorb to the cell surface of the host. And, the growth competitiveness of the anti-phage mutant strain is lower than the wild-type strain. These results indicated that the fitness cost, including loss of the growth competitiveness, constitutes a barrier to the prevalence of these defense mechanisms. And the selection pressure on different anti-phage strategies depends on the trade-off between mortality imposed by bacteriophages and fitness cost of the defense strategy under the given environmental conditions. In conclusion, this study provides valuable insights into the phage-host interaction and phage resistance in Vibrio parahaemolyticus. Our study provided knowledge for the evolutionary adaption of bacteria against the bacteriophage, which could add more information to understand the phage resistance mechanism before applying in the industry.
Collapse
Affiliation(s)
- Xiuxiu Zeng
- Ningbo No.2 Hospital, Ningbo, Zhejiang, China
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, Zhejiang, China
| | | | - Jiayi Dong
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, Zhejiang, China
| | | | - Yaoren Hu
- Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Yuechao Sun
- Ningbo No.2 Hospital, Ningbo, Zhejiang, China
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Azabo R, Dulle F, Mshana SE, Matee M, Kimera S. Antimicrobial use in cattle and poultry production on occurrence of multidrug resistant Escherichia coli. A systematic review with focus on sub-Saharan Africa. Front Vet Sci 2022; 9:1000457. [PMID: 36353252 PMCID: PMC9637661 DOI: 10.3389/fvets.2022.1000457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022] Open
Abstract
Antimicrobial use in livestock production has been linked to antimicrobial resistance (AMR) worldwide; however, optimization of their use has been considered an important strategy in dealing with it. The aims of this study were as follows: (a) to assess the literature on antimicrobial usage (practices, frequency, class, type) in cattle and poultry production with regard to resistance in Escherichia coli (E. coli) including multidrug resistance (MDR) (b) summarize evidence for quantitative (volumes of active antimicrobial ingredients) and quality (identify and quantify active ingredient) and (c) to identify data gaps. Peer reviewed literature search was conducted by querying two online databases: PubMed and Google scholar from November 15, 2018 to February 2019. The inclusion criteria for eligibility were articles: published in English between 2008 and 2018, including poultry (chicken) or cattle or both, E. coli bacteria of choice, antimicrobial use on farms, quantitative data and quality of antimicrobial used. Microsoft Excel was used for data extraction and Rayyan software for eligibility studies. The search retrieved 1,446 probable articles including those from the reference list of significant papers, of which twenty-four articles remained on full text review with more than a third of the studies being conducted in Nigeria. Farm surveys and antimicrobial sales were identified as the main sources of data and the mean quantities of antimicrobials based on sales data were 23,234, 41,280.87, and 1,538,443 kg of the active ingredient in Nigeria, Zambia and South Africa, respectively. One study from Cameroon determined the quantities of active ingredients based on dose metrics while another study still from Cameroon mentioned the quality of antimicrobials. Tetracyclines, beta-lactams/aminoglycosides and fluoroquinolones were the most common classes of antimicrobials (antibiotics) used. Our review reveals a dearth of information in Sub- Saharan Africa on the quantity and quality of veterinary drugs and yet they play a role in the overall picture of antimicrobial resistance. This finding gives an opportunity in the area of focus for future research as far as resistance and multidrug resistance are concerned in food producing animals.
Collapse
Affiliation(s)
- Rogers Azabo
- Department of Veterinary Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
- National Livestock Resources Research Institute, Kampala, Uganda
- Southern African Centre for Infectious Disease Surveillance (SACIDS) Foundation for One Health Sokoine University of Agriculture, Morogoro, Tanzania
| | - Frankwell Dulle
- Department of Knowledge Management, Sokoine National Agricultural Library, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Stephen E. Mshana
- Department of Microbiology and Immunology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Mecky Matee
- Department of Knowledge Management, Sokoine National Agricultural Library, Sokoine University of Agriculture, Morogoro, Tanzania
- Department of Microbiology and Immunology, School of Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Sharadhuli Kimera
- Department of Knowledge Management, Sokoine National Agricultural Library, Sokoine University of Agriculture, Morogoro, Tanzania
- Department of Veterinary Public Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| |
Collapse
|
3
|
ULUDAĞ AA, ARSLAN AYDOĞDU EÖ, KİMİRAN A. The Determination of Presence of Listeria monocytogenes in Ground Meat Sold in Istanbul. GAZI UNIVERSITY JOURNAL OF SCIENCE 2022. [DOI: 10.35378/gujs.972909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Among the 21 different species of the Listeria genus, Listeria monocytogenes is the most common and listeriosis agent in humans. The mortality rate of L. monocytogenes infection is higher than the other common foodborne pathogens such as Salmonella Enteritidis, Campylobacter and Vibrio species. In the current study, it is aimed to determine the presence of L. monocytogenes bacteria in minced meat samples sold in Istanbul province by using the culture method of the USDA-FSIS. In this study, 100 minced meat samples purchased from different butchers in 11 districts of Istanbul between December 2018 and November 2019 were examined for the presence of L. monocytogenes. The bacteria identified also molecularly verified according to the presence of iap and hlyA gene regions by the polymerase chain reaction (PCR) method. When antibiotic susceptibility tests of 21 strains, identified as L. monocytogenes through biochemical tests, it was found to be resistant to Amoxicillin/Clavulanic acid (14.28%), penicillin (9.52%), cefaclor (9.52%), vancomycin (9.52%), ciprofloxacin (9.52%) and trimethoprim-sulfamethoxazole (9.52%) and susceptible to ampicillin (100%) and tetracycline (100%). In terms of iap and hlyA gene regions, only 16 of 21 isolates, identified as L. monocytogenes as a result of biochemical tests, were found to be L. monocytogenes. In our study with minced meat offered for sale in Istanbul, although, the L. monocytogenes isolation rate (17%) and the incidence of antibiotic resistance of the isolated L. monocytogenes bacteria are low, it was concluded that minced meat may pose a public health risk.
Collapse
Affiliation(s)
| | - Elif Özlem ARSLAN AYDOĞDU
- ISTANBUL UNIVERSITY, FACULTY OF SCIENCE, DEPARTMENT OF BIOLOGY, DEPARTMENT OF FUNDAMENTAL AND INDUSTRIAL MICROBIOLOGY
| | - Ayten KİMİRAN
- ISTANBUL UNIVERSITY, FACULTY OF SCIENCE, DEPARTMENT OF BIOLOGY, DEPARTMENT OF FUNDAMENTAL AND INDUSTRIAL MICROBIOLOGY
| |
Collapse
|
4
|
Adesiyan IM, Bisi-Johnson MA, Ogunfowokan AO, Okoh AI. Occurrence and antibiogram signatures of some Vibrio species recovered from selected rivers in South West Nigeria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:42458-42476. [PMID: 33813704 DOI: 10.1007/s11356-021-13603-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Vibrio species, widely distributed in water environments, has emerged as a prominent cause of water and food-related disease outbreaks posing significant risk to human and animal health worldwide. About 40% of presumptive isolates recovered from four selected rivers in Southwest Nigeria and, established as Vibrio species genus through polymerase chain reaction techniques., were subjected to antibiotic susceptibility testing against a panel of 18 commonly used antibiotics. The relative prevalence of key Vibrio species (V. parahaemolyticus, V. vulnificus, V. mimicus, V. harveyi, and V. cholerae) was in the order 17%, 13.3%, 4.4%, 2.2%, and 2.2% respectively. Antibiotic resistance by all Vibrio species was mostly observed against doxycycline (71-89%), erythromycin (86-100%), tetracycline (71-89%), rifampicin (86-100%), and sulfamethoxazole (87-100%), though susceptibility to meropenem (86-100%), cephalothin (60-100%), norfloxacin (93-100%), ciprofloxacin (88-100%), amikacin (64-100%), gentamicin (57-74%), and trimethoprim/sulfamethoxazole (57-81%) was equally observed in all species. Vibrio mimicus expressed highest resistance against streptomycin and chloramphenicol (64%), while V. vulnificus (52%) and V. cholerae (57%) had the highest resistance against cephalothin. High resistance against ampicillin (57%) and amoxicillin (50%) was exhibited by V. cholerae and V. mimicus respectively. Indexes of multiple antibiotic resistances (MARI) among Vibrio species ranged between 0.11 and 0.72 with the highest MAR index of 0.72 observed in one isolate of V. vulnificus. This study reveals high prevalence of Vibrio species in the selected rivers as well as elevated resistance against some first-line antibiotics, which suggests possible inappropriate antimicrobial usage around study communities. We conclude that the freshwater resources investigated are unfit for domestic, industrial, and recreational uses without treatment prior to use and are potential reservoirs of antibiotic-resistant Vibrio species in this environment.
Collapse
Affiliation(s)
- Ibukun M Adesiyan
- Department of Biological Sciences, Achievers University, Owo, Ondo State, Nigeria.
- Institute of Ecology and Environmental Studies, Obafemi Awolowo University, Ile Ife, Osun-State, 220005, Nigeria.
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.
| | | | - Aderemi O Ogunfowokan
- Department of Industrial Chemistry, The Technical University, Ibadan,, Oyo State, Nigeria
- Department of Chemistry, Obafemi Awolowo University, Ile Ife, Nigeria
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Department of Environmental Health Sciences College of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
5
|
Lopez-Chavarrias V, Ugarte-Ruiz M, Barcena C, Olarra A, Garcia M, Saez JL, de Frutos C, Serrano T, Perez I, Moreno MA, Dominguez L, Alvarez J. Monitoring of Antimicrobial Resistance to Aminoglycosides and Macrolides in Campylobacter coli and Campylobacter jejuni From Healthy Livestock in Spain (2002-2018). Front Microbiol 2021; 12:689262. [PMID: 34276619 PMCID: PMC8283307 DOI: 10.3389/fmicb.2021.689262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial resistance (AMR) in Campylobacter spp. (Campylobacter coli and Campylobacter jejuni) is a concern due to its importance in public health, particularly when it involves aminoglycosides and macrolides, drugs of choice for treatment of human cases. Co-resistance to these two antimicrobial classes involves transfer of genetic elements and/or acquisition of mutations in different genetic loci, which can in turn spread through vertical or horizontal gene transfer (HGT) phenomena, with each route having different potential implications. This study aimed at evaluating the association between the presence of phenotypic resistance to these two antimicrobial classes in C. coli and C. jejuni recovered from livestock at slaughterhouses in Spain (as part of the AMR surveillance program), and at assessing the genetic heterogeneity between resistant and susceptible isolates by analysing the "short variable region" (SVR) of the flaA gene. Over the 2002-2018 period, antimicrobial susceptibility test results from 10,965 Campylobacter isolates retrieved from fecal samples of broilers, turkeys, pigs and cattle were collected to compare the proportion of resistant isolates and the Minimum Inhibitory Concentrations (MICs) against six antimicrobials including gentamicin (GEN), streptomycin (STR), and erythromycin (ERY). AMR-associated genes were determined for a group of 51 isolates subjected to whole genome sequencing, and the flaA SVR of a subset of 168 isolates from all hosts with different resistotypes was used to build a Neighbor-Joining-based phylogenetic tree and assess the existence of groups by means of "relative synonymous codon usage" (RSCU) analysis. The proportion of antimicrobial resistant isolates to both, aminoglycosides and macrolides, varied widely for C. coli (7-91%) and less for C. jejuni (all hosts 0-11%). Across hosts, these proportions were 7-56% in poultry, 12-82% in cattle, and 22-91% in pigs for C. coli and 0-8% in poultry and 1-11% in cattle for C. jejuni. Comparison of the MIC distributions revealed significant host-specific differences only for ERY in C. jejuni (p = 0.032). A significant association in the simultaneous presentation of AMR to both antimicrobial classes was observed across hosts/bacterial species. The flaA gene analysis showed clustering of isolates sharing resistotype and to a lesser degree bacterial species and host. Several resistance markers associated with resistance to aminoglycosides and macrolides were found among the sequenced isolates. The consistent association between the simultaneous presentation of AMR to aminoglycosides and macrolides in all hosts could be due to the persistence of strains and/or resistance mechanisms in Campylobacter populations in livestock over time. Further studies based on whole genome sequencing are needed to assess the epidemiological links between hosts and bacterial strains.
Collapse
Affiliation(s)
| | - Maria Ugarte-Ruiz
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Carmen Barcena
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Adolfo Olarra
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Maria Garcia
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Jose Luis Saez
- Subdirección General de Sanidad e Higiene Animal y Trazabilidad, Dirección General de la Producción Agraria, Ministerio de Agricultura, Pesca y Alimentación, Madrid, Spain
| | - Cristina de Frutos
- Laboratorio Central de Veterinaria (LCV Algete), Ministerio de Agricultura, Pesca y Alimentación, Madrid, Spain
| | - Tania Serrano
- TRAGSATEC, Tecnologías y Servicios Agrarios S.A., Madrid, Spain
| | - Iratxe Perez
- Laboratorio Central de Veterinaria (LCV Algete), Ministerio de Agricultura, Pesca y Alimentación, Madrid, Spain
| | - Miguel Angel Moreno
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Lucas Dominguez
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Julio Alvarez
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
6
|
Hashmi SZH, Dhiman TK, Chaudhary N, Singh AK, Kumar R, Sharma JG, Kumar A, Solanki PR. Levofloxacin Detection Using l-Cysteine Capped MgS Quantum Dots via the Photoinduced Electron Transfer Process. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.616186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Antibiotics resistance is becoming one of the biggest problems of the 21st century. The prior detection of antibiotics resistance can help human beings in better treatment of diseases. Here, we have used l-Cysteine capped magnesium sulfide quantum dots (L-Cyst-MgS QDs) to detect Levofloxacin antibiotic. L-Cyst-MgS QDs were synthesized using the hydrothermal method. Transmission electron microscopy study showed monodispersed L-Cyst-MgS QDs of 2–4 nm in size. Energy dispersive x-ray photoemission spectroscopy study confirmed the elemental composition of the L-Cyst-MgS QDs without any impurity. UV-vis absorption study showed a peak centered around 340 nm. The photoluminescence study exhibited the maximum peak at 410 nm for 340 nm of excitation wavelength. L-Cyst-MgS QDs were studied with thirteen antibiotics, namely Thiamphenicol, Gentamicin, Erythromycin, Ofloxacin, Ampicillin, Ciprofloxacin, Tetracycline, Chloramphenicol, Florfenicol, Amoxicillin, Moxifloxacin, Norfloxacin, and Levofloxacin. Among these, Levofloxacin showed the most significant change in the peaks’ intensity and was further used for the interaction study. In the interaction study, the peak corresponding to MgS showed a continuous decrease, while the peak corresponding to Levofloxacin showed an increase with the increased concentrations (0–100 μg/ml) of Levofloxacin. Linear behavior was obtained in the range of 1–90 μg/ml. FT-IR study confirmed the interaction of the Levofloxacin with L-Cyst-MgS QDs. The Time-resolved fluorescence spectroscopy showed identical lifetime for both the samples and no spectral overlap confirm the FRET free system. The underlying mechanism is explained based on the electron transfer from the conduction band of the L-Cyst-MgS QDs to the HOMO of Levofloxacin. The limit of detection was found to be 0.21 μg/ml.
Collapse
|
7
|
Nielsen CL, Kongsted H, Sørensen JT, Krogh MA. Antibiotic and medical zinc oxide usage in Danish conventional and welfare-label pig herds in 2016-2018. Prev Vet Med 2021; 189:105283. [PMID: 33556801 DOI: 10.1016/j.prevetmed.2021.105283] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
This register-based study compared the usage of antibiotics and medical zinc oxide (ZnOmed) in three different pig production systems: organic, conventional free-range and conventional indoor in 2016-2018. ZnOmed is used to prevent weaning diarrhoea with a dosage of max 2500 mg zinc/kg feed for 14 days post weaning. The treatment incidence (TI) of antibiotics (injectable and oral) and ZnOmed was calculated as the total number of animal daily doses (ADD) per 100 animals per day at herd level over a calendar year. Zero-inflated negative binomial models were used to compare the antibiotic and ZnOmed usage across the three production systems. The correlation between antibiotic and ZnOmed usage was evaluated using Spearman's correlation coefficient. In all age groups, the antibiotic TI was highest in the conventional indoor system, lower in the conventional free-range system and lowest in the organic system. In weaners, which is the age group with the highest antibiotic usage, conventional indoor, conventional free-range and organic herds had an average TI of 7.20, 3.37 and 0,48 ADD/100 animals/day, respectively. Another important finding in the study was that non-use of antibiotics is more common (>30% of herds) in welfare-label production systems (organic and conventional free-range) than in conventional indoor production (16% of herds). The overall differences in usage of ZnOmed between the three production systems were not statistically significant, but the probability of not using ZnOmed, was significantly higher for organic (36%) and conventional free-range herds (61%) compared to conventional indoor herds (19%). There was a weak to moderate positive correlation between antibiotic and ZnOmed usage at herd level with the weakest correlation in conventional indoor herds (0.31). The results indicate that ZnOmed does not appear to replace or prevent the use of antibiotics and suggest that ZnOmed is used differently in different systems. A weak correlation between the usage of antibiotics and ZnOmed in conventional indoor herds could reflect a frequent use of routine treatments within this system. The lower level of antibiotic usage in welfare-label systems indicates that a significant reduction in antibiotic use in pig production would require housing and management changes or regulatory changes in the conventional indoor system. The large variation in both antibiotic and ZnOmed usage between herds in similar production systems indicates that a further reduction in use of antibiotics and ZnOmed is achievable.
Collapse
Affiliation(s)
| | - Hanne Kongsted
- Department of Animal Science, Aarhus University, DK-8830, Tjele, Denmark.
| | - Jan Tind Sørensen
- Department of Animal Science, Aarhus University, DK-8830, Tjele, Denmark
| | | |
Collapse
|
8
|
Kwon BR, Wei B, Cha SY, Shang K, Zhang JF, Kang M, Jang HK. Longitudinal Study of the Distribution of Antimicrobial-Resistant Campylobacter Isolates from an Integrated Broiler Chicken Operation. Animals (Basel) 2021; 11:246. [PMID: 33498355 PMCID: PMC7909429 DOI: 10.3390/ani11020246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to analyze the prevalence, antimicrobial resistance, and genetic diversity of Campylobacter isolates that were obtained from whole chicken production stages in Korea. A total of 1348 samples were collected from 10 production lines. The prevalence of Campylobacter in breeder farm, broiler farm, slaughterhouse, and retail meat products was 50.0%, 3.3%, 13.4%, and 68.4%, respectively, and Campylobacter was not detected at the hatchery stage. Resistance to quinolones/fluoroquinolones was the most prevalent at all stages. Among the multidrug-resistant isolates, 16 isolates (19.8%) from breeder farm were resistant to both azithromycin and ciprofloxacin. A total of 182 isolates were subdivided into 82 pulsed-field gel electrophoresis (PFGE) genotypes with 100% similarity. Diverse genotypes were presented with discontinuous patterns along the whole production chain. Thirty percent of Campylobacter-free flocks became positive after slaughtering. An identical genotype was simultaneously detected from both breeder farm and retail meat, even from different production lines. This study reveals that antimicrobial-resistant Campylobacter contamination can occur at all stages of the chicken supply chain. In particular, the breeder farm and slaughterhouse should be the main control points, as they are the potential stages at which antimicrobial-resistant Campylobacter could spread to retail meat products by horizontal transmission.
Collapse
Affiliation(s)
- Bo-Ram Kwon
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (B.-R.K.); (B.W.); (S.-Y.C.); (K.S.); (J.-F.Z.)
| | - Bai Wei
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (B.-R.K.); (B.W.); (S.-Y.C.); (K.S.); (J.-F.Z.)
| | - Se-Yeoun Cha
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (B.-R.K.); (B.W.); (S.-Y.C.); (K.S.); (J.-F.Z.)
| | - Ke Shang
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (B.-R.K.); (B.W.); (S.-Y.C.); (K.S.); (J.-F.Z.)
| | - Jun-Feng Zhang
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (B.-R.K.); (B.W.); (S.-Y.C.); (K.S.); (J.-F.Z.)
| | - Min Kang
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (B.-R.K.); (B.W.); (S.-Y.C.); (K.S.); (J.-F.Z.)
- Bio Disease Control (BIOD) Co., Ltd., Iksan 54596, Korea
| | - Hyung-Kwan Jang
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (B.-R.K.); (B.W.); (S.-Y.C.); (K.S.); (J.-F.Z.)
- Bio Disease Control (BIOD) Co., Ltd., Iksan 54596, Korea
| |
Collapse
|
9
|
Heidarlo MN, Lotfollahi L, Yousefi S, Lohrasbi V, Irajian G, Talebi M. Analysis of virulence genes and molecular typing of Listeria monocytogenes isolates from human, food, and livestock from 2008 to 2016 in Iran. Trop Anim Health Prod 2021; 53:127. [PMID: 33454847 DOI: 10.1007/s11250-021-02569-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
The frequency of Listeria monocytogenes isolates collected from a total of 1150 samples including food (n = 300), livestock (n = 50), and human clinical (n = 800) was evaluated during 2008-2016. Antimicrobial resistance patterns, virulence factors, and molecular characteristics of these isolates were analyzed using disk diffusion method, sequencing, serotyping, and pulsed-field gel electrophoresis (PFGE). The analysis of 44 L. monocytogenes isolates showed that 72.7% (32 of 44) of all the isolates belonged to Serotype 1/2c, and 15.9% (7 of 44) belonged to Serotype 3c. All 44 isolates were resistant to one or more antimicrobial agents with the most frequent resistance to penicillin (75%) and tetracycline (47.7%). Of the 44 L. monocytogenes strains, 100, 69.2, and 62.5% of livestock, human, and food strains were resistant to penicillin, respectively. Using pulsed-field gel electrophoresis (PFGE) technique, the isolates' genetic diversity was determined, and 28 PFGE patterns with 8 common (CT) and 20 single types (ST) were identified. This study highlights the high prevalence of Serotype 1/2c in clinical and livestock samples, while different serotypes were observed in food samples. The presence of rare serotypes such as 4c, belonging to the Lineage III, as well as 4e and 1/2c which are infrequent in Iran indicates that paying attention to uncommon serotypes, especially 1/2c, during the listeriosis outbreaks is necessary.
Collapse
Affiliation(s)
| | - Lida Lotfollahi
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Saber Yousefi
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Vahid Lohrasbi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Irajian
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Center, University of Medical sciences, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Center, University of Medical sciences, Tehran, Iran
| |
Collapse
|
10
|
Gupta S, Abhishek, Shrivastava S, Singh RJ, Gogoi P, Kumar B. Evaluation of Antibacterial Activity of Magainin and Mastoparan and Its Novel Hybrid Against MDR E. coli Isolates of Neonatal Calves. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-020-10154-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Zbrun MV, Rossler E, Olivero CR, Soto LP, Zimmermann JA, Frizzo LS, Signorini ML. Possible reservoirs of thermotolerant Campylobacter at the farm between rearing periods and after the use of enrofloxacin as a therapeutic treatment. Int J Food Microbiol 2021; 340:109046. [PMID: 33445066 DOI: 10.1016/j.ijfoodmicro.2021.109046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 01/13/2023]
Abstract
Campylobacteriosis is a zoonosis and the most frequent cause of food-borne bacterial enteritis in humans. C. jejuni and C. coli are the most common species implicated in campylobacteriosis. Broilers and their products are considered the most important food sources of human infections. The aim of the present study was to evaluate the presence of thermotolerant Campylobacter in different reservoirs at the farm, and the permanence of this pathogen during four consecutive rearing periods. The samples were taken from the same house farm in the downtime period and during the last week of broiler rearing, prior to their slaughter during four consecutive cycles. Different reservoirs as potential sources of Campylobacter were analysed. The prevalence of Campylobacter in vectors was 23% in A. diaperinus larvae, 20% in wild birds, 13% in A. diaperinus adults, and 9% in flies; as regards fomites, the prevalence was 50% in workers' boots, 27% in litter, and 21% in feed, while in broilers it was 80%. Campylobacter jejuni was the most detected species (51%) in the samples analysed. In addition, some Campylobacter genotypes persisted in the house farm throughout consecutive rearing periods, indicating that those strains remain during downtime periods. However, our study could not identify the Campylobacter sources in the downtime periods because all the samples were negative for Campylobacter isolation. In addition, a remarkable finding was the effect of the use of enrofloxacin (as a necessary clinical intervention for flock health) in cycle 3 on the Campylobacter population. No Campylobacter could be isolated after that clinic treatment. Afterwards, we found a greater proportion of C. coli isolates, and the genotypes of those isolates were different from the genotypes found in the previous rearing periods. In conclusion, the effect of the use of enrofloxacin during the rearing period changed the Campylobacter species proportion, and this finding is particularly interesting for further evaluation. Furthermore, more studies should be conducted with the aim of detecting the Campylobacter sources between rearing periods.
Collapse
Affiliation(s)
- M V Zbrun
- Laboratory of Food Analysis, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral, National Council of Scientific and Technical Research (UNL/CONICET), 2805 Kreder St., S3080HOF Esperanza, Province of Santa Fe, Argentina; Department of Public Health, Faculty of Veterinary Science, Litoral National University, 2805 Kreder St., S3080HOF Esperanza, Province of Santa Fe, Argentina
| | - E Rossler
- Department of Public Health, Faculty of Veterinary Science, Litoral National University, 2805 Kreder St., S3080HOF Esperanza, Province of Santa Fe, Argentina
| | - C R Olivero
- Laboratory of Food Analysis, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral, National Council of Scientific and Technical Research (UNL/CONICET), 2805 Kreder St., S3080HOF Esperanza, Province of Santa Fe, Argentina; Department of Public Health, Faculty of Veterinary Science, Litoral National University, 2805 Kreder St., S3080HOF Esperanza, Province of Santa Fe, Argentina
| | - L P Soto
- Laboratory of Food Analysis, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral, National Council of Scientific and Technical Research (UNL/CONICET), 2805 Kreder St., S3080HOF Esperanza, Province of Santa Fe, Argentina; Department of Public Health, Faculty of Veterinary Science, Litoral National University, 2805 Kreder St., S3080HOF Esperanza, Province of Santa Fe, Argentina
| | - J A Zimmermann
- Laboratory of Food Analysis, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral, National Council of Scientific and Technical Research (UNL/CONICET), 2805 Kreder St., S3080HOF Esperanza, Province of Santa Fe, Argentina; Department of Public Health, Faculty of Veterinary Science, Litoral National University, 2805 Kreder St., S3080HOF Esperanza, Province of Santa Fe, Argentina
| | - L S Frizzo
- Laboratory of Food Analysis, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral, National Council of Scientific and Technical Research (UNL/CONICET), 2805 Kreder St., S3080HOF Esperanza, Province of Santa Fe, Argentina; Department of Public Health, Faculty of Veterinary Science, Litoral National University, 2805 Kreder St., S3080HOF Esperanza, Province of Santa Fe, Argentina
| | - M L Signorini
- Department of Public Health, Faculty of Veterinary Science, Litoral National University, 2805 Kreder St., S3080HOF Esperanza, Province of Santa Fe, Argentina; National Council of Scientific and Technical Research, National Institute of Agricultural, Technology EEA Rafaela, Ruta 34 Km 227, 2300 Rafaela, Province of Santa Fe, Argentina.
| |
Collapse
|
12
|
Cho JH, Kwon JG, O'Sullivan DJ, Ryu S, Lee JH. Development of an endolysin enzyme and its cell wall-binding domain protein and their applications for biocontrol and rapid detection of Clostridium perfringens in food. Food Chem 2020; 345:128562. [PMID: 33189482 DOI: 10.1016/j.foodchem.2020.128562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 01/10/2023]
Abstract
Clostridium perfringens is a well-known pathogen that causes food-borne illnesses. Although bacteriophages can be effective natural food preservatives, phage endolysin and cell wall-binding domain (CBD) provide useful materials for lysis of C. perfringens and rapid detection. The genome of phage CPAS-15 consists of 51.8-kb double-stranded circular DNA with 78 open reading frames, including an endolysin gene. The apparent absence of a virulence factor or toxin gene suggests its safety in food applications. C. perfringens endolysin (LysCPAS15) inhibits host cells by up to a 3-log reduction in 2 h, and enhanced green fluorescent protein (EGFP)-fused CBD protein (EGFP-LysCPAS15_CBD1) detects C. perfringens within 5 min. Both exhibit broader host range spectra and higher stabilities than a bacteriophage. Tests in milk show the same host lysis and specific detection activities, with no hindrance effect from food matrices, indicating that endolysin and its CBD can provide food extended protection from C. perfringens contamination.
Collapse
Affiliation(s)
- Jae-Hyun Cho
- Department of Food Science and Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Joon-Gi Kwon
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Daniel J O'Sullivan
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Ju-Hoon Lee
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea.
| |
Collapse
|
13
|
Li Y, Xie T, Pang R, Wu Q, Zhang J, Lei T, Xue L, Wu H, Wang J, Ding Y, Chen M, Wu S, Zeng H, Zhang Y, Wei X. Food-Borne Vibrio parahaemolyticus in China: Prevalence, Antibiotic Susceptibility, and Genetic Characterization. Front Microbiol 2020; 11:1670. [PMID: 32765472 PMCID: PMC7378779 DOI: 10.3389/fmicb.2020.01670] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/25/2020] [Indexed: 12/16/2022] Open
Abstract
Vibrio parahaemolyticus is a marine and estuarine bacterium that leads to damage of aquatic industry by foodborne outbreaks and possesses an enormous threat to food safety as well as human health worldwide. In the current study, we investigated 905 food samples (ready-to-eat foods, fish, and shrimp) from 15 provinces in China, and aimed to determine prevalence, biological characteristics and genetic diversity of presumptive V. parahaemolyticus isolates. Firstly, 14.17% of 240 fish samples, 15.34% of 365 shrimp samples and 3.67% of 300 RTE food samples were positive for potential V. parahaemolyticus. Secondly, 69 food samples (14.87%) collected in summer were positive for target isolates, while the rate of positive sample of 441 food samples in winter reached 7.26%. Thirdly, we purified 202 V. parahaemolyticus strains for further research. And antimicrobial susceptibility results of strains tested revealed that the highest resistance rate was observed for ampicillin (79.20%). At the same time, 148 (73.27%) of all isolates were classified and defined as multi-drug resistant foodborne bacteria. The results of PCR assay showed that the isolates being positive for the tdh, trh or both genes, were up to 9.90%, 19.80% or 3.96%. Besides, multiplex PCR test showed that the isolates carrying O2 serogroup were the most prevalent. Furthermore, sequence types (STs) of 108 isolates were obtained via multi-locus sequence typing. Not only 82 STs were detected, but also 41 of which were updated in the MLST database. Thus, our findings significantly demonstrated the high contamination rates of V. parahaemolyticus in fish and shrimp and it may possess potential threat for consumer health. We also provided up-to-date dissemination of antibiotic-resistant V. parahaemolyticus which is important to ensure the high efficacy in the treatment of human and aquatic products infections. Lastly, with the identification of 82 STs including 41 novel STs, this study significantly revealed the high genetic diversity among V. parahaemolyticus. All of our research improved our understanding on microbiological risk assessment in ready-to-eat foods, fish, and shrimp.
Collapse
Affiliation(s)
- Yanping Li
- College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou, China
| | - Tengfei Xie
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou, China
| | - Rui Pang
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou, China
| | - Tao Lei
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Xue
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou, China
| | - Haoming Wu
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Technology, Jinan University, Guangzhou, China
| | - Moutong Chen
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou, China
| | - Shi Wu
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou, China
| | - Haiyan Zeng
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou, China
| | - Youxiong Zhang
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou, China
| | - Xianhu Wei
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
14
|
Association of intestinal colonization of ESBL-producing Enterobacteriaceae in poultry slaughterhouse workers with occupational exposure-A German pilot study. PLoS One 2020; 15:e0232326. [PMID: 32497054 PMCID: PMC7272067 DOI: 10.1371/journal.pone.0232326] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 04/13/2020] [Indexed: 11/19/2022] Open
Abstract
Background Bacteria that have acquired antimicrobial resistance, in particular ESBL-producing Enterobacteriaceae, are an important healthcare concern. Therefore, transmission routes and risk factors are of interest, especially for the carriage of ESBL-producing E. coli. Since there is an enhanced risk for pig slaughterhouse employees to carry ESBL-producing Enterobacteriaceae, associated with animal contact as potential risk factor, the present study investigated the occurrence of ESBL-producing Enterobacteriaceae in poultry slaughterhouse employees. Due to the higher level of resistant Enterobacteriaceae in primary poultry production than in pig production, a higher risk of intestinal colonization of poultry slaughterhouse employees was expected. Results ESBL-producing Enterobacteriaceae were detected in 5.1% (5 of 99) of the fecal samples of slaughterhouse workers. The species of these isolates was confirmed as E. coli. PCR assays revealed the presence of the genes blaCTX-M-15 (n = 2) and blaSHV-12 (n = 3) in these isolates, partly in combination with the β-lactamase gene blaTEM-135. Participants were divided into two groups according to their occupational exposure and results indicated an increased probability of colonization with ESBL-producing Enterobacteriaceae for the group of ‘higher exposure’ (OR 3.7, exact 95% CI 0.6–23.5; p = 0.4). For intestinal colonization with ESBL-producing Enterobacteriaceae, a prevalence of 10% (3/30) was observed in the group of ‘higher exposure’ versus 2.9% (2/69) in the group of ‘lower exposure’. Employees in working steps such as ‘hanging’ poultry in the process of slaughter and ‘evisceration’ seemed to have a higher risk for intestinal colonization with ESBL-producing Enterobacteriaceae compared to the group of ‘lower exposure’. Conclusion This study is the first of its kind to collect data on the occupational exposure of slaughterhouse workers to ESBL-producing Enterobacteriaceae in Europe. The results suggested that colonization with ESBL-producing Enterobacteriaceae is associated with occupational exposure in poultry slaughterhouses. However, the presence of ESBL-producing E. coli isolates in only 5.1% (5/99) of the tested employees in poultry slaughterhouses suggests a lower transmission risk than in pig slaughterhouses.
Collapse
|
15
|
Cho S, Jackson C, Frye J. The prevalence and antimicrobial resistance phenotypes of
Salmonella
,
Escherichia coli
and
Enterococcus
sp. in surface water. Lett Appl Microbiol 2020; 71:3-25. [DOI: 10.1111/lam.13301] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 12/25/2022]
Affiliation(s)
- S. Cho
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit United States Department of Agriculture, Agricultural Research Service Athens GA United States of America
| | - C.R. Jackson
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit United States Department of Agriculture, Agricultural Research Service Athens GA United States of America
| | - J.G. Frye
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit United States Department of Agriculture, Agricultural Research Service Athens GA United States of America
| |
Collapse
|
16
|
Vågsholm I, Arzoomand NS, Boqvist S. Food Security, Safety, and Sustainability—Getting the Trade-Offs Right. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00016] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Yang M, Liang Y, Huang S, Zhang J, Wang J, Chen H, Ye Y, Gao X, Wu Q, Tan Z. Isolation and Characterization of the Novel Phages vB_VpS_BA3 and vB_VpS_CA8 for Lysing Vibrio parahaemolyticus. Front Microbiol 2020; 11:259. [PMID: 32153543 PMCID: PMC7047879 DOI: 10.3389/fmicb.2020.00259] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/04/2020] [Indexed: 01/01/2023] Open
Abstract
Accumulating evidence has indicated that the multiple drug resistant Vibrio parahaemolyticus may pose a serious threat to public health and economic concerns for humans globally. Here, two lytic bacteriophages, namely vB_VpS_BA3 and vB_VpS_CA8, were isolated from sewage collected in Guangzhou, China. Electron microscopy studies revealed both virions taxonomically belonged to the Siphoviridae family with icosahedral head and a long non-contractile tail. The double-stranded DNA genome of phage BA3 was composed of 58648 bp with a GC content of 46.30% while phage CA8 was 58480 bp with an average GC content of 46.42%. In total, 85 putative open reading frames (ORFs) were predicted in the phage BA3 genome while 84 were predicted in that of CA8. The ORFs were associated with phage structure, packing, host lysis, DNA metabolism, and additional functions. Furthermore, average nucleotide identity analysis, comparative genomic features and phylogenetic analysis revealed that BA3 and CA8 represented different isolates but novel members of the family, Siphoviridae. Regarding the host range of the 61 V. parahaemolyticus isolates, BA3 and CA8 had an infectivity of 8.2 and 36.1%, respectively. Furthermore, ∼100 plaque-forming units (pfu)/cell for phage BA3 and ∼180 pfu/cell for phage CA8 were determined to be the viral load under laboratory growth conditions. Accordingly, the phage-killing assay in vitro revealed that phage CA8 achieved approximately 3.65 log unit reductions. The present results indicate that CA8 is potentially applicable for biological control of multidrug resistant V. parahaemolyticus.
Collapse
Affiliation(s)
- Meiyan Yang
- College of Agriculture, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Yongjian Liang
- College of Agriculture, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Shixuan Huang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Jumei Zhang
- College of Agriculture, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Jing Wang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Hanfang Chen
- College of Agriculture, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Yuanming Ye
- College of Agriculture, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Xiangyang Gao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingping Wu
- College of Agriculture, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Zhiyuan Tan
- College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
18
|
Zhou Z, Yao H. Effects of Composting Different Types of Organic Fertilizer on the Microbial Community Structure and Antibiotic Resistance Genes. Microorganisms 2020; 8:microorganisms8020268. [PMID: 32079314 PMCID: PMC7074733 DOI: 10.3390/microorganisms8020268] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 12/25/2022] Open
Abstract
Organic fertilizer is a major carrier that stores and transmits antibiotic resistance genes (ARGs). In the environment, due to the application of organic fertilizers in agriculture, the increasing diversity and abundance of ARGs poses a potential threat to human health and environmental safety. In this paper, the microbial community structure and ARGs in different types of organic fertilizer treated with composting were examined. We found that the abundance and diversity of ARGs in earthworm cast organic fertilizer were the lowest and the highest in chicken manure organic fertilizer. Interestingly, the abundance and diversity of ARGs, especially beta-lactam resistance genes, sulfonamide resistance genes, and macrolide-lincosamide-streptogramin B (MLSB) resistance genes, in organic fertilizers were reduced significantly, while composting caused no significant change in mobile genetic elements (MGEs), where antibiotic deactivation and the use of efflux pumps were the two most dominant mechanisms. It was clear that removal of ARGs became more efficient with increasing reduction in the bacterial abundances and diversity of potential ARG hosts, and integron-mediated horizontal gene transfers (HGTs) played an important role in the proliferation of most ARG types. Therefore, the reduction in ARGs was mainly driven by changes in bacterial community composition caused by composting. Furthermore, rather than HGTs, the diversity and abundance of bacterial communities affected by compost physical and chemical properties were the main drivers shaping and altering the abundance and diversity of ARGs, which was indicated by a correlation analysis of these properties, antibiotic residues, microbial community structure, and ARGs. In general, high-temperature composting effectively removed antibiotic residues and ARGs from these organic fertilizers; however, it cannot prevent the proliferation of MGEs. The insights gained from these results may be of assistance in the safe and rational use of organic fertilizers by indicating the changes in microbial community structure and ARGs in different types of organic fertilizer treated with composting.
Collapse
Affiliation(s)
- Zeming Zhou
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China;
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China;
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Correspondence:
| |
Collapse
|
19
|
Alnajrani MN, Alsager OA. Removal of Antibiotics from Water by Polymer of Intrinsic Microporosity: Isotherms, Kinetics, Thermodynamics, and Adsorption Mechanism. Sci Rep 2020; 10:794. [PMID: 31964938 PMCID: PMC6972944 DOI: 10.1038/s41598-020-57616-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 12/04/2019] [Indexed: 01/30/2023] Open
Abstract
Traces of antibiotics within domestic and industrial effluents have toxic impact on human health as well as surrounding flora and fauna. Potential increase in antibiotic resistance of microorganisms is likely to rise due to the incomplete removal of antibiotics by traditional wastewater processing, methods such as membrane filtration and biological treatment. In this study, we investigated a novel class of material termed Polymer of Intrinsic Microporosity (PIM) that is based on amorphous microporous organic materials for the application of antibiotic removal form aqueous environments. The adsorption of four commonly used antibiotics (doxycycline, ciprofloxacin, penicillin G, and amoxicillin) was evaluated and found that at least 80% of the initial concentrations was eliminated under the optimized conditions. Langmuir and Freundlich models were then employed to correlate the equilibria data; the Freundlich model fit well the data in all cases. For kinetic data, pseudo-first and second order models were examined. Pseudo-second order model fit well the kinetic data and allowed the calculation of the adsorption rate constants. Thermodynamic parameters were obtained by conducting the adsorption studies at varied reaction temperatures. Surface potential, adsorption at various solution pHs, thermogravimetric analysis (TGA), Infrared spectroscopy (IR), and surface area experiments were conducted to draw possible adsorption mechanisms. The removal of antibiotics from water by PIM-1 is likely to be governed by both surface and pore-filling adsorption and could be facilitated by electrostatic interactions between the aromatic rings and charged functional groups as well as hydrogen bond formation between the adsorbent and adsorbate. Our work shows that the application of such novel microporous material could contribute to the removal of such challenging and persistent contaminants from wastewater with further optimizations of large-scale adsorption processes.
Collapse
Affiliation(s)
- Mohammed N Alnajrani
- National Center for Irradiation Technology, Nuclear Science Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh, 11442, Saudi Arabia.
| | - Omar A Alsager
- National Center for Irradiation Technology, Nuclear Science Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh, 11442, Saudi Arabia
| |
Collapse
|
20
|
Characterization of ESBL-Producing Enterobacteria from Fruit Bats in an Unprotected Area of Makokou, Gabon. Microorganisms 2020; 8:microorganisms8010138. [PMID: 31963801 PMCID: PMC7022737 DOI: 10.3390/microorganisms8010138] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 01/09/2023] Open
Abstract
In Gabon, terrestrial mammals of protected areas have been identified as a possible source of antibiotic-resistant bacteria. Some studies on antibiotic resistance in bats have already been carried out. The main goal of our study was to detect extended-spectrum beta-lactamases (ESBLs) that are produced by enterobacteria from bats in the Makokou region in Gabon. Sixty-eight fecal samples were obtained from 68 bats caught in the forests located 1 km from the little town of Makokou. After culture and isolation, 66 Gram-negative bacterial colonies were obtained. The double-disk diffusion test confirmed the presence of ESBLs in six (20.69%) Escherichia coli isolates, four (13.79%) Klebsiella pneumoniae isolates, and one (3.45%) Enterobacter cloacae isolate. The analysis based on the nucleotide sequences of the ESBL resistance genes showed that all cefotaximase-Munichs (CTX-Ms) were CTX-M-15 and that all sulfhydryl variables (SHVs) were SHV-11: 41.67% CTX-M-15-producing E. coli, 16.67% CTX-M-15+SHV-11-producing E. coli, 8.33% CTX-M-15-producing K. pneumoniae, 25% CTX-M-15+SHV-11-producing K. pneumoniae, and 8.33% CTX-M-15-produced E. cloacae. This study shows for the first time the presence of multiresistant ESBL-producing enterobacteria in fruit bats in Makokou.
Collapse
|
21
|
Roskam JL, Oude Lansink AGJM, Saatkamp HW. The relation between technical farm performance and antimicrobial use of broiler farms. Poult Sci 2019; 99:1349-1356. [PMID: 32115024 PMCID: PMC7587671 DOI: 10.1016/j.psj.2019.10.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 01/08/2023] Open
Abstract
The aim of the present study was to explore the relation between both farm performance and antimicrobial use (AMU) of broiler farms. Farm performance was expressed as technical efficiency, obtained by using a bootstrap data envelopment analysis. AMU was expressed as treatment incidence. Cluster analysis is used to obtain groups of farms with similar characteristics regarding technical farm performance and AMU. Results indicate that the farms within the different clusters combine different technical farm performance and different levels of AMU. Between the clusters, significant differences were found in technical farm performance, AMU, the resource intensity of the number of animals at set-up, the number of antimicrobial treatments, the number of antimicrobial treatments related to either gut health or combined problems, and the number of antimicrobial treatments with either yellow or orange active substances. Farmers who combine high levels of AMU with high technical farm performance are likely to overestimate the real economic value of AMU. Proper coordination between the farmer and the veterinarian can be crucial in that case for reducing AMU. Farms with low performance are likely to have poor farm conditions. Improving those farm conditions can help reducing the need for AMU on this kind of farms. The farm-specific conditions have to be considered in future policies aimed at reducing AMU in livestock production.
Collapse
Affiliation(s)
- J L Roskam
- Business Economics Group, Wageningen University & Research, Wageningen, The Netherlands.
| | - A G J M Oude Lansink
- Business Economics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - H W Saatkamp
- Business Economics Group, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
22
|
Mok JS, Ryu A, Kwon JY, Park K, Shim KB. Abundance, antimicrobial resistance, and virulence of pathogenic Vibrio strains from molluscan shellfish farms along the Korean coast. MARINE POLLUTION BULLETIN 2019; 149:110559. [PMID: 31543492 DOI: 10.1016/j.marpolbul.2019.110559] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/11/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
To reduce the outbreaks caused by the major pathogenic Vibrio species, V. parahaemolyticus, V. vulnificus, and V. cholerae, the distribution, antibiotic resistance, and virulence of these Vibrio strains were monitored in shellfish and seawater along the Korean coast. Among the Vibrio strains, V. parahaemolyticus was the most abundant species; during summer, this strain showed a substantial increase that correlated with the water temperature. Although >99.0% of the Vibrio species isolates were sensitive to seven antimicrobials recommended by the Center for Disease Control and Prevention for the treatment of Vibrio infections, multiple-antibiotic resistance to at least three antimicrobials was found in 14.3% to 50.0% of each Vibrio species. Among V. parahaemolyticus isolates, 14.3% were positive for the trh gene, whereas only 1% was positive for the tdh gene. These results should aid in implementing proper precautions to avoid potential human health risks associated with exposure to pathogenic Vibrio species.
Collapse
Affiliation(s)
- Jong Soo Mok
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea.
| | - Ara Ryu
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Ji Young Kwon
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong 53085, Republic of Korea
| | - Kunbawui Park
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Kil Bo Shim
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| |
Collapse
|
23
|
Distribution of Vibrio species isolated from bivalves and bivalve culture environments along the Gyeongnam coast in Korea: Virulence and antimicrobial resistance of Vibrio parahaemolyticus isolates. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.06.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
24
|
Ramirez-Hernandez A, Bugarel M, Kumar S, Thippareddi H, Brashears MM, Sanchez-Plata MX. Phenotypic and Genotypic Characterization of Antimicrobial Resistance in Salmonella Strains Isolated from Chicken Carcasses and Parts Collected at Different Stages during Processing. J Food Prot 2019; 82:1793-1801. [PMID: 31545106 DOI: 10.4315/0362-028x.jfp-19-056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Chicken carcass and parts rinsate samples and fecal samples were collected at different stages in a commercial poultry processing facility. Microbiological analysis was conducted to determine the levels of multiple indicator microorganisms and prevalence of Salmonella. Antibiotic susceptibility testing was conducted on Salmonella isolates to determine antimicrobial resistance profiles. Whole genome sequencing was performed for tracing isolates in the processing chain, serotyping, and determining genetic features associated with virulence and antimicrobial resistance in the bacterial genome. The overall contamination rate was 55% for Salmonella. Prevalence increased by 80% in chicken parts compared with the previous processing site (postchill carcasses), suggesting possible cross-contamination during the cutting and deboning processes. The levels of indicator organisms were reduced significantly from the prescalding to the parts processing sites, by 3.22 log CFU/mL for aerobic plate count, 3.92 log CFU/mL for E. coli, 3.70 log CFU/mL for coliforms, and 3.40 log CFU/mL for Enterobacteriaceae. The most frequent resistance in Salmonella was associated with tetracycline (49 of 50, 98%) and streptomycin (43 of 50, 86%). Some Salmonella isolates featured resistance to the cephems class of antibiotics (up to 15%). Whole genome sequencing analysis of Salmonella isolates identified nine different clonal populations distributed throughout the samples taken at different stages; serotype Kentucky was the most commonly isolated. This study provides insights into microbial profiling and antibiotic-resistant strains of chicken rinsate samples during poultry processing.
Collapse
Affiliation(s)
- Alejandra Ramirez-Hernandez
- Animal and Food Sciences Department, Texas Tech University, Lubbock, Texas 79409 (ORCID: https://orcid.org/0000-0001-9580-5773 [A.R.-H.])
| | - Marie Bugarel
- Animal and Food Sciences Department, Texas Tech University, Lubbock, Texas 79409 (ORCID: https://orcid.org/0000-0001-9580-5773 [A.R.-H.])
| | - Sanjay Kumar
- Poultry Science Department, University of Georgia, Athens, Georgia 30602, USA
| | | | - Mindy M Brashears
- Animal and Food Sciences Department, Texas Tech University, Lubbock, Texas 79409 (ORCID: https://orcid.org/0000-0001-9580-5773 [A.R.-H.])
| | - Marcos X Sanchez-Plata
- Animal and Food Sciences Department, Texas Tech University, Lubbock, Texas 79409 (ORCID: https://orcid.org/0000-0001-9580-5773 [A.R.-H.])
| |
Collapse
|
25
|
Ryu AR, Mok JS, Lee DE, Kwon JY, Park K. Occurrence, virulence, and antimicrobial resistance of Vibrio parahaemolyticus isolated from bivalve shellfish farms along the southern coast of Korea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:21034-21043. [PMID: 31115814 DOI: 10.1007/s11356-019-05426-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
Vibrio parahaemolyticus is the most common pathogen causing seafood-borne illnesses in Korea. The present study evaluated the occurrence, virulence, and antimicrobial resistance of V. parahaemolyticus in seawater and bivalves obtained in 2016 from the southern coast of Korea, an important region for commercial aquaculture industries, especially the Korean raw seafood culture. V. parahaemolyticus was detected in 87 of 160 (54.4%) bivalve samples and in 32 of 130 (24.5%) seawater samples. Especially high levels were detected during summer to early autumn. All the seawater and bivalves contained less than 2 and 5% of the tdh and trh genes of the isolates, respectively, and seawater isolates possessed two fewer genes than the bivalve isolates. Of 23 antimicrobials tested, three agents (ofloxacin, norfloxacin, and trimethoprim/sulfamethoxazole) effectively treated V. parahaemolyticus illness due to the sensitivity of the isolates. The isolates were highly resistant to ampicillin, however, excluding it as a treatment option. More than half of the isolates exhibited resistance to at least three antimicrobials. These findings indicate the importance of an integrated monitoring and surveillance program noting the occurrence, virulence, and antimicrobial resistance patterns of V. parahaemolyticus in various aquatic sources for preventing human health risks from seafood consumption.
Collapse
Affiliation(s)
- A Ra Ryu
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Jong Soo Mok
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea.
| | - Da Eun Lee
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Ji Young Kwon
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Sciences, Tongyeong, 53085, Republic of Korea
| | - Kunbawui Park
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| |
Collapse
|
26
|
|
27
|
Lakhundi S, Zhang K. Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology. Clin Microbiol Rev 2018; 31:e00020-18. [PMID: 30209034 PMCID: PMC6148192 DOI: 10.1128/cmr.00020-18] [Citation(s) in RCA: 881] [Impact Index Per Article: 125.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus, a major human pathogen, has a collection of virulence factors and the ability to acquire resistance to most antibiotics. This ability is further augmented by constant emergence of new clones, making S. aureus a "superbug." Clinical use of methicillin has led to the appearance of methicillin-resistant S. aureus (MRSA). The past few decades have witnessed the existence of new MRSA clones. Unlike traditional MRSA residing in hospitals, the new clones can invade community settings and infect people without predisposing risk factors. This evolution continues with the buildup of the MRSA reservoir in companion and food animals. This review focuses on imparting a better understanding of MRSA evolution and its molecular characterization and epidemiology. We first describe the origin of MRSA, with emphasis on the diverse nature of staphylococcal cassette chromosome mec (SCCmec). mecA and its new homologues (mecB, mecC, and mecD), SCCmec types (13 SCCmec types have been discovered to date), and their classification criteria are discussed. The review then describes various typing methods applied to study the molecular epidemiology and evolutionary nature of MRSA. Starting with the historical methods and continuing to the advanced whole-genome approaches, typing of collections of MRSA has shed light on the origin, spread, and evolutionary pathways of MRSA clones.
Collapse
Affiliation(s)
- Sahreena Lakhundi
- Centre for Antimicrobial Resistance, Alberta Health Services/Calgary Laboratory Services/University of Calgary, Calgary, Alberta, Canada
| | - Kunyan Zhang
- Centre for Antimicrobial Resistance, Alberta Health Services/Calgary Laboratory Services/University of Calgary, Calgary, Alberta, Canada
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
28
|
Boqvist S, Söderqvist K, Vågsholm I. Food safety challenges and One Health within Europe. Acta Vet Scand 2018; 60:1. [PMID: 29298694 PMCID: PMC5751857 DOI: 10.1186/s13028-017-0355-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/20/2017] [Indexed: 12/20/2022] Open
Abstract
This review discusses food safety aspects of importance from a One Health perspective, focusing on Europe. Using examples of food pathogen/food commodity combinations, spread of antimicrobial resistance in the food web and the risk of transmission of zoonotic pathogens in a circular system, it demonstrates how different perspectives are interconnected. The chosen examples all show the complexity of the food system and the necessity of using a One Health approach. Food safety resources should be allocated where they contribute most One Health benefits. Data on occurrence and disease burden and knowledge of source attribution are crucial in assessing costs and benefits of control measures. Future achievements in food safety, public health and welfare will largely be based on how well politicians, researchers, industry, national agencies and other stakeholders manage to collaborate using the One Health approach. It can be concluded that closer cooperation between different disciplines is necessary to avoid silo thinking when addressing important food safety challenges. The importance of this is often mentioned, but more proof of concept is needed by the research community.
Collapse
Affiliation(s)
- Sofia Boqvist
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, PO Box 7036, 750 07 Uppsala, Sweden
| | - Karin Söderqvist
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, PO Box 7036, 750 07 Uppsala, Sweden
| | - Ivar Vågsholm
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, PO Box 7036, 750 07 Uppsala, Sweden
| |
Collapse
|
29
|
Shin E, Mduma S, Keyyu J, Fyumagwa R, Lee Y. An Investigation of Enterococcus Species Isolated from the African Buffalo (Syncerus caffer) in Serengeti National Park, Tanzania. Microbes Environ 2017; 32:402-406. [PMID: 29081464 PMCID: PMC5745028 DOI: 10.1264/jsme2.me17025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We isolated Enterococcus species that colonized in the African buffalo (Syncerus caffer) in order to investigate their genetic relatedness and antimicrobial susceptibility. A total of 219 isolates were obtained and a 16S rRNA gene sequence analysis showed they were classified into Enterococcus avium, E. casseliflavus, E. faecalis, E. faecium, E. hirae, or E. mundtii. Multilocus sequence typing of E. faecalis and E. faecium isolates indicated that some of the isolates showed an evolutionary distance that was far from the primary founders. The antimicrobial susceptibility of the enterococcal isolates suggested that the significant transmission of antimicrobial resistance via human intervention had not yet occurred.
Collapse
Affiliation(s)
- Eunju Shin
- Culture Collection of Antimicrobial Resistant Microbes, Department of Horticulture, Biotechnology, and Landscape Architecture, Seoul Women's University
| | | | | | | | - Yeonhee Lee
- Culture Collection of Antimicrobial Resistant Microbes, Department of Horticulture, Biotechnology, and Landscape Architecture, Seoul Women's University
| |
Collapse
|
30
|
Comparison of Fecal Microbial Composition and Antibiotic Resistance Genes from Swine, Farm Workers and the Surrounding Villagers. Sci Rep 2017; 7:4965. [PMID: 28694474 PMCID: PMC5503985 DOI: 10.1038/s41598-017-04672-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 05/18/2017] [Indexed: 12/26/2022] Open
Abstract
The external environment plays a critical role in shaping the structure of the gut microbiome. One potential health threat lies in the release of antibiotic resistant genes (ARGs) from cross-contaminated microbiomes. We focused this study on a comparison of fecal microbial composition and antibiotic resistant genes between farm workers, local villagers and swine. We used a high-throughput next-generation sequencing of 16S rRNA and real-time PCR for these studies. Our results indicated that workers had less species diversity as compared to the local villagers. Moreover, the bacterial communities of the farm workers, the local villagers and swine feces were clearly divided into three groups. The workers had a greater abundance of Proteobacteria as compared to swine and the local villagers. The Clostridiaceae in the workers and swine were more abundant than the local villagers. In addition, there were ARG differences between the farm workers or local villager’s and swine feces. The farm workers and the local villagers had similar relative abundance except for macrolide ARGs. Taken together, these data suggest that the swine farm environment affects the fecal bacterial composition of swine farm workers. However, ARG spread was influenced by factors independent of the swine farm environment.
Collapse
|
31
|
Escolar C, Gómez D, Del Carmen Rota García M, Conchello P, Herrera A. Antimicrobial Resistance Profiles of Listeria monocytogenes and Listeria innocua Isolated from Ready-to-Eat Products of Animal Origin in Spain. Foodborne Pathog Dis 2017; 14:357-363. [PMID: 28355096 DOI: 10.1089/fpd.2016.2248] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The objective of this work was to investigate the antimicrobial resistance in Listeria spp. isolated from food of animal origin. A total of 50 Listeria strains isolated from meat and dairy products, consisting of 7 Listeria monocytogenes and 43 Listeria innocua strains, were characterized for antimicrobial susceptibility against nine antimicrobials. The strains were screened by real-time PCR for the presence of antimicrobial resistance genes: tet M, tet L, mef A, msr A, erm A, erm B, lnu A, and lnu B. Multidrug resistance was identified in 27 Listeria strains, 4 belonging to L. monocytogenes. Resistance to clindamycin was the most common resistance phenotype and was identified in 45 Listeria strains; the mechanisms of resistance are still unknown. A medium prevalence of resistance to tetracycline (15 and 9 resistant and intermediate strains) and ciprofloxacin (13 resistant strains) was also found. Tet M was detected in Listeria strains with reduced susceptibility to tetracycline, providing evidence that both L. innocua and L. monocytogenes displayed acquired resistance. The presence of antimicrobial resistance genes in L. innocua and L. monocytogenes indicates that these genes may be transferred to commensal and pathogenic bacteria via the food chain; besides this, antibiotic resistance in L. monocytogenes could compromise the effective treatment of listeriosis in humans.
Collapse
Affiliation(s)
- Cristina Escolar
- Department of Animal Production and Food Science, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA , Zaragoza, Spain
| | - Diego Gómez
- Department of Animal Production and Food Science, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA , Zaragoza, Spain
| | - María Del Carmen Rota García
- Department of Animal Production and Food Science, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA , Zaragoza, Spain
| | - Pilar Conchello
- Department of Animal Production and Food Science, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA , Zaragoza, Spain
| | - Antonio Herrera
- Department of Animal Production and Food Science, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA , Zaragoza, Spain
| |
Collapse
|
32
|
Dudzic A, Urban-Chmiel R, Stępień-Pyśniak D, Dec M, Puchalski A, Wernicki A. Isolation, identification and antibiotic resistance of Campylobacter strains isolated from domestic and free-living pigeons. Br Poult Sci 2017; 57:172-8. [PMID: 26841300 DOI: 10.1080/00071668.2016.1148262] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
1. The aim of this study was to evaluate the occurrence of Campylobacter spp. in domestic and free-living pigeons and to evaluate the antibiotic resistance profiles. 2. The material consisted of cloacal swabs obtained from 108 homing pigeons and fresh faeces from 72 wild birds from Lublin and its vicinity. The identification of strains isolated on differential/selective media for Campylobacter spp. was carried out by MALDI-TOF and PCR. The susceptibility to antibiotics was evaluated by minimum inhibitory concentration (MIC) in Mueller-Hinton broth. 3. A total of 35 strains of Campylobacter spp. were isolated; 27 were identified as Campylobacter jejuni and 8 as Campylobacter coli. Over half of the isolates were resistant to erythromycin and streptomycin, 40% of strains were resistant to tetracycline and ampicillin and 37% isolates were resistant to amoxicillin. Resistance to two or more antibiotics was observed in all strains tested. 4. The results indicate that both domestic and free-living pigeons are reservoirs for bacteria of the genus Campylobacter, which are characterised by varied and growing resistance to commonly used antibiotics.
Collapse
Affiliation(s)
- A Dudzic
- a Sub-Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine , University of Life Sciences , Akademicka 12, 20-033 , Lublin , Poland
| | - R Urban-Chmiel
- a Sub-Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine , University of Life Sciences , Akademicka 12, 20-033 , Lublin , Poland
| | - D Stępień-Pyśniak
- a Sub-Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine , University of Life Sciences , Akademicka 12, 20-033 , Lublin , Poland
| | - M Dec
- a Sub-Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine , University of Life Sciences , Akademicka 12, 20-033 , Lublin , Poland
| | - A Puchalski
- a Sub-Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine , University of Life Sciences , Akademicka 12, 20-033 , Lublin , Poland
| | - A Wernicki
- a Sub-Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine , University of Life Sciences , Akademicka 12, 20-033 , Lublin , Poland
| |
Collapse
|
33
|
Lhermie G, Dupouy V, El Garch F, Ravinet N, Toutain PL, Bousquet-Mélou A, Seegers H, Assié S. Impact of Low and High Doses of Marbofloxacin on the Selection of Resistant Enterobacteriaceae in the Commensal Gut Flora of Young Cattle: Discussion of Data from 2 Study Populations. Foodborne Pathog Dis 2017; 14:152-159. [PMID: 28072925 DOI: 10.1089/fpd.2016.2176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In the context of requested decrease of antimicrobial use in veterinary medicine, our objective was to assess the impact of two doses of marbofloxacin administered on young bulls (YBs) and veal calves (VCs) treated for bovine respiratory disease, on the total population of Enterobacteriaceae in gut flora and on the emergence of resistant Enterobacteriaceae. In two independent experiments, 48 YBs from 6 commercial farms and 33 VCs previously colostrum deprived and exposed to cefquinome were randomly assigned to one of the three groups LOW, HIGH, and Control. In LOW and HIGH groups, animals received a single injection of, respectively, 2 and 10 mg/kg marbofloxacin. Feces were sampled before treatment, and at several times after treatment. Total and resistant Enterobacteriaceae enumerating were performed by plating dilutions of fecal samples on MacConkey agar plates that were supplemented or not with quinolone. In YBs, marbofloxacin treatment was associated with a transient decrease in total Enterobacteriaceae count between day (D)1 and D3 after treatment. Total Enterobacteriaceae count returned to baseline between D5 and D7 in all groups. None of the 48 YBs harbored marbofloxacin-resistant Enterobacteriaceae before treatment. After treatment, 1 out of 20 YBs from the Control group and 1 out of 14 YBs from the HIGH group exhibited marbofloxacin-resistant Enterobacteriaceae. In VCs, the rate of fluoroquinolone-resistant Enterobacteriaceae significantly increased after low and high doses of marbofloxacin treatment. However, the effect was similar for the two doses, which was probably related to the high level of resistant Enterobacteriaceae exhibited before treatment. Our results suggest that a single treatment with 2 or 10 mg/kg marbofloxacin exerts a moderate selective pressure on commensal Enterobacteriaceae in YBs and in VCs. A fivefold decrease of marbofloxacin regimen did not affect the selection of resistances among commensal bacteria.
Collapse
Affiliation(s)
- Guillaume Lhermie
- 1 Global Drug Development, Vétoquinol SA , Lure, France .,2 BioEpar, Oniris, INRA , Nantes, France .,3 Toxalim, Université de Toulouse, INPT, ENVT, INP-Purpan, UPS , Toulouse, France
| | - Véronique Dupouy
- 3 Toxalim, Université de Toulouse, INPT, ENVT, INP-Purpan, UPS , Toulouse, France
| | | | | | - Pierre-Louis Toutain
- 3 Toxalim, Université de Toulouse, INPT, ENVT, INP-Purpan, UPS , Toulouse, France
| | - Alain Bousquet-Mélou
- 3 Toxalim, Université de Toulouse, INPT, ENVT, INP-Purpan, UPS , Toulouse, France
| | | | | |
Collapse
|
34
|
Lhermie G, Gröhn YT, Raboisson D. Addressing Antimicrobial Resistance: An Overview of Priority Actions to Prevent Suboptimal Antimicrobial Use in Food-Animal Production. Front Microbiol 2017; 7:2114. [PMID: 28111568 PMCID: PMC5216048 DOI: 10.3389/fmicb.2016.02114] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/15/2016] [Indexed: 11/22/2022] Open
Abstract
The growing concern regarding emergence of bacteria resistant to antimicrobials and their potential for transmission to humans via animal production has led various authorities worldwide to implement measures to decrease antimicrobial use (AMU) in livestock production. These measures are influenced by those implemented in human medicine, and emphasize the importance of antimicrobial stewardship, surveillance, infection prevention and control and research. In food producing animals, unlike human medicine, antimicrobials are used to control diseases which cause economic losses. This major difference may explain the failure of the public policies implemented to control antimicrobial usage. Here we first review the specific factors influencing AMU across the farm animal sector and highlighting the farmers' decision-making process of AMU. We then discuss the efficiency of existing regulations implemented by policy makers, and assess the need for alternative strategies, such as substitution between antimicrobials and other measures for infectious disease control. We also discuss the interests of regulating antimicrobial prices. Finally, we emphasize the value of optimizing antimicrobial regimens, and developing veterinary precision medicine to achieve clinical efficacy in animals while limiting negative impacts on public health. The fight against antimicrobial resistance requires both a reduction and an optimization of antimicrobial consumption. The set of actions currently implemented by policy makers does not adequately address the economic interests of farmers' use of antimicrobials.
Collapse
Affiliation(s)
- Guillaume Lhermie
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, IthacaNY, USA
- BioEpar, Oniris, Institut National de la Recherche Agronomique (INRA)Nantes, France
| | - Yrjö T. Gröhn
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, IthacaNY, USA
| | - Didier Raboisson
- Interactions Hôtes Agents Pathogènes, Institut National de la Recherche Agronomique (INRA) – Ecole Nationale Vétérinaire Toulouse, Université de ToulouseToulouse, France
| |
Collapse
|
35
|
Sweileh WM, Al-Jabi SW, Sawalha AF, AbuTaha AS, Zyoud SH. Bibliometric analysis of publications on Campylobacter: (2000-2015). JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2016; 35:39. [PMID: 27899145 PMCID: PMC5129233 DOI: 10.1186/s41043-016-0076-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 11/22/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Campylobacter species are widespread zoonotic pathogens. Campylobacter jejuni causes a form of gastroenteritis called campylobacteriosis. Campylobacter drug resistance is considered a serious threat. In order to better understand national and international research output on Campylobacter, we conducted this bibliometric overview of publications on Campylobacter. This study can be used to assess extent of interaction and response of researchers, food regulators, and health policy makers to global burden of campylobacateriosis. METHODS Scopus database was used to retrieve publications with the following keywords (Campylobacter/campylobacteriosis, C. jejuni, C. coli). The study period was set from 2000 to 2015. All types of journal documents, excluding errata, were considered. Bibliometric indicators such as annual growth of publications, country contribution, international collaboration, and citation analysis were presented. The quality of retrieved data was indirectly assessed by Hirsch index and impact factor of journals. RESULTS A total of 5522 documents were retrieved with median (Q1-Q3) citations of 9 (2-23) and h-index of 113. Annual number of publications showed a fluctuating increase. The core leading journals were Applied and Environmental Microbiology journal and Journal of Food Protection with 246 (4.46%) publications for each. The USA (1309; 23.6%) was the most productive country while Danmarks Tekniske Universitet (150; 2.7%) was the most productive institution. Half of the top ten productive countries were European. France had the lowest percentage (33.5%) of articles with international collaboration while Netherlands (57.7%) had the highest percentage of articles with international collaboration. Approximately half (50.1%) of retrieved articles were published in journals under the subject area of "immunology/microbiology". Main themes in highly cited articles were molecular biology/genetics and public health burden of campylobacteriosis. There were 728 (13.1%) articles on campylobacter-related drug resistance, and the top cited articles focused mainly on increasing resistance to quinolones and fluoroquinolones. CONCLUSIONS There was a clear increase in number of publications on Campylobacter. Rational use of antimicrobials in humans, poultry, and animals is highly recommended. International collaboration is highly required particularly in implementing new diagnostic screening technologies to minimize global health burden of Campylobacter and ensure food safety.
Collapse
Affiliation(s)
- Waleed M. Sweileh
- Department of Physiology, Pharmacology and Toxicology, College of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Samah W. Al-Jabi
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Ansam F. Sawalha
- Department of Physiology, Pharmacology and Toxicology, College of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Adham S. AbuTaha
- Department of Physiology, Pharmacology and Toxicology, College of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Sa’ed H. Zyoud
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
36
|
Elmahdi S, DaSilva LV, Parveen S. Antibiotic resistance of Vibrio parahaemolyticus and Vibrio vulnificus in various countries: A review. Food Microbiol 2016; 57:128-34. [DOI: 10.1016/j.fm.2016.02.008] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 02/15/2016] [Accepted: 02/19/2016] [Indexed: 02/06/2023]
|
37
|
Viswanathan M, Pearl DL, Taboada EN, Parmley EJ, Mutschall S, Jardine CM. Molecular and Statistical Analysis of Campylobacter spp. and Antimicrobial-Resistant Campylobacter Carriage in Wildlife and Livestock from Ontario Farms. Zoonoses Public Health 2016; 64:194-203. [PMID: 27460061 DOI: 10.1111/zph.12295] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Indexed: 12/01/2022]
Abstract
The objectives of this study were to (i) compare the carriage of Campylobacter and antimicrobial-resistant Campylobacter among livestock and mammalian wildlife on Ontario farms, and (ii) investigate the potential sharing of Campylobacter subtypes between livestock and wildlife. Using data collected from a cross-sectional study of 25 farms in 2010, we assessed associations, using mixed logistic regression models, between Campylobacter and antimicrobial-resistant Campylobacter carriage and the following explanatory variables: animal species (beef, dairy, swine, raccoon, other), farm type (swine, beef, dairy), type of sample (livestock or wildlife) and Campylobacter species (jejuni, coli, other). Models included a random effect to account for clustering by farm where samples were collected. Samples were subtyped using a Campylobacter-specific 40 gene comparative fingerprinting assay. A total of 92 livestock and 107 wildlife faecal samples were collected, and 72% and 27% tested positive for Campylobacter, respectively. Pooled faecal samples from livestock were significantly more likely to test positive for Campylobacter than wildlife samples. Relative to dairy cattle, pig samples were at significantly increased odds of testing positive for Campylobacter. The odds of isolating Campylobacter jejuni from beef cattle samples were significantly greater compared to dairy cattle and raccoon samples. Fifty unique subtypes of Campylobacter were identified, and only one subtype was found in both wildlife and livestock samples. Livestock Campylobacter isolates were significantly more likely to exhibit antimicrobial resistance (AMR) compared to wildlife Campylobacter isolates. Campylobacter jejuni was more likely to exhibit AMR when compared to C. coli. However, C. jejuni isolates were only resistant to tetracycline, and C. coli isolates exhibited multidrug resistance patterns. Based on differences in prevalence of Campylobacter spp. and resistant Campylobacter between livestock and wildlife samples, and the lack of similarity in molecular subtypes and AMR patterns, we concluded that the sharing of Campylobacter species between livestock and mammalian wildlife was uncommon.
Collapse
Affiliation(s)
- M Viswanathan
- Department of Population Medicine, University of Guelph, Guelph, ON, Canada
| | - D L Pearl
- Department of Population Medicine, University of Guelph, Guelph, ON, Canada
| | - E N Taboada
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, c/o Animal Disease Research Institute, Canadian Food Inspection Agency, Lethbridge, AB, Canada
| | - E J Parmley
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON, Canada.,Canadian Cooperative Wildlife Health Centre, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - S Mutschall
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, c/o Animal Disease Research Institute, Canadian Food Inspection Agency, Lethbridge, AB, Canada
| | - C M Jardine
- Canadian Cooperative Wildlife Health Centre, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.,Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
38
|
Lhermie G, Ferran AA, Assié S, Cassard H, El Garch F, Schneider M, Woerhlé F, Pacalin D, Delverdier M, Bousquet-Mélou A, Meyer G. Impact of Timing and Dosage of a Fluoroquinolone Treatment on the Microbiological, Pathological, and Clinical Outcomes of Calves Challenged with Mannheimia haemolytica. Front Microbiol 2016; 7:237. [PMID: 26973615 PMCID: PMC4773444 DOI: 10.3389/fmicb.2016.00237] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 02/15/2016] [Indexed: 11/13/2022] Open
Abstract
The efficacy of an early and low inoculum-adjusted marbofloxacin treatment was evaluated on microbiological and clinical outcomes in calves infected with 4.107 CFU of Mannheimia haemolytica A1. Twenty-two calves were included based on their rectal temperature rise in the 10 h after challenge and allocated in four groups, receiving a single intramuscular injection of saline (CON), 2 mg/kg marbofloxacin 2–4 h after inclusion (early treatment, E2), 2 or 10 mg/kg marbofloxacin 35–39 h after inclusion (late treatments, L2, L10). In CON calves, M. haemolytica DNA loads in bronchoalveolar lavages continuously increased from inclusion to day 4, and were associated with persistent respiratory clinical signs and lung lesions. At times of early and late treatments, M. haemolytica loads ranged within 3.5–4 and 5.5–6 log10 DNA copies/mL, respectively. Early 2 mg/kg marbofloxacin treatment led to rapid and total elimination of bacteria in all calves. The late treatments induced a reduction of bacterial loads, but 3 of 6 L2 and 1 of 6 L10 calves were still positive for M. haemolytica at day 4. Except for CON calves, all animals exhibited clinical improvement within 24 h after treatment. However, early 2 mg/kg treatment was more efficacious to prevent pulmonary lesions, as indicated by the reduction of the extension and severity of gross lesions and by the histopathological scores. These results demonstrated for the first time that a reduced antibiotic regimen given at an early stage of the disease and targeting a low bacterial load could be efficacious in a natural bovine model of pneumonia.
Collapse
Affiliation(s)
- Guillaume Lhermie
- Vetoquinol Global Drug DevelopmentLure, France; Ecole Nationale Vétérinaire de Toulouse, Institut National Polytechnique de Toulouse, Université de ToulouseToulouse, France; LUNAM Université, Oniris, UMR BioEpARNantes, France
| | - Aude A Ferran
- Ecole Nationale Vétérinaire de Toulouse, Institut National Polytechnique de Toulouse, Université de ToulouseToulouse, France; Institut National de la Recherche Agronomique, UMR1331 ToxAlimToulouse, France
| | - Sébastien Assié
- LUNAM Université, Oniris, UMR BioEpARNantes, France; Institut National de la Recherche Agronomique, UMR1300 BioEpARNantes, France
| | - Hervé Cassard
- Ecole Nationale Vétérinaire de Toulouse, Institut National Polytechnique de Toulouse, Université de Toulouse Toulouse, France
| | | | | | | | - Diane Pacalin
- Ecole Nationale Vétérinaire de Toulouse, Institut National Polytechnique de Toulouse, Université de Toulouse Toulouse, France
| | - Maxence Delverdier
- Ecole Nationale Vétérinaire de Toulouse, Institut National Polytechnique de Toulouse, Université de ToulouseToulouse, France; Institut National de la Recherche Agronomique, UMR1225 IHAPToulouse, France
| | - Alain Bousquet-Mélou
- Ecole Nationale Vétérinaire de Toulouse, Institut National Polytechnique de Toulouse, Université de ToulouseToulouse, France; Institut National de la Recherche Agronomique, UMR1331 ToxAlimToulouse, France
| | - Gilles Meyer
- Ecole Nationale Vétérinaire de Toulouse, Institut National Polytechnique de Toulouse, Université de ToulouseToulouse, France; Institut National de la Recherche Agronomique, UMR1225 IHAPToulouse, France
| |
Collapse
|
39
|
Marbofloxacin-encapsulated microparticles provide sustained drug release for treatment of veterinary diseases. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 60:511-517. [PMID: 26706558 DOI: 10.1016/j.msec.2015.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/03/2015] [Accepted: 12/03/2015] [Indexed: 11/23/2022]
Abstract
Fluoroquinolone antibiotics with concentration-dependent killing effects and a well-established broad spectrum of activity are used commonly to treat infectious diseases caused by bacteria. However, frequent and excessive administration of these antibiotics is a serious problem, and leads to increased number of drug-resistant bacteria. Thus, there is an urgent need for novel fluoroquinolone antibiotic formulations that minimize the risk of resistance while maximizing their efficacy. In this study, we developed intramuscularly injectable polymeric microparticles (MPs) that encapsulated with marbofloxacin (MAR) and were composed of poly(D,L-lactide-co-glycolic acid) (PLGA) and poloxamer (POL). MAR-encapsulated MP (MAR-MP) had a spherical shape with particle size ranging from 80 μm to 120 μm. Drug loading efficiency varied from 55 to 85% (w/w) at increasing amount of hydrophilic agent, POL. Drug release from MAR-MP demonstrated a significant and sustained increase at increased ratios of POL to PLGA. These results indicate that MAR-MP is an improved drug delivery carrier for fluoroquinolone antibiotics, which can reduce the number of doses needed and sustain a high release rate of MAR for 2-3 days. As a novel and highly effective drug delivery platform, MAR-MP has great potential for use in a broad range of applications for the treatment of various veterinary diseases.
Collapse
|
40
|
Melo DB, Menezes APDO, Reis JN, Guimarães AG. Antimicrobial resistance and genetic diversity of Escherichia coli isolated from humans and foods. Braz J Microbiol 2015; 46:1165-70. [PMID: 26691477 PMCID: PMC4704651 DOI: 10.1590/s1517-838246420130874] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 03/05/2015] [Indexed: 11/28/2022] Open
Abstract
Antibiotic resistance has increased in recent years, raising the concern of public
health authorities. We conducted a study of Escherichia coli
isolates obtained from human and food samples to assess the prevalence of
antimicrobial resistance and to determine the genotype and clonal relationship of 84
E. coli isolates (48 from humans and 36 from foods). An
antimicrobial susceptibility test was performed using the disk diffusion method.
Virulence factors were evaluated by multiplex PCR, and the clonal relationship among
the resistant isolates was studied by Pulsed Field Gel Electrophoresis (PFGE). All
isolates were susceptible to ceftriaxone. Overall, 26%, 20.2%, 15.4% and 6% of the
isolates were resistant to tetracycline, ampicillin, sulfamethoxazole/trimethoprim
and cephalotin, respectively. Twenty two percent of the isolates exhibited resistance
to more than one antimicrobial agent. Multiple-drug resistance was mostly observed in
the human isolates and involved the antibiotics ampicillin and tetracycline. None of
the six virulence genes were identified among the isolates. Analysis of genetic
diversity by PFGE of 31 resistant isolates, revealed 29 distinct restriction
patterns. In conclusion, E. coli from humans and foods are resistant
to commonly used antibiotics and are highly genetically diverse. In this setting,
inappropriate use of antibiotics may be a cause of high resistance rate instead of
clonal spread.
Collapse
Affiliation(s)
| | | | - Joice Neves Reis
- Laboratório de Pesquisa em Microbiologia, Universidade Federal da Bahia, Salvador, BA, Brazil
| | | |
Collapse
|
41
|
Schmithausen RM, Schulze-Geisthoevel SV, Stemmer F, El-Jade M, Reif M, Hack S, Meilaender A, Montabauer G, Fimmers R, Parcina M, Hoerauf A, Exner M, Petersen B, Bierbaum G, Bekeredjian-Ding I. Analysis of Transmission of MRSA and ESBL-E among Pigs and Farm Personnel. PLoS One 2015; 10:e0138173. [PMID: 26422606 PMCID: PMC4589321 DOI: 10.1371/journal.pone.0138173] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 08/27/2015] [Indexed: 12/27/2022] Open
Abstract
Livestock-associated bacteria with resistance to two or more antibiotic drug classes have heightened our awareness for the consequences of antibiotic consumption and spread of resistant bacterial strains in the veterinary field. In this study we assessed the prevalence of concomitant colonization with livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) and enterobacteriaceae expressing extended-spectrum betalactamases (ESBL-E) in farms at the German-Dutch border region. Nasal colonization of pigs with MRSA (113/547 (20.7%)) was less frequent than rectal colonization with ESBL-E (163/540 (30.2%)). On the individual farm level MRSA correlated with ESBL-E recovery. The data further provide information on prevalence at different stages of pig production, including abattoirs, as well as in air samples and humans living and working on the farms. Notably, MRSA was detected in stable air samples of 34 out of 35 pig farms, highlighting air as an important MRSA transmission reservoir. The majority of MRSA isolates, including those from humans, displayed tetracycline resistance and spa types t011 and t034 characteristic for LA-MRSA, demonstrating transmission from pigs to humans. ESBL-E positive air samples were detected on 6 out of 35 farms but no pig-to-human transmission was found. Detection of ESBL-E, e.g. mostly Escherichia coli with CTX-M-type ESBL, was limited to these six farms. Molecular typing revealed transmission of ESBL-E within the pig compartments; however, related strains were also found on unrelated farms. Although our data suggest that acquisition of MRSA and ESBL-E might occur among pigs in the abattoirs, MRSA and ESBL-E were not detected on the carcasses. Altogether, our data define stable air (MRSA), pig compartments (ESBL-E) and abattoir waiting areas (MRSA and ESBL-E) as major hot spots for transmission of MRSA and/or ESBL-E along the pig production chain.
Collapse
Affiliation(s)
- Ricarda Maria Schmithausen
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- Institute of Animal Science, Preventive Health Management Group, University of Bonn, Katzenburgweg 7–9, Bonn, Germany
| | | | - Franziska Stemmer
- Institute of Animal Science, Preventive Health Management Group, University of Bonn, Katzenburgweg 7–9, Bonn, Germany
| | - Mohamed El-Jade
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Marion Reif
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Sylvia Hack
- Institute of Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Alina Meilaender
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Gabriele Montabauer
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Rolf Fimmers
- Institute of Medical Biometry, Epidemiology and Computer Science, University Hospital Bonn, Bonn, Germany
| | - Marijo Parcina
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Martin Exner
- Institute of Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Brigitte Petersen
- Institute of Animal Science, Preventive Health Management Group, University of Bonn, Katzenburgweg 7–9, Bonn, Germany
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Isabelle Bekeredjian-Ding
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- Division of EU cooperation/ Microbiology, Paul-Ehrlich-Institute, Langen, Germany
- * E-mail:
| |
Collapse
|
42
|
Lee M, Shin E, Lee Y. Antimicrobial resistance and integron profiles in multidrug-resistant Escherichia coli isolates from pigs. Foodborne Pathog Dis 2015; 11:988-97. [PMID: 25303163 DOI: 10.1089/fpd.2014.1795] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
From July 2006 to June 2008, a total of 3876 Escherichia coli strains were collected from 1014 porcine intestinal contents to investigate antimicrobial resistance and related gene patterns. Average resistance rates of porcine E. coli isolates were 93.2% for tetracycline, 65.3% for ampicillin, 60.4% for chloramphenicol, 57.7% for streptomycin, 35.8% for nalidixic acid, 23.6% for gentamicin, 10.8% for ciprofloxacin, 10.0% for norfloxacin, 4.5% for cephalothin, 1.0% for cefoxitin, and 0.4% for cefazolin. The number of isolates resistant to more than 3 different classes of antimicrobials was 2537. Among these, 92 isolates were resistant to 5 or more classes of antimicrobials, and 69 isolates among 92 multidrug-resistant (MDR) isolates were integrase positive. Among 69 integrase-positive MDR isolates, only class I integron was detected in 19 isolates (20.7%). The class-1-integron-positive isolates had different sizes and gene contents (i.e., 1.0 kb containing aadA1 and 1.5 kb containing aadA1-dfrA1 and aadA1-aadB), and showed 15 distinct types by pulsed-field gel electrophoresis (PFGE) analysis, with 80% cut-off band pattern similarity. PFGE typing of four groups of isolates with identical antimicrobial resistance gene profiles showed two heterogeneous groups, while one group had very similar PFGE patterns; the fourth group was not typeable due to DNA degradation. In conjugation experiments, class I integron-harboring isolates transferred resistance to ampicillin, norfloxacin, gentamicin, and chloramphenicol to the recipient strain. This study showed that antimicrobial resistance rates and corresponding genes in porcine E. coli isolates are different from those in human isolates described by previous studies, and that transfer of antimicrobial-resistant genes from animal to human occurred. These data can be used as a baseline to evaluate the effect of antimicrobial use after implementation of the animal antimicrobial ban for prophylactic and growth promotion except for therapeutic use in 2012 in Korea.
Collapse
Affiliation(s)
- Minyoung Lee
- Culture Collection of Antimicrobial Resistant Microbes, Department of Horticulture, Biotechnology, and Landscape Architecture, Seoul Women's University , Seoul, Korea
| | | | | |
Collapse
|
43
|
Adenipekun EO, Jackson CR, Oluwadun A, Iwalokun BA, Frye JG, Barrett JB, Hiott LM, Woodley TA. Prevalence and Antimicrobial Resistance inEscherichia colifrom Food Animals in Lagos, Nigeria. Microb Drug Resist 2015; 21:358-65. [DOI: 10.1089/mdr.2014.0222] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Eyitayo O. Adenipekun
- Department of Medical Microbiology and Parasitology, College of Health Sciences, Olabisi Onabanjo University, Sagamu, Nigeria
| | - Charlene R. Jackson
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, Richard B. Russell Research Center, Athens, Georgia
| | - Afolabi Oluwadun
- Department of Medical Microbiology and Parasitology, College of Health Sciences, Olabisi Onabanjo University, Sagamu, Nigeria
| | - Bamidele A. Iwalokun
- Department of Medical Microbiology and Parasitology, College of Health Sciences, Olabisi Onabanjo University, Sagamu, Nigeria
- Department of Biochemistry, Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Jonathan G. Frye
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, Richard B. Russell Research Center, Athens, Georgia
| | - John B. Barrett
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, Richard B. Russell Research Center, Athens, Georgia
| | - Lari M. Hiott
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, Richard B. Russell Research Center, Athens, Georgia
| | - Tiffanie A. Woodley
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, Richard B. Russell Research Center, Athens, Georgia
| |
Collapse
|
44
|
Andersen JL, He GX, Kakarla P, K C R, Kumar S, Lakra WS, Mukherjee MM, Ranaweera I, Shrestha U, Tran T, Varela MF. Multidrug efflux pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus bacterial food pathogens. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:1487-547. [PMID: 25635914 PMCID: PMC4344678 DOI: 10.3390/ijerph120201487] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/15/2015] [Indexed: 02/07/2023]
Abstract
Foodborne illnesses caused by bacterial microorganisms are common worldwide and constitute a serious public health concern. In particular, microorganisms belonging to the Enterobacteriaceae and Vibrionaceae families of Gram-negative bacteria, and to the Staphylococcus genus of Gram-positive bacteria are important causative agents of food poisoning and infection in the gastrointestinal tract of humans. Recently, variants of these bacteria have developed resistance to medically important chemotherapeutic agents. Multidrug resistant Escherichia coli, Salmonella enterica, Vibrio cholerae, Enterobacter spp., and Staphylococcus aureus are becoming increasingly recalcitrant to clinical treatment in human patients. Of the various bacterial resistance mechanisms against antimicrobial agents, multidrug efflux pumps comprise a major cause of multiple drug resistance. These multidrug efflux pump systems reside in the biological membrane of the bacteria and actively extrude antimicrobial agents from bacterial cells. This review article summarizes the evolution of these bacterial drug efflux pump systems from a molecular biological standpoint and provides a framework for future work aimed at reducing the conditions that foster dissemination of these multidrug resistant causative agents through human populations.
Collapse
Affiliation(s)
- Jody L Andersen
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Gui-Xin He
- Department of Clinical Laboratory and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA.
| | - Prathusha Kakarla
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Ranjana K C
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Sanath Kumar
- QC Laboratory, Harvest and Post-Harvest Technology Division, Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai 400061, India.
| | - Wazir Singh Lakra
- QC Laboratory, Harvest and Post-Harvest Technology Division, Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai 400061, India.
| | - Mun Mun Mukherjee
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Indrika Ranaweera
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Ugina Shrestha
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Thuy Tran
- Department of Clinical Laboratory and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA.
| | - Manuel F Varela
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| |
Collapse
|
45
|
Carrique‐Mas JJ, Trung NV, Hoa NT, Mai HH, Thanh TH, Campbell JI, Wagenaar JA, Hardon A, Hieu TQ, Schultsz C. Antimicrobial Usage in Chicken Production in the Mekong Delta of Vietnam. Zoonoses Public Health 2014; 62 Suppl 1:70-8. [DOI: 10.1111/zph.12165] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Juan J Carrique‐Mas
- Nuffield Department of Medicine Oxford University Clinical Research Unit Ho Chi Minh City Vietnam
| | - Nguyen V. Trung
- Nuffield Department of Medicine Oxford University Clinical Research Unit Ho Chi Minh City Vietnam
- Department of Medical Microbiology Academic Medical Center University of Amsterdam The Netherlands
| | - Ngo T. Hoa
- Nuffield Department of Medicine Oxford University Clinical Research Unit Ho Chi Minh City Vietnam
| | - Ho Huynh Mai
- Sub‐Department of Animal Health Ly Thuong Kiet Tien Giang Vietnam
| | - Tuyen H. Thanh
- Nuffield Department of Medicine Oxford University Clinical Research Unit Ho Chi Minh City Vietnam
| | - James I. Campbell
- Nuffield Department of Medicine Oxford University Clinical Research Unit Ho Chi Minh City Vietnam
| | - Jaap A. Wagenaar
- Department of Infectious Diseases and Immunology Faculty of Veterinary Medicine Utrecht University The Netherlands
| | - Anita Hardon
- Center for Social Science and Global Health University of Amsterdam The Netherlands
| | - Thai Quoc Hieu
- Sub‐Department of Animal Health Ly Thuong Kiet Tien Giang Vietnam
| | - Constance Schultsz
- Nuffield Department of Medicine Oxford University Clinical Research Unit Ho Chi Minh City Vietnam
- Department of Global Health ‐ Amsterdam Institute of Global Health and Development University of Amsterdam The Netherlands
| |
Collapse
|
46
|
Sun J, Li L, Liu B, Xia J, Liao X, Liu Y. Development of aminoglycoside and β-lactamase resistance among intestinal microbiota of swine treated with lincomycin, chlortetracycline, and amoxicillin. Front Microbiol 2014; 5:580. [PMID: 25408688 PMCID: PMC4219486 DOI: 10.3389/fmicb.2014.00580] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/14/2014] [Indexed: 01/28/2023] Open
Abstract
Lincomycin, chlortetracycline, and amoxicillin are commonly used antimicrobials for growth promotion and infectious disease prophylaxis in swine production. In this study, we investigated the shifts and resistance development among intestinal microbiota in pregnant sows before and after lincomycin, chlortetracycline, and amoxicillin treatment by using phylogenetic analysis, bacterial enumeration, and PCR. After the antimicrobial treatment, shifts in microbial community, an increased proportion of resistant bacteria, and genes related to antimicrobial resistance as compared to the day before antimicrobial administration (day 0) were observed. Importantly, a positive correlation between antimicrobial resistance gene expression in different categories, especially those encoding aminoglycoside and β-lactamase and antimicrobial resistance, was observed. These findings demonstrate an important role of antimicrobial usage in animals in the development of antimicrobial resistance, and support the notion that prudent use of antimicrobials in swine is needed to reduce the risk of the emergence of multi-drug resistant zoonotic pathogens.
Collapse
Affiliation(s)
| | | | | | | | | | - Yahong Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| |
Collapse
|
47
|
Biosensors, antibiotics and food. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 145:153-85. [PMID: 25216955 DOI: 10.1007/978-3-662-43619-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Antibiotics are medicine's leading asset for fighting microbial infection, which is one of the leading causes of death worldwide. However, the misuse of antibiotics has led to the rapid spread of antibiotic resistance among bacteria and the development of multiple resistant pathogens. Therefore, antibiotics are rapidly losing their antimicrobial value. The use of antibiotics in food production animals is strictly controlled by the European Union (EU). Veterinary use is regulated to prevent the spread of resistance. EU legislation establishes maximum residue limits for veterinary medicinal products in foodstuffs of animal origin and enforces the establishment and execution of national monitoring plans. Among samples selected for monitoring, suspected noncompliant samples are screened and then subjected to confirmatory analysis to establish the identity and concentration of the contaminant. Screening methods for antibiotic residues are typically based on microbiological growth inhibition, whereas physico-chemical methods are used for confirmatory analysis. This chapter discusses biosensors, especially whole-cell based biosensors, as emerging screening methods for antibiotic residues. Whole-cell biosensors can offer highly sensitive and specific detection of residues. Applications demonstrating quantitative analysis and specific analyte identification further improve their potential as screening methods.
Collapse
|
48
|
Allain V, Chemaly M, Laisney MJ, Rouxel S, Quesne S, Le Bouquin S. Prevalence of and risk factors forCampylobactercolonisation in broiler flocks at the end of the rearing period in France. Br Poult Sci 2014; 55:452-9. [DOI: 10.1080/00071668.2014.941788] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Bakhshi B, Najibi S, Sepehri-Seresht S. Molecular characterization of enterohemorrhagic Escherichia coli isolates from cattle. J Vet Med Sci 2014; 76:1195-9. [PMID: 24920487 PMCID: PMC4197144 DOI: 10.1292/jvms.13-0237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A total of 21 (4.3%)
enterohemorrhagic E. coli strains were isolated by biochemical tests and
identification of the eae+stx1+stx2+
genotype from 490 stool samples obtained from calves with diarrhea during 1-year period
from a major farm in Tehran, Iran. All of the strains showed resistance to ampicillin,
ciprofloxacin, trimethoprim, streptomycin, chloramphenicol and tetracycline, while 19%
showed resistance to gentamicin. Out of 21 EHEC strains, 11 (53%) harbored class 1
integron. Two different amplification products, which were approximately 750 and 1,700 bp
in size, were obtained from amplified variable regions
(in-F/in-R primers) in 3 (14.3%) and 4 (19%) of the
EHEC isolates, which corresponded to dfrA7(dihydrofolate reductase type
I) and dfrA1/aadA1(dihydrofolate
reductase/aminoglycoside adenyltransferase) resistance gene cassettes, respectively, and
this was confirmed by sequencing. Genotyping analysis revealed a total of 16 pulsotypes
that corresponded to 16 isolates with the similarity indices of 62% and 30% for the most
and least similar isolates, respectively, 9 of which harbored class 1 integron. Analysis
of pulsotypes showed an extensive diversity among the isolates harboring integron, which
is indicative of a lack of any significant genetic relatedness among the isolates. No
obvious relation could be deduced between integron content and special pulsotypes. The
little data available on the genotyping patterns of EHEC isolates from cattle and their
resistance gene contents emphasize the need to establish genotyping databases in order to
monitor and source track the source of emergence and spread of new resistant and
integron-carrying genotypes.
Collapse
Affiliation(s)
- Bita Bakhshi
- Department of Medical Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | |
Collapse
|
50
|
Mshana SE, Matee M, Rweyemamu M. Antimicrobial resistance in human and animal pathogens in Zambia, Democratic Republic of Congo, Mozambique and Tanzania: an urgent need of a sustainable surveillance system. Ann Clin Microbiol Antimicrob 2013; 12:28. [PMID: 24119299 PMCID: PMC3852305 DOI: 10.1186/1476-0711-12-28] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/08/2013] [Indexed: 11/25/2022] Open
Abstract
A review of the published and unpublished literature on bacterial resistance in human and animals was performed. Sixty-eight articles/reports from the Democratic Republic of Congo (DRC), Mozambique, Tanzania and Zambia were reviewed. The majority of these articles were from Tanzania. There is an increasing trend in the incidence of antibiotic resistance; of major concern is the increase in multidrug- resistant Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Vibrio cholera, non-typhoid Salmonella and other pathogens responsible for nosocomial infections. The increase in methicillin- resistant Staphylococcus aureus and extended-spectrum beta-lactamase (ESBL) producers in the countries under review confirms the spread of these clones worldwide. Clinical microbiology services in these countries need to be strengthened in order to allow a coordinated surveillance for antimicrobial resistance and provide data for local treatment guidelines and for national policies to control antimicrobial resistance. While the present study does not provide conclusive evidence to associate the increasing trend in antibiotic resistance in humans with the use of antibiotics in animals, either as feed additives or veterinary prescription, we strongly recommend a one-health approach of systematic surveillance across the public and animal health sectors, as well as the adherence to the FAO (Food and Agriculture Organization)-OIE (World Organization of animal Health) –WHO(World Health Organization) recommendations for non-human antimicrobial usage.
Collapse
Affiliation(s)
- Stephen E Mshana
- Department of Microbiology/Immunology Weill Bugando School of Medicine, CUHAS-Bugando, Mwanza, Tanzania.
| | | | | |
Collapse
|