1
|
Fournier R, Greaves DK, Shoemaker JK, Arbeille P, Hughson RL, Robertson AD. Cerebrovascular pulsatility following long duration spaceflight is associated with changes in pulse pressure and carotid artery stiffness. Exp Physiol 2025. [PMID: 40388559 DOI: 10.1113/ep092272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 03/21/2025] [Indexed: 05/21/2025]
Abstract
Central artery stiffening increases the haemodynamic pulsations transmitted downstream towards target organs, including the brain. While recent evidence suggests that long duration spaceflight is associated with reduced common carotid artery (CCA) distensibility, cerebrovascular pulsatility has not been extensively characterized in astronauts. This study investigated changes in pulsatility from pre-flight to after 6 months in space, using a secondary analysis of data from four separate experiments. Middle cerebral artery blood velocity (MCAv) was measured during supine rest in 27 astronauts (20 men, 7 women). In subsets of this cohort, we measured CCA distensibility and β stiffness (n = 20), and CCA wave intensity (n = 12). The overall increase in MCAv pulsatility index (PImca) from pre-flight to post-flight was not significant (0.73 ± 0.12 vs. 0.77 ± 0.11, P = 0.060, partial η2 = 0.13). However, individual changes in PImca were directly associated with changes in estimated aortic pulse pressure (r = 0.51, P = 0.007) and β stiffness (r = 0.54, P = 0.015), and inversely associated with changes in distensibility (r = -0.62, P = 0.003), in separate bivariate analyses. Wave intensity analysis suggested a reduction in normalized wave reflection (P = 0.07), and that forward compression wave amplitude was directly related to PImca (r = 0.64, P = 0.025). These findings suggest that PImca in the days immediately following spaceflight is a function of lower carotid distensibility, highlighting the interplay between arterial stiffness and cerebrovascular pulsatility.
Collapse
Affiliation(s)
- Roxanne Fournier
- Schlegel-UW Research Institute for Aging, Waterloo, Ontario, Canada
| | | | | | - Philippe Arbeille
- CERCOM-UMPS, Faculté de Médecine, Université de Tours, Tours, France
| | | | - Andrew D Robertson
- Schlegel-UW Research Institute for Aging, Waterloo, Ontario, Canada
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
2
|
O'Brien NF, Raees MQ, Wynkoop HJ, Yu M, Small D, Seydel KB, Gushu MB, Phiri T, June S, Taylor TE. Advancing Understanding of Cerebrovascular Hemodynamic Perturbations in Pediatric Cerebral Malaria Using a Modified Critical Closing Pressure Evaluation- A Prospective, Observational Study. Neurocrit Care 2025:10.1007/s12028-025-02245-w. [PMID: 40257726 DOI: 10.1007/s12028-025-02245-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 03/04/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND Cerebral malaria (CM) results in significant mortality globally. Abnormal cerebral blood flow (CBF) has been described in CM and may contribute to poor outcomes. Changes to vascular tone may be contributing to flow aberrations but measuring it in the clinical setting is difficult. Critical closing pressure (CrCP) is calculated as CrCP = intracranial pressure (ICP) + vascular tone + venous pressure. If CrCPs other components are determined, vascular tone can be inferred. CrCP can also be used to determine the diastolic closing margin (DCM = diastolic blood pressure (DBP)-CrCP) which represents the lower safety limit of cerebral perfusion pressure. METHODS Children 6 months-12 years with CM and age-matched healthy controls were enrolled. Using concurrent transcranial doppler ultrasound (TCD) CBF velocities and systemic blood pressure measurements, CrCP was determined, and DCM calculated. Non-invasive estimates of ICP were assessed and venous flow was measured. Vascular tone was deduced. Differences in CrCP between controls and CM patients were determined. DCM and its association with outcome was assessed. RESULTS We enrolled 220 children with CM and 400 controls. In CM patients, there were significantly more children with CrCP > 1SD below (n = 37, 17%) and > 1 SD above (n = 42, 19%) the mean normal value of the control group (n = 15, 5% > 1SD below and n = 20, 5% > 1 SD above, p < 0.001 for both). Opening pressure, an estimate of ICP, was not different between patients and controls. Venous flows were higher in children with CM than controls, but no difference was seen in CM patients with CrCP less than, within, or greater than 1SD from normal. A DCM < 20mmHg conferred a relative risk of poor outcome (RR 1.4, 95%CI 1.2-1.9, p = 0.008). CONCLUSIONS CrCP was > 1SD lower or higher than the mean normal value in a significant number of children with CM. A low DCM is associated with a worse prognosis and may serve as a therapeutic target.
Collapse
Affiliation(s)
- Nicole F O'Brien
- Department of Pediatrics, Division of Critical Care Medicine, Nationwide Children's Hospital, The Ohio State University, 700 Children's Drive, Columbus, OH, 43502, USA.
| | - Madiha Q Raees
- Department of Anesthesiology and Critical Care Medicine, Division of Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, 3401 Civic Center Blvd, Rm 9NW103, Philadelphia, PA, 19104, USA
| | - Hunter J Wynkoop
- Department of Pediatrics, Division of Critical Care Medicine, Nationwide Children's Hospital, The Ohio State University, 700 Children's Drive, Columbus, OH, 43502, USA
| | - Mengxin Yu
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, 3733 Spruce St, Philadelphia, PA, 19104, USA
| | - Dylan Small
- The Wharton School, University of Pennsylvania, 3733 Spruce St, Philadelphia, PA, 19104, USA
| | - Karl B Seydel
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, 909 Wilson Road, B309-B W. Fee Hall, East Lansing, MI, 48824, USA
| | - Montfort Bernard Gushu
- The Blantyre Malaria Project, Queen Elizabeth Central Hospital, Private Bag 360, Chichiri, Blantyre 3, Malawi
| | - Tusekile Phiri
- The Blantyre Malaria Project, Queen Elizabeth Central Hospital, Private Bag 360, Chichiri, Blantyre 3, Malawi
| | - Sylvester June
- The Blantyre Malaria Project, Queen Elizabeth Central Hospital, Private Bag 360, Chichiri, Blantyre 3, Malawi
| | - Terrie E Taylor
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, 909 Wilson Road, B309-B W. Fee Hall, East Lansing, MI, 48824, USA
| |
Collapse
|
3
|
Hedge ET, Hughson RL. Competing influences of arterial pressure and carbon dioxide on the dynamic cerebrovascular response to step transitions in exercise intensity. J Appl Physiol (1985) 2025; 138:816-824. [PMID: 39992981 DOI: 10.1152/japplphysiol.00643.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/20/2024] [Accepted: 02/16/2025] [Indexed: 02/26/2025] Open
Abstract
Recent investigations of middle cerebral artery blood velocity (MCAv) kinetics at the onset of exercise have not accounted for potential dynamic changes in arterial partial pressure of carbon dioxide ([Formula: see text]) during the transient phase of exercise transitions when modeling MCAv kinetics, despite [Formula: see text] having known effects on cerebrovascular tone. The purpose of our study was to determine the independent effects of mean arterial pressure (MAP) and estimated [Formula: see text] ([Formula: see text]) on mean MCAv during repeated moderate-intensity exercise transitions. We hypothesized that cerebral autoregulation would minimize the effect of sustained exercise-induced changes in MAP on mean MCAv and that dynamic changes in [Formula: see text] would contribute to changes in mean MCAv. Eighteen young healthy adults (7 women, age: 28 ± 5 yr) performed three exercise transitions from 25 W to 90% of the ventilatory threshold in sequence with 5-min stages. Mean MCAv increased (P < 0.001) from 25 W (60.5 ± 14.0 cm·s-1) to 90% of the ventilatory threshold (68.8 ± 15.1 cm·s-1). MAP at the level of the middle cerebral artery (MAPMCA) (Δ = 14 ± 8 mmHg, P < 0.001) and [Formula: see text] (Δ = 2.7 ± 1.8 mmHg, P < 0.001) also increased with exercise intensity. Autoregressive moving average (ARMA) analysis isolated the independent effects of dynamic changes in MAPMCA and [Formula: see text] on MCAv, with low prediction error (mean absolute error = 1.12 ± 0.25 cm·s-1). Calculated steady states of the ARMA step responses were 0.13 ± 0.15 cm·s-1·mmHg-1 for Δmean MCAv/ΔMAPMCA and 1.95 ± 0.83 cm·s-1·mmHg-1 for Δmean MCAv/Δ[Formula: see text]. These data demonstrate that the combination of dynamic changes in MAP and [Formula: see text] largely explains the MCAv response during transitions in exercise intensity.NEW & NOTEWORTHY Time-series analysis of moderate-intensity exercise transitions suggested that cerebral autoregulation buffered the effect of sustained changes in mean arterial pressure on middle cerebral artery blood velocity (MCAv) and that changes in estimated arterial partial pressure of carbon dioxide ([Formula: see text]) contributed to the dynamic changes in MCAv during exercise transitions. Therefore, changes in [Formula: see text] at the onset of exercise are central to modeling dynamic MCAv responses and understanding the benefits of exercise on cerebral blood flow.
Collapse
Affiliation(s)
- Eric T Hedge
- Schlegel-UW Research Institute for Aging, Waterloo, Ontario, Canada
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | | |
Collapse
|
4
|
Shoemaker LN, Matern T, Kamar F, St Lawrence K, Ortega-Gutierrez S, Zanaty M, Shoemaker JK. Blood pressure in human large cerebral arteries: a feasibility study. J Appl Physiol (1985) 2025; 138:693-698. [PMID: 39918464 DOI: 10.1152/japplphysiol.00825.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/04/2024] [Accepted: 01/28/2025] [Indexed: 03/01/2025] Open
Abstract
The lack of direct measures of brain blood pressure (BBP) has severely restricted understanding of cerebral pressure-flow relationships and their control. We sought to evaluate the feasibility of directly measuring BBP and its pulsatility between the aorta and middle cerebral artery (MCA) during elective endovascular surgical procedures. We report five case studies (four female, 61 ± 13 yr; means ± SD) of patients undergoing cerebrovascular interventional procedures for aneurysm and stenoses, using direct BBP measures with the COMET 2 pressure guidewire system (Boston Scientific). Patients were supine, intubated, and under anesthesia. The sensor wire was inserted via the femoral artery, measuring, as feasible, blood pressure (BP) in the aorta to MCA vascular segments, referenced to the radial artery BP waveform (arterial catheter). Mean arterial pressure varied between the radial (80 ± 18 mmHg), internal carotid artery (ICA; 70 ± 25 mmHg), and MCA (62 ± 29 mmHg), and marked interindividual heterogeneity was observed. Pulse pressure was higher in the radial artery (68 ± 23 mmHg) compared with the intracranial ICA (ICAi; 43 ± 29 mmHg) and MCA (M1; 25 ± 12 mmHg) segments. Direct measures of BBP in humans are feasible in this interventional surgery model. Although limited by the small sample size, the results suggest a heterogenous pattern of change between systemic and brain measures of blood pressure and pulse pressure.NEW & NOTEWORTHY We explored the feasibility of making direct measures of blood pressure in the large arteries at the base of the brain in humans. Measures were made with an optical sensor positioned in the aorta, common carotid, internal carotid artery external to the cranium, internal carotid artery within the cranium, and/or middle cerebral artery (MCA), M1 segment. Measures varied across individuals, as did the pressure gradient from systemic pressures to those in the MCA.
Collapse
Affiliation(s)
- Leena N Shoemaker
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- School of Kinesiology, Western University, London, Ontario, Canada
| | - Tyson Matern
- Department of Neurosurgery, University of Iowa Healthcare, Iowa City, Iowa, United States
| | - Farah Kamar
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Keith St Lawrence
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | | | - Mario Zanaty
- Department of Neurosurgery, University of Iowa Healthcare, Iowa City, Iowa, United States
| | - J Kevin Shoemaker
- School of Kinesiology, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| |
Collapse
|
5
|
van Zijl N, Banerjee A, Payne SJ. Modeling the Mechanisms of Non-Neurogenic Dynamic Cerebral Autoregulation. IEEE Trans Biomed Eng 2025; 72:577-585. [PMID: 39292578 DOI: 10.1109/tbme.2024.3463873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
OBJECTIVE Dynamic cerebral autoregulation (dCA) refers to a collection of mechanisms that act to maintain steady state cerebral blood flow (CBF) near constant despite changes in arterial blood pressure (ABP), but which is known to become impaired in various cerebrovascular diseases. Currently, the mechanisms of dCA and how they are affected in different physiological conditions are poorly understood. The objective of this study was to disentangle the magnitudes and time scales of the myogenic and metabolic responses of dCA, in order to investigate how each mechanism is affected in impaired dCA. METHODS A physiological model of dCA was developed, where both the myogenic and metabolic responses were represented by a gain and time constant. Model parameters were optimized with pressure-flow impulse responses under normocapnic, thigh cuff, and hypercapnic conditions. The impulse responses were derived by applying transfer function analysis (TFA) to experimental recordings of ABP (Finapres), end-tidal CO2 (capnograph), and CBF velocity (transcranial doppler ultrasound in bilateral middle cerebral arteries). RESULTS The myogenic gain to time constant ratio was significantly smaller (p-values < 0.001 using both univariate and multivariate TFA), and the metabolic time constant was significantly larger (p-values < 0.001 using both univariate and multivariate TFA) in hypercapnia compared to normocapnia. CONCLUSION Both the myogenic and metabolic responses were shown to be affected in impaired dCA, and the metabolic response was shown to be slowed down. SIGNIFICANCE This study contributes to the understanding of the complexities of dCA and how it is affected in different physiological conditions.
Collapse
|
6
|
Panerai RB, Davies A, Alshehri A, Beishon LC, Minhas JS. Subcomponent analysis of the directional sensitivity of dynamic cerebral autoregulation. Am J Physiol Heart Circ Physiol 2025; 328:H37-H46. [PMID: 39570199 DOI: 10.1152/ajpheart.00498.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
The origin of the directional sensitivity (DS) of dynamic cerebral autoregulation (dCA) is not known. In 140 healthy participants (67 male, 27.5 ± 6.1 yr old), middle cerebral artery velocity (MCAv, transcranial Doppler), arterial blood pressure (ABP, Finometer), and end-tidal CO2 (EtCO2, capnography) were recorded at rest. Critical closing pressure (CrCP) and resistance-area product (RAP) were obtained for each cardiac cycle, as well as mean MCAv and ABP (MAP). The integrated positive and negative derivatives of MAP (MAP+D and MAP-D, respectively) were used as simultaneous inputs to an autoregressive moving average model to generate two distinct MCAv step responses. Similar models allowed the estimation of corresponding MAP-CrCP and MAP-RAP responses to step changes in MAP+D and MAP-D. The strength of DS (ΔDS) was expressed by the difference in mean values of the step responses for the time interval 12-18 s. ΔDS was significant for MCAv (8.5 ± 46.9% vs. 26.7 ± 42.0%, P < 0.001) and RAP (-93.9 ± 48.1 vs. -74.5 ± 43.0%, P < 0.001), respectively, for MAP+D and MAP-D inputs, but not for CrCP (2.2 ± 48.1% vs. 0.72 ± 42.9%, P = 0.76). Compared with males, female participants had higher MCAv (63.9 ± 15.6 cm/s vs. 55.4 ± 12.9 cm/s, P < 0.001) but lower EtCO2 (P < 0.001) and RAP (P = 0.015). Sex did not influence ΔDS for any of the three-step responses. The presence of directional sensitivity in the RAP, but not in the CrCP transfer function, suggests that the origin could be solely myogenic, without metabolic involvement.NEW & NOTEWORTHY The directional sensitivity of the cerebral blood velocity response to a sudden change in mean arterial blood pressure (MAP) is mediated by the resistance-area product, without involvement from the cerebral critical closing pressure. The reduced amplitude of MAP spontaneous fluctuations at rest suggests that it is less likely that directional sensitivity has origins in the sympathetic control of cerebral blood vessels, thus generating the need to consider other alternatives.
Collapse
Affiliation(s)
- Ronney B Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Aaron Davies
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Abdulaziz Alshehri
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- Emergency Medical Services Department, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Lucy C Beishon
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Jatinder S Minhas
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| |
Collapse
|
7
|
Payne S. Critical closing pressure and resistance-area product as markers of cerebral autoregulation dynamics. J Physiol 2025; 603:601-602. [PMID: 39526598 DOI: 10.1113/jp287876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Affiliation(s)
- Stephen Payne
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
8
|
Brasil S, Godoy DA, Videtta W, Rubiano AM, Solla D, Taccone FS, Robba C, Rasulo F, Aries M, Smielewski P, Meyfroidt G, Battaglini D, Hirzallah MI, Amorim R, Sampaio G, Moulin F, Deana C, Picetti E, Kolias A, Hutchinson P, Hawryluk GW, Czosnyka M, Panerai RB, Shutter LA, Park S, Rynkowski C, Paranhos J, Silva THS, Malbouisson LMS, Paiva WS. A Comprehensive Perspective on Intracranial Pressure Monitoring and Individualized Management in Neurocritical Care: Results of a Survey with Global Experts. Neurocrit Care 2024; 41:880-892. [PMID: 38811514 PMCID: PMC11599332 DOI: 10.1007/s12028-024-02008-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Numerous trials have addressed intracranial pressure (ICP) management in neurocritical care. However, identifying its harmful thresholds and controlling ICP remain challenging in terms of improving outcomes. Evidence suggests that an individualized approach is necessary for establishing tolerance limits for ICP, incorporating factors such as ICP waveform (ICPW) or pulse morphology along with additional data provided by other invasive (e.g., brain oximetry) and noninvasive monitoring (NIM) methods (e.g., transcranial Doppler, optic nerve sheath diameter ultrasound, and pupillometry). This study aims to assess current ICP monitoring practices among experienced clinicians and explore whether guidelines should incorporate ancillary parameters from NIM and ICPW in future updates. METHODS We conducted a survey among experienced professionals involved in researching and managing patients with severe injury across low-middle-income countries (LMICs) and high-income countries (HICs). We sought their insights on ICP monitoring, particularly focusing on the impact of NIM and ICPW in various clinical scenarios. RESULTS From October to December 2023, 109 professionals from the Americas and Europe participated in the survey, evenly distributed between LMIC and HIC. When ICP ranged from 22 to 25 mm Hg, 62.3% of respondents were open to considering additional information, such as ICPW and other monitoring techniques, before adjusting therapy intensity levels. Moreover, 77% of respondents were inclined to reassess patients with ICP in the 18-22 mm Hg range, potentially escalating therapy intensity levels with the support of ICPW and NIM. Differences emerged between LMIC and HIC participants, with more LMIC respondents preferring arterial blood pressure transducer leveling at the heart and endorsing the use of NIM techniques and ICPW as ancillary information. CONCLUSIONS Experienced clinicians tend to personalize ICP management, emphasizing the importance of considering various monitoring techniques. ICPW and noninvasive techniques, particularly in LMIC settings, warrant further exploration and could potentially enhance individualized patient care. The study suggests updating guidelines to include these additional components for a more personalized approach to ICP management.
Collapse
Affiliation(s)
- Sérgio Brasil
- Division of Neurosurgery, Department of Neurology, School of Medicine University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo, Brazil.
| | | | - Walter Videtta
- Intensive Care Unit, Hospital Posadas, Buenos Aires, Argentina
| | | | - Davi Solla
- Division of Neurosurgery, Department of Neurology, School of Medicine University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo, Brazil
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Chiara Robba
- Anesthesia and Intensive Care, Scientific Institute for Research, Hospitalization and Healthcare, Policlínico San Martino, Genoa, Italy
| | - Frank Rasulo
- Neuroanesthesia, Neurocritical and Postoperative Care, Spedali Civili University Affiliated Hospital of Brescia, Brescia, Italy
| | - Marcel Aries
- Department of Intensive Care, Maastricht University Medical Center, Maastricht, The Netherlands
- School of Mental Health and Neurosciences, University Maastricht, Maastricht, The Netherlands
| | - Peter Smielewski
- Department of Clinical Neurosciences, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - Geert Meyfroidt
- Department and Laboratory of Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Denise Battaglini
- Anesthesia and Intensive Care, Scientific Institute for Research, Hospitalization and Healthcare, Policlínico San Martino, Genoa, Italy
| | - Mohammad I Hirzallah
- Departments of Neurology, Neurosurgery, and Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Robson Amorim
- Division of Neurosurgery, Department of Neurology, School of Medicine University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo, Brazil
| | - Gisele Sampaio
- Neurology Department, São Paulo Federal University Medical School, São Paulo, Brazil
| | - Fabiano Moulin
- Neurology Department, São Paulo Federal University Medical School, São Paulo, Brazil
| | - Cristian Deana
- Department of Anesthesia and Intensive Care, Health Integrated Agency of Friuli Centrale, Udine, Italy
| | - Edoardo Picetti
- Department of Anesthesia and Intensive Care, Parma University Hospital, Parma, Italy
| | | | | | - Gregory W Hawryluk
- Cleveland Clinic Neurological Institute, Akron General Hospital, Fairlawn, OH, USA
- Uniformed Services University, Bethesda, USA
- Brain Trauma Foundation, New York, USA
| | - Marek Czosnyka
- Division of Neurosurgery, Addenbrooke's Hospital, Cambridge, UK
| | - Ronney B Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Lori A Shutter
- Departments of Critical Care Medicine, Neurology and Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Soojin Park
- Departments of Neurology and Biomedical Informatics, Columbia University Vagelos College of Physicians and Surgeons, New York-Presbyterian Hospital, New York, NY, USA
| | - Carla Rynkowski
- Department of Urgency and Trauma, Medical Faculty, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Jorge Paranhos
- Intensive Care and Neuroemergency, Santa Casa de Misericórdia, São João del Rei, Brazil
| | - Thiago H S Silva
- Department of Intensive Care, School of Medicine University of São Paulo, São Paulo, Brazil
| | - Luiz M S Malbouisson
- Department of Intensive Care, School of Medicine University of São Paulo, São Paulo, Brazil
| | - Wellingson S Paiva
- Division of Neurosurgery, Department of Neurology, School of Medicine University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo, Brazil
| |
Collapse
|
9
|
Cury P, Passos RDH, Alves F, Brasil S, Frigieri G, Taccone FS, Panerai RB, Caldas J. Impact of different blood pressure targets on cerebral hemodynamics in septic shock: A prospective pilot study protocol-SEPSIS-BRAIN. PLoS One 2024; 19:e0304412. [PMID: 39401208 PMCID: PMC11472940 DOI: 10.1371/journal.pone.0304412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 05/11/2024] [Indexed: 10/17/2024] Open
Abstract
INTRODUCTION Septic shock, a life-threatening condition, can result in cerebral dysfunction and heightened mortality rates. In these patients, disturbances in cerebral hemodynamics, as reflected by impairment of myogenic cerebral autoregulation (CA), metabolic regulation, expressed by critical closing pressure (CrCP) and reductions in intracranial compliance (ICC), can adversely impact septic shock outcomes. The general recommendation is to maintain a target mean arterial pressure (MAP) of 65 mmHg but the effect of different MAP targets on cerebral hemodynamics in these patients is not clear and optimal targets might be dependent on the status of CA. This protocol aims to assess the cerebral hemodynamics profile at different pressure targets in septic shock patients. METHODS Prospective, non-randomized, single-center trial, which will study cerebral hemodynamics in patients with septic shock within 48 hours of its onset. Patients will be studied at their baseline MAP and at three MAP targets (T1: 65, T2: 75, T3: 85 mmHg). Cerebral hemodynamics will be assessed by transcranial Doppler (TCD) and a skull micro-deformation sensor (B4C). Dynamic CA will be expressed by the autoregulation index (ARI), calculated by transfer function analysis, using fluctuations of MAP as input and corresponding oscillations in cerebral blood velocity (CBv). The instantaneous relationship between arterial blood pressure and CBv will be used to estimate CrCP and resistance-area product (RAP) for each cardiac cycle using the first harmonic method. The B4C will access ICC by intracranial pressure waveforms (P2/P1). The primary aim is to assess cerebral hemodynamics (ARI, CrCP, RAP, and P2/P1) at different targets of MAP in septic shock patients. Our secondary objective is to assess cerebral hemodynamics at 65mmHg (target recommended by guidelines). In addition, we will assess the correlation between markers of organ dysfunction (such as lactate levels, vasoactive drugs usage, SOFA score, and delirium) and CA. ETHICS AND DISSEMINATION The results of this study may help to understand the effect of the recommended MAP and variations in blood pressure in patients with septic shock and impaired CA and ICC. Furthermore, the results can assist large trials in establishing new hypotheses about neurological management in this group of patients. Approval was obtained from the local Ethics Committee (28134720.1.0000.0048). It is anticipated that the results of this study will be presented at national and international conferences and will be published in peer-reviewed journals in 2024 and 2025. TRIAL REGISTRATION Trial registration number: NCT05833607. https://clinicaltrials.gov/study/NCT05833607.
Collapse
Affiliation(s)
- Pedro Cury
- Critical Care Unit, D’Or Institute for Research and Education (IDOR), Salvador, Brazil
- Hospital São Rafael, Salvador, Brazil
- Bahiana—School of Medicine and Public Health, Salvador, Brazil
| | | | - Fernanda Alves
- Critical Care Unit, D’Or Institute for Research and Education (IDOR), Salvador, Brazil
- Hospital São Rafael, Salvador, Brazil
| | | | - Gustavo Frigieri
- Medical Investigation Laboratory 62, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Fabio S. Taccone
- Department of Intensive Care, Hospital Erasme, Brussels, Belgium
| | - Ronney B. Panerai
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Juliana Caldas
- Critical Care Unit, D’Or Institute for Research and Education (IDOR), Salvador, Brazil
- Hospital São Rafael, Salvador, Brazil
- Bahiana—School of Medicine and Public Health, Salvador, Brazil
| |
Collapse
|
10
|
Kostoglou K, Bello-Robles F, Brassard P, Chacon M, Claassen JAHR, Czosnyka M, Elting JW, Hu K, Labrecque L, Liu J, Marmarelis VZ, Payne SJ, Shin DC, Simpson D, Smirl J, Panerai RB, Mitsis GD. Time-domain methods for quantifying dynamic cerebral blood flow autoregulation: Review and recommendations. A white paper from the Cerebrovascular Research Network (CARNet). J Cereb Blood Flow Metab 2024; 44:1480-1514. [PMID: 38688529 PMCID: PMC11418733 DOI: 10.1177/0271678x241249276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 05/02/2024]
Abstract
Cerebral Autoregulation (CA) is an important physiological mechanism stabilizing cerebral blood flow (CBF) in response to changes in cerebral perfusion pressure (CPP). By maintaining an adequate, relatively constant supply of blood flow, CA plays a critical role in brain function. Quantifying CA under different physiological and pathological states is crucial for understanding its implications. This knowledge may serve as a foundation for informed clinical decision-making, particularly in cases where CA may become impaired. The quantification of CA functionality typically involves constructing models that capture the relationship between CPP (or arterial blood pressure) and experimental measures of CBF. Besides describing normal CA function, these models provide a means to detect possible deviations from the latter. In this context, a recent white paper from the Cerebrovascular Research Network focused on Transfer Function Analysis (TFA), which obtains frequency domain estimates of dynamic CA. In the present paper, we consider the use of time-domain techniques as an alternative approach. Due to their increased flexibility, time-domain methods enable the mitigation of measurement/physiological noise and the incorporation of nonlinearities and time variations in CA dynamics. Here, we provide practical recommendations and guidelines to support researchers and clinicians in effectively utilizing these techniques to study CA.
Collapse
Affiliation(s)
- Kyriaki Kostoglou
- Department of Electrical and Computer Engineering, McGill University, Montreal, QC, Canada
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
| | - Felipe Bello-Robles
- Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Santiago, Chile
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec, QC, Canada
- Research Center of the Institut universitaire de cardiologie et de pneumologie de Québec, Quebec, QC, Canada
| | - Max Chacon
- Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Santiago, Chile
| | - Jurgen AHR Claassen
- Department of Geriatrics, Radboud University Medical Center, Research Institute for Medical Innovation and Donders Institute, Nijmegen, The Netherlands
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Marek Czosnyka
- Department of Clinical Neurosciences, Neurosurgery Department, University of Cambridge, Cambridge, UK
| | - Jan-Willem Elting
- Department of Neurology and Clinical Neurophysiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Kun Hu
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Lawrence Labrecque
- Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec, QC, Canada
- Research Center of the Institut universitaire de cardiologie et de pneumologie de Québec, Quebec, QC, Canada
| | - Jia Liu
- Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Vasilis Z Marmarelis
- Department Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Stephen J Payne
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
| | - Dae Cheol Shin
- Department Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - David Simpson
- Institute of Sound and Vibration Research, University of Southampton, Southampton, UK
| | - Jonathan Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ronney B Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation, Glenfield Hospital, Leicester, UK
| | - Georgios D Mitsis
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
11
|
Baker WB, Forti RM, Heye P, Heye K, Lynch JM, Yodh AG, Licht DJ, White BR, Hwang M, Ko TS, Kilbaugh TJ. Modified Beer-Lambert algorithm to measure pulsatile blood flow, critical closing pressure, and intracranial hypertension. BIOMEDICAL OPTICS EXPRESS 2024; 15:5511-5532. [PMID: 39296411 PMCID: PMC11407241 DOI: 10.1364/boe.529150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 09/21/2024]
Abstract
We introduce a frequency-domain modified Beer-Lambert algorithm for diffuse correlation spectroscopy to non-invasively measure flow pulsatility and thus critical closing pressure (CrCP). Using the same optical measurements, CrCP was obtained with the new algorithm and with traditional nonlinear diffusion fitting. Results were compared to invasive determination of intracranial pressure (ICP) in piglets (n = 18). The new algorithm better predicted ICP elevations; the area under curve (AUC) from logistic regression analysis was 0.85 for ICP ≥ 20 mmHg. The corresponding AUC for traditional analysis was 0.60. Improved diagnostic performance likely results from better filtering of extra-cerebral tissue contamination and measurement noise.
Collapse
Affiliation(s)
- Wesley B Baker
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rodrigo M Forti
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Pascal Heye
- Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kristina Heye
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jennifer M Lynch
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Arjun G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel J Licht
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Prenatal Pediatrics, Children's National, Washington DC, USA
| | - Brian R White
- Division of Pediatric Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Misun Hwang
- Department of Radiology, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tiffany S Ko
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Todd J Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Ince J, Panerai RB, Salinet ASM, Lam MY, Llwyd O, Haunton VJ, Robinson TG, Minhas JS. Dynamics of Critical Closing Pressure Explain Cerebral Autoregulation Impairment in Acute Cerebrovascular Disease. Cerebrovasc Dis 2024:1-9. [PMID: 38964310 DOI: 10.1159/000540206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
INTRODUCTION Cerebral autoregulation (CA) is impaired in acute ischemic stroke (AIS) and is associated with worse patient outcomes, but the underlying physiological cause is unclear. This study tests whether depressed CA in AIS can be linked to the dynamic responses of critical closing pressure (CrCP) and resistance area product (RAP). METHODS Continuous recordings of middle cerebral blood velocity (MCAv, transcranial Doppler), arterial blood pressure (BP), end-tidal CO2 and electrocardiography allowed dynamic analysis of the instantaneous MCAv-BP relationship to obtain estimates of CrCP and RAP. The dynamic response of CrCP and RAP to a sudden change in mean BP was obtained by transfer function analysis. Comparisons were made between younger controls (≤50 years), older controls (>50 years), and AIS patients. RESULTS Data from 24 younger controls (36.4 ± 10.9 years, 9 male), 38 older controls (64.7 ± 8.2 years, 20 male), and 20 AIS patients (63.4 ± 13.8 years, 9 male) were included. Dynamic CA was impaired in AIS, with lower autoregulation index (affected hemisphere: 4.0 ± 2.3, unaffected: 4.5 ± 1.8) compared to younger (right: 5.8 ± 1.4, left: 5.8 ± 1.4) and older (right: 4.9 ± 1.6, left: 5.1 ± 1.5) controls. AIS patients also demonstrated an early (0-3 s) peak in CrCP dynamic response that was not influenced by age. CONCLUSION These early transient differences in the CrCP dynamic response are a novel finding in stroke and occur too early to reflect underlying regulatory mechanisms. Instead, these may be caused by structural changes to cerebral vasculature.
Collapse
Affiliation(s)
- Jonathan Ince
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Ronney B Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Angela S M Salinet
- Neurology Department, Hospital das Clinicas, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Man Y Lam
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Osian Llwyd
- Wolfson Centre for Prevention of Stroke and Dementia, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Victoria J Haunton
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Thompson G Robinson
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Jatinder S Minhas
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
| |
Collapse
|
13
|
Bello-Robles FA, Villalobos-Cid M, Chacón M, Inostroza-Ponta M. A multi-objective optimisation approach for the linear modelling of cerebral autoregulation system. Biosystems 2024; 241:105231. [PMID: 38754621 DOI: 10.1016/j.biosystems.2024.105231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVE Dynamic cerebral autoregulation (dCA) has been addressed through different approaches for discriminating between normal and impaired conditions based on spontaneous fluctuations in arterial blood pressure (ABP) and cerebral blood flow (CF). This work presents a novel multi-objective optimisation (MO) approach for finding good configurations of a cerebrovascular resistance-compliance model. METHODS Data from twenty-nine subjects under normo and hypercapnic (5% CO2 in air) conditions was used. Cerebrovascular resistance and vessel compliance models with ABP as input and CF velocity as output were fitted using a MO approach, considering fitting Pearson's correlation and error. RESULTS MO approach finds better model configurations than the single-objective (SO) approach, especially for hypercapnic conditions. In addition, the Pareto-optimal front from the multi-objective approach enables new information on dCA, reflecting a higher contribution of myogenic mechanism for explaining dCA impairment.
Collapse
Affiliation(s)
- Felipe-Andrés Bello-Robles
- Biomedical Engineering, Engineering Faculty, Universidad de Santiago de Chile, Address One, Santiago, 917022, Chile.
| | - Manuel Villalobos-Cid
- Informatics Engineering Department, Universidad de Santiago de Chile, Address One, Santiago, 917022, Chile
| | - Max Chacón
- Informatics Engineering Department, Universidad de Santiago de Chile, Address One, Santiago, 917022, Chile
| | - Mario Inostroza-Ponta
- Informatics Engineering Department, Universidad de Santiago de Chile, Address One, Santiago, 917022, Chile
| |
Collapse
|
14
|
Gelpi F, Bari V, Cairo B, Anguissola M, Mazzotta V, Singh P, Ranucci M, Porta A. The Impact of the Estimation Strategy of the Cerebral Critical Closing Pressure on the Autoregulation Index. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40038953 DOI: 10.1109/embc53108.2024.10781748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Cerebral autoregulation (CA) encompasses a series of physiological mechanisms that are necessary to regulate blood flow in the brain. The procedure for CA assessment via the autoregulatory index (ARI) requires the estimate of the critical closing pressure (CrCP). The study aims at investigating the impact of the strategy exploited for CrCP estimation on ARI by comparing three approaches: i) fixed CrCP at 12 mmHg (CrCP12); ii) first harmonic (H1) method applied to waveforms of arterial pressure (AP) and cerebral blood velocity (CBv); iii) 2-point technique using mean and diastolic AP and CBv values (2Pm). Analysis was carried out over AP and CBv signals recorded in 25 healthy subjects (age: 44 ± 10 yrs, 12 females, 13 males) at rest in supine position and during active standing. Computation of CrCP was complemented by the assessment of the resistance-area product (RAP). We found that the H1 and 2Pm methods led to different values of CrCP and RAP. However, the strategy selected for the CrCP computation did not affect the ARI estimation, and this result held regardless of the experimental condition. We conclude that the CrCP12 strategy can be safely utilized instead of more complex methods for the CA characterization based on ARI.
Collapse
|
15
|
Panerai RB, Alshehri A, Beishon LC, Davies A, Haunton VJ, Katsogridakis E, Lam MY, Llwyd O, Robinson TG, Minhas JS. Determinants of the dynamic cerebral critical closing pressure response to changes in mean arterial pressure. Physiol Meas 2024; 45:065006. [PMID: 38838702 DOI: 10.1088/1361-6579/ad548d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Objective. Cerebral critical closing pressure (CrCP) represents the value of arterial blood pressure (BP) where cerebral blood flow (CBF) becomes zero. Its dynamic response to a step change in mean BP (MAP) has been shown to reflect CBF autoregulation, but robust methods for its estimation are lacking. We aim to improve the quality of estimates of the CrCP dynamic response.Approach. Retrospective analysis of 437 healthy subjects (aged 18-87 years, 218 males) baseline recordings with measurements of cerebral blood velocity in the middle cerebral artery (MCAv, transcranial Doppler), non-invasive arterial BP (Finometer) and end-tidal CO2(EtCO2, capnography). For each cardiac cycle CrCP was estimated from the instantaneous MCAv-BP relationship. Transfer function analysis of the MAP and MCAv (MAP-MCAv) and CrCP (MAP-CrCP) allowed estimation of the corresponding step responses (SR) to changes in MAP, with the output in MCAv (SRVMCAv) representing the autoregulation index (ARI), ranging from 0 to 9. Four main parameters were considered as potential determinants of the SRVCrCPtemporal pattern, including the coherence function, MAP spectral power and the reconstruction error for SRVMAP, from the other three separate SRs.Main results. The reconstruction error for SRVMAPwas the main determinant of SRVCrCPsignal quality, by removing the largest number of outliers (Grubbs test) compared to the other three parameters. SRVCrCPshowed highly significant (p< 0.001) changes with time, but its amplitude or temporal pattern was not influenced by sex or age. The main physiological determinants of SRVCrCPwere the ARI and the mean CrCP for the entire 5 min baseline period. The early phase (2-3 s) of SRVCrCPresponse was influenced by heart rate whereas the late phase (10-14 s) was influenced by diastolic BP.Significance. These results should allow better planning and quality of future research and clinical trials of novel metrics of CBF regulation.
Collapse
Affiliation(s)
- Ronney B Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Abdulaziz Alshehri
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- College of Applied Medical Sciences, University of Najran, Najran, Saudi Arabia
| | - Lucy C Beishon
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Aaron Davies
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Victoria J Haunton
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Emmanuel Katsogridakis
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Man Y Lam
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Osian Llwyd
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- Wolfson Centre for Prevention of Stroke and Dementia, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Thompson G Robinson
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Jatinder S Minhas
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| |
Collapse
|
16
|
Deana C, Biasucci DG, Aspide R, Brasil S, Vergano M, Leonardis F, Rica E, Cammarota G, Dauri M, Vetrugno G, Longhini F, Maggiore SM, Rasulo F, Vetrugno L. Transcranial Doppler and Color-Coded Doppler Use for Brain Death Determination in Adult Patients: A Pictorial Essay. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024; 43:979-992. [PMID: 38279568 DOI: 10.1002/jum.16421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/02/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Transcranial Doppler (TCD) is a repeatable, at-the-bedside, helpful tool for confirming cerebral circulatory arrest (CCA). Despite its variable accuracy, TCD is increasingly used during brain death determination, and it is considered among the optional ancillary tests in several countries. Among its limitations, the need for skilled operators with appropriate knowledge of typical CCA patterns and the lack of adequate acoustic bone windows for intracranial arteries assessment are critical. The purpose of this review is to describe how to evaluate cerebral circulatory arrest in the intensive care unit with TCD and transcranial duplex color-coded doppler (TCCD).
Collapse
Affiliation(s)
- Cristian Deana
- Department of Anesthesia and Intensive Care, Health Integrated Agency of Friuli Centrale, Udine, Italy
| | - Daniele G Biasucci
- Department of Clinical Science and Translational Medicine, "Tor Vergata" University, Rome, Italy
- Emergency Department, "Tor Vergata" University Hospital, Rome, Italy
- Catholic University of the Sacred Heart (UCSC), Rome, Italy
| | - Raffaele Aspide
- Anesthesia and Neurointensive Care Unit, Istituto delle Scienze Neurologiche IRCCS, Bologna, Italy
| | - Sergio Brasil
- Neurosurgical Division, Department of Neurology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Marco Vergano
- Department of Anesthesia and Intensive Care, San Giovanni Bosco Hospital, Torino, Italy
| | - Francesca Leonardis
- Emergency Department, "Tor Vergata" University Hospital, Rome, Italy
- Department of Surgical Science, "Tor Vergata" University, Rome, Italy
| | - Ermal Rica
- Department of Anesthesia and Intensive Care, Health Integrated Agency of Friuli Centrale, Udine, Italy
| | - Gianmaria Cammarota
- Department of Anesthesiology and Intensive Care, Azienda Ospedaliero-Universitaria "Maggiore della Carità", Novara, Italy
- Department of Translational Medicine, Università degli Studi del Piemonte Orientale, Novara, Italy
| | - Mario Dauri
- Department of Clinical Science and Translational Medicine, "Tor Vergata" University, Rome, Italy
- Emergency Department, "Tor Vergata" University Hospital, Rome, Italy
| | - Giuseppe Vetrugno
- Catholic University of the Sacred Heart (UCSC), Rome, Italy
- Risk Management, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Federico Longhini
- Department of Medical and Surgical Sciences, University Hospital Mater Domini, Magna Graecia University, Catanzaro, Italy
| | - Salvatore Maurizio Maggiore
- Department of Innovative Technologies in Medicine & Dentistry, Section of Anesthesia and Intensive Care, "G. D'Annunzio" University, "SS. Annunziata" Hospital, Chieti, Italy
- Department of Anesthesiology, Critical Care Medicine and Emergency, "SS. Annunziata" Hospital, Chieti, Italy
| | - Frank Rasulo
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Luigi Vetrugno
- Department of Anesthesiology, Critical Care Medicine and Emergency, "SS. Annunziata" Hospital, Chieti, Italy
- Department of Medical, Oral and Biotechnological Science, "G. d'Annunzio" Chieti-Pescara University, Chieti, Italy
| |
Collapse
|
17
|
Brasil S, de Carvalho Nogueira R, Salinet ÂSM, Yoshikawa MH, Teixeira MJ, Paiva W, Malbouisson LMS, Bor-Seng-Shu E, Panerai RB. Critical Closing Pressure and Cerebrovascular Resistance Responses to Intracranial Pressure Variations in Neurocritical Patients. Neurocrit Care 2023; 39:399-410. [PMID: 36869208 PMCID: PMC10541829 DOI: 10.1007/s12028-023-01691-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/31/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND Critical closing pressure (CrCP) and resistance-area product (RAP) have been conceived as compasses to optimize cerebral perfusion pressure (CPP) and monitor cerebrovascular resistance, respectively. However, for patients with acute brain injury (ABI), the impact of intracranial pressure (ICP) variability on these variables is poorly understood. The present study evaluates the effects of a controlled ICP variation on CrCP and RAP among patients with ABI. METHODS Consecutive neurocritical patients with ICP monitoring were included along with transcranial Doppler and invasive arterial blood pressure monitoring. Internal jugular veins compression was performed for 60 s for the elevation of intracranial blood volume and ICP. Patients were separated in groups according to previous intracranial hypertension severity, with either no skull opening (Sk1), neurosurgical mass lesions evacuation, or decompressive craniectomy (DC) (patients with DC [Sk3]). RESULTS Among 98 included patients, the correlation between change (Δ) in ICP and the corresponding ΔCrCP was strong (group Sk1 r = 0.643 [p = 0.0007], group with neurosurgical mass lesions evacuation r = 0.732 [p < 0.0001], and group Sk3 r = 0.580 [p = 0.003], respectively). Patients from group Sk3 presented a significantly higher ΔRAP (p = 0.005); however, for this group, a higher response in mean arterial pressure (change in mean arterial pressure p = 0.034) was observed. Exclusively, group Sk1 disclosed reduction in ICP before internal jugular veins compression withholding. CONCLUSIONS This study elucidates that CrCP reliably changes in accordance with ICP, being useful to indicate ideal CPP in neurocritical settings. In the early days after DC, cerebrovascular resistance seems to remain elevated, despite exacerbated arterial blood pressure responses in efforts to maintain CPP stable. Patients with ABI with no need of surgical procedures appear to remain with more effective ICP compensatory mechanisms when compared with those who underwent neurosurgical interventions.
Collapse
Affiliation(s)
- Sérgio Brasil
- Division of Neurosurgery, Department of Neurology, School of Medicine, University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo, Brazil.
| | - Ricardo de Carvalho Nogueira
- Division of Neurosurgery, Department of Neurology, School of Medicine, University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo, Brazil
| | - Ângela Salomão Macedo Salinet
- Division of Neurosurgery, Department of Neurology, School of Medicine, University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo, Brazil
| | - Márcia Harumy Yoshikawa
- Division of Neurosurgery, Department of Neurology, School of Medicine, University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo, Brazil
| | - Manoel Jacobsen Teixeira
- Division of Neurosurgery, Department of Neurology, School of Medicine, University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo, Brazil
| | - Wellingson Paiva
- Division of Neurosurgery, Department of Neurology, School of Medicine, University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo, Brazil
| | | | - Edson Bor-Seng-Shu
- Division of Neurosurgery, Department of Neurology, School of Medicine, University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo, Brazil
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, School of Life Sciences, University of Leicester, Leicester, UK
- National Institute for Health and Care Research, Cardiovascular Research Centre, Glenfield Hospital, University of Leicester, Leicester, UK
| |
Collapse
|
18
|
Burma JS, Rattana S, Oni IK, Lapointe AP, Dunn JF, Smirl JD. The temporal neurovascular coupling response remains intact during sinusoidal hypotensive and hypertensive challenges. Physiol Meas 2023; 44:074002. [PMID: 37399810 DOI: 10.1088/1361-6579/ace3a2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/03/2023] [Indexed: 07/05/2023]
Abstract
Introduction. Neurovascular coupling (NVC) describes the coupling of neuronal metabolic demand to blood supply, which has shown to be impaired with chronic hypertension, as well as with prolonged hypotension. However, it is unknown the extent the NVC response remains intact during transient hypo- and hyper-tensive challenges.Methods. Fifteen healthy participants (9 females/6 males) completed a visual NVC task ('Where's Waldo?') over two testing sessions, consisting of cyclical 30 s eyes closed and opened portions. The Waldo task was completed at rest (8 min) and concurrently during squat-stand maneuvers (SSMs; 5 min) at 0.05 Hz (10 s squat/stand) and 0.10 Hz (5 s squat-stand). SSMs induce 30-50 mmHg blood pressure oscillations, resulting in cyclical hypo- and hyper-tensive swings within the cerebrovasculature, allowing for the quantification of the NVC response during transient hypo- and hyper-tension. Outcome NVC metrics included baseline, peak, relative increase in cerebral blood velocity (CBv), and area-under-the-curve (AUC30) within the posterior and middle cerebral arteries indexed via transcranial Doppler ultrasound. Within-subject, between-task comparisons were conducted using analysis of variance with effect size calculations.Results. Differences were noted between rest and SSM conditions in both vessels for peak CBv (allp< 0.045) and the relative increase in CBv (allp <0.049) with small-to-large effect sizes. AUC30 metrics were similar between all tasks (allp> 0.090) with negligible-to-small effect sizes.Conclusions. Despite the SSMs eliciting ∼30-50 mmHg blood pressure oscillations, similar levels of activation occurred within the neurovascular unit across all conditions. This demonstrated the signaling of the NVC response remained intact during cyclical blood pressure challenges.
Collapse
Affiliation(s)
- Joel S Burma
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
| | - Selina Rattana
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada
| | - Ibukunoluwa K Oni
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrew P Lapointe
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jeff F Dunn
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
19
|
Urner TM, Cowdrick KR, Brothers RO, Boodooram T, Zhao H, Goyal V, Sathialingam E, Quadri A, Turrentine K, Akbar MM, Triplett SE, Bai S, Buckley EM. Normative cerebral microvascular blood flow waveform morphology assessed with diffuse correlation spectroscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:3635-3653. [PMID: 37497521 PMCID: PMC10368026 DOI: 10.1364/boe.489760] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/20/2023] [Indexed: 07/28/2023]
Abstract
Microvascular cerebral blood flow exhibits pulsatility at the cardiac frequency that carries valuable information about cerebrovascular health. This study used diffuse correlation spectroscopy to quantify normative features of these waveforms in a cohort of thirty healthy adults. We demonstrate they are sensitive to changes in vascular tone, as indicated by pronounced morphological changes with hypercapnia. Further, we observe significant sex-based differences in waveform morphology, with females exhibiting higher flow, greater area-under-the-curve, and lower pulsatility. Finally, we quantify normative values for cerebral critical closing pressure, i.e., the minimum pressure required to maintain flow in a given vascular region.
Collapse
Affiliation(s)
- Tara M Urner
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Kyle R Cowdrick
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Rowan O Brothers
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Tisha Boodooram
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Hongting Zhao
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Vidisha Goyal
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Eashani Sathialingam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Ayesha Quadri
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Katherine Turrentine
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Mariam M Akbar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Sydney E Triplett
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Shasha Bai
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Erin M Buckley
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
- Children's Research Scholar, Children's Healthcare of Atlanta, 2015 Uppergate Dr., Atlanta, GA 30322, USA
| |
Collapse
|
20
|
Ince J, Minhas JS, Panerai RB. Point/counterpoint: Cerebrovascular resistance is a flawed concept. J Cereb Blood Flow Metab 2023; 43:1216-1218. [PMID: 37113067 PMCID: PMC10291456 DOI: 10.1177/0271678x231172854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/18/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023]
Abstract
The relationship between cerebral blood flow and blood pressure is a critical part of investigation of cerebral autoregulation. Conventionally, cerebrovascular resistance (CVR) has been used to describe this relationship, but the underlying principles used for this method is flawed in real-world application for several reasons. Despite this, the use of CVR remains entrenched within current literature. This 'Point/Counterpoint' review provides a summary of the flaws in using CVR and explains the benefits of calculating the more accurate critical closing pressure (CrCP) and resistance-area product (RAP) parameters, with support of real-world data.
Collapse
Affiliation(s)
- Jonathan Ince
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Jatinder S Minhas
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Ronney B Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
| |
Collapse
|
21
|
Valencia JA, Fabregas N, Tercero J, Valero R. Assessment of cerebral blood flow velocities, brain midline shift and optic nerve sheath diameter by ultrasound in patients undergoing elective craniotomy: A prospective observational feasibility study. REVISTA ESPANOLA DE ANESTESIOLOGIA Y REANIMACION 2023; 70:269-275. [PMID: 37150439 DOI: 10.1016/j.redare.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 02/16/2022] [Indexed: 05/09/2023]
Abstract
BACKGROUND Brain ultrasound allows measuring the cerebral flow velocity, brain midline shift and optic nerve sheath diameter. Literature is scarce in determining the feasibility to perioperatively perform these measurements altogether and the cerebrovascular behavior in patients scheduled for elective craniotomy. METHODS We assessed bilateral cerebral flow velocities, composite index, brain midline shift and optic nerve sheath diameter by cerebral ultrasound in patients scheduled for elective craniotomy before anesthetic induction, at extubation, and at 6 and 24 h after. The aim was to assess the feasibility of brain ultrasound in patients for elective craniotomy and to describe the changes in cerebral flow velocities, brain midline shift and optic nerve sheath diameter from baseline values at different times in the postoperative period. RESULTS Sixteen patients were included, of these two were excluded from analysis due to an inadequate sonographic window. There were no changes throughout the study regarding cerebral flow velocity, brain midline shift nor optic nerve sheath diameter assessments. All parameters were maintained in the physiological range without significant variations during the procedure. No perioperative complications were detected. CONCLUSIONS The results of our study show the feasibility to perform a perioperative assessment of cerebral flow velocity, brain midline shift or optic nerve sheath diameter jointly and successfully to obtain additional information of baseline cerebral hemodynamics in patients scheduled for elective craniotomy and their postoperative changes during the first 24 h. Future studies with lager samples are needed to address the efficacy of cerebral ultrasound as a monitoring tool.
Collapse
Affiliation(s)
- J A Valencia
- Sección Neuroanestesia, Department of Anesthesiology, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia.
| | - N Fabregas
- Sección Neuroanestesia, Department of Anesthesiology, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - J Tercero
- Sección Neuroanestesia, Department of Anesthesiology, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - R Valero
- Sección Neuroanestesia, Department of Anesthesiology, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| |
Collapse
|
22
|
Porta A, Bari V, Gelpi F, Cairo B, De Maria B, Tonon D, Rossato G, Faes L. On the Different Abilities of Cross-Sample Entropy and K-Nearest-Neighbor Cross-Unpredictability in Assessing Dynamic Cardiorespiratory and Cerebrovascular Interactions. ENTROPY (BASEL, SWITZERLAND) 2023; 25:e25040599. [PMID: 37190390 PMCID: PMC10137562 DOI: 10.3390/e25040599] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023]
Abstract
Nonlinear markers of coupling strength are often utilized to typify cardiorespiratory and cerebrovascular regulations. The computation of these indices requires techniques describing nonlinear interactions between respiration (R) and heart period (HP) and between mean arterial pressure (MAP) and mean cerebral blood velocity (MCBv). We compared two model-free methods for the assessment of dynamic HP-R and MCBv-MAP interactions, namely the cross-sample entropy (CSampEn) and k-nearest-neighbor cross-unpredictability (KNNCUP). Comparison was carried out first over simulations generated by linear and nonlinear unidirectional causal, bidirectional linear causal, and lag-zero linear noncausal models, and then over experimental data acquired from 19 subjects at supine rest during spontaneous breathing and controlled respiration at 10, 15, and 20 breaths·minute-1 as well as from 13 subjects at supine rest and during 60° head-up tilt. Linear markers were computed for comparison. We found that: (i) over simulations, CSampEn and KNNCUP exhibit different abilities in evaluating coupling strength; (ii) KNNCUP is more reliable than CSampEn when interactions occur according to a causal structure, while performances are similar in noncausal models; (iii) in healthy subjects, KNNCUP is more powerful in characterizing cardiorespiratory and cerebrovascular variability interactions than CSampEn and linear markers. We recommend KNNCUP for quantifying cardiorespiratory and cerebrovascular coupling.
Collapse
Affiliation(s)
- Alberto Porta
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, 20097 Milan, Italy
| | - Vlasta Bari
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, 20097 Milan, Italy
| | - Francesca Gelpi
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Beatrice Cairo
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | | | - Davide Tonon
- Department of Neurology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Verona, Italy
| | - Gianluca Rossato
- Department of Neurology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Verona, Italy
| | - Luca Faes
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
23
|
Fu X, Zhang W, Li X, Liu H, Zhang Y, Gao Q. Critical closing pressure as a new hemodynamic marker of cerebral small vessel diseases burden. Front Neurol 2023; 14:1091075. [PMID: 37025201 PMCID: PMC10071665 DOI: 10.3389/fneur.2023.1091075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/28/2023] [Indexed: 04/08/2023] Open
Abstract
Purpose To investigate cerebrovascular hemodynamics, including critical closing pressure (CrCP) and pulsatility index (PI), and their independent relationship with cerebral small vessel disease (CSVD) burden in patients with small-vessel occlusion (SVO). Methods We recruited consecutive patients with SVO of acute cerebral infarction who underwent brain magnetic resonance imaging (MRI), transcranial Doppler (TCD) and CrCP during admission. Cerebrovascular hemodynamics were assessed using TCD. We used the CSVD score to rate the total MRI burden of CSVD. Multiple regression analysis was used to determine parameters related to CSVD burden or CrCP. Results Ninety-seven of 120 patients (mean age, 64.51 ± 9.99 years; 76% male) completed the full evaluations in this study. We observed that CrCP was an independent determinant of CSVD burden in four models [odds ratio, 1.41; 95% confidence interval (CI), 1.17-1.71; P < 0.001] and correlated with CSVD burden [β (95% CI): 0.05 (0.04-0.06); P < 0.001]. In ROC analysis, CrCP was considered as a predictor of CSVD burden, and AUC was 86.2% (95% CI, 78.6-93.9%; P < 0.001). Multiple linear regression analysis showed that CrCP was significantly correlated with age [β (95% CI): 0.27 (0.06 to 0.47); P = 0.012], BMI [β (95% CI): 0.61 (0.00-1.22)] and systolic BP [β (95% CI): 0.16 (0.09-0.23); P < 0.001]. Conclusions CrCP representing cerebrovascular tension is an independent determinant and predictor of CSVD burden. It was significantly correlated with age, BMI and systolic blood pressure. These results provide new insights in the mechanism of CSVD development.
Collapse
Affiliation(s)
- Xian Fu
- Department of Neurology, Shenzhen Bao'an District Songgang People's Hospital, Shenzhen, China
- Xian Fu
| | - Weijin Zhang
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xianliang Li
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongying Liu
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yin Zhang
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingchun Gao
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Qingchun Gao
| |
Collapse
|
24
|
Ladthavorlaphatt K, Surti FBS, Beishon LC, Panerai RB, Robinson TG. Challenging neurovascular coupling through complex and variable duration cognitive paradigms: A subcomponent analysis. Med Eng Phys 2022; 110:103921. [PMID: 36564144 DOI: 10.1016/j.medengphy.2022.103921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/04/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
A similar pattern of cerebral blood velocity (CBv) response has been observed for neurovascular coupling (NVC) assessment with cognitive tasks of varying complexity and duration. This lack of specificity could result from parallel changes in arterial blood pressure (BP) and PaCO2, which could confound the estimates of NVC integrity. Healthy participants (n = 16) underwent recordings at rest (5 min sitting) and during randomized paradigms of different complexity (naming words (NW) beginning with P-, R-, V- words and serial subtractions (SS) of 100-2, 100-7, 1000-17, with durations of 5, 30 and 60 s). Bilateral CBv (middle cerebral arteries, transcranial Doppler), end-tidal CO2 (EtCO2, capnography), blood pressure (BP, Finapres) and heart rate (HR, ECG) were recorded continuously. The bilateral CBv response to all paradigms was classified under objective criteria to select only responders, then the repeated data were averaged between visits. Bilateral CBv change to tasks was decomposed into the relative contributions (subcomponents) of arterial BP (VBP; neurogenic), critical closing pressure (VCrCP; metabolic) and resistance area product (VRAP; myogenic). A temporal effect was demonstrated in bilateral VBP and VRAP during all tasks (p<0.002), increased VBP early (between 0 and 10 s) and followed by decreases of VRAP late (25-35 s) in the response. VCrCP varied by complexity and duration (p<0.046). The main contributions to CBv responses to cognitive tasks of different complexity and duration were VBP and VRAP, whilst a smaller contribution from VCrCP would suggest sensitivity to metabolic demands. Further studies are needed to assess the influence of different paradigms, ageing and cerebrovascular conditions.
Collapse
Affiliation(s)
- Kannaphob Ladthavorlaphatt
- Department of Cardiovascular Sciences, College of Life Sciences, Leicester Royal Infirmary, University of Leicester, Level 4, Robert Kilpatrick Clinical Sciences Building, Leicester LE2 7LX, United Kingdom; Medical Diagnostics Unit, Thammasat University Hospital, Thammasat University, Pathumthani, Thailand.
| | - Farhaana B S Surti
- Department of Cardiovascular Sciences, College of Life Sciences, Leicester Royal Infirmary, University of Leicester, Level 4, Robert Kilpatrick Clinical Sciences Building, Leicester LE2 7LX, United Kingdom
| | - Lucy C Beishon
- Department of Cardiovascular Sciences, College of Life Sciences, Leicester Royal Infirmary, University of Leicester, Level 4, Robert Kilpatrick Clinical Sciences Building, Leicester LE2 7LX, United Kingdom; NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, College of Life Sciences, Leicester Royal Infirmary, University of Leicester, Level 4, Robert Kilpatrick Clinical Sciences Building, Leicester LE2 7LX, United Kingdom; NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Thompson G Robinson
- Department of Cardiovascular Sciences, College of Life Sciences, Leicester Royal Infirmary, University of Leicester, Level 4, Robert Kilpatrick Clinical Sciences Building, Leicester LE2 7LX, United Kingdom; NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| |
Collapse
|
25
|
Ayaz H, Baker WB, Blaney G, Boas DA, Bortfeld H, Brady K, Brake J, Brigadoi S, Buckley EM, Carp SA, Cooper RJ, Cowdrick KR, Culver JP, Dan I, Dehghani H, Devor A, Durduran T, Eggebrecht AT, Emberson LL, Fang Q, Fantini S, Franceschini MA, Fischer JB, Gervain J, Hirsch J, Hong KS, Horstmeyer R, Kainerstorfer JM, Ko TS, Licht DJ, Liebert A, Luke R, Lynch JM, Mesquida J, Mesquita RC, Naseer N, Novi SL, Orihuela-Espina F, O’Sullivan TD, Peterka DS, Pifferi A, Pollonini L, Sassaroli A, Sato JR, Scholkmann F, Spinelli L, Srinivasan VJ, St. Lawrence K, Tachtsidis I, Tong Y, Torricelli A, Urner T, Wabnitz H, Wolf M, Wolf U, Xu S, Yang C, Yodh AG, Yücel MA, Zhou W. Optical imaging and spectroscopy for the study of the human brain: status report. NEUROPHOTONICS 2022; 9:S24001. [PMID: 36052058 PMCID: PMC9424749 DOI: 10.1117/1.nph.9.s2.s24001] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
This report is the second part of a comprehensive two-part series aimed at reviewing an extensive and diverse toolkit of novel methods to explore brain health and function. While the first report focused on neurophotonic tools mostly applicable to animal studies, here, we highlight optical spectroscopy and imaging methods relevant to noninvasive human brain studies. We outline current state-of-the-art technologies and software advances, explore the most recent impact of these technologies on neuroscience and clinical applications, identify the areas where innovation is needed, and provide an outlook for the future directions.
Collapse
Affiliation(s)
- Hasan Ayaz
- Drexel University, School of Biomedical Engineering, Science, and Health Systems, Philadelphia, Pennsylvania, United States
- Drexel University, College of Arts and Sciences, Department of Psychological and Brain Sciences, Philadelphia, Pennsylvania, United States
| | - Wesley B. Baker
- Children’s Hospital of Philadelphia, Division of Neurology, Philadelphia, Pennsylvania, United States
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Giles Blaney
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - David A. Boas
- Boston University Neurophotonics Center, Boston, Massachusetts, United States
- Boston University, College of Engineering, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Heather Bortfeld
- University of California, Merced, Departments of Psychological Sciences and Cognitive and Information Sciences, Merced, California, United States
| | - Kenneth Brady
- Lurie Children’s Hospital, Northwestern University Feinberg School of Medicine, Department of Anesthesiology, Chicago, Illinois, United States
| | - Joshua Brake
- Harvey Mudd College, Department of Engineering, Claremont, California, United States
| | - Sabrina Brigadoi
- University of Padua, Department of Developmental and Social Psychology, Padua, Italy
| | - Erin M. Buckley
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Emory University School of Medicine, Department of Pediatrics, Atlanta, Georgia, United States
| | - Stefan A. Carp
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Robert J. Cooper
- University College London, Department of Medical Physics and Bioengineering, DOT-HUB, London, United Kingdom
| | - Kyle R. Cowdrick
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Joseph P. Culver
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
| | - Ippeita Dan
- Chuo University, Faculty of Science and Engineering, Tokyo, Japan
| | - Hamid Dehghani
- University of Birmingham, School of Computer Science, Birmingham, United Kingdom
| | - Anna Devor
- Boston University, College of Engineering, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Turgut Durduran
- ICFO – The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Adam T. Eggebrecht
- Washington University in St. Louis, Mallinckrodt Institute of Radiology, St. Louis, Missouri, United States
| | - Lauren L. Emberson
- University of British Columbia, Department of Psychology, Vancouver, British Columbia, Canada
| | - Qianqian Fang
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Sergio Fantini
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - Maria Angela Franceschini
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Jonas B. Fischer
- ICFO – The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Judit Gervain
- University of Padua, Department of Developmental and Social Psychology, Padua, Italy
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
| | - Joy Hirsch
- Yale School of Medicine, Department of Psychiatry, Neuroscience, and Comparative Medicine, New Haven, Connecticut, United States
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Keum-Shik Hong
- Pusan National University, School of Mechanical Engineering, Busan, Republic of Korea
- Qingdao University, School of Automation, Institute for Future, Qingdao, China
| | - Roarke Horstmeyer
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
- Duke University, Department of Electrical and Computer Engineering, Durham, North Carolina, United States
- Duke University, Department of Physics, Durham, North Carolina, United States
| | - Jana M. Kainerstorfer
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Neuroscience Institute, Pittsburgh, Pennsylvania, United States
| | - Tiffany S. Ko
- Children’s Hospital of Philadelphia, Division of Cardiothoracic Anesthesiology, Philadelphia, Pennsylvania, United States
| | - Daniel J. Licht
- Children’s Hospital of Philadelphia, Division of Neurology, Philadelphia, Pennsylvania, United States
| | - Adam Liebert
- Polish Academy of Sciences, Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Robert Luke
- Macquarie University, Department of Linguistics, Sydney, New South Wales, Australia
- Macquarie University Hearing, Australia Hearing Hub, Sydney, New South Wales, Australia
| | - Jennifer M. Lynch
- Children’s Hospital of Philadelphia, Division of Cardiothoracic Anesthesiology, Philadelphia, Pennsylvania, United States
| | - Jaume Mesquida
- Parc Taulí Hospital Universitari, Critical Care Department, Sabadell, Spain
| | - Rickson C. Mesquita
- University of Campinas, Institute of Physics, Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, São Paulo, Brazil
| | - Noman Naseer
- Air University, Department of Mechatronics and Biomedical Engineering, Islamabad, Pakistan
| | - Sergio L. Novi
- University of Campinas, Institute of Physics, Campinas, São Paulo, Brazil
- Western University, Department of Physiology and Pharmacology, London, Ontario, Canada
| | | | - Thomas D. O’Sullivan
- University of Notre Dame, Department of Electrical Engineering, Notre Dame, Indiana, United States
| | - Darcy S. Peterka
- Columbia University, Zuckerman Mind Brain Behaviour Institute, New York, United States
| | | | - Luca Pollonini
- University of Houston, Department of Engineering Technology, Houston, Texas, United States
| | - Angelo Sassaroli
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - João Ricardo Sato
- Federal University of ABC, Center of Mathematics, Computing and Cognition, São Bernardo do Campo, São Paulo, Brazil
| | - Felix Scholkmann
- University of Bern, Institute of Complementary and Integrative Medicine, Bern, Switzerland
- University of Zurich, University Hospital Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zürich, Switzerland
| | - Lorenzo Spinelli
- National Research Council (CNR), IFN – Institute for Photonics and Nanotechnologies, Milan, Italy
| | - Vivek J. Srinivasan
- University of California Davis, Department of Biomedical Engineering, Davis, California, United States
- NYU Langone Health, Department of Ophthalmology, New York, New York, United States
- NYU Langone Health, Department of Radiology, New York, New York, United States
| | - Keith St. Lawrence
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Ilias Tachtsidis
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Yunjie Tong
- Purdue University, Weldon School of Biomedical Engineering, West Lafayette, Indiana, United States
| | - Alessandro Torricelli
- Politecnico di Milano, Dipartimento di Fisica, Milan, Italy
- National Research Council (CNR), IFN – Institute for Photonics and Nanotechnologies, Milan, Italy
| | - Tara Urner
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Heidrun Wabnitz
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Martin Wolf
- University of Zurich, University Hospital Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zürich, Switzerland
| | - Ursula Wolf
- University of Bern, Institute of Complementary and Integrative Medicine, Bern, Switzerland
| | - Shiqi Xu
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Changhuei Yang
- California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | - Meryem A. Yücel
- Boston University Neurophotonics Center, Boston, Massachusetts, United States
- Boston University, College of Engineering, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Wenjun Zhou
- University of California Davis, Department of Biomedical Engineering, Davis, California, United States
- China Jiliang University, College of Optical and Electronic Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
26
|
Lafontant A, Mahanna Gabrielli E, Bergonzi K, Forti RM, Ko TS, Shah RM, Arkles JS, Licht DJ, Yodh AG, Kofke WA, White BR, Baker WB. Comparison of optical measurements of critical closing pressure acquired before and during induced ventricular arrhythmia in adults. NEUROPHOTONICS 2022; 9:035004. [PMID: 36039170 PMCID: PMC9407009 DOI: 10.1117/1.nph.9.3.035004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Significance: The critical closing pressure (CrCP) of cerebral circulation, as measured by diffuse correlation spectroscopy (DCS), is a promising biomarker of intracranial hypertension. However, CrCP techniques using DCS have not been assessed in gold standard experiments. Aim: CrCP is typically calculated by examining the variation of cerebral blood flow (CBF) during the cardiac cycle (with normal sinus rhythm). We compare this typical CrCP measurement with a gold standard obtained during the drops in arterial blood pressure (ABP) caused by rapid ventricular pacing (RVP) in patients undergoing invasive electrophysiologic procedures. Approach: Adults receiving electrophysiology procedures with planned ablation were enrolled for DCS CBF monitoring. CrCP was calculated from CBF and ABP data by three methods: (1) linear extrapolation of data during RVP ( CrCP RVP ; the gold standard); (2) linear extrapolation of data during regular heartbeats ( CrCP Linear ); and (3) fundamental harmonic Fourier filtering of data during regular heartbeats ( CrCP Fourier ). Results: CBF monitoring was performed prior to and during 55 episodes of RVP in five adults. CrCP RVP and CrCP Fourier demonstrated agreement ( R = 0.66 , slope = 1.05 (95%CI, 0.72 to 1.38). Agreement between CrCP RVP and CrCP Linear was worse; CrCP Linear was 8.2 ± 5.9 mmHg higher than CrCP RVP (mean ± SD; p < 0.001 ). Conclusions: Our results suggest that DCS-measured CrCP can be accurately acquired during normal sinus rhythm.
Collapse
Affiliation(s)
- Alec Lafontant
- Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Department of Pediatrics, Division of Neurology, Philadelphia, Pennsylvania, United States
| | - Elizabeth Mahanna Gabrielli
- University of Miami Miller School of Medicine, Department of Anesthesiology, Perioperative Medicine and Pain Management, Miami, Florida, United States
| | - Karla Bergonzi
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | - Rodrigo M. Forti
- Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Department of Pediatrics, Division of Neurology, Philadelphia, Pennsylvania, United States
| | - Tiffany S. Ko
- Children’s Hospital of Philadelphia, Department of Anesthesiology and Critical Care Medicine, Philadelphia, Pennsylvania, United States
| | - Ronak M. Shah
- Perelman School of Medicine at the University of Pennsylvania, Department of Anesthesiology and Critical Care, Philadelphia, Pennsylvania, United States
| | - Jeffrey S. Arkles
- Perelman School of Medicine at the University of Pennsylvania, Department of Medicine, Division of Cardiovascular Medicine, Philadelphia, Pennsylvania, United States
| | - Daniel J. Licht
- Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Department of Pediatrics, Division of Neurology, Philadelphia, Pennsylvania, United States
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | - W. Andrew Kofke
- Perelman School of Medicine at the University of Pennsylvania, Department of Anesthesiology and Critical Care, Philadelphia, Pennsylvania, United States
| | - Brian R. White
- Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Department of Pediatrics, Division of Pediatric Cardiology, Philadelphia, Pennsylvania, United States
| | - Wesley B. Baker
- Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Department of Pediatrics, Division of Neurology, Philadelphia, Pennsylvania, United States
| |
Collapse
|
27
|
Clough RH, Minhas JS, Haunton VJ, Hanby MF, Robinson TG, Panerai RB. Dynamics of the cerebral autoregulatory response to paced hyperventilation assessed using sub-component and time-varying analyses. J Appl Physiol (1985) 2022; 133:311-319. [PMID: 35736950 DOI: 10.1152/japplphysiol.00100.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cerebral blood flow (CBF) can be altered by a change in partial pressure of arterial CO2 (pCO2), being reduced during hyperventilation (HPV). Critical closing pressure (CrCP) and resistance area product (RAP) are parameters which can be studied to understand this change, but their dynamic response has not been investigated during paced HPV (PHPV). Seventy five participants had recordings at rest and during PHPV. Blood pressure (BP) (Finometer), bilateral CBF velocity (CBFV) (transcranial Doppler), end-tidal CO2 (capnography) and heart rate (HR) were recorded continuously. Subcomponent analysis (SCA) and time-varying CrCP, RAP and dynamic cerebral autoregulation (Autoregulation Index, ARI) were estimated comparing PHPV to poikilocapnia. PHPV caused a change in CBFV (p<0.01), EtCO2, (p<0.01), HR (p<0.001) and RAP (p<0.01). SCA demonstrated RAP was the main parameter explaining the changes in CBFV due to PHPV. The time-varying step responses for CBFV and RAP during PHPV demonstrated considerable non-stationarity compared to poikilocapnia (p<0.00001). Although time-varying ARI was temporarily depressed, after 60 s of PHPV it was significantly higher (6.81 ± 1.88) (p<0.0001) than in poikilocapnia (5.08 ± 1.86). The mean plateau of the RAP step response was -98.3 ± 58.8 % 60 s after the onset of PHPV but -71.7 ± 45.0 % for poikilocapnia (p=0.0026), with no corresponding changes in CrCP (p=0.6). Further work is needed to assess the role of sex and aging in our findings, and the potential for using RAP and CrCP to improve the sensitivity and specificity of CO2 reactivity studies in cerebrovascular conditions.
Collapse
Affiliation(s)
- Rebecca H Clough
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Jatinder S Minhas
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom.,NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Victoria J Haunton
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom.,NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Martha Frances Hanby
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Thompson G Robinson
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom.,NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Ronney B Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom.,NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| |
Collapse
|
28
|
Kho E, Sperna Weiland NH, Vlaar APJ, Veelo DP, van der Ster BJP, Corsmit OT, Koolbergen DR, Dilai J, Immink RV. Cerebral hemodynamics during sustained intra-operative hypotension. J Appl Physiol (1985) 2022; 132:1560-1568. [PMID: 35511723 DOI: 10.1152/japplphysiol.00050.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background Static cerebral autoregulation (CA) maintains cerebral blood flow (CBF) relatively constant above a mean arterial blood pressure (BPmean) of 60-65 mmHg. Below this lower limit of CA (LLCA), CBF declines along with BPmean. Data are lacking describing how CA reacts to sustained hypotension, since hypotension is usually avoided. In this study, we took advantage of a procedure requiring sustained hypotension. We assessed static CA for LLCA determination, and a more continuous CA, which counter short-term blood pressure variations. With these data, we analyzed CA during longstanding hypotension. Methods Continuous arterial blood pressure and middle cerebral artery blood flow velocity (MCAVmean) were monitored in 23 patients that required deep intra-operative hypotension. The LLCA was determined for every patient, and BPmean below this LLCA was classified as the patient specific hypotension. With the mean flow index (Mxa) continuous CA (Mxa-CA) was quantified. Mxa was calculated and averaged after induction of general anesthesia (baseline), every 15 minutes during, and 15 minutes after one-hour of hypotension. Functioning CA was defined as Mxa <0.4. Data are expressed as median (25th-75th percentile). Results The LLCA was located at 56 (47-74) mmHg. At baseline, Mxa was 0.21 (0.14-0.32) and 0.61 (0.48-0.78) during hypotension (p<0.01), with no appreciable change over time, n=12. After blood pressure restoration, Mxa improved, 0.25 (0.06-0.35, n=9). Conclusions Mxa-CA became and remained disturbed during the one-hour of hypotension, and improved after blood pressure restoration. This completely reversible situation suggests no ischemic hyperemia occurs and renders an adaptation mechanism during sustained hypotension unlikely.
Collapse
Affiliation(s)
- Eline Kho
- Department of Intensive Care, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Alexander P J Vlaar
- Department of Intensive Care, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Denise P Veelo
- Department of Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Björn J P van der Ster
- Department of Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Oskar T Corsmit
- Department of Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Dave R Koolbergen
- Department of Cardio-thoracic Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - José Dilai
- Department of Clinical Neurophysiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rogier V Immink
- Department of Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Mainali S, Cardim D, Sarwal A, Merck LH, Yeatts SD, Czosnyka M, Shutter L. Prolonged Automated Robotic TCD Monitoring in Acute Severe TBI: Study Design and Rationale. Neurocrit Care 2022; 37:267-275. [PMID: 35381966 DOI: 10.1007/s12028-022-01483-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Transcranial Doppler ultrasonography (TCD) is a portable, bedside, noninvasive diagnostic tool used for the real-time assessment of cerebral hemodynamics. Despite the evident utility of TCD and the ability of this technique to function as a stethoscope to the brain, its use has been limited to specialized centers because of the dearth of technical and clinical expertise required to acquire and interpret the cerebrovascular parameters. Additionally, the conventional pragmatic episodic TCD monitoring protocols lack dynamic real-time feedback to guide time-critical clinical interventions. Fortunately, with the recent advent of automated robotic TCD technology in conjunction with the automated software for TCD data processing, we now have the technology to automatically acquire TCD data and obtain clinically relevant information in real-time. By obviating the need for highly trained clinical personnel, this technology shows great promise toward a future of widespread noninvasive monitoring to guide clinical care in patients with acute brain injury. METHODS Here, we describe a proposal for a prospective observational multicenter clinical trial to evaluate the safety and feasibility of prolonged automated robotic TCD monitoring in patients with severe acute traumatic brain injury (TBI). We will enroll patients with severe non-penetrating TBI with concomitant invasive multimodal monitoring including, intracranial pressure, brain tissue oxygenation, and brain temperature monitoring as part of standard of care in centers with varying degrees of TCD availability and experience. Additionally, we propose to evaluate the correlation of pertinent TCD-based cerebral autoregulation indices such as the critical closing pressure, and the pressure reactivity index with the brain tissue oxygenation values obtained invasively. CONCLUSIONS The overarching goal of this study is to establish safety and feasibility of prolonged automated TCD monitoring for patients with TBI in the intensive care unit and identify clinically meaningful and pragmatic noninvasive targets for future interventions.
Collapse
Affiliation(s)
- Shraddha Mainali
- Department of Neurology, Virginial Commonwealth University, Richmond, VA, USA.
| | - Danilo Cardim
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Aarti Sarwal
- Department of Neurology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Lisa H Merck
- Departments of Emergency Medicine and Neurology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Sharon D Yeatts
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Marek Czosnyka
- Brain Physics Laboratory, Neurosurgical Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Lori Shutter
- Department of Critical Care Medicine, Neurology, and Neurosurgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
30
|
Chacón M, Rojas-Pescio H, Peñaloza S, Landerretche J. Machine Learning Models and Statistical Complexity to Analyze the Effects of Posture on Cerebral Hemodynamics. ENTROPY 2022; 24:e24030428. [PMID: 35327938 PMCID: PMC8947420 DOI: 10.3390/e24030428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023]
Abstract
The mechanism of cerebral blood flow autoregulation can be of great importance in diagnosing and controlling a diversity of cerebrovascular pathologies such as vascular dementia, brain injury, and neurodegenerative diseases. To assess it, there are several methods that use changing postures, such as sit-stand or squat-stand maneuvers. However, the evaluation of the dynamic cerebral blood flow autoregulation (dCA) in these postures has not been adequately studied using more complex models, such as non-linear ones. Moreover, dCA can be considered part of a more complex mechanism called cerebral hemodynamics, where others (CO2 reactivity and neurovascular-coupling) that affect cerebral blood flow (BF) are included. In this work, we analyzed postural influences using non-linear machine learning models of dCA and studied characteristics of cerebral hemodynamics under statistical complexity using eighteen young adult subjects, aged 27 ± 6.29 years, who took the systemic or arterial blood pressure (BP) and cerebral blood flow velocity (BFV) for five minutes in three different postures: stand, sit, and lay. With models of a Support Vector Machine (SVM) through time, we used an AutoRegulatory Index (ARI) to compare the dCA in different postures. Using wavelet entropy, we estimated the statistical complexity of BFV for three postures. Repeated measures ANOVA showed that only the complexity of lay-sit had significant differences.
Collapse
Affiliation(s)
- Max Chacón
- Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Av. Víctor Jara N° 2659, Estación Central, Santiago 9190864, Chile; (H.R.-P.); (S.P.)
- Correspondence:
| | - Hector Rojas-Pescio
- Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Av. Víctor Jara N° 2659, Estación Central, Santiago 9190864, Chile; (H.R.-P.); (S.P.)
| | - Sergio Peñaloza
- Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Av. Víctor Jara N° 2659, Estación Central, Santiago 9190864, Chile; (H.R.-P.); (S.P.)
| | - Jean Landerretche
- Unidad de Neurología, Escuela de Medicina, Universidad de Santiago de Chile, Av. Alameda N° 3336, Estación Central, Santiago 9170022, Chile;
| |
Collapse
|
31
|
Simpson DM, Payne SJ, Panerai RB. The INfoMATAS project: Methods for assessing cerebral autoregulation in stroke. J Cereb Blood Flow Metab 2022; 42:411-429. [PMID: 34279146 PMCID: PMC8851676 DOI: 10.1177/0271678x211029049] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Cerebral autoregulation refers to the physiological mechanism that aims to maintain blood flow to the brain approximately constant when blood pressure changes. Impairment of this protective mechanism has been linked to a number of serious clinical conditions, including carotid stenosis, head trauma, subarachnoid haemorrhage and stroke. While the concept and experimental evidence is well established, methods for the assessment of autoregulation in individual patients remains an open challenge, with no gold-standard having emerged. In the current review paper, we will outline some of the basic concepts of autoregulation, as a foundation for experimental protocols and signal analysis methods used to extract indexes of cerebral autoregulation. Measurement methods for blood flow and pressure are discussed, followed by an outline of signal pre-processing steps. An outline of the data analysis methods is then provided, linking the different approaches through their underlying principles and rationale. The methods cover correlation based approaches (e.g. Mx) through Transfer Function Analysis to non-linear, multivariate and time-variant approaches. Challenges in choosing which method may be 'best' and some directions for ongoing and future research conclude this work.
Collapse
Affiliation(s)
- David M Simpson
- Institute of Sound and Vibration Research, University of Southampton, Southampton, UK
| | - Stephen J Payne
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, Leicester Royal Infirmary, Leicester, UK
| |
Collapse
|
32
|
Fan JL, Nogueira RC, Brassard P, Rickards CA, Page M, Nasr N, Tzeng YC. Integrative physiological assessment of cerebral hemodynamics and metabolism in acute ischemic stroke. J Cereb Blood Flow Metab 2022; 42:454-470. [PMID: 34304623 PMCID: PMC8985442 DOI: 10.1177/0271678x211033732] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Restoring perfusion to ischemic tissue is the primary goal of acute ischemic stroke care, yet only a small portion of patients receive reperfusion treatment. Since blood pressure (BP) is an important determinant of cerebral perfusion, effective BP management could facilitate reperfusion. But how BP should be managed in very early phase of ischemic stroke remains a contentious issue, due to the lack of clear evidence. Given the complex relationship between BP and cerebral blood flow (CBF)-termed cerebral autoregulation (CA)-bedside monitoring of cerebral perfusion and oxygenation could help guide BP management, thereby improve stroke patient outcome. The aim of INFOMATAS is to 'identify novel therapeutic targets for treatment and management in acute ischemic stroke'. In this review, we identify novel physiological parameters which could be used to guide BP management in acute stroke, and explore methodologies for monitoring them at the bedside. We outline the challenges in translating these potential prognostic markers into clinical use.
Collapse
Affiliation(s)
- Jui-Lin Fan
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ricardo C Nogueira
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo, Brazil.,Neurology Department, Hospital Nove de Julho, São Paulo, Brazil
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Caroline A Rickards
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Matthew Page
- Department of Radiology, Wellington Regional Hospital, Wellington, New Zealand
| | - Nathalie Nasr
- Department of Neurology, Toulouse University Hospital, NSERM UMR 1297, Toulouse, France
| | - Yu-Chieh Tzeng
- Wellington Medical Technology Group, Department of Surgery & Anaesthesia, University of Otago, Wellington, New Zealand.,Centre for Translational Physiology, Department of Surgery & Anaesthesia, University of Otago, Wellington, New Zealand
| |
Collapse
|
33
|
Impaired cerebral autoregulation, cerebral perfusion pressure, and intracranial pressure in eclampsia. Am J Obstet Gynecol 2022; 226:287-288. [PMID: 34582794 DOI: 10.1016/j.ajog.2021.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/22/2022]
|
34
|
Burma JS, Kennedy CM, Penner LC, Miutz LN, Galea OA, Ainslie PN, Smirl JD. Long-term heart transplant recipients: heart rate-related effects on augmented transfer function coherence during repeated squat-stand maneuvers in males. Am J Physiol Regul Integr Comp Physiol 2021; 321:R925-R937. [PMID: 34730005 DOI: 10.1152/ajpregu.00177.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous research has highlighted that squat-stand maneuvers (SSMs) augment coherence values within the cerebral pressure-flow relationship to ∼0.99. However, it is not fully elucidated if mean arterial pressure (MAP) leads to this physiological entrainment independently, or if heart rate (HR) and/or the partial pressure of carbon dioxide (Pco2) also have contributing influences. A 2:1 control-to-case model was used in the present investigation [participant number (n) = 40; n = 16 age-matched (AM); n = 16 donor control (DM); n = 8 heart transplant recipients (HTRs)]. The latter group was used to mechanistically isolate the extent to which HR influences the cerebral pressure-flow relationship. Participants completed 5 min of squat-stand maneuvers at 0.05 Hz (10 s) and 0.10 Hz (5 s). Linear transfer function analysis (TFA) examined the relationship between different physiological inputs (i.e., MAP, HR, and Pco2) and output [cerebral blood velocity (CBV)] during SSM; and cardiac baroreceptor sensitivity (BRS). Compared with DM, cardiac BRS was reduced in AM (P < 0.001), which was further reduced in HTR (P < 0.045). In addition, during the SSM, HR was elevated in HTR compared with both control groups (P < 0.001), but all groups had near-maximal coherence metrics ≥0.98 at 0.05 Hz and ≥0.99 at 0.10 Hz (P ≥ 0.399). In contrast, the mean HR-CBV/Pco2-CBV relationships ranged from 0.38 (HTR) to 0.81 (DM). Despite near abolishment of BRS and blunted HR following heart transplantation, long-term HTR exhibited near-maximal coherence within the MAP-CBV relationship, comparable with AM and DM. Therefore, these results show that the augmented coherence with SSM is driven by blood pressure, whereas elevations in TFA coherence as a result of HR contribution are likely correlational in nature.
Collapse
Affiliation(s)
- Joel S Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Courtney M Kennedy
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Linden C Penner
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Lauren N Miutz
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Olivia A Galea
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia, Kelowna, British Columbia, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada.,Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
35
|
Koep JL, Taylor CE, Coombes JS, Bond B, Ainslie PN, Bailey TG. Autonomic control of cerebral blood flow: fundamental comparisons between peripheral and cerebrovascular circulations in humans. J Physiol 2021; 600:15-39. [PMID: 34842285 DOI: 10.1113/jp281058] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/25/2021] [Indexed: 01/12/2023] Open
Abstract
Understanding the contribution of the autonomic nervous system to cerebral blood flow (CBF) control is challenging, and interpretations are unclear. The identification of calcium channels and adrenoreceptors within cerebral vessels has led to common misconceptions that the function of these receptors and actions mirror those of the peripheral vasculature. This review outlines the fundamental differences and complex actions of cerebral autonomic activation compared with the peripheral circulation. Anatomical differences, including the closed nature of the cerebrovasculature, and differential adrenoreceptor subtypes, density, distribution and sensitivity, provide evidence that measures on peripheral sympathetic nerve activity cannot be extrapolated to the cerebrovasculature. Cerebral sympathetic nerve activity seems to act opposingly to the peripheral circulation, mediated at least in part by changes in intracranial pressure and cerebral blood volume. Additionally, heterogeneity in cerebral adrenoreceptor distribution highlights region-specific autonomic regulation of CBF. Compensatory chemo- and autoregulatory responses throughout the cerebral circulation, and interactions with parasympathetic nerve activity are unique features to the cerebral circulation. This crosstalk between sympathetic and parasympathetic reflexes acts to ensure adequate perfusion of CBF to rising and falling perfusion pressures, optimizing delivery of oxygen and nutrients to the brain, while attempting to maintain blood volume and intracranial pressure. Herein, we highlight the distinct similarities and differences between autonomic control of cerebral and peripheral blood flow, and the regional specificity of sympathetic and parasympathetic regulation within the cerebrovasculature. Future research directions are outlined with the goal to further our understanding of autonomic control of CBF in humans.
Collapse
Affiliation(s)
- Jodie L Koep
- Physiology and Ultrasound Laboratory in Science and Exercise, Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia.,Children's Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Chloe E Taylor
- School of Health Sciences, Western Sydney University, Sydney, Australia
| | - Jeff S Coombes
- Physiology and Ultrasound Laboratory in Science and Exercise, Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Bert Bond
- Children's Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Tom G Bailey
- Physiology and Ultrasound Laboratory in Science and Exercise, Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia.,School of Nursing, Midwifery and Social Work, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
36
|
Esmael A, Flifel ME, Elmarakby F, Belal T. Predictive value of the transcranial Doppler and mean arterial flow velocity for early detection of cerebral vasospasm in aneurysmal subarachnoid hemorrhage. ULTRASOUND : JOURNAL OF THE BRITISH MEDICAL ULTRASOUND SOCIETY 2021; 29:218-228. [PMID: 34777542 DOI: 10.1177/1742271x20976965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 10/27/2020] [Indexed: 01/15/2023]
Abstract
Objectives We aimed to predict cerebral vasospasm in acute aneurysmal subarachnoid hemorrhage and to determine the cut-off values of the mean flow velocity by the use of transcranial Doppler. Methods A total of 40 patients with acute aneurysmal subarachnoid hemorrhage were included in this study and classified into two groups. The first group was 26 patients (65%) with cerebral vasospasm and the second group was 14 patients (35%) without vasospasm. Initial evaluation using the Glasgow Coma Scale and the severity of aneurysmal subarachnoid hemorrhage was detected by using both the clinical Hunt and Hess and radiological Fisher grading scales. All patients underwent transcranial Doppler evaluations five times in 10 days measuring the mean flow velocities (MFV) of cerebral arteries. Results Patients with cerebral vasospasm were associated with significantly higher mean Glasgow Coma Scale score (p = 0.03), significantly higher mean Hunt and Hess scale grades (p = 0.04), with significantly higher mean diabetes mellitus (p = 0.03), significantly higher mean systolic blood pressure and diastolic blood pressure (p = 0.02 and p = 0.005 respectively) and significantly higher MFVs measured within the first 10 days. Logistic regression analysis demonstrated that MFV ≥81 cm/s in the middle cerebral artery is accompanied by an almost five-fold increased risk of vasospasm (OR 4.92, p < 0.01), while MFV ≥63 cm/s in the anterior cerebral artery is accompanied by a three-fold increased risk of vasospasm (OR 3.12, p < 0.01), and MFV ≥42 cm/s in the posterior cerebral artery is accompanied by a two-fold increased risk of vasospasm (OR 2.11, p < 0.05). Conclusion Transcranial Doppler is a useful tool for early detection, monitoring, and prediction of post subarachnoid vasospasm and valuable for early therapeutic intervention before irreversible ischemic neurological deficits take place.
Collapse
Affiliation(s)
- Ahmed Esmael
- Neurology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed E Flifel
- Neurology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Farid Elmarakby
- Neuropsychiatry Department, Mataria Teaching Hospital, Egypt
| | - Tamer Belal
- Neurology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
37
|
Panerai RB, Haunton VJ, Llwyd O, Minhas JS, Katsogridakis E, Salinet ASM, Maggio P, Robinson TG. Cerebral critical closing pressure and resistance-area product: the influence of dynamic cerebral autoregulation, age and sex. J Cereb Blood Flow Metab 2021; 41:2456-2469. [PMID: 33818187 PMCID: PMC8392773 DOI: 10.1177/0271678x211004131] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 01/19/2021] [Accepted: 02/16/2021] [Indexed: 11/21/2022]
Abstract
Instantaneous arterial pressure-flow (or velocity) relationships indicate the existence of a cerebral critical closing pressure (CrCP), with the slope of the relationship expressed by the resistance-area product (RAP). In 194 healthy subjects (20-82 years, 90 female), cerebral blood flow velocity (CBFV, transcranial Doppler), arterial blood pressure (BP, Finapres) and end-tidal CO2 (EtCO2, capnography) were measured continuously for five minutes during spontaneous fluctuations of BP at rest. The dynamic cerebral autoregulation (CA) index (ARI) was extracted with transfer function analysis from the CBFV step response to the BP input and step responses were also obtained for the BP-CrCP and BP-RAP relationships. ARI was shown to decrease with age at a rate of -0.025 units/year in men (p = 0.022), but not in women (p = 0.40). The temporal patterns of the BP-CBFV, BP-CrCP and BP-RAP step responses were strongly influenced by the ARI (p < 0.0001), but not by sex. Age was also a significant determinant of the peak of the CBFV step response and the tail of the RAP response. Whilst the RAP step response pattern is consistent with a myogenic mechanism controlling dynamic CA, further work is needed to explore the potential association of the CrCP step response with the flow-mediated component of autoregulation.
Collapse
Affiliation(s)
- Ronney B Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Victoria J Haunton
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Osian Llwyd
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Jatinder S Minhas
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Emmanuel Katsogridakis
- Department of Vascular Surgery, Wythenshawe Hospital, Manchester Foundation Trust, Manchester, UK
| | - Angela SM Salinet
- Neurology Department, Hospital das Clinicas, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Paola Maggio
- Neurology Department, ASST Bergamo EST (BG), Italy
| | - Thompson G Robinson
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
38
|
Jara JL, Morales-Rojas C, Fernández-Muñoz J, Haunton VJ, Chacón M. Using complexity-entropy planes to detect Parkinson's disease from short segments of haemodynamic signals. Physiol Meas 2021; 42. [PMID: 34256359 DOI: 10.1088/1361-6579/ac13ce] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/13/2021] [Indexed: 11/11/2022]
Abstract
Objective. There is emerging evidence that analysing the entropy and complexity of biomedical signals can detect underlying changes in physiology which may be reflective of disease pathology. This approach can be used even when only short recordings of biomedical signals are available. This study aimed to determine whether entropy and complexity measures can detect differences between subjects with Parkinsons disease and healthy controls (HCs).Approach. A method based on a diagram of entropy versus complexity, named complexity-entropy plane, was used to re-analyse a dataset of cerebral haemodynamic signals from subjects with Parkinsons disease and HCs obtained under poikilocapnic conditions. A probability distribution for a set of ordinal patterns, designed to capture regularities in a time series, was computed from each signal under analysis. Four types of entropy and ten types of complexity measures were estimated from these distributions. Mean values of entropy and complexity were compared and their classification power was assessed by evaluating the best linear separator on the corresponding complexity-entropy planes.Main results. Few linear separators obtained significantly better classification, evaluated as the area under the receiver operating characteristic curve, than signal mean values. However, significant differences in both entropy and complexity were detected between the groups of participants.Significance. Measures of entropy and complexity were able to detect differences between healthy volunteers and subjects with Parkinson's disease, in poikilocapnic conditions, even though only short recordings were available for analysis. Further work is needed to refine this promising approach, and to help understand the findings in the context of specific pathophysiological changes.
Collapse
Affiliation(s)
- J L Jara
- Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Usach, Santiago, Chile
| | - Catalina Morales-Rojas
- Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Usach, Santiago, Chile
| | - Juan Fernández-Muñoz
- Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Usach, Santiago, Chile
| | - Victoria J Haunton
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Max Chacón
- Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Usach, Santiago, Chile
| |
Collapse
|
39
|
Robles FAB, Panerai RB, Katsogridakis E, Chacon M. Superior fitting of arterial resistance and compliance parameters with genetic algorithms in models of dynamic cerebral autoregulation. IEEE Trans Biomed Eng 2021; 69:503-512. [PMID: 34314353 DOI: 10.1109/tbme.2021.3100288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The capacity of discriminating between normal and impaired dynamic cerebral autoregulation (dCA), based on spontaneous fluctuations in arterial blood pressure (ABP) and cerebral blood flow (CBF), has considerable clinical relevance. This study aimed to quantify the separate contributions of vascular resistance and compliance as parameters that could reflect myogenic and metabolic mechanisms to dCA. METHODS Forty-five subjects were studied under normo and hypercapnic conditions induced by breathing a mixture of 5% carbon dioxide in air. Dynamic cerebrovascular resistance and compliance models with ABP as input and CBFV as output were fitted using Genetic Algorithms to identify parameter values for each subject, and respiratory condition. RESULTS The efficiency of dCA was assessed from the models generated CBFV response to an ABP step change, corresponding to an autoregulation index of 5.561.57 in normocapnia and 2.381.73 in hypercapnia, with an area under the ROC curve (AUC) of 0.9 between both conditions. Vascular compliance increased from 0.750.7 ml/mmHg in normocapnia to 5.8212.0 ml/mmHg during hypercapnia, with an AUC of 0.88. CONCLUSION we demonstrated that Genetic Algorithms are a powerful tool to provide accurate identification of model parameters expressing the performance of human CA Significance: Further work is needed to validate this approach in clinical applications where individualised model parameters could provide relevant diagnostic and prognostic information about dCA impairment Index Terms arterial compliance, autoregulation impairment, cerebral blood flow, Genetic Algorithms, hypercapnia.
Collapse
|
40
|
Ince J, Mankoo AS, Kadicheeni M, Swienton D, Panerai RB, Robinson TG, Minhas JS. Cerebrovascular tone and resistance measures differ between healthy control and patients with acute intracerebral haemorrhage: exploratory analyses from the BREATHE-ICH study. Physiol Meas 2021; 42. [PMID: 33853052 DOI: 10.1088/1361-6579/abf7da] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/14/2021] [Indexed: 11/12/2022]
Abstract
Objective.Cerebral autoregulation impairment in acute neurovascular disease is well described. The recent BREATHE-ICH study demonstrated improvements in dynamic cerebral autoregulation, by hypocapnia generated by hyperventilation, in the acute period following intracranial haemorrhage (ICH). This exploratory analysis of the BREATHE-ICH dataset aims to examine the differences in hypocapnic responses between healthy controls and patients with ICH, and determine whether haemodynamic indices differ between baseline and hypocapnic states.Approach.Acute ICH patients were recruited within 48 h of onset and healthy volunteers were recruited from a university setting. Transcranial Doppler measurements of the middle cerebral artery were obtained at baseline and then a hyperventilation intervention was used to induce hypocapnia. Patients with ICH were then followed up at 10-14 D post-event for repeated measurements.Main results.Data from 43 healthy controls and 12 patients with acute ICH met the criteria for statistical analysis. In both normocapnic and hypocapnic conditions, significantly higher critical closing pressure and resistance area product were observed in patients with ICH. Furthermore, critical closing pressure changes were observed to be sustained at 10-14 D follow up. During both the normocapnic and hypocapnic states, reduced autoregulation index was observed bilaterally in patients with ICH, compared to healthy controls.Significance.Whilst this exploratory analysis was limited by a small, non-age matched sample, significant differences between ICH patients and healthy controls were observed in factors associated with cerebrovascular tone and resistance. These differences suggest underlying cerebral autoregulation changes in ICH, which may play a pivotal role in the morbidity and mortality associated with ICH.
Collapse
Affiliation(s)
- Jonathan Ince
- Department of Cardiovascular Sciences, University of Leicester, United Kingdom
| | - Alex S Mankoo
- Department of Cardiovascular Sciences, University of Leicester, United Kingdom
| | - Meeriam Kadicheeni
- Department of Cardiovascular Sciences, University of Leicester, United Kingdom
| | - David Swienton
- Department of Radiology, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester, United Kingdom.,NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Thompson G Robinson
- Department of Cardiovascular Sciences, University of Leicester, United Kingdom.,NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Jatinder S Minhas
- Department of Cardiovascular Sciences, University of Leicester, United Kingdom.,NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| |
Collapse
|
41
|
Moraes L, Yelicich B, Noble M, Biestro A, Puppo C. Impacts of a Pressure Challenge on Cerebral Critical Closing Pressure and Effective Cerebral Perfusion Pressure in Patients with Traumatic Brain Injury. ACTA NEUROCHIRURGICA. SUPPLEMENT 2021; 131:11-16. [PMID: 33839809 DOI: 10.1007/978-3-030-59436-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Cerebral critical closing pressure (CrCP) comprises intracranial pressure (ICP) and arteriolar wall tension (WT). It is the arterial blood pressure (ABP) at which small vessels close and circulation stops. We hypothesized that the increase in WT secondary to a systemic hypertensive challenge would lead to an increase in CrCP and that the "effective" cerebral perfusion pressure (CPPeff; calculated as ABP - CrCP) would give more complete information than the "conventional" cerebral perfusion pressure (CPP; calculated as ABP - ICP). OBJECTIVE This study aimed to compare CrCP, CPP, and CPPeff changes during a hypertensive challenge in patients with a severe traumatic brain injury. PATIENTS AND METHODS Data on ABP, ICP, and cerebral blood flow velocity, measured by transcranial Doppler ultrasound, were acquired simultaneously for 30 min both basally and during a hypertensive challenge. An impedance-based CrCP model was used. RESULTS The following values are expressed as median (interquartile range). There were 11 patients, aged 29 (14) years. CPP increased from 73 (17) to 102 (26) mmHg (P ≤ 0.001). ICP did not change. CrCP changed from 23 (11) to 27 (10) mmHg (P ≤ 0.001). WT increased from 7 (5) to 11 (7) mmHg (P ˂ 0.005). CPPeff changed less than CPP. CONCLUSION The CPP change was greater than the CPPeff change, mainly because CrCP increased simultaneously with the WT increase as a result of the autoregulatory response. CPPeff provides information about the real driving force generating blood movement.
Collapse
Affiliation(s)
- Leandro Moraes
- Intensive Care Unit, Hospital de Clinicas, Universidad de la Republica, Montevideo, Uruguay
| | - Bernardo Yelicich
- Intensive Care Unit, Hospital de Clinicas, Universidad de la Republica, Montevideo, Uruguay
| | - Mayda Noble
- Intensive Care Unit, Hospital de Clinicas, Universidad de la Republica, Montevideo, Uruguay
| | - Alberto Biestro
- Intensive Care Unit, Hospital de Clinicas, Universidad de la Republica, Montevideo, Uruguay
| | - Corina Puppo
- Intensive Care Unit, Hospital de Clinicas, Universidad de la Republica, Montevideo, Uruguay.
| |
Collapse
|
42
|
Wu KC, Sunwoo J, Sheriff F, Farzam P, Farzam PY, Orihuela-Espina F, LaRose SL, Monk AD, Aziz-Sultan MA, Patel N, Vaitkevicius H, Franceschini MA. Validation of diffuse correlation spectroscopy measures of critical closing pressure against transcranial Doppler ultrasound in stroke patients. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200360R. [PMID: 33774980 PMCID: PMC7998065 DOI: 10.1117/1.jbo.26.3.036008] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/08/2021] [Indexed: 05/25/2023]
Abstract
SIGNIFICANCE Intracranial pressure (ICP), variability in perfusion, and resulting ischemia are leading causes of secondary brain injury in patients treated in the neurointensive care unit. Continuous, accurate monitoring of cerebral blood flow (CBF) and ICP guide intervention and ultimately reduce morbidity and mortality. Currently, only invasive tools are used to monitor patients at high risk for intracranial hypertension. AIM Diffuse correlation spectroscopy (DCS), a noninvasive near-infrared optical technique, is emerging as a possible method for continuous monitoring of CBF and critical closing pressure (CrCP or zero-flow pressure), a parameter directly related to ICP. APPROACH We optimized DCS hardware and algorithms for the quantification of CrCP. Toward its clinical translation, we validated the DCS estimates of cerebral blood flow index (CBFi) and CrCP in ischemic stroke patients with respect to simultaneously acquired transcranial Doppler ultrasound (TCD) cerebral blood flow velocity (CBFV) and CrCP. RESULTS We found CrCP derived from DCS and TCD were highly linearly correlated (ipsilateral R2 = 0.77, p = 9 × 10 - 7; contralateral R2 = 0.83, p = 7 × 10 - 8). We found weaker correlations between CBFi and CBFV (ipsilateral R2 = 0.25, p = 0.03; contralateral R2 = 0.48, p = 1 × 10 - 3) probably due to the different vasculature measured. CONCLUSION Our results suggest DCS is a valid alternative to TCD for continuous monitoring of CrCP.
Collapse
Affiliation(s)
- Kuan-Cheng Wu
- Massachusetts General Hospital and Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - John Sunwoo
- Massachusetts General Hospital and Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Faheem Sheriff
- Brigham and Women’s Hospital, Department of Neurology, Boston, Massachusetts, United States
| | - Parisa Farzam
- Massachusetts General Hospital and Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Parya Y. Farzam
- Massachusetts General Hospital and Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Felipe Orihuela-Espina
- Massachusetts General Hospital and Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- National Institute for Astrophysics Optics and Electronics, Department of Computational Sciences, Puebla, Mexico
| | - Sarah L. LaRose
- Brigham and Women’s Hospital, Department of Neurology, Boston, Massachusetts, United States
| | - Andrew D. Monk
- Brigham and Women’s Hospital, Department of Neurology, Boston, Massachusetts, United States
| | - Mohammad A. Aziz-Sultan
- Brigham and Women’s Hospital, Department of Neurosurgery, Boston, Massachusetts, United States
| | - Nirav Patel
- Brigham and Women’s Hospital, Department of Neurosurgery, Boston, Massachusetts, United States
| | - Henrikas Vaitkevicius
- Brigham and Women’s Hospital, Department of Neurology, Boston, Massachusetts, United States
| | - Maria Angela Franceschini
- Massachusetts General Hospital and Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| |
Collapse
|
43
|
Abstract
Anesthesia for intracranial vascular procedures is complex because it requires a balance of several competing interests and potentially can result in significant morbidity and mortality. Frequently, periods of ischemia, where perfusion must be maintained, are combined with situations that are high risk for hemorrhage. This review discusses the basic surgical approach to several common pathologies (intracranial aneurysms, arteriovenous malformations, and moyamoya disease) along with the goals for anesthetic management and specific high-yield recommendations.
Collapse
Affiliation(s)
- William L Gross
- Department of Anesthesiology, Medical College of Wisconsin, 8701 West Watertown Plank Road, Milwaukee, WI 53132, USA.
| | - Raphael H Sacho
- Department of Neurosurgery, Medical College of Wisconsin, 8701 West Watertown Plank Road, Milwaukee, WI 53132, USA
| |
Collapse
|
44
|
Beishon L, Clough RH, Kadicheeni M, Chithiramohan T, Panerai RB, Haunton VJ, Minhas JS, Robinson TG. Vascular and haemodynamic issues of brain ageing. Pflugers Arch 2021; 473:735-751. [PMID: 33439324 PMCID: PMC8076154 DOI: 10.1007/s00424-020-02508-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/17/2023]
Abstract
The population is ageing worldwide, thus increasing the burden of common age-related disorders to the individual, society and economy. Cerebrovascular diseases (stroke, dementia) contribute a significant proportion of this burden and are associated with high morbidity and mortality. Thus, understanding and promoting healthy vascular brain ageing are becoming an increasing priority for healthcare systems. In this review, we consider the effects of normal ageing on two major physiological processes responsible for vascular brain function: Cerebral autoregulation (CA) and neurovascular coupling (NVC). CA is the process by which the brain regulates cerebral blood flow (CBF) and protects against falls and surges in cerebral perfusion pressure, which risk hypoxic brain injury and pressure damage, respectively. In contrast, NVC is the process by which CBF is matched to cerebral metabolic activity, ensuring adequate local oxygenation and nutrient delivery for increased neuronal activity. Healthy ageing is associated with a number of key physiological adaptations in these processes to mitigate age-related functional and structural declines. Through multiple different paradigms assessing CA in healthy younger and older humans, generating conflicting findings, carbon dioxide studies in CA have provided the greatest understanding of intrinsic vascular anatomical factors that may mediate healthy ageing responses. In NVC, studies have found mixed results, with reduced, equivalent and increased activation of vascular responses to cognitive stimulation. In summary, vascular and haemodynamic changes occur in response to ageing and are important in distinguishing “normal” ageing from disease states and may help to develop effective therapeutic strategies to promote healthy brain ageing.
Collapse
Affiliation(s)
- Lucy Beishon
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK.
| | - Rebecca H Clough
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK
| | - Meeriam Kadicheeni
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK
| | - Tamara Chithiramohan
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK.,NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Victoria J Haunton
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK.,NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Jatinder S Minhas
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK.,NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Thompson G Robinson
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK.,NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
45
|
Panerai RB, Minhas JS, Llwyd O, Salinet ASM, Katsogridakis E, Maggio P, Robinson TG. The critical closing pressure contribution to dynamic cerebral autoregulation in humans: influence of arterial partial pressure of CO 2. J Physiol 2020; 598:5673-5685. [PMID: 32975820 DOI: 10.1113/jp280439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/16/2020] [Indexed: 03/07/2024] Open
Abstract
KEY POINTS Dynamic cerebral autoregulation (CA) is often expressed by the mean arterial blood pressure (MAP)-cerebral blood flow (CBF) relationship, with little attention given to the dynamic relationship between MAP and cerebrovascular resistance (CVR). In CBF velocity (CBFV) recordings with transcranial Doppler, evidence demonstrates that CVR should be replaced by a combination of a resistance-area product (RAP) with a critical closing pressure (CrCP) parameter, the blood pressure value where CBFV reaches zero due to vessels collapsing. Transfer function analysis of the MAP-CBFV relationship can be extended to the MAP-RAP and MAP-CrCP relationships, to assess their contribution to the dynamic CA response. During normocapnia, both RAP and CrCP make a significant contribution to explaining the MAP-CBFV relationship. Hypercapnia, a surrogate state of depressed CA, leads to marked changes in dynamic CA, that are entirely explained by the CrCP response, without further contribution from RAP in comparison with normocapnia. ABSTRACT Dynamic cerebral autoregulation (CA) is manifested by changes in the diameter of intra-cerebral vessels, which control cerebrovascular resistance (CVR). We investigated the contribution of critical closing pressure (CrCP), an important determinant of CVR, to explain the cerebral blood flow (CBF) response to a sudden change in mean arterial blood pressure (MAP). In 76 healthy subjects (age range 21-70 years, 36 women), recordings of MAP (Finometer), CBF velocity (CBFV; transcranial Doppler ultrasound), end-tidal CO2 (capnography) and heart rate (ECG) were performed for 5 min at rest (normocapnia) and during hypercapnia induced by breathing 5% CO2 in air. CrCP and the resistance-area product (RAP) were obtained for each cardiac cycle and their dynamic response to a step change in MAP was calculated by means of transfer function analysis. The recovery of the CBFV response, following a step change in MAP, was mainly due to the contribution of RAP during both breathing conditions. However, CrCP made a highly significant contribution during normocapnia (P < 0.0001) and was the sole determinant of changes in the CBFV response, resulting from hypercapnia, which led to a reduction in the autoregulation index from 5.70 ± 1.58 (normocapnia) to 4.14 ± 2.05 (hypercapnia; P < 0.0001). In conclusion, CrCP makes a very significant contribution to the dynamic CBFV response to changes in MAP and plays a major role in explaining the deterioration of dynamic CA induced by hypercapnia. Further studies are needed to assess the relevance of CrCP contribution in physiological and clinical studies.
Collapse
Affiliation(s)
- Ronney B Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Jatinder S Minhas
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Osian Llwyd
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Angela S M Salinet
- Neurology Department, Hospital das Clinicas, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Emmanuel Katsogridakis
- Department of Vascular Surgery, Wythenshawe Hospital, Manchester Foundation Trust, Manchester, UK
| | - Paola Maggio
- Neurology Department, ASST Bergamo EST (BG), Italy
| | - Thompson G Robinson
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
46
|
Lam MY, Haunton VJ, Nath M, Panerai RB, Robinson TG. The effect of head positioning on cerebral hemodynamics: Experiences in mild ischemic stroke. J Neurol Sci 2020; 419:117201. [PMID: 33137635 DOI: 10.1016/j.jns.2020.117201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 09/30/2020] [Accepted: 10/19/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND PURPOSE It is generally agreed that optimal head positioning is an important consideration in acute stroke management regime. However, there is limited literature investigating the effect of head positioning changes on cerebrovascular physiology in acute ischemic stroke (AIS). We aim to assess cerebral autoregulation (CA) and associated hemodynamic responses during gradual head positioning (GHP) changes, between AIS and controls. METHODS Cerebral blood flow velocity (CBFV, transcranial Doppler), blood pressure (BP, Finometer) and end-tidal CO2 (capnography) were recorded between lying flat (0°) and sitting up (30°) head position, in 16 controls (8 women, mean age 57 ± 16 yrs) and 15 AIS patients (7 women, 69 ± 8 yrs). AIS patients carried out three visits at 13.3 ± 6.9 h, 4.8 ± 3.2 days and 93.9 ± 11.5 days from symptom onset, respectively. RESULTS AIS patients were significantly hypertensive (p = 0.005), hypocapnic (p < 0.001), and had lower CBFV (p = 0.02) compared to controls, in both head positions. When comparing 5-min FLAT to SIT head position, reductions in BP (both AIS and controls, p < 0.001) and CBFV (controls only: dominant hemisphere p = 0.001 and non-dominant hemisphere p = 0.05) were demonstrated. Of note, a reduction in autoregulation index was observed in AIS, after 5-min SIT head positioning, at all 3 visits (p = 0.018). CONCLUSION Key hemodynamic changes were demonstrated when the head position changes from 5-min FLAT to SIT head position (GHP) in mildly affected stroke patients. Importantly, these were associated with non-significant changes in CBFV but reduced measures of CA following AIS, which may be relevant in determining the optimal head position and the ideal timing of mobilisation. Clinical Trial Registration - URL: http://www.clinicaltrials.gov. Unique Identifier: NCT02932540.
Collapse
Affiliation(s)
- Man Y Lam
- Department of Cardiovascular Sciences, University of Leicester, LE1 5WW Leicester, United Kingdom.
| | - Victoria J Haunton
- Department of Cardiovascular Sciences, University of Leicester, LE1 5WW Leicester, United Kingdom; National Institutes for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Mintu Nath
- Medical Statistics Team, Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester, LE1 5WW Leicester, United Kingdom; National Institutes for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Thompson G Robinson
- Department of Cardiovascular Sciences, University of Leicester, LE1 5WW Leicester, United Kingdom; National Institutes for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
47
|
Castro P, Serrador J, Rocha I, Chaves PC, Sorond F, Azevedo E. Heart failure patients have enhanced cerebral autoregulation response in acute ischemic stroke. J Thromb Thrombolysis 2020; 50:753-761. [PMID: 32488831 DOI: 10.1007/s11239-020-02166-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The cerebrovascular effects of a failing heart-pump are largely unknown. Chronic heart failure (HF) might cause pre-conditioning effect on cerebral hemodynamics but not study so far in acute stroke. We aimed to investigate if HF induces effects in dynamic cerebral autoregulation (CA), within 6 h of symptom-onset through chronic stage of ischemic stroke. We enrolled 50 patients with acute ischemic stroke. Groups with (N = 8) and without HF and 20 heathy controls were compared. Arterial blood pressure (Finometer) and cerebral blood flow velocity (transcranial Doppler) were monitored within 6 and at 24 h from symptom-onset and at 3 months. We assessed dynamic CA by transfer function analysis and cardiac disease markers. HF associated with higher phase (better dynamic CA) at ischemic hemisphere within 6 (p = 0.042) and at 24 h (p = 0.006) but this effect was not evident at 3 months (p > 0.05). Gain and coherence trends were similar between groups. We found a positive correlation between phase and admission troponin I levels (Spearman's r = 0.348, p = 0.044). Our findings advances on the knowledge of how brain and heart interact in acute ischemic stroke by showing a sustained dynamic cerebral autoregulation response in HF patients mainly with severe aortic valve disease. Understanding the physiological mechanisms that govern this complex interplay can be useful to find novel therapeutic targets which can improve outcome in ischemic stroke.
Collapse
Affiliation(s)
- Pedro Castro
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Alameda Professor Hernani Monteiro, 4200-319, Porto, Portugal.
- Department of Neurology, Centro Hospitalar Universitário de São João, Porto, Portugal.
| | - Jorge Serrador
- Veterans Biomedical Institute and War Related Illness and Injury Study Center, Department of Veterans Affairs, New Jersey Healthcare System, East Orange, USA
- New Jersey Medical School, Newark, NJ, USA
| | - Isabel Rocha
- Cardiovascular Autonomic Function Lab, Institute of Physiology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Paulo Castro Chaves
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Alameda Professor Hernani Monteiro, 4200-319, Porto, Portugal
| | - Farzaneh Sorond
- Division of Stroke and Neurocritical, Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Elsa Azevedo
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Alameda Professor Hernani Monteiro, 4200-319, Porto, Portugal
- Department of Neurology, Centro Hospitalar Universitário de São João, Porto, Portugal
| |
Collapse
|
48
|
Lam MY, Haunton VJ, Panerai RB, Robinson TG. Cerebral hemodynamics in stroke thrombolysis (CHiST) study. PLoS One 2020; 15:e0238620. [PMID: 32956367 PMCID: PMC7505447 DOI: 10.1371/journal.pone.0238620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/20/2020] [Indexed: 12/17/2022] Open
Abstract
Despite careful patient selection, successful recanalization in intravenous thrombolysis is only achieved in approximately 50% of cases. Understanding changes in cerebral autoregulation during and following successful recanalization in acute ischemic stroke patients who receive intravenous thrombolysis, may inform the management of common physiological perturbations, including blood pressure, in turn reducing the risk of reperfusion injury. Cerebral blood velocity (Transcranial Doppler), blood pressure (Finometer) and end-tidal carbon dioxide (capnography) were continuously recorded in 11 acute ischemic stroke patients who received intravenous thrombolysis (5 female, mean ± SD age 68±12 years) over 4-time points, during and at the following time intervals after intravenous thrombolysis: 23.9±2.6 hrs, 18.1±7.0 days and 89.6±4.2 days. Reductions in blood pressure (p = 0.04) were observed during intravenous thrombolysis. Reductions in heart rate (p<0.005) and critical closing pressure [Affected hemisphere (p = 0.02) and non-affected hemisphere (p<0.005)] were observed post intravenous thrombolysis. End-tidal CO2 increased during the sub-acute and chronic stages (p = 0.028). Reduction in affected hemisphere phase at low frequency was observed during intravenous thrombolysis (p = 0.021) and at subsequent visits (p = 0.048). No changes were observed in cerebral blood velocity, coherence, gain and Autoregulation Index during the follow-up period. Intravenous thrombolysis in acute ischemic stroke patients induced changes in affected hemisphere phase and other key hemodynamic parameters, but not Autoregulation Index. Further investigation of cerebral autoregulation is warranted in a larger acute ischemic stroke cohort to inform its potential role in individualized management plans.
Collapse
Affiliation(s)
- Man Y. Lam
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Victoria J. Haunton
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Ronney B. Panerai
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Thompson G. Robinson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
49
|
Sahinovic MM, Vos JJ, Scheeren TWL. Journal of Clinical Monitoring and Computing 2019 end of year summary: monitoring tissue oxygenation and perfusion and its autoregulation. J Clin Monit Comput 2020; 34:389-395. [PMID: 32277310 PMCID: PMC7205776 DOI: 10.1007/s10877-020-00504-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 12/30/2022]
Abstract
Tissue perfusion monitoring is increasingly being employed clinically in a non-invasive fashion. In this end-of-year summary of the Journal of Clinical Monitoring and Computing, we take a closer look at the papers published recently on this subject in the journal. Most of these papers focus on monitoring cerebral perfusion (and associated hemodynamics), using either transcranial doppler measurements or near-infrared spectroscopy. Given the importance of cerebral autoregulation in the analyses performed in most of the studies discussed here, this end-of-year summary also includes a short description of cerebral hemodynamic physiology and its autoregulation. Finally, we review articles on somatic tissue oxygenation and its possible association with outcome.
Collapse
Affiliation(s)
- M M Sahinovic
- Department of Anesthesiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30001, 9700RB, Groningen, Netherlands
| | - J J Vos
- Department of Anesthesiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30001, 9700RB, Groningen, Netherlands
| | - T W L Scheeren
- Department of Anesthesiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30001, 9700RB, Groningen, Netherlands.
| |
Collapse
|
50
|
Burma JS, Macaulay A, Copeland P, Khatra O, Bouliane KJ, Smirl JD. Comparison of cerebrovascular reactivity recovery following high-intensity interval training and moderate-intensity continuous training. Physiol Rep 2020; 8:e14467. [PMID: 32506845 PMCID: PMC7276190 DOI: 10.14814/phy2.14467] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 04/21/2020] [Accepted: 04/25/2020] [Indexed: 12/27/2022] Open
Abstract
A common inclusion criterion when assessing cerebrovascular (CVR) metrics is for individuals to abstain from exercise for 12-24 hr prior to data collections. While several studies have examined CVR during exercise, the literature describing CVR throughout post-exercise recovery is sparse. The current investigation examined CVR measurements in nine participants (seven male) before and for 8 hr following three conditions: 45-min moderate-continuous exercise (at ~50% heart-rate reserve), 25-min high-intensity intervals (ten, one-minute intervals at ~85% heart-rate reserve), and a control day (30-min quiet rest). The hypercapnic (40-60 mmHg) and hypocapnic (25-40 mmHg) slopes were assessed via a modified rebreathing technique and controlled stepwise hyperventilation, respectively. All testing was initiated at 8:00a.m. with transcranial Doppler ultrasound measurements to index cerebral blood velocity performed prior to the condition (pre) with serial follow-ups at zero, one, two, four, six, and eight hours within the middle and posterior cerebral artery (MCA, PCA). Absolute and relative MCA and PCA hypercapnic slopes were attenuated following high-intensity intervals at hours zero and one (all p < .02). No alterations were observed in either hypocapnic or hypercapnic slopes following the control or moderate-continuous exercise (all p > .13), aside from a reduced relative hypercapnic MCA slope at hours zero and one following moderate-continuous exercise (all p < .005). The current findings indicate the common inclusion criteria of a 12-24 hr time restriction on exercise can be reduced to two hours when performing CVR measures. Furthermore, the consistent nature of the CVR indices throughout the control day indicate reproducible testing sessions can be made between 8:00a.m. and 7:00p.m.
Collapse
Affiliation(s)
- Joel S. Burma
- Sport Concussion Research LabUniversity of British ColumbiaKelownaBCCanada
- Sport Injury Prevention Research CentreFaculty of KinesiologyUniversity of CalgaryCalgaryABCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryABCanada
- Human Performance LaboratoryUniversity of CalgaryCalgaryABCanada
- Integrated Concussion Research ProgramUniversity of CalgaryCalgaryABCanada
| | - Alannah Macaulay
- Sport Concussion Research LabUniversity of British ColumbiaKelownaBCCanada
| | - Paige Copeland
- Sport Concussion Research LabUniversity of British ColumbiaKelownaBCCanada
| | - Omeet Khatra
- Faculty of MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Kevin J. Bouliane
- Sport Concussion Research LabUniversity of British ColumbiaKelownaBCCanada
| | - Jonathan D. Smirl
- Sport Concussion Research LabUniversity of British ColumbiaKelownaBCCanada
- Sport Injury Prevention Research CentreFaculty of KinesiologyUniversity of CalgaryCalgaryABCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryABCanada
- Human Performance LaboratoryUniversity of CalgaryCalgaryABCanada
- Integrated Concussion Research ProgramUniversity of CalgaryCalgaryABCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryABCanada
- Libin Cardiovascular InstituteUniversity of CalgaryCalgaryABCanada
| |
Collapse
|