1
|
Savchenko V, Szamosvári D, Bao Y, Pignitter M, Böttcher T. Biosynthetic flexibility of Pseudomonas aeruginosa leads to hydroxylated 2-alkylquinolones with proinflammatory host response. Commun Chem 2023; 6:138. [PMID: 37400564 DOI: 10.1038/s42004-023-00937-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023] Open
Abstract
The human pathogen Pseudomonas aeruginosa produces various 4(1H)-quinolones with diverse functions. Among these, 2-nonyl-4(1H)-quinolone (NQ) and its N-oxide (NQNO) belong to the main metabolites. Their biosynthesis involves substrates from the fatty acid metabolism and we hypothesized that oxidized fatty acids could be responsible for a so far undetected class of metabolites. We developed a divergent synthesis strategy for 2'-hydroxy (2'-OH) and 2'-oxo- substituted quinolones and N-oxides and demonstrated for the first time that 2'-OH-NQ and 2'-OH-NQNO but not the corresponding 2'-oxo compounds are naturally produced by PAO1 and PA14 strains of P. aeruginosa. The main metabolite 2'-OH-NQ is produced even in concentrations comparable to NQ. Exogenous availability of β-hydroxydecanoic acid can further increase the production of 2'-OH-NQ. In contrast to NQ, 2'-OH-NQ potently induced the cytokine IL-8 in a human cell line at 100 nм, suggesting a potential role in host immune modulation.
Collapse
Affiliation(s)
- Viktoriia Savchenko
- Faculty of Chemistry, Institute for Biological Chemistry & Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystems Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), 1090, Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090, Vienna, Austria
| | - Dávid Szamosvári
- Faculty of Chemistry, Institute for Biological Chemistry & Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystems Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), 1090, Vienna, Austria
| | - Yifan Bao
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090, Vienna, Austria
- Faculty of Chemistry, Institute for Physiological Chemistry, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), 1090, Vienna, Austria
| | - Marc Pignitter
- Faculty of Chemistry, Institute for Physiological Chemistry, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), 1090, Vienna, Austria
| | - Thomas Böttcher
- Faculty of Chemistry, Institute for Biological Chemistry & Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystems Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), 1090, Vienna, Austria.
| |
Collapse
|
2
|
Horspool AM, Sen-Kilic E, Malkowski AC, Breslow SL, Mateu-Borras M, Hudson MS, Nunley MA, Elliott S, Ray K, Snyder GA, Miller SJ, Kang J, Blackwood CB, Weaver KL, Witt WT, Huckaby AB, Pyles GM, Clark T, Al Qatarneh S, Lewis GK, Damron FH, Barbier M. Development of an anti- Pseudomonas aeruginosa therapeutic monoclonal antibody WVDC-5244. Front Cell Infect Microbiol 2023; 13:1117844. [PMID: 37124031 PMCID: PMC10140502 DOI: 10.3389/fcimb.2023.1117844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/22/2023] [Indexed: 05/02/2023] Open
Abstract
The rise of antimicrobial-resistant bacterial infections is a crucial health concern in the 21st century. In particular, antibiotic-resistant Pseudomonas aeruginosa causes difficult-to-treat infections associated with high morbidity and mortality. Unfortunately, the number of effective therapeutic interventions against antimicrobial-resistant P. aeruginosa infections continues to decline. Therefore, discovery and development of alternative treatments are necessary. Here, we present pre-clinical efficacy studies on an anti-P. aeruginosa therapeutic monoclonal antibody. Using hybridoma technology, we generated a monoclonal antibody and characterized its binding to P. aeruginosa in vitro using ELISA and fluorescence correlation spectroscopy. We also characterized its function in vitro and in vivo against P. aeruginosa. The anti-P. aeruginosa antibody (WVDC-5244) bound P. aeruginosa clinical strains of various serotypes in vitro, even in the presence of alginate exopolysaccharide. In addition, WVDC-5244 induced opsonophagocytic killing of P. aeruginosa in vitro in J774.1 murine macrophage, and complement-mediated killing. In a mouse model of acute pneumonia, prophylactic administration of WVDC-5244 resulted in an improvement of clinical disease manifestations and reduction of P. aeruginosa burden in the respiratory tract compared to the control groups. This study provides promising pre-clinical efficacy data on a new monoclonal antibody with therapeutic potential for P. aeruginosa infections.
Collapse
Affiliation(s)
- Alexander M. Horspool
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Emel Sen-Kilic
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Aaron C. Malkowski
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Scott L. Breslow
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Margalida Mateu-Borras
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Matthew S. Hudson
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Mason A. Nunley
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Sean Elliott
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Krishanu Ray
- University of Maryland, Baltimore School of Medicine, Division of Vaccine Research, Institute of Human Virology, Baltimore, MD, United States
| | - Greg A. Snyder
- University of Maryland, Baltimore School of Medicine, Division of Vaccine Research, Institute of Human Virology, Baltimore, MD, United States
| | - Sarah Jo Miller
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Jason Kang
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Catherine B. Blackwood
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Kelly L. Weaver
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - William T. Witt
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Annalisa B. Huckaby
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Gage M. Pyles
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Tammy Clark
- Department of Pediatrics, Division of Cystic Fibrosis, West Virginia University, Morgantown, WV, United States
| | - Saif Al Qatarneh
- Department of Pediatrics, Division of Cystic Fibrosis, West Virginia University, Morgantown, WV, United States
| | - George K. Lewis
- University of Maryland, Baltimore School of Medicine, Division of Vaccine Research, Institute of Human Virology, Baltimore, MD, United States
| | - F. Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| |
Collapse
|
3
|
Muraca GS, Soler-Arango J, Castro GR, Islan GA, Brelles-Mariño G. Improving ciprofloxacin antimicrobial activity through lipid nanoencapsulation or non-thermal plasma on Pseudomonas aeruginosa biofilms. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Pseudomonas aeruginosa PAO 1 In Vitro Time-Kill Kinetics Using Single Phages and Phage Formulations-Modulating Death, Adaptation, and Resistance. Antibiotics (Basel) 2021; 10:antibiotics10070877. [PMID: 34356798 PMCID: PMC8300829 DOI: 10.3390/antibiotics10070877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 01/09/2023] Open
Abstract
Pseudomonas aeruginosa is responsible for nosocomial and chronic infections in healthcare settings. The major challenge in treating P. aeruginosa-related diseases is its remarkable capacity for antibiotic resistance development. Bacteriophage (phage) therapy is regarded as a possible alternative that has, for years, attracted attention for fighting multidrug-resistant infections. In this work, we characterized five phages showing different lytic spectrums towards clinical isolates. Two of these phages were isolated from the Russian Microgen Sextaphage formulation and belong to the Phikmvviruses, while three Pbunaviruses were isolated from sewage. Different phage formulations for the treatment of P. aeruginosa PAO1 resulted in diversified time–kill outcomes. The best result was obtained with a formulation with all phages, prompting a lower frequency of resistant variants and considerable alterations in cell motility, resulting in a loss of 73.7% in swimming motility and a 79% change in swarming motility. These alterations diminished the virulence of the phage-resisting phenotypes but promoted their growth since most became insensitive to a single or even all phages. However, not all combinations drove to enhanced cell killings due to the competition and loss of receptors. This study highlights that more caution is needed when developing cocktail formulations to maximize phage therapy efficacy. Selecting phages for formulations should consider the emergence of phage-resistant bacteria and whether the formulations are intended for short-term or extended antibacterial application.
Collapse
|
5
|
Lee C, Klockgether J, Fischer S, Trcek J, Tümmler B, Römling U. Why? - Successful Pseudomonas aeruginosa clones with a focus on clone C. FEMS Microbiol Rev 2021; 44:740-762. [PMID: 32990729 PMCID: PMC7685784 DOI: 10.1093/femsre/fuaa029] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/12/2020] [Indexed: 12/20/2022] Open
Abstract
The environmental species Pseudomonas aeruginosa thrives in a variety of habitats. Within the epidemic population structure of P. aeruginosa, occassionally highly successful clones that are equally capable to succeed in the environment and the human host arise. Framed by a highly conserved core genome, individual members of successful clones are characterized by a high variability in their accessory genome. The abundance of successful clones might be funded in specific features of the core genome or, although not mutually exclusive, in the variability of the accessory genome. In clone C, one of the most predominant clones, the plasmid pKLC102 and the PACGI-1 genomic island are two ubiquitous accessory genetic elements. The conserved transmissible locus of protein quality control (TLPQC) at the border of PACGI-1 is a unique horizontally transferred compository element, which codes predominantly for stress-related cargo gene products such as involved in protein homeostasis. As a hallmark, most TLPQC xenologues possess a core genome equivalent. With elevated temperature tolerance as a characteristic of clone C strains, the unique P. aeruginosa and clone C specific disaggregase ClpG is a major contributor to tolerance. As other successful clones, such as PA14, do not encode the TLPQC locus, ubiquitous denominators of success, if existing, need to be identified.
Collapse
Affiliation(s)
- Changhan Lee
- Department of Microbiology, Tumor and Cell Biology, Biomedicum C8, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Jens Klockgether
- Clinic for Paediatric Pneumology, Allergology and Neonatology, Clinical Research Group 'Pseudomonas Genomics', Hannover Medical School, D-30625 Hannover, Germany
| | - Sebastian Fischer
- Clinic for Paediatric Pneumology, Allergology and Neonatology, Clinical Research Group 'Pseudomonas Genomics', Hannover Medical School, D-30625 Hannover, Germany
| | - Janja Trcek
- Faculty of Natural Sciences and Mathematics, Department of Biology, University of Maribor, Maribor, 2000, Slovenia
| | - Burkhard Tümmler
- Clinic for Paediatric Pneumology, Allergology and Neonatology, Clinical Research Group 'Pseudomonas Genomics', Hannover Medical School, D-30625 Hannover, Germany
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Biomedicum C8, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
6
|
Do H, Kwon SR, Baek S, Madukoma CS, Smiley MK, Dietrich LE, Shrout JD, Bohn PW. Redox cycling-based detection of phenazine metabolites secreted from Pseudomonas aeruginosa in nanopore electrode arrays. Analyst 2021; 146:1346-1354. [PMID: 33393560 PMCID: PMC7937416 DOI: 10.1039/d0an02022b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa (P. aeruginosa) produces several redox-active phenazine metabolites, including pyocyanin (PYO) and phenazine-1-carboxamide (PCN), which are electron carrier molecules that also aid in virulence. In particular, PYO is an exclusive metabolite produced by P. aeruginosa, which acts as a virulence factor in hospital-acquired infections and is therefore a good biomarker for identifying early stage colonization by this pathogen. Here, we describe the use of nanopore electrode arrays (NEAs) exhibiting metal-insulator-metal ring electrode architectures for enhanced detection of these phenazine metabolites. The size of the nanopores allows phenazine metabolites to freely diffuse into the interior and access the working electrodes, while the bacteria are excluded. Consequently, highly efficient redox cycling reactions in the NEAs can be accessed by free diffusion unhindered by the presence of bacteria. This strategy yields low limits of detection, i.e. 10.5 and 20.7 nM for PYO and PCN, respectively, values far below single molecule pore occupancy, e.g. at 10.5 nM 〈npore〉∼ 0.082 per nanopore - a limit which reflects the extraordinary signal amplification in the NEAs. Furthermore, experiments that compared results from minimal medium and rich medium show that P. aeruginosa produces the same types of phenazine metabolites even though growth rates and phenazine production patterns differ in these two media. The NEA measurement strategy developed here should be useful as a diagnostic for pathogens generally and for understanding metabolism in clinically important microbial communities.
Collapse
Affiliation(s)
- Hyein Do
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Dry powder aerosol containing muco-inert particles for excipient enhanced growth pulmonary drug delivery. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102262. [PMID: 32623017 DOI: 10.1016/j.nano.2020.102262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/21/2020] [Accepted: 06/26/2020] [Indexed: 02/08/2023]
Abstract
Tenacious sputum poses a critical diffusion barrier for aerosol antibiotics used to treat cystic fibrosis (CF) lung infection. We conducted a proof-of-concept study using dense poly(ethylene glycol) coated polystyrene nanoparticles (PS-PEG NPs) as model muco-inert particles (MIPs) formulated as a powder using an excipient enhanced growth (EEG) strategy, aiming to minimize extrathoracic airway loss, maximize deposition in the airway and further overcome the sputum barrier in the CF lungs. The EEG aerosol formulation containing PS-PEG MIPs was prepared by spray drying and produced discrete spherical particles with geometric diameter of approximately 2 μm; and >80% of the powder dose was delivered from a new small-animal dry powder inhaler (DPI). The MIPs released from the EEG aerosol had human airway mucus and CF sputum diffusion properties comparable to the suspension formulation. These properties make this formulation a promising pulmonary drug delivery system for CF lung infections.
Collapse
|
8
|
Cramer N, Fischer S, Hedtfeld S, Dorda M, Tümmler B. Intraclonal competitive fitness of longitudinal cystic fibrosis Pseudomonas aeruginosa airway isolates in liquid cultures. Environ Microbiol 2020; 22:2536-2549. [PMID: 31985137 DOI: 10.1111/1462-2920.14924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 01/22/2020] [Indexed: 12/31/2022]
Abstract
The metabolically versatile Pseudomonas aeruginosa inhabits biotic and abiotic environments including the niche of cystic fibrosis (CF) airways. This study investigated how the adaptation to CF lungs affects the within-clone fitness of P. aeruginosa to grow and persist in liquid cultures in the presence of the clonal ancestors. Longitudinal clonal P. aeruginosa isolates that had been collected from 12 CF donors since the onset of colonization for up to 30 years was subjected to within-clone competition experiments. The relative quantities of individual strains were determined by marker-free amplicon sequencing of multiplex PCR products of strain-specific nucleotide sequence variants, a novel method that is generally applicable to studies in evolutionary genetics and microbial ecology with real-world strain collections. For 10 of the 12 examined patient courses, P. aeruginosa isolates of the first years of colonization grew faster in the presence of their clonal progeny than alone. Single growth of individual strains showed no temporal trend with colonization time, but in co-culture, the early isolates out-competed their clonal progeny. Irrespective of the genetic make-up of the clone and its genomic microevolution in CF lungs, the early isolates expressed fitness traits to win the within-clone competition that were absent in their progeny.
Collapse
Affiliation(s)
- Nina Cramer
- Clinic for Paediatric Pneumology, Allergology and Neonatology, Clinical Research Group 'Pseudomonas Genomics', Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Sebastian Fischer
- Clinic for Paediatric Pneumology, Allergology and Neonatology, Clinical Research Group 'Pseudomonas Genomics', Hannover, Germany
| | - Silke Hedtfeld
- Clinic for Paediatric Pneumology, Allergology and Neonatology, Clinical Research Group 'Pseudomonas Genomics', Hannover, Germany
| | - Marie Dorda
- Research Core Unit Genomics, Hannover, Germany
| | - Burkhard Tümmler
- Clinic for Paediatric Pneumology, Allergology and Neonatology, Clinical Research Group 'Pseudomonas Genomics', Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| |
Collapse
|
9
|
Soler-Arango J, Figoli C, Muraca G, Bosch A, Brelles-Mariño G. The Pseudomonas aeruginosa biofilm matrix and cells are drastically impacted by gas discharge plasma treatment: A comprehensive model explaining plasma-mediated biofilm eradication. PLoS One 2019; 14:e0216817. [PMID: 31233528 PMCID: PMC6590783 DOI: 10.1371/journal.pone.0216817] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/28/2019] [Indexed: 12/21/2022] Open
Abstract
Biofilms are microbial communities encased in a protective matrix composed of exopolymeric substances including exopolysaccharides, proteins, lipids, and extracellular DNA. Biofilms cause undesirable effects such as biofouling, equipment damage, prostheses colonization, and disease. Biofilms are also more resilient than free-living cells to regular decontamination methods and therefore, alternative methods are needed to eradicate them. The use of non-thermal atmospheric pressure plasmas is a good alternative as plasmas contain reactive species, free radicals, and UV photons well-known for their decontamination potential against free microorganisms. Pseudomonas aeruginosa biofilms colonize catheters, indwelling devices, and prostheses. Plasma effects on cell viability have been previously documented for P. aeruginosa biofilms. Nonetheless, the effect of plasma on the biofilm matrix has received less attention and there is little evidence regarding the changes the matrix undergoes. The aim of this work was to study the effect plasma exerts mostly on the P. aeruginosa biofilm matrix and to expand the existing knowledge about its effect on sessile cells in order to achieve a better understanding of the mechanism/s underlying plasma-mediated biofilm inactivation. We report a reduction in the amount of the biofilm matrix, the loss of its tridimensional structure, and morphological changes in sessile cells at long exposure times. We show chemical and structural changes on the biofilm matrix (mostly on carbohydrates and eDNA) and cells (mostly on proteins and lipids) that are more profound with longer plasma exposure times. We also demonstrate the presence of lipid oxidation products confirming cell membrane lipid peroxidation as plasma exposure time increases. To our knowledge this is the first report providing detailed evidence of the variety of chemical and structural changes that occur mostly on the biofilm matrix and sessile cells as a consequence of the plasma treatment. Based on our results, we propose a comprehensive model explaining plasma-mediated biofilm inactivation.
Collapse
Affiliation(s)
- Juliana Soler-Arango
- Biofilm Eradication Laboratory, Center for Research and Development of Industrial Fermentations, Consejo Nacional de Investigaciones Científicas y Técnicas (CINDEFI, CCT-LA PLATA-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Cecilia Figoli
- Bioespectroscopy Laboratory, Center for Research and Development of Industrial Fermentations, Consejo Nacional de Investigaciones Científicas y Técnicas (CINDEFI, CCT-LA PLATA-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Giuliana Muraca
- Biofilm Eradication Laboratory, Center for Research and Development of Industrial Fermentations, Consejo Nacional de Investigaciones Científicas y Técnicas (CINDEFI, CCT-LA PLATA-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Alejandra Bosch
- Bioespectroscopy Laboratory, Center for Research and Development of Industrial Fermentations, Consejo Nacional de Investigaciones Científicas y Técnicas (CINDEFI, CCT-LA PLATA-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
- * E-mail: (AB); (GBM)
| | - Graciela Brelles-Mariño
- Biofilm Eradication Laboratory, Center for Research and Development of Industrial Fermentations, Consejo Nacional de Investigaciones Científicas y Técnicas (CINDEFI, CCT-LA PLATA-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
- * E-mail: (AB); (GBM)
| |
Collapse
|
10
|
Breaking the Vicious Cycle of Antibiotic Killing and Regrowth of Biofilm-Residing Pseudomonas aeruginosa. Antimicrob Agents Chemother 2018; 62:AAC.01635-18. [PMID: 30297365 DOI: 10.1128/aac.01635-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/01/2018] [Indexed: 11/20/2022] Open
Abstract
Biofilm-residing bacteria embedded in an extracellular matrix are protected from diverse physicochemical insults. In addition to the general recalcitrance of biofilm bacteria, high bacterial loads in biofilm-associated infections significantly diminish the efficacy of antimicrobials due to a low per-cell antibiotic concentration. Accordingly, present antimicrobial treatment protocols that have been established to serve the eradication of acute infections fail to clear biofilm-associated chronic infections. In the present study, we applied automated confocal microscopy on Pseudomonas aeruginosa to monitor dynamic killing of biofilm-grown bacteria by tobramycin and colistin in real time. We revealed that the time required for surviving bacteria to repopulate the biofilm could be taken as a measure for effectiveness of the antimicrobial treatment. It depends on the (i) nature and concentration of the antibiotic, (ii) duration of antibiotic treatment, (iii) application as monotherapy or combination therapy, and (iv) interval of drug administration. The vicious cycle of killing and repopulation of biofilm bacteria could also be broken in an in vivo model system by applying successive antibiotic dosages at intervals that do not allow full reconstitution of the biofilm communities. Treatment regimens that consider the important aspects of antimicrobial killing kinetics bear the potential to improve control of biofilm regrowth. This is an important and underestimated factor that is bound to ensure sustainable treatment success of chronic infections.
Collapse
|
11
|
Physiological study of pulmonary involvement in adults with cystic fibrosis through simulated modeling of different clinical scenarios. Med Biol Eng Comput 2018; 57:413-425. [PMID: 30171436 DOI: 10.1007/s11517-018-1885-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 08/17/2018] [Indexed: 10/28/2022]
Abstract
Cystic fibrosis is an inherited disorder of the cystic fibrosis transmembrane conductance regulator gene (CFTR) that affects the respiratory system. Current treatment is palliative, but there is a gene therapy under investigation which involves inserting a functional CFTR gene into affected cells. Given the clinical variety of the disease, it is necessary to characterize key indicators in its evolution (e.g., the number of functional alveolar sacs and its relationship with a healthy lung function), to anticipate its advancement. A dynamic model was used to evaluate the evolution of cystic fibrosis over time. We considered the application of conventional medical treatments and evaluated the benefits of the application of an experimental gene therapy that would reverse lung damage. Without treatment the life expectancy of the patient is low, but it is increased with the application of conventional treatments, being the progressive loss of the lung function inevitable. Simulating the application of a gene therapy, the life expectancy of patients would not be limited, given the recovery of all altered cellular processes. With this model we can make predictions that demonstrate the need for a curative treatment, in addition to presenting the evolution of pathology in a specific clinical setting. Graphical abstract Graphic representation of the analysis performed in the present work on simulation of different clinical situations regarding patients with cystic fibrosis of pulmonary involvement.
Collapse
|
12
|
Sharifi-Rad M, Mnayer D, Morais-Braga MFB, Carneiro JNP, Bezerra CF, Coutinho HDM, Salehi B, Martorell M, Del Mar Contreras M, Soltani-Nejad A, Uribe YAH, Yousaf Z, Iriti M, Sharifi-Rad J. Echinacea plants as antioxidant and antibacterial agents: From traditional medicine to biotechnological applications. Phytother Res 2018; 32:1653-1663. [PMID: 29749084 DOI: 10.1002/ptr.6101] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 04/01/2018] [Accepted: 04/05/2018] [Indexed: 12/11/2022]
Abstract
The genus Echinacea consists of 11 taxa of herbaceous and perennial flowering plants. In particular, Echinacea purpurea (L.) Moench is widely cultivated all over the United States, Canada, and in Europe, exclusively in Germany, for its beauty and reported medicinal properties. Echinacea extracts have been used traditionally as wound healing to improve the immune system and to treat respiratory symptoms caused by bacterial infections. Echinacea extracts have demonstrated antioxidant and antimicrobial activities, and to be safe. This survey aims at reviewing the medicinal properties of Echinacea species, their cultivation, chemical composition, and the potential uses of these plants as antioxidant and antibacterial agents in foods and in a clinical context. Moreover, the factors affecting the chemical composition of Echinacea spp. are also covered.
Collapse
Affiliation(s)
- Mehdi Sharifi-Rad
- Department of Medical Parasitology, Zabol University of Medical Sciences, Zabol, Iran
| | - Dima Mnayer
- Department of Agricultural Engineering and Veterinary Medicine, Lebanese University, Beirut, Lebanon
| | - Maria Flaviana Bezerra Morais-Braga
- Laboratório de Microbiologia e Biologia Molecular - LMBM, Departamento de Química Biológica - DQB, Universidade Regional do Cariri - URCA, Av. Cel. Antonio Luiz, 1161. Pimenta, Crato, CE, Brazil
| | - Joara Nályda Pereira Carneiro
- Laboratório de Microbiologia e Biologia Molecular - LMBM, Departamento de Química Biológica - DQB, Universidade Regional do Cariri - URCA, Av. Cel. Antonio Luiz, 1161. Pimenta, Crato, CE, Brazil
| | - Camila Fonseca Bezerra
- Laboratório de Microbiologia e Biologia Molecular - LMBM, Departamento de Química Biológica - DQB, Universidade Regional do Cariri - URCA, Av. Cel. Antonio Luiz, 1161. Pimenta, Crato, CE, Brazil
| | - Henrique Douglas Melo Coutinho
- Laboratório de Microbiologia e Biologia Molecular - LMBM, Departamento de Química Biológica - DQB, Universidade Regional do Cariri - URCA, Av. Cel. Antonio Luiz, 1161. Pimenta, Crato, CE, Brazil
| | - Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Miquel Martorell
- Department of Nutrition and Dietetics, School of Pharmacy, University of Concepcion, Concepcion, Chile
| | - María Del Mar Contreras
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUIQFN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, Córdoba, E-14071, Spain
| | - Azam Soltani-Nejad
- Department of Genetics and Biotechnology, Osmania University, Hyderabad, India
| | | | - Zubaida Yousaf
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, Milan, Italy
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg, MB, Canada
| |
Collapse
|
13
|
Prado MKB, Locachevic GA, Zoccal KF, Paula-Silva FWG, Fontanari C, Ferreira JC, Pereira PAT, Gardinassi LG, Ramos SG, Sorgi CA, Darini ALC, Faccioli LH. Leukotriene B 4 is essential for lung host defence and alpha-defensin-1 production during Achromobacter xylosoxidans infection. Sci Rep 2017; 7:17658. [PMID: 29247243 PMCID: PMC5732241 DOI: 10.1038/s41598-017-17993-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 11/29/2017] [Indexed: 02/06/2023] Open
Abstract
Leukotriene B4 (LTB4) is essential for host immune defence. It increases neutrophil recruitment, phagocytosis and pathogen clearance, and decreases oedema and inflammasome activation. The host response and the role of LTB4 during Achromobacter xylosoxidans infection remain unexplored. Wild-type (129sv) and LTB4 deficient (Alox5 -/-) mice were intratracheally infected with A. xylosoxidans. Wild-type 129sv infected mice survived beyond the 8th day post-infection, exhibited increased levels of LTB4 in the lung on the 1st day, while levels of PGE2 increased on the 7th day post-infection. Infected Alox5 -/- mice showed impaired bacterial clearance, increased lung inflammation, and succumbed to the infection by the 7th day. We found that exogenous LTB4 does not affect the phagocytosis of A. xylosoxidans by alveolar macrophages in vitro. However, treatment of infected animals with LTB4 protected from mortality, by reducing the bacterial load and inflammation via BLT1 signalling, the high affinity receptor for LTB4. Of importance, we uncovered that LTB4 induces gene and protein expression of α-defensin-1 during the infection. This molecule is essential for bacterial clearance and exhibits potent antimicrobial activity by disrupting A. xylosoxidans cell wall. Taken together, our data demonstrate a major role for LTB4 on the control of A. xylosoxidans infection.
Collapse
Affiliation(s)
- Morgana K B Prado
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Gisele A Locachevic
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Karina F Zoccal
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Francisco W G Paula-Silva
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Caroline Fontanari
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Joseane C Ferreira
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Priscilla A T Pereira
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luiz G Gardinassi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Simone G Ramos
- Departamento de Patologia e Medicina Legal, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Carlos A Sorgi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana Lúcia C Darini
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lúcia H Faccioli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
14
|
Müsken M, Klimmek K, Sauer-Heilborn A, Donnert M, Sedlacek L, Suerbaum S, Häussler S. Towards individualized diagnostics of biofilm-associated infections: a case study. NPJ Biofilms Microbiomes 2017; 3:22. [PMID: 28970943 PMCID: PMC5620081 DOI: 10.1038/s41522-017-0030-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 12/21/2022] Open
Abstract
Organized within biofilm communities, bacteria exhibit resistance towards a broad spectrum of antibiotics. Thus, one might argue that bacteria isolated from biofilm-associated chronic infections should be subjected to resistance profiling under biofilm growth conditions. Various test systems have been developed to determine the biofilm-associated resistance; however, it is not clear to what extent the in vitro results reflect the situation in vivo, and whether the biofilm-resistance profile should guide clinicians in their treatment choice. To address this issue, we used confocal microscopy in combination with live/dead staining, and profiled biofilm-associated resistance of a large number (>130) of clinical Pseudomonas aeruginosa isolates from overall 15 cystic fibrosis patients. Our results demonstrate that in addition to a general non-responsiveness of bacteria when grown under biofilm conditions, there is an isolate-specific and antibiotic-specific biofilm-resistance profile. This individual resistance profile is independent on the structural properties of the biofilms. Furthermore, biofilm resistance is not linked to the resistance profile under planktonic growth conditions, or a mucoid, or small colony morphology of the tested isolates. Instead, it seems that individual biofilm structures evolve during biofilm-associated growth and are shaped by environment-specific cues. In conclusion, our results demonstrate that biofilm resistance profiles are isolate specific and cannot be deduced from commonly studied phenotypes. Further clinical studies will have to show the added value of biofilm-resistance profiling. Individualized diagnosis of biofilm resistance might lead to more rational recommendations for antimicrobial therapy and, thus, increased effectiveness of the treatment of chronically infected patients.
Collapse
Affiliation(s)
- Mathias Müsken
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Present Address: Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Kathi Klimmek
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Monique Donnert
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ludwig Sedlacek
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Sebastian Suerbaum
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.,Max von Pettenkofer Institute, Medical Microbiology and Hospital Epidemiology, München, Germany
| | - Susanne Häussler
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
15
|
Reiter A, Brade L, Sanchez-Carballo P, Brade H, Kosma P. Synthesis and immunochemical characterization of neoglycoproteins containing epitopes of the inner core region of Pseudomonas aeruginosa RNA group I lipopolysaccharide. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519010070020701] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The disaccharide allyl 2-acetamido-2-deoxy-α-D-galactopyranosyl-(1→3)-7- O-carbamoyl-L- glyceroα-D- manno-heptopyranoside 5 (GalNAc-cmHep-allyl) was synthesized starting from 1 and 2. Compound 5, cmHep-allyl and the disaccharide cmHep-(1→3)-Hep-allyl were converted into cysteamine-spacered derivatives and conjugated to bovine serum albumin (BSA) to yield the neoglycoconjugates 7—9, respectively. These conjugates were used to immunize mice and to prepare monoclonal antibodies (mAbs) which were characterized in comparison to mAbs obtained after immunization with heat-killed Pseudomonas aeruginosa strain H4. Two antibodies obtained after immunization with the neoglycoconjugates bound strongly to cmHep-BSA and with lower affinity to cmHep-Hep-BSA but did not bind to GalNAc-cmHep-BSA or to H4 LPS. Another antibody obtained after immunization with heat-killed bacteria bound to LPS and GalNAc-cmHep-BSA but not to cmHep-Hep-BSA or cmHep-BSA
Collapse
Affiliation(s)
- Andreas Reiter
- Institute of Chemistry, University of Agricultural Sciences, Vienna, Austria
| | - Lore Brade
- Divisions of Medical and Biochemical Microbiology, Centre for Medicine and Biosciences, Germany
| | | | - Helmut Brade
- Divisions of Medical and Biochemical Microbiology, Centre for Medicine and Biosciences, Germany
| | - Paul Kosma
- Institute of Chemistry, University of Agricultural Sciences, Vienna, Austria,
| |
Collapse
|
16
|
Ghoul M, West SA, Johansen HK, Molin S, Harrison OB, Maiden MCJ, Jelsbak L, Bruce JB, Griffin AS. Bacteriocin-mediated competition in cystic fibrosis lung infections. Proc Biol Sci 2016; 282:rspb.2015.0972. [PMID: 26311664 DOI: 10.1098/rspb.2015.0972] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bacteriocins are toxins produced by bacteria to kill competitors of the same species. Theory and laboratory experiments suggest that bacteriocin production and immunity play a key role in the competitive dynamics of bacterial strains. The extent to which this is the case in natural populations,especially human pathogens, remains to be tested. We examined the role of bacteriocins in competition using Pseudomonas aeruginosa strains infecting lungs of humans with cystic fibrosis (CF). We assessed the ability of different strains to kill each other using phenotypic assays, and sequenced their genomes to determine what bacteriocins (pyocins) they carry. We found that(i) isolates from later infection stages inhibited earlier infecting strains less,but were more inhibited by pyocins produced by earlier infecting strains and carried fewer pyocin types; (ii) this difference between early and late infections appears to be caused by a difference in pyocin diversity between competing genotypes and not by loss of pyocin genes within a lineage overtime; (iii) pyocin inhibition does not explain why certain strains outcompete others within lung infections; (iv) strains frequently carry the pyocin-killing gene, but not the immunity gene, suggesting resistance occurs via other unknown mechanisms. Our results show that, in contrast to patterns observed in experimental studies, pyocin production does not appear to have a major influence on strain competition during CF lung infections.
Collapse
|
17
|
Transcriptome Profiling of Antimicrobial Resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2016; 60:4722-33. [PMID: 27216077 DOI: 10.1128/aac.00075-16] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/19/2016] [Indexed: 11/20/2022] Open
Abstract
Emerging resistance to antimicrobials and the lack of new antibiotic drug candidates underscore the need for optimization of current diagnostics and therapies to diminish the evolution and spread of multidrug resistance. As the antibiotic resistance status of a bacterial pathogen is defined by its genome, resistance profiling by applying next-generation sequencing (NGS) technologies may in the future accomplish pathogen identification, prompt initiation of targeted individualized treatment, and the implementation of optimized infection control measures. In this study, qualitative RNA sequencing was used to identify key genetic determinants of antibiotic resistance in 135 clinical Pseudomonas aeruginosa isolates from diverse geographic and infection site origins. By applying transcriptome-wide association studies, adaptive variations associated with resistance to the antibiotic classes fluoroquinolones, aminoglycosides, and β-lactams were identified. Besides potential novel biomarkers with a direct correlation to resistance, global patterns of phenotype-associated gene expression and sequence variations were identified by predictive machine learning approaches. Our research serves to establish genotype-based molecular diagnostic tools for the identification of the current resistance profiles of bacterial pathogens and paves the way for faster diagnostics for more efficient, targeted treatment strategies to also mitigate the future potential for resistance evolution.
Collapse
|
18
|
Hofmann A, Sommer R, Hauck D, Stifel J, Göttker-Schnetmann I, Titz A. Synthesis of mannoheptose derivatives and their evaluation as inhibitors of the lectin LecB from the opportunistic pathogen Pseudomonas aeruginosa. Carbohydr Res 2015; 412:34-42. [DOI: 10.1016/j.carres.2015.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/02/2015] [Accepted: 04/03/2015] [Indexed: 11/25/2022]
|
19
|
Lagares A, Agaras B, Bettiol MP, Gatti BM, Valverde C. A cultivation-independent PCR-RFLP assay targeting oprF gene for detection and identification of Pseudomonas spp. in samples from fibrocystic pediatric patients. J Microbiol Methods 2015; 114:66-74. [DOI: 10.1016/j.mimet.2015.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 05/06/2015] [Accepted: 05/06/2015] [Indexed: 01/10/2023]
|
20
|
Sommer R, Exner TE, Titz A. A biophysical study with carbohydrate derivatives explains the molecular basis of monosaccharide selectivity of the Pseudomonas aeruginosa lectin LecB. PLoS One 2014; 9:e112822. [PMID: 25415418 PMCID: PMC4240550 DOI: 10.1371/journal.pone.0112822] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/15/2014] [Indexed: 12/28/2022] Open
Abstract
The rise of resistances against antibiotics in bacteria is a major threat for public health and demands the development of novel antibacterial therapies. Infections with Pseudomonas aeruginosa are a severe problem for hospitalized patients and for patients suffering from cystic fibrosis. These bacteria can form biofilms and thereby increase their resistance towards antibiotics. The bacterial lectin LecB was shown to be necessary for biofilm formation and the inhibition with its carbohydrate ligands resulted in reduced amounts of biofilm. The natural ligands for LecB are glycosides of d-mannose and l-fucose, the latter displaying an unusual strong affinity. Interestingly, although mannosides are much weaker ligands for LecB, they do form an additional hydrogen bond with the protein in the crystal structure. To analyze the individual contributions of the methyl group in fucosides and the hydroxymethyl group in mannosides to the binding, we designed and synthesized derivatives of these saccharides. We report glycomimetic inhibitors that dissect the individual interactions of their saccharide precursors with LecB and give insight into the biophysics of binding by LecB. Furthermore, theoretical calculations supported by experimental thermodynamic data suggest a perturbed hydrogen bonding network for mannose derivatives as molecular basis for the selectivity of LecB for fucosides. Knowledge gained on the mode of interaction of LecB with its ligands at ambient conditions will be useful for future drug design.
Collapse
Affiliation(s)
- Roman Sommer
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C 2.3, D-66123, Saarbrücken, Germany
- Department of Chemistry and Graduate School Chemical Biology, University of Konstanz, D-78457, Konstanz, Germany
| | - Thomas E. Exner
- Department of Chemistry and Graduate School Chemical Biology, University of Konstanz, D-78457, Konstanz, Germany
- Theoretical Medicinal Chemistry and Biophysics, Institute of Pharmacy, University of Tübingen, D-72076, Tübingen, Germany
| | - Alexander Titz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C 2.3, D-66123, Saarbrücken, Germany
- Department of Chemistry and Graduate School Chemical Biology, University of Konstanz, D-78457, Konstanz, Germany
- * E-mail:
| |
Collapse
|
21
|
Vandervoort KG, Brelles-Mariño G. Plasma-mediated inactivation of Pseudomonas aeruginosa biofilms grown on borosilicate surfaces under continuous culture system. PLoS One 2014; 9:e108512. [PMID: 25302815 PMCID: PMC4193768 DOI: 10.1371/journal.pone.0108512] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 08/31/2014] [Indexed: 11/18/2022] Open
Abstract
Biofilms are microbial communities attached to a surface and embedded in a matrix composed of exopolysaccharides and excreted nucleic acids. Bacterial biofilms are responsible for undesirable effects such as disease, prostheses colonization, biofouling, equipment damage, and pipe plugging. Biofilms are also more resilient than free-living cells to regular sterilization methods and therefore it is indispensable to develop better ways to control and remove them. The use of gas discharge plasmas is a good alternative since plasmas contain a mixture of reactive agents well-known for their decontamination potential against free microorganisms. We have previously reported that Pseudomonas aeruginosa biofilms were inactivated after a 1-min plasma exposure. We determined that the adhesiveness and the thickness of Pseudomonas biofilms grown on borosilicate were reduced. We also reported sequential morphological changes and loss of viability upon plasma treatment. However, the studies were carried out in batch cultures. The use of a continuous culture results in a more homogenous environment ensuring reproducible biofilm growth. The aim of this work was to study plasma-mediated inactivation of P. aeruginosa biofilms grown on borosilicate in a continuous culture system. In this paper we show that biofilms grown on glass under continuous culture can be inactivated by using gas discharge plasma. Both biofilm architecture and cell culturability are impacted by the plasma treatment. The inactivation kinetics is similar to previously described ones and cells go through sequential changes ranging from minimal modification without loss of viability at short plasma exposure times, to major structure and viability loss at longer exposure times. We report that changes in biofilm structure leading to the loss of culturability and viability are related to a decrease of the biofilm matrix adhesiveness. To our knowledge, there has been no attempt to evaluate the inactivation/sterilization of biofilms grown in a continuous system.
Collapse
Affiliation(s)
- Kurt G. Vandervoort
- Physics and Astronomy Department, California State Polytechnic University, Pomona, California, United States of America
| | - Graciela Brelles-Mariño
- Biological Sciences Department, California State Polytechnic University, Pomona, California, United States of America
| |
Collapse
|
22
|
Abstract
Cystic fibrosis (CF) is the most frequent inherited disease in Caucasian populations and is due to a defect in the expression or activity of a chloride channel encoded by the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Mutations in this gene affect organs with exocrine functions and the main cause of morbidity and mortality for CF patients is the lung pathology in which the defect in CFTR decreases chloride secretion, lowering the airway surface liquid height and increasing mucus viscosity. The compromised ASL dynamics leads to a favorable environment for bacterial proliferation and sustained inflammation resulting in epithelial lung tissue injury, fibrosis and remodeling. In CF, there exist a difference in lung pathology between men and women that is termed the "CF gender gap". Recent studies have shown the prominent role of the most potent form of estrogen, 17β-estradiol in exacerbating lung function in CF females and here, we review the role of this hormone in the CF gender dichotomy.
Collapse
Affiliation(s)
- Vinciane Saint-Criq
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI-ERC, Beaumont Hospital, Dublin 9, Ireland
| | - Brian J Harvey
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI-ERC, Beaumont Hospital, Dublin 9, Ireland.
| |
Collapse
|
23
|
Titz A. Carbohydrate-Based Anti-Virulence Compounds Against Chronic Pseudomonas aeruginosa Infections with a Focus on Small Molecules. TOPICS IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1007/7355_2014_44] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Hauck D, Joachim I, Frommeyer B, Varrot A, Philipp B, Möller HM, Imberty A, Exner TE, Titz A. Discovery of two classes of potent glycomimetic inhibitors of Pseudomonas aeruginosa LecB with distinct binding modes. ACS Chem Biol 2013; 8:1775-84. [PMID: 23719508 DOI: 10.1021/cb400371r] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The treatment of infections due to the opportunistic pathogen Pseudomonas aeruginosa is often difficult, as a consequence of bacterial biofilm formation. Such a protective environment shields the bacterium from host defense and antibiotic treatment and secures its survival. One crucial factor for maintenance of the biofilm architecture is the carbohydrate-binding lectin LecB. Here, we report the identification of potent mannose-based LecB inhibitors from a screening of four series of mannosides in a novel competitive binding assay for LecB. Cinnamide and sulfonamide derivatives are inhibitors of bacterial adhesion with up to a 20-fold increase in affinity to LecB compared to the natural ligand methyl mannoside. Because many lectins of the host require terminal saccharides (e.g., fucosides), such capped structures as reported here may offer a beneficial selectivity profile for the pathogenic lectin. Both classes of compounds show distinct binding modes at the protein, offering the advantage of a simultaneous development of two new lead structures as anti-pseudomonadal drugs with an anti-virulence mode of action.
Collapse
Affiliation(s)
| | | | | | - Annabelle Varrot
- Centre de Recherche sur les Macromolécules
Végétales (CERMAV)-CNRS, Université Grenoble 1 and Institut de Chimie Moléculaire de Grenoble BP53, F-38041 Grenoble cedex 9, France
| | - Bodo Philipp
- Institute of Molecular Microbiology and Biotechnology, University of Münster, D-48149 Münster, Germany
| | | | - Anne Imberty
- Centre de Recherche sur les Macromolécules
Végétales (CERMAV)-CNRS, Université Grenoble 1 and Institut de Chimie Moléculaire de Grenoble BP53, F-38041 Grenoble cedex 9, France
| | | | | |
Collapse
|
25
|
Abstract
As an opportunistic Gram-negative pathogen, Pseudomonas aeruginosa must be able to adapt and survive changes and stressors in its environment during the course of infection. To aid survival in the hostile host environment, P. aeruginosa has evolved defense mechanisms, including the production of an exopolysaccharide capsule and the secretion of a myriad of degradative proteases and lipases. The production of outer membrane-derived vesicles (OMVs) serves as a secretion mechanism for virulence factors as well as a general bacterial response to envelope-acting stressors. This study investigated the effect of sublethal physiological stressors on OMV production by P. aeruginosa and whether the Pseudomonas quinolone signal (PQS) and the MucD periplasmic protease are critical mechanistic factors in this response. Exposure to some environmental stressors was determined to increase the level of OMV production as well as the activity of AlgU, the sigma factor that controls MucD expression. Overexpression of AlgU was shown to be sufficient to induce OMV production; however, stress-induced OMV production was not dependent on activation of AlgU, since stress caused increased vesiculation in strains lacking algU. We further determined that MucD levels were not an indicator of OMV production under acute stress, and PQS was not required for OMV production under stress or unstressed conditions. Finally, an investigation of the response of P. aeruginosa to oxidative stress revealed that peroxide-induced OMV production requires the presence of B-band but not A-band lipopolysaccharide. Together, these results demonstrate that distinct mechanisms exist for stress-induced OMV production in P. aeruginosa.
Collapse
|
26
|
Elias S, Banin E. Multi-species biofilms: living with friendly neighbors. FEMS Microbiol Rev 2012; 36:990-1004. [PMID: 22229800 DOI: 10.1111/j.1574-6976.2012.00325.x] [Citation(s) in RCA: 463] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 11/14/2011] [Accepted: 01/03/2012] [Indexed: 01/23/2023] Open
Abstract
Our knowledge regarding the nature and development of microbial biofilms has grown significantly since the first report of these communities by Antonie van Leeuwenhoek in the late 1600s. Nevertheless, most biofilm studies examine mono-species cultures, whereas nearly all biofilm communities in nature comprise a variety of microorganisms. The species that constitute a mixed biofilm and the interactions between these microorganisms critically influence the development and shape of the community. In this review, we focus on interactions occurring within a multi-species biofilm and their effects on the nature of the mixed community. In general, interspecies interactions involve communication, typically via quorum sensing, and metabolic cooperation or competition. Interactions among species within a biofilm can be antagonistic, such as competition over nutrients and growth inhibition, or synergistic. The latter can result in the development of several beneficial phenotypes. These include the promotion of biofilm formation by co-aggregation, metabolic cooperation where one species utilizes a metabolite produced by a neighboring species, and increased resistance to antibiotics or host immune responses compared to the mono-species biofilms. These beneficial interactions in mixed biofilms have important environmental, industrial, and clinical implications. The latter, for example, impacts the course and treatment of biofilm-related infections, such as those manifested in the lungs of cystic fibrosis patients.
Collapse
Affiliation(s)
- Sivan Elias
- The Bacterial Biofilm Research Laboratory, The Institute for Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | | |
Collapse
|
27
|
Karlsson T, Musse F, Magnusson KE, Vikström E. N-Acylhomoserine lactones are potent neutrophil chemoattractants that act via calcium mobilization and actin remodeling. J Leukoc Biol 2011; 91:15-26. [PMID: 21807742 DOI: 10.1189/jlb.0111034] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In gram-negative bacteria, cell-cell communication based on HSL QS molecules is known to coordinate the production of virulence factors and biofilms. These bacterial signals can also modulate human immune cell behavior. Using a Transwell migration assay, we found that human primary neutrophils are strongly stimulated by 3O-C(12)-HSL and -C(10)-HSL but not C(4)-HSL in a concentration-dependent manner. Moreover, 3O-C(12)-HSL and -C(10)-HSL activate PLCγ1 but not -γ2, mobilize intracellular calcium, and up-regulate IP(3)R. These changes were paralleled by F-actin accumulation, primarily in the leading edge of neutrophils, as evidenced by phalloidin staining and confocal microscopy. F- and G-actin isolation and quantification by immunoblotting revealed that the F/G-actin ratio was increased significantly after treatment with all three HSLs. Furthemore, 3O-C(12)-HSL- and 3O-C(10)-HSL treatment resulted in phosphorylation of Rac1 and Cdc42. In contrast, C(4)-HSL had negligible influence on the phosphorylation status of PLC and Rac1/Cdc42 and failed to attract neutrophils and induce calcium release. The calcium inhibitor thapsigargin, which blocks ER calcium uptake, strongly prevented neutrophil migration toward 3O-C(12)-HSL and -C(10)-HSL. These findings show that the bacterial QS molecules 3O-C(12)-HSL and -C(10)-HSL may attract human neutrophils to the sites of bacterial infection and developing biofilms. Indeed, recognition of HSL QS signals by neutrophils may play a critical role in their recruitment during infections.
Collapse
Affiliation(s)
- Thommie Karlsson
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | | | | | | |
Collapse
|
28
|
Cramer N, Klockgether J, Wrasman K, Schmidt M, Davenport CF, Tümmler B. Microevolution of the major common Pseudomonas aeruginosa clones C and PA14 in cystic fibrosis lungs. Environ Microbiol 2011; 13:1690-704. [PMID: 21492363 DOI: 10.1111/j.1462-2920.2011.02483.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Clones C and PA14 are the worldwide most abundant clonal complexes in the Pseudomonas aeruginosa population. The microevolution of clones C and PA14 was investigated in serial cystic fibrosis (CF) airway isolates collected over 20 years since the onset of colonization. Intraclonal evolution in CF lungs was resolved by genome sequencing of first, intermediate and late isolates and subsequent multimarker SNP genotyping of the whole strain panel. Mapping of sequence reads onto the P. aeruginosa PA14 reference genome unravelled an intraclonal and interclonal sequence diversity of 0.0035% and 0.68% respectively. Clone PA14 diversified into three branches in the patient's lungs, and the PA14 population acquired 15 nucleotide substitutions and a large deletion during the observation period. The clone C genome remained invariant during the first 3 years in CF lungs; however, 15 years later 947 transitions and 12 transversions were detected in a clone C mutL mutant strain. Key mutations occurred in retS, RNA polymerase, multidrug transporter, virulence and denitrification genes. Late clone C and PA14 persistors in the CF lungs were compromised in growth and cytotoxicity, but their mutation frequency was normal even in mutL mutant clades.
Collapse
Affiliation(s)
- Nina Cramer
- Klinische Forschergruppe, Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, OE 6710, Medizinische Hochschule Hannover, Carl-Neuberg-Str.1, D-30625 Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
29
|
Zelaya AJ, Stough G, Rad N, Vandervoort K, Brelles-Mariño G. Pseudomonas aeruginosa Biofilm Inactivation: Decreased Cell Culturability, Adhesiveness to Surfaces, and Biofilm Thickness Upon High-Pressure Nonthermal Plasma Treatment. IEEE TRANSACTIONS ON PLASMA SCIENCE. IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY 2010; 38:3398-3403. [PMID: 21544254 PMCID: PMC3085249 DOI: 10.1109/tps.2010.2082570] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Bacterial biofilms are more resilient to standard killing methods than free-living bacteria. Pseudomonas aeruginosa PAO1 biofilms grown on borosilicate coupons were treated with gas-discharge plasma for various exposure times. Almost 100% of the cells were inactivated after a 5-min plasma exposure. Atomic force microscopy was used to image the biofilms and study their micromechanical properties. Results show that the adhesiveness to borosilicate and the thickness of the Pseudomonas biofilms are reduced upon plasma treatment.
Collapse
Affiliation(s)
- Anna J Zelaya
- Biological Sciences Department, California State Polytechnic University, Pomona, CA 91768 USA ( )
| | | | | | | | | |
Collapse
|
30
|
Becker KA, Tümmler B, Gulbins E, Grassmé H. Accumulation of ceramide in the trachea and intestine of cystic fibrosis mice causes inflammation and cell death. Biochem Biophys Res Commun 2010; 403:368-74. [DOI: 10.1016/j.bbrc.2010.11.038] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 11/11/2010] [Indexed: 11/25/2022]
|
31
|
Phylogenetic and metabolic diversity of bacteria associated with cystic fibrosis. ISME JOURNAL 2010; 5:20-9. [PMID: 20631810 DOI: 10.1038/ismej.2010.88] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In patients afflicted with cystic fibrosis (CF), morbidity and mortality are primarily associated with the adverse consequences of chronic microbial bronchial infections, which are thought to be caused by a few opportunistic pathogens. However, recent evidence suggests the presence of other microorganisms, which may significantly affect the course and outcome of the infection. Using a combination of 16S rRNA gene clone libraries, bacterial culturing and pyrosequencing of barcoded 16S rRNA amplicons, the microbial communities present in CF patient sputum samples were examined. In addition to previously recognized CF pathogens such as Pseudomonas aeruginosa and Staphylococcus aureus, >60 phylogenetically diverse bacterial genera that are not typically associated with CF pathogenesis were also detected. A surprisingly large number of fermenting facultative and obligate anaerobes from multiple bacterial phyla was present in each sample. Many of the bacteria and sequences found were normal residents of the oropharyngeal microflora and with many containing opportunistic pathogens. Our data suggest that these undersampled organisms within the CF lung are part of a much more complex microbial ecosystem than is normally presumed. Characterization of these communities is the first step in elucidating potential roles of diverse bacteria in disease progression and to ultimately facilitate advances in CF therapy.
Collapse
|
32
|
Schobert M, Tielen P. Contribution of oxygen-limiting conditions to persistent infection of Pseudomonas aeruginosa. Future Microbiol 2010; 5:603-21. [PMID: 20353301 DOI: 10.2217/fmb.10.16] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pseudomonas aeruginosa is a versatile opportunistic human pathogen that is able to colonize a broad spectrum of different aquatic and soil habitats. In the environment and during pathogenesis, P. aeruginosa encounters oxygen-limited and anaerobic environments. Particularly during chronic infection of the cystic fibrosis lung, oxygen-limiting conditions seem to contribute to persistent infection. Oxygen limitation increases antibiotic tolerance, robust biofilms and alginate biosynthesis, which contribute to the persistence of this opportunistic pathogen. Despite the importance of anaerobic metabolism during persistent infection of P. aeruginosa, we are just beginning to understand the underlying regulatory network and the molecular basis of how anaerobic metabolism contributes to a persistent infection. A deeper understanding of the anaerobic physiology of P. aeruginosa will allow the identification of new antibiotic targets and new therapeutic strategies.
Collapse
Affiliation(s)
- Max Schobert
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany.
| | | |
Collapse
|
33
|
Biofilm-induced modifications in the proteome of Pseudomonas aeruginosa planktonic cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:957-66. [DOI: 10.1016/j.bbapap.2010.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 12/04/2009] [Accepted: 01/08/2010] [Indexed: 11/17/2022]
|
34
|
Dannhoffer L, Blouquit-Laye S, Regnier A, Chinet T. Functional Properties of Mixed Cystic Fibrosis and Normal Bronchial Epithelial Cell Cultures. Am J Respir Cell Mol Biol 2009; 40:717-23. [DOI: 10.1165/rcmb.2008-0018oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
35
|
Moreau-Marquis S, O'Toole GA, Stanton BA. Tobramycin and FDA-approved iron chelators eliminate Pseudomonas aeruginosa biofilms on cystic fibrosis cells. Am J Respir Cell Mol Biol 2009; 41:305-13. [PMID: 19168700 DOI: 10.1165/rcmb.2008-0299oc] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The ability of Pseudomonas aeruginosa to form antibiotic-resistant biofilms is thought to account for the inability of current therapies to resolve bacterial infections in the lungs of patients with cystic fibrosis (CF). We recently described a system in which highly antibiotic-resistant P. aeruginosa biofilms grow on human CF airway epithelial cells, and using this system we showed that enhanced iron release from CF cells facilitates the development of such highly antibiotic-resistant biofilms. Given the positive role for iron in biofilm development, we investigated whether the FDA-approved iron chelators deferoxamine and deferasirox would enhance the ability of tobramycin, the primary antibiotic used to treat CF lung infections, to eliminate P. aeruginosa biofilms. The combination of tobramycin with deferoxamine or deferasirox reduced established biofilm biomass by approximately 90% and reduced viable bacteria by 7-log units. Neither tobramycin nor deferoxamine nor deferasirox alone had such a marked effect. The combination of tobramycin and FDA-approved iron chelators also prevented the formation of biofilms on CF airway cells. These data suggest that the combined use of tobramycin and FDA-approved iron chelators may be an effective therapy to treat patients with CF and other lung disease characterized by antibiotic-resistant P. aeruginosa biofilms.
Collapse
|
36
|
Identification of biofilm-associated cluster (bac) in Pseudomonas aeruginosa involved in biofilm formation and virulence. PLoS One 2008; 3:e3897. [PMID: 19065261 PMCID: PMC2587700 DOI: 10.1371/journal.pone.0003897] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 11/06/2008] [Indexed: 01/19/2023] Open
Abstract
Biofilms are prevalent in diseases caused by Pseudomonas aeruginosa, an opportunistic and nosocomial pathogen. By a proteomic approach, we previously identified a hypothetical protein of P. aeruginosa (coded by the gene pA3731) that was accumulated by biofilm cells. We report here that a ΔpA3731 mutant is highly biofilm-defective as compared with the wild-type strain. Using a mouse model of lung infection, we show that the mutation also induces a defect in bacterial growth during the acute phase of infection and an attenuation of the virulence. The pA3731 gene is found to control positively the ability to swarm and to produce extracellular rhamnolipids, and belongs to a cluster of 4 genes (pA3729–pA3732) not previously described in P. aeruginosa. Though the protein PA3731 has a predicted secondary structure similar to that of the Phage Shock Protein, some obvious differences are observed compared to already described psp systems, e.g., this unknown cluster is monocistronic and no homology is found between the other proteins constituting this locus and psp proteins. As E. coli PspA, the amount of the protein PA3731 is enlarged by an osmotic shock, however, not affected by a heat shock. We consequently named this locus bac for biofilm-associated cluster.
Collapse
|
37
|
Identification of Pseudomonas aeruginosa by a duplex real-time polymerase chain reaction assay targeting the ecfX and the gyrB genes. Diagn Microbiol Infect Dis 2008; 63:127-31. [PMID: 19026507 DOI: 10.1016/j.diagmicrobio.2008.09.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 09/23/2008] [Accepted: 09/30/2008] [Indexed: 11/20/2022]
Abstract
Phenotypic identification of Gram-negative bacteria from respiratory specimens of patients with cystic fibrosis carries a high risk of misidentification. Molecular identification techniques that use single-gene targets are also susceptible to error, including cross-reaction issues with other Gram-negative organisms. In this study, we have designed a Pseudomonas aeruginosa duplex real-time polymerase chain reaction (PCR) (PAduplex) assay targeting the ecfX and the gyrB genes. The PAduplex was evaluated against a panel of 91 clinical and environmental isolates that were presumptively identified as P. aeruginosa. The results were compared with those obtained using a commercial biochemical identification kit and several other P. aeruginosa PCR assays. The results showed that the PAduplex assay is highly suitable for routine identification of P. aeruginosa isolates from clinical or environmental samples. The 2-target format provides simultaneous confirmation of P. aeruginosa identity where both the ecfX and gyrB PCR reactions are positive and may also reduce the potential for false negatives caused by sequence variation in primer or probe targets.
Collapse
|
38
|
Yang Z, Jin X, Rao X, Cheng X, Hu F. A novel strategy for systematic identification of natural antisense transcripts of Pseudomonas aeruginosa based on the RNase I protection assay. Mol Biol 2007. [DOI: 10.1134/s0026893307040085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Small DA, Chang W, Toghrol F, Bentley WE. Comparative global transcription analysis of sodium hypochlorite, peracetic acid, and hydrogen peroxide on Pseudomonas aeruginosa. Appl Microbiol Biotechnol 2007; 76:1093-105. [PMID: 17624526 DOI: 10.1007/s00253-007-1072-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 05/29/2007] [Accepted: 06/01/2007] [Indexed: 11/26/2022]
Abstract
Disinfectants are routinely used in hospitals and health care facilities for surface sterilization. However, the mechanisms by which these disinfectants kill and the extent to which bacteria, including Pseudomonas aeruginosa, are resistant remains unclear. Consequently, P. aeruginosa nosocomial infections result in considerable casualties and economic hardship. Previously, DNA microarrays were utilized to analyze the genome-wide transcription changes in P. aeruginosa after oxidative antimicrobial (sodium hypochlorite, peracetic acid, and hydrogen peroxide) exposure. Simultaneous analysis of these transcriptome datasets provided a comprehensive understanding of the differential responses to these disinfectants. An analysis of variance, functional classification analysis, metabolic pathway analysis, Venn diagram analysis, and principal component analysis revealed that sodium hypochlorite exposure resulted in more genome-wide changes than either peracetic acid or hydrogen peroxide exposures.
Collapse
Affiliation(s)
- David A Small
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
40
|
Leduc D, Beaufort N, de Bentzmann S, Rousselle JC, Namane A, Chignard M, Pidard D. The Pseudomonas aeruginosa LasB metalloproteinase regulates the human urokinase-type plasminogen activator receptor through domain-specific endoproteolysis. Infect Immun 2007; 75:3848-58. [PMID: 17517866 PMCID: PMC1951998 DOI: 10.1128/iai.00015-07] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen in human lungs, where its secretable LasB metalloproteinase can be a virulence factor. The urokinase-type plasminogen activator receptor (uPAR) participates in pericellular proteolysis and the adherence/migration of epithelial cells and leukocytes recruited during infection and shows functional regulation by various proteinases via limited endoproteolysis occurring within its three domains (D1 to D3). We thus examined the proteolytic activity of LasB on uPAR by using recombinant uPAR as well as uPAR-expressing, human monocytic, and bronchial epithelial cell lines. Protein immunoblotting and flow immunocytometry using a panel of domain-specific anti-uPAR antibodies showed that LasB is able to cleave uPAR both within the sequence linking D1 to D2 and at the carboxy terminus of D3. Comparison of LasB-producing and LasB-deficient bacterial strains indicated that LasB is entirely responsible for the uPAR cleavage ability of P. aeruginosa. Based on amino-terminal protein microsequencing and mass spectrometry analysis of the cleavage of peptides mimicking the uPAR sequences targeted by LasB, cleavage sites were determined to be Ala(84)-Val(85) and Thr(86)-Tyr(87) (D1-D2) and Gln(279)-Tyr(280) (D3). Such a dual cleavage of uPAR led to the removal of amino-terminal D1, the generation of a truncated D2D3 species, and the shedding of D2D3 from cells. This proteolytic processing of uPAR was found to (i) drastically reduce the capacity of cells to bind urokinase and (ii) abrogate the interaction between uPAR and the matrix adhesive protein vitronectin. The LasB proteinase is thus endowed with a high potential for the alteration of uPAR expression and functioning on inflammatory cells during infections by P. aeruginosa.
Collapse
Affiliation(s)
- Dominique Leduc
- INSERM, U874, Paris F-75015, France; Unité de Défense Innée et Inflammation, Institut Pasteur, Paris F-75015, France
| | | | | | | | | | | | | |
Collapse
|
41
|
Balke B, Hogardt M, Schmoldt S, Hoy L, Weissbrodt H, Häussler S. Evaluation of the E test for the assessment of synergy of antibiotic combinations against multiresistant Pseudomonas aeruginosa isolates from cystic fibrosis patients. Eur J Clin Microbiol Infect Dis 2007; 25:25-30. [PMID: 16402226 DOI: 10.1007/s10096-005-0076-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The determination of synergistic effects of antimicrobial drug combinations can lead to improved therapeutic options in the antibiotic treatment of cystic fibrosis patients who are chronically infected with multiresistant Pseudomonas aeruginosa isolates. The aim of this study was to evaluate the performance of the E test versus the standard agar dilution checkerboard susceptibility test in the assessment of synergy and, in addition, to determine the activity of two antimicrobial combinations against 163 multiresistant P. aeruginosa isolates from cystic fibrosis patients. The agreement between the checkerboard method and the E test was excellent (>90%) for nonmucoid as well as mucoid isolates from cystic fibrosis patients. The rate of synergy was higher for the antibiotic combination of ceftazidime and tobramycin (28.8% of the cystic fibrosis strains) than for the combination of meropenem and tobramycin (19.0%). However, the probability of synergy for the second antibiotic combination increased significantly when the synergy of the first antibiotic combination had already been demonstrated (Fischer's exact test, p=0.049). The results show that the E test is a valuable and practical method for routine microbiological diagnostics and can aid in the selection of improved antibiotic options in the treatment of cystic fibrosis patients chronically infected with P. aeruginosa.
Collapse
Affiliation(s)
- B Balke
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625 Hanover, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Williams HD, Zlosnik JEA, Ryall B. Oxygen, cyanide and energy generation in the cystic fibrosis pathogen Pseudomonas aeruginosa. Adv Microb Physiol 2006; 52:1-71. [PMID: 17027370 DOI: 10.1016/s0065-2911(06)52001-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pseudomonas aeruginosa is a gram-negative, rod-shaped bacterium that belongs to the gamma-proteobacteria. This clinically challenging, opportunistic pathogen occupies a wide range of niches from an almost ubiquitous environmental presence to causing infections in a wide range of animals and plants. P. aeruginosa is the single most important pathogen of the cystic fibrosis (CF) lung. It causes serious chronic infections following its colonisation of the dehydrated mucus of the CF lung, leading to it being the most important cause of morbidity and mortality in CF sufferers. The recent finding that steep O2 gradients exist across the mucus of the CF-lung indicates that P. aeruginosa will have to show metabolic adaptability to modify its energy metabolism as it moves from a high O2 to low O2 and on to anaerobic environments within the CF lung. Therefore, the starting point of this review is that an understanding of the diverse modes of energy metabolism available to P. aeruginosa and their regulation is important to understanding both its fundamental physiology and the factors significant in its pathogenicity. The main aim of this review is to appraise the current state of knowledge of the energy generating pathways of P. aeruginosa. We first look at the organisation of the aerobic respiratory chains of P. aeruginosa, focusing on the multiple primary dehydrogenases and terminal oxidases that make up the highly branched pathways. Next, we will discuss the denitrification pathways used during anaerobic respiration as well as considering the ability of P. aeruginosa to carry out aerobic denitrification. Attention is then directed to the limited fermentative capacity of P. aeruginosa with discussion of the arginine deiminase pathway and the role of pyruvate fermentation. In the final part of the review, we consider other aspects of the biology of P. aeruginosa that are linked to energy metabolism or affected by oxygen availability. These include cyanide synthesis, which is oxygen-regulated and can affect the operation of aerobic respiratory pathways, and alginate production leading to a mucoid phenotype, which is regulated by oxygen and energy availability, as well as having a role in the protection of P. aeruginosa against reactive oxygen species. Finally, we consider a possible link between cyanide synthesis and the mucoid switch that operates in P. aeruginosa during chronic CF lung infection.
Collapse
Affiliation(s)
- Huw D Williams
- Division of Biology, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | | | | |
Collapse
|
43
|
Small DA, Chang W, Toghrol F, Bentley WE. Toxicogenomic analysis of sodium hypochlorite antimicrobial mechanisms in Pseudomonas aeruginosa. Appl Microbiol Biotechnol 2006; 74:176-85. [PMID: 17021869 DOI: 10.1007/s00253-006-0644-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 08/14/2006] [Accepted: 08/22/2006] [Indexed: 10/24/2022]
Abstract
Sodium hypochlorite (bleach) is routinely used in hospitals and health care facilities for surface sterilization; however, the mechanism of action by which this disinfectant kills and the extent to which Pseudomonas aeruginosa is resistant to sodium hypochlorite have not been elucidated. Consequently, nosocomial infections from P. aeruginosa result in considerable casualties and economic hardship. We report the genome-wide transcriptome response of P. aeruginosa to sodium hypochlorite-induced oxidative stress via the use of DNA microarrays. In addition to a general oxidative stress response, our data revealed a downregulation of virtually all genes related to oxidative phosphorylation and electron transport and an upregulation of many organic sulfur transport and metabolism genes.
Collapse
Affiliation(s)
- David A Small
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
44
|
Bauman SJ, Kuehn MJ. Purification of outer membrane vesicles from Pseudomonas aeruginosa and their activation of an IL-8 response. Microbes Infect 2006; 8:2400-8. [PMID: 16807039 PMCID: PMC3525494 DOI: 10.1016/j.micinf.2006.05.001] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 05/02/2006] [Accepted: 05/03/2006] [Indexed: 10/24/2022]
Abstract
Considerable lung injury results from the inflammatory response to Pseudomonas aeruginosa infections in patients with cystic fibrosis (CF). The P. aeruginosa laboratory strain PAO1, an environmental isolate, and isolates from CF patients were cultured in vitro and outer membrane vesicles from those cultures were quantitated, purified, and characterized. Vesicles were produced throughout the growth phases of the culture and vesicle yield was strain-independent. Strain-dependent differences in the protein composition of vesicles were quantitated and identified. The aminopeptidase PaAP (PA2939) was highly enriched in vesicles from CF isolates. Vesicles from all strains elicited IL-8 secretion by lung epithelial cells. These results suggest that P. aeruginosa colonizing the CF lung may produce vesicles with a particular composition and that the vesicles could contribute to inflammation.
Collapse
Affiliation(s)
| | - Meta J. Kuehn
- Corresponding author. Tel.: +1 919 684 2545; fax: +1 919 684 8885. (M.J. Kuehn)
| |
Collapse
|
45
|
Abstract
The genus Burkholderia contains over 30 species, many of which are important human pathogens. In addition to the primary pathogens Burkholderia pseudomallei and Burkholderia mallei, several species have emerged as opportunistic pathogens in persons suffering from cystic fibrosis (CF) and immunocompromised individuals. All Burkholderia species investigated so far employ quorum-sensing (QS) systems that rely on N-acyl-homoserine lactone (AHL) signal molecules to express certain phenotypic traits in a population density-dependent manner. Whilst many Burkholderia strains only contain the CepI/CepR QS system, which relies on C8-HSL, some strains, in particular isolates of B. pseudomallei and B. mallei, harbour multiple LuxI/LuxR homologues and produce numerous AHL signal molecules. Evidence has accumulated over the past few years that the QS systems operating in Burkholderia are crucial for full virulence in various animal models. However, only few QS-regulated functions required for virulence in the different infection models have so far been identified. Given the essential role of QS in the expression of pathogenic traits in Burkholderia these regulatory systems represent attractive targets for the development of novel therapeutics.
Collapse
Affiliation(s)
- Leo Eberl
- Department of Microbiology, Institute of Plant Biology, University Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland.
| |
Collapse
|
46
|
Stanke F, Becker T, Cuppens H, Kumar V, Cassiman JJ, Jansen S, Radojkovic D, Siebert B, Yarden J, Ussery DW, Wienker TF, Tümmler B. The TNFalpha receptor TNFRSF1A and genes encoding the amiloride-sensitive sodium channel ENaC as modulators in cystic fibrosis. Hum Genet 2006; 119:331-43. [PMID: 16463024 DOI: 10.1007/s00439-006-0140-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Accepted: 12/20/2005] [Indexed: 11/26/2022]
Abstract
The CFTR mutations in cystic fibrosis (CF) lead to ion transport anomalities which predispose to chronic infection and inflammation of CF airways as the major determinants for morbidity and mortality in CF. Discordant clinical phenotypes of siblings with identical CFTR mutations and the large variability of clinical manifestations of patients who are homozygous for the most common mutation F508del suggest that both environment and genes other than CFTR contribute substantially to CF disease. The prime candidates for genetic modifiers in CF are elements of host defence such as the TNFalpha receptor and of ion transport such as the amiloride-sensitive epithelial sodium channel ENaC, both of which are encoded side by side on 12p13 (TNFRSF1A, SCNN1A) and 16p12 (SCNN1B, SCNN1G). Thirty-seven families with F508del-CFTR homozygous siblings exhibiting extreme clinical phenotypes that had been selected from the 467 pairs of the European CF Twin and Sibling Study were genotyped at 12p13 and 16p12 markers. The ENaC was identified as a modulator of CF by transmission disequilibrium at SCNN1G and association with CF phenotype intrapair discordance at SCNN1B. Family-based and case-control analyses and sequencing of SCNN1A and TNFRSF1A uncovered an association of the TNFRSF1A intron 1 haplotype with disease severity. Carriers of risk haplotypes were underrepresented suggesting a strong impact of both loci on survival. The finding that TNFRSF1A, SCNN1B and SCNN1G are clinically relevant modulators of CF disease supports current concepts that the depletion of airway surface liquid and inadequate host inflammatory responses trigger pulmonary disease in CF.
Collapse
Affiliation(s)
- Frauke Stanke
- Department of Pediatrics, OE6711, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Alaoui-El-Azher M, Jia J, Lian W, Jin S. ExoS of Pseudomonas aeruginosa induces apoptosis through a Fas receptor/caspase 8-independent pathway in HeLa cells. Cell Microbiol 2006; 8:326-38. [PMID: 16441442 DOI: 10.1111/j.1462-5822.2005.00624.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pseudomonas aeruginosa infection is a serious complication in immunocompromised individuals and in patients with cystic fibrosis. We have previously shown that the type III secreted effector ExoS triggers apoptosis in various cultured cell lines via its ADP-ribosyltransferase (ADPRT) activity. The apoptosis process was further shown to involve intrinsic signalling pathway requiring c-Jun N-terminal kinase (JNK)-initiated mitochondrial pathway. In the present study, we investigated the role of Fas pathway activation in P. aeruginosa-induced apoptosis. P. aeruginosa infection resulted in caspase 8 cleavage in HeLa cells, which was inhibited by overexpression of a dominant negative version of Fas-associated death domain (FADD), suggesting that Fas pathway was activated. In fact, confocal laser scanning microscopy showed that P. aeruginosa induced clustering of FasR. In addition, the ADPRT activity of the ExoS was required for the induction of FasR clustering and caspase 8 cleavage. However, blocking the FasR-FasL interaction by antagonistic antibodies to FasR or to FasL had no effect on P. aeruginosa-induced caspase 8 and caspase 3 activation, neither did the silencing of FasR by small interfering RNA (siRNA), suggesting that caspase 8 activation through the FADD bypasses FasR/FasL-mediated signalling. Thus, FADD-mediated caspase 8 activation involves intracellular ExoS in an ADPRT-dependent manner. Furthermore, silencing of caspase 8 by siRNA did not interfere with P. aeruginosa-induced apoptosis, whereas it rendered HeLa cells markedly increased resistance towards FasL-induced apoptosis. In conclusion, our findings indicate that ExoS of P. aeruginosa induces apoptosis through a mechanism that is independent of Fas receptor/caspase 8 pathway.
Collapse
Affiliation(s)
- Mounia Alaoui-El-Azher
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
48
|
Lefebre MD, Flannagan RS, Valvano MA. A minor catalase/peroxidase from Burkholderia cenocepacia is required for normal aconitase activity. MICROBIOLOGY-SGM 2005; 151:1975-1985. [PMID: 15942004 DOI: 10.1099/mic.0.27704-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The opportunistic bacterium Burkholderia cenocepacia C5424 contains two catalase/peroxidase genes, katA and katB. To investigate the functions of these genes, katA and katB mutants were generated by targeted integration of suicide plasmids into the katA and katB genes. The catalase/peroxidase activity of the katA mutant was not affected as compared with that of the parental strain, while no catalase/peroxidase activity was detected in the katB mutant. However, the katA mutant displayed reduced resistance to hydrogen peroxide under iron limitation, while the katB mutant showed hypersensitivity to hydrogen peroxide, and reduced growth under all conditions tested. The katA mutant displayed reduced growth only in the presence of carbon sources that are metabolized through the tricarboxylic acid (TCA) cycle, as the growth defect was abrogated in cultures supplemented with glucose or glycerol. This phenotype was also correlated with a marked reduction in aconitase activity. In contrast, aconitase activity was not reduced in the katB mutant and parental strains. The authors conclude that the KatA protein is a specialized catalase/peroxidase that has a novel function by contributing to maintain the normal activity of the TCA cycle, while KatB is a classical catalase/peroxidase that plays a global role in cellular protection against oxidative stress.
Collapse
Affiliation(s)
- Mathew D Lefebre
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Ronald S Flannagan
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Miguel A Valvano
- Department of Medicine, University of Western Ontario, London, Ontario, Canada N6A 5C1
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada N6A 5C1
| |
Collapse
|
49
|
Overhage J, Schemionek M, Webb JS, Rehm BHA. Expression of the psl operon in Pseudomonas aeruginosa PAO1 biofilms: PslA performs an essential function in biofilm formation. Appl Environ Microbiol 2005; 71:4407-13. [PMID: 16085831 PMCID: PMC1183271 DOI: 10.1128/aem.71.8.4407-4413.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The psl gene cluster, comprising 15 cotranscribed genes from Pseudomonas aeruginosa, was recently identified as being involved in exopolysaccharide biosynthesis and biofilm formation. In this study, we investigated the regulation of the psl gene cluster and the function of the first gene in this cluster, the pslA gene. PslA shows strong similarities to UDP-glucose lipid carriers. An isogenic marker-free pslA deletion mutant of P. aeruginosa PAO1 deficient in attachment and biofilm formation was used for complementation studies. The expression of only the pslA gene, comprising a coding region of 1,437 bp, restored the biofilm-forming phenotype of the wild type, indicating that PslA is required for biofilm formation by nonmucoid P. aeruginosa. The promoter region of the psl gene cluster, which encodes PslA-PslO, was identified by rapid amplification of cDNA 5' ends. Promoter assays using transcriptional fusions to lacZ and gfp indicated a constitutive expression of the psl cluster in planktonic cells and a highly regulated and localized expression in biofilms, respectively. Expression of the psl cluster in biofilms was almost exclusively found in the centers of microcolonies, as revealed by confocal laser scanning microscopy. These data suggest that constitutive expression of the psl operon enables efficient attachment to surfaces and that regulated localized psl operon expression is required for biofilm differentiation.
Collapse
Affiliation(s)
- Jörg Overhage
- Institute of Molecular Biosciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | | | | | | |
Collapse
|
50
|
Li J, Nation RL, Milne RW, Turnidge JD, Coulthard K. Evaluation of colistin as an agent against multi-resistant Gram-negative bacteria. Int J Antimicrob Agents 2005; 25:11-25. [PMID: 15620821 DOI: 10.1016/j.ijantimicag.2004.10.001] [Citation(s) in RCA: 407] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Infections caused by multi-resistant Gram-negative bacteria, particularly Pseudomonas aeruginosa, are increasing worldwide. In patients with cystic fibrosis (CF), resistance in P. aeruginosa to numerous anti-pseudomonal agents is becoming common. The absence since 1995, of new substances active against resistant Gram-negative bacteria, has caused increasing concern. Colistin, an old antibiotic also known as polymyxin E, has attracted more interest recently because of its significant activity against multi-resistant P. aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae, and the low resistance rates to it. Because its use as an anti-pseudomonal agent was displaced by the potentially less toxic aminoglycosides in 1970s, our knowledge of this drug is limited. However, there has been a significant recent increase in the data gathered on colistin, focussing on its chemistry, antibacterial activity, mechanism of action and resistance, pharmacokinetics, pharmacodynamics and new clinical application. It is likely that colistin will be an important antimicrobial option against multi-resistant Gram-negative bacteria, for some years to come.
Collapse
Affiliation(s)
- Jian Li
- Facility for Anti-infective Drug Development and Innovation, Victorian College of Pharmacy, Monash University, Parkville, Vic. 3052, Australia.
| | | | | | | | | |
Collapse
|