1
|
Kumar S, Mandal D, El-Mowafi SA, Mozaffari S, Tiwari RK, Parang K. Click-Free Synthesis of a Multivalent Tricyclic Peptide as a Molecular Transporter. Pharmaceutics 2020; 12:842. [PMID: 32899170 PMCID: PMC7558522 DOI: 10.3390/pharmaceutics12090842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 01/19/2023] Open
Abstract
The cellular delivery of cell-impermeable and water-insoluble molecules remains an ongoing challenge to overcome. Previously, we reported amphipathic cyclic peptides c[WR]4 and c[WR]5 consisting of alternate arginine and tryptophan residues as nuclear-targeting molecular transporters. These peptides contain an optimal balance of positive charge and hydrophobicity, which is required for interactions with the phospholipid bilayer to facilitate their application as a drug delivery system. To further optimize them, we synthesized and evaluated a multivalent tricyclic peptide as an efficient molecular transporter. The monomeric cyclic peptide building blocks were synthesized using Fmoc/tBu solid-phase chemistry and cyclization in the solution and conjugated with each other through an amide bond to afford the tricyclic peptide, which demonstrated modest antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), Klebsiella pneumoniae, Pseudomonas aeruginosa, and Escherichia coli (E. coli) with a minimum inhibitory concentration (MIC) of 64-128 µg/mL. The tricyclic peptide was found to be nontoxic up to 30 µM in the breast cancer cell lines (MDA-MB-231). The presence of tricyclic peptide enhanced cellular uptakes of fluorescently-labeled phosphopeptide (F'-GpYEEI, 18-fold), anti-HIV drugs (lamivudine (F'-3TC), emtricitabine (F'-FTC), and stavudine (F'-d4T), 1.7-12-fold), and siRNA (3.3-fold) in the MDA-MB-231 cell lines.
Collapse
Affiliation(s)
- Sumit Kumar
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (S.K.); (D.M.); (S.A.E.-M.); (S.M.)
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana 131039, India
| | - Dindyal Mandal
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (S.K.); (D.M.); (S.A.E.-M.); (S.M.)
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India
| | - Shaima Ahmed El-Mowafi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (S.K.); (D.M.); (S.A.E.-M.); (S.M.)
- Peptide Chemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Saghar Mozaffari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (S.K.); (D.M.); (S.A.E.-M.); (S.M.)
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (S.K.); (D.M.); (S.A.E.-M.); (S.M.)
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (S.K.); (D.M.); (S.A.E.-M.); (S.M.)
| |
Collapse
|
2
|
Mohammed EHM, Mandal D, Mozaffari S, Abdel-Hamied Zahran M, Mostafa Osman A, Kumar Tiwari R, Parang K. Comparative Molecular Transporter Properties of Cyclic Peptides Containing Tryptophan and Arginine Residues Formed through Disulfide Cyclization. Molecules 2020; 25:2581. [PMID: 32498339 PMCID: PMC7321319 DOI: 10.3390/molecules25112581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 11/17/2022] Open
Abstract
We have previously reported cyclic cell-penetrating peptides [WR]5 and [WR]4 as molecular transporters. To optimize further the utility of our developed peptides for targeted therapy in cancer cells using the redox condition, we designed a new generation of peptides and evaluated their cytotoxicity as well as uptake behavior against different cancer cell lines. Thus, cyclic [C(WR)xC] and linear counterparts (C(WR)xC), where x = 4-5, were synthesized using Fmoc/tBu solid-phase peptide synthesis, purified, and characterized. The compounds did not show any significant cytotoxicity (at 25 µM) against ovarian (SK-OV-3), leukemia (CCRF-CEM), gastric adenocarcinoma (CRL-1739), breast carcinoma (MDA-MB-231), and normal kidney (LLCPK) cells after 24 and 72 h incubation. Both cyclic [C(WR)5C] and linear (C(WR)5C) demonstrated comparable molecular transporter properties versus [WR]5 in the delivery of a phosphopeptide (F'-GpYEEI) in CCRF-CEM cells. The uptake of F'-GpYEEI in the presence of 1,4-dithiothreitol (DTT) as the reducing agent was significantly improved in case of l(C(WR)5C), while it was not changed by [C(WR)5C]. Fluorescence microscopy also demonstrated a significant uptake of F'-GpYEEI in the presence of l(C(WR)5C). Cyclic [C(WR)5C] improved the uptake of the fluorescent-labeled anti-HIV drugs F'-d4T, F'-3TC, and F'-FTC by 3.0-4.9-fold. These data indicate that both [C(WR)5C] and linear (C(WR)5C) peptides can act as molecular transporters.
Collapse
Affiliation(s)
- Eman H. M. Mohammed
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (E.H.M.M.); (D.M.); (S.M.)
- Chemistry Department, Faculty of Science, Chemistry department, Menoufia University, Shebin El-Koam 51132, Egypt; (M.A.-H.Z.); (A.M.O.)
| | - Dindyal Mandal
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (E.H.M.M.); (D.M.); (S.M.)
| | - Saghar Mozaffari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (E.H.M.M.); (D.M.); (S.M.)
| | - Magdy Abdel-Hamied Zahran
- Chemistry Department, Faculty of Science, Chemistry department, Menoufia University, Shebin El-Koam 51132, Egypt; (M.A.-H.Z.); (A.M.O.)
| | - Amany Mostafa Osman
- Chemistry Department, Faculty of Science, Chemistry department, Menoufia University, Shebin El-Koam 51132, Egypt; (M.A.-H.Z.); (A.M.O.)
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (E.H.M.M.); (D.M.); (S.M.)
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (E.H.M.M.); (D.M.); (S.M.)
| |
Collapse
|
3
|
Hanna S, Mozaffari S, Tiwari RK, Parang K. Comparative Molecular Transporter Efficiency of Cyclic Peptides Containing Tryptophan and Arginine Residues. ACS OMEGA 2018; 3:16281-16291. [PMID: 31458264 PMCID: PMC6643651 DOI: 10.1021/acsomega.8b02589] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/14/2018] [Indexed: 06/10/2023]
Abstract
Cyclic peptides containing tryptophan (W) and arginine (R) residues, [WR]5, [WR]6, [WR]7, [WR]8, and [WR]9, were synthesized through Fmoc solid-phase chemistry to compare their molecular transporter efficiency. The in vitro cytotoxicity of the peptides was evaluated using human leukemia carcinoma cell line (CCRF-CEM) and normal kidney cell line (LLC-PK1). [WR]6, [WR]7, [WR]8, and [WR]9 were not significantly cytotoxic to LLC-PK1cells at a concentration of 10 μM after 3 h incubation. Among all the peptides, [WR]9 was found to be a more efficient transporter than [WR]5, [WR]6, [WR]7, and [WR]8 in CCRF-CEM cells for delivery of a cell-impermeable fluorescence-labeled negatively charged phosphopeptide (F'-GpYEEI). [WR]9 (10 μM) improved the cellular uptake of F'-GpYEEI (2 μM) by 20-fold. The cellular uptake of a fluorescent conjugate of [WR]9, F'-[W9R8K], was increased in a concentration- and time-dependent pattern in CCRF-CEM cells. The uptake of F'-[W9R8K] was slightly reduced in CCRF-CEM cells in the presence of different endocytic inhibitors, such as nystatin, 5-(N-ethyl-N-isopropyl)amiloride, chlorpromazine, chloroquine, and methyl β-cyclodextrin. Furthermore, the uptake of F'-[W9R8K] was shown to be temperature-dependent and slightly adenosine 5'-triphosphate-dependent. The intracellular/cellular localization (in the nucleus and cytoplasm) of F'-[W9R8K] was confirmed by fluorescent microscopy in CCRF-CEM cells. These studies suggest that large cyclic peptides containing arginine and tryptophan can be used as a molecular transporter of specific compounds.
Collapse
Affiliation(s)
| | | | - Rakesh K. Tiwari
- Center for Targeted Drug Delivery,
Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Keykavous Parang
- Center for Targeted Drug Delivery,
Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| |
Collapse
|
4
|
Shirazi AN, Mozaffari S, Sherpa RT, Tiwari R, Parang K. Efficient Intracellular Delivery of Cell-Impermeable Cargo Molecules by Peptides Containing Tryptophan and Histidine. Molecules 2018; 23:1536. [PMID: 29949881 PMCID: PMC6100250 DOI: 10.3390/molecules23071536] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022] Open
Abstract
We have previously evaluated and reported numerous classes of linear and cyclic peptides containing hydrophobic and hydrophilic segments for intracellular delivery of multiple molecular cargos. Herein, a combination of histidine and tryptophan amino acids were designed and evaluated for their efficiency in intracellular delivery of cell-impermeable phosphopeptides and the anti-HIV drug, emtricitabine. Two new decapeptides, with linear and cyclic natures, both containing alternate tryptophan and histidine residues, were synthesized using Fmoc/tBu solid-phase chemistry. The peptides were characterized and purified by using matrix-assisted laser desorption/ionization (MALDI) spectroscopy and high-performance liquid chromatography (HPLC), respectively. These peptides did not show significant toxicity up to 100 µM in ovarian cancer (SK-OV-3) and leukemia cancer (CCRF-CEM) cells. Furthermore, the cellular uptake of a fluorescence (F’)-labeled cell-impermeable phosphopeptide (F’-GpYEEI) was enhanced in the presence of linear (WH)₅ and cyclic [WH]₅ by 2- and 8-fold, respectively, compared to the uptake of the phosphopeptide alone. The cellular uptake was not significantly changed in the presence of endocytosis inhibitors. Furthermore, the intracellular uptake of the fluorescently-labeled anti-HIV drug, emtricitabine (F’-FTC), by linear (WH)₅ and cyclic [WH]₅ in SK-OV-3 cancer cell lines was found to be enhanced by 3.5- and 9-fold, respectively, compared to that of the drug alone. Fluorescent uptake experiments confirmed the localization of F’-GpYEEI-loaded cyclic [WH]₅ intracellularly in the SK-OV-3 cancer cell line after 3 h of incubation. Thus, these data demonstrated that [WH]₅ containing tryptophan and histidine enhanced the cellular uptake of F’-GpYEEI and emtricitabine.
Collapse
Affiliation(s)
- Amir Nasrolahi Shirazi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA.
| | - Saghar Mozaffari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA.
| | - Rinzhin Tshering Sherpa
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA.
| | - Rakesh Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA.
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA.
| |
Collapse
|
5
|
Feng C, Post CB. Insights into the allosteric regulation of Syk association with receptor ITAM, a multi-state equilibrium. Phys Chem Chem Phys 2016; 18:5807-18. [PMID: 26468009 PMCID: PMC4758936 DOI: 10.1039/c5cp05417f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The phosphorylation of interdomain A (IA), a linker region between tandem SH2 domains of Syk tyrosine kinase, regulates the binding affinity for association of Syk with doubly-phosphorylated ITAM regions of the B cell receptor. The mechanism of this allosteric regulation has been suggested to be a switch from the high-affinity bifunctional binding, mediated through both SH2 domains binding two phosphotyrosine residues of ITAM, to a substantially lower-affinity binding of only one SH2 domain. IA phosphorylation triggers the switch by inducing disorder in IA and weakening the SH2-SH2 interaction. The postulated switch to a single-SH2-domain binding mode is examined using NMR to monitor site-specific binding to each SH2 domain of Syk variants engineered to have IA regions that differ in conformational flexibility. The combined analysis of titration curves and NMR line-shapes provides sufficient information to determine the energetics of inter-molecular binding at each SH2 site along with an intra-molecular binding or isomerization step. A less favorable isomerization equilibrium associated with the changes in the SH2-SH2 conformational ensemble and IA flexibility accounts for the inhibition of Syk association with membrane ITAM regions when IA is phosphorylated, and refutes the proposed switch to single-SH2-domain binding. Syk localizes in the cell through its SH2 interactions, and this basis for allosteric regulation of ITAM association proposes for the first time a phosphorylation-dependent model to regulate Syk binding to alternate receptors and other signaling proteins that differ either in the number of residues separating ITAM phosphotyrosines or by having only one phosphotyrosine, a half ITAM.
Collapse
Affiliation(s)
- Chao Feng
- Department of Medicinal Chemistry and Molecular Pharmacology, Markey Center for Structural Biology, Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Carol Beth Post
- Department of Medicinal Chemistry and Molecular Pharmacology, Markey Center for Structural Biology, Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
6
|
Shirazi AN, El-Sayed NS, Mandal D, Tiwari RK, Tavakoli K, Etesham M, Parang K. Cysteine and arginine-rich peptides as molecular carriers. Bioorg Med Chem Lett 2016; 26:656-661. [PMID: 26631317 DOI: 10.1016/j.bmcl.2015.11.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/10/2015] [Accepted: 11/16/2015] [Indexed: 12/23/2022]
Abstract
A number of linear and cyclic peptides containing alternative arginine and cysteine residues, namely linear (CR)3, linear (CR)4, linear (CR)5, cyclic [CR]4, and cyclic [CR]5, were synthesized. The peptides were evaluated for their ability to deliver two molecular cargos, fluorescence-labeled cell-impermeable negatively charged phosphopeptide (F'-GpYEEI) and fluorescence-labeled lamivudine (F'-3TC), intracellularly in human leukemia cancer (CCRF-CEM) cells. We investigated the role of cyclization and the number of amino acids in improving the transporting ability of the peptides. The flow cytometry studies suggested that the synthesized peptides were able to work efficiently as transporters for both cargos. Among all compounds, cyclic [CR]4 was found to be the most efficient peptide in transporting the cargo into cells. For instance, the cellular uptake of F'-3TC (5μM) and F'-GpYEEI (5μM) was enhanced by 16- and 20-fold, respectively, in the presence of cyclic [CR]4 compared to that of the parent compound alone. The mechanism of F'-GpYEEI uptake by cells was found to be energy-independent. The results showed that the number of amino acids and their cyclic nature can impact the efficiency of the peptide in transporting the molecular cargos.
Collapse
Affiliation(s)
- Amir Nasrolahi Shirazi
- Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, United States
| | - Naglaa Salem El-Sayed
- Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, United States
| | - Dindayal Mandal
- Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, United States
| | - Rakesh K Tiwari
- Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, United States
| | - Kathy Tavakoli
- Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, United States
| | - Matthew Etesham
- Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, United States
| | - Keykavous Parang
- Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, United States.
| |
Collapse
|
7
|
Belle VA, McDermott N, Meunier A, Marignol L. NUMB inhibition of NOTCH signalling as a therapeutic target in prostate cancer. Nat Rev Urol 2014; 11:499-507. [PMID: 25134838 PMCID: PMC5240474 DOI: 10.1038/nrurol.2014.195] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Prostate cancer is among the most prevalent life-threatening cancers diagnosed in the male population today. Various methods have been exploited in an attempt to treat this disease but these treatments, alongside preventative tactics, have been insufficient to control mortality rates and have usually resulted in detrimental adverse events. An opportunity to devise more-specific and potentially more-effective approaches for the eradication of prostate tumours can be found by targeting specific biological pathways. NUMB (protein numb homologue), a key regulator of cell fate, represents an attractive, actionable target in prostate cancer. NUMB participates in the observed deregulation of NOTCH (neurogenic locus notch homologue protein) signalling in prostate tumours, and the NUMB-NOTCH interaction regulates cell fate. NUMB has potential both as a target for control of prostate tumorigenesis and as a biomarker for identification of patients with prostate cancer who are likely to benefit from NOTCH inhibition.
Collapse
Affiliation(s)
| | - Niamh McDermott
- Radiation and Urologic Oncology, Applied Radiation Therapy Trinity and Prostate Molecular Oncology Research Group, Trinity College Dublin, Trinity Centre for Health Sciences, James's Street, Dublin 8, Ireland
| | - Armelle Meunier
- Radiation and Urologic Oncology, Applied Radiation Therapy Trinity and Prostate Molecular Oncology Research Group, Trinity College Dublin, Trinity Centre for Health Sciences, James's Street, Dublin 8, Ireland
| | - Laure Marignol
- Radiation and Urologic Oncology, Applied Radiation Therapy Trinity and Prostate Molecular Oncology Research Group, Trinity College Dublin, Trinity Centre for Health Sciences, James's Street, Dublin 8, Ireland
| |
Collapse
|
8
|
Shirazi AN, Tiwari RK, Oh D, Banerjee A, Yadav A, Parang K. Efficient delivery of cell impermeable phosphopeptides by a cyclic peptide amphiphile containing tryptophan and arginine. Mol Pharm 2013; 10:2008-2020. [PMID: 23537165 PMCID: PMC3653137 DOI: 10.1021/mp400046u] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phosphopeptides are valuable reagent probes for studying protein-protein and protein-ligand interactions. The cellular delivery of phosphopeptides is challenging because of the presence of the negatively charged phosphate group. The cellular uptake of a number of fluorescent-labeled phosphopeptides, including F'-GpYLPQTV, F'-NEpYTARQ, F'-AEEEIYGEFEAKKKK, F'-PEpYLGLD, F'-pYVNVQN-NH2, and F'-GpYEEI (F' = fluorescein), was evaluated in the presence or absence of a [WR]4, a cyclic peptide containing alternative arginine (R) and tryptophan (W) residues, in human leukemia cells (CCRF-CEM) after 2 h incubation using flow cytometry. [WR]4 improved significantly the cellular uptake of all phosphopeptides. PEpYLGLD is a sequence that mimics the pTyr1246 of ErbB2 that is responsible for binding to the Chk SH2 domain. The cellular uptake of F'-PEpYLGLD was enhanced dramatically by 27-fold in the presence of [WR]4 and was found to be time-dependent. Confocal microscopy of a mixture of F'-PEpYLGLD and [WR]4 in live cells exhibited intracellular localization and significantly higher cellular uptake compared to that of F'-PEpYLGLD alone. Transmission electron microscopy (TEM) and isothermal calorimetry (ITC) were used to study the interaction of PEpYLGLD and [WR]4. TEM results showed that the mixture of PEpYLGLD and [WR]4 formed noncircular nanosized structures with width and height of 125 and 60 nm, respectively. ITC binding studies confirmed the interaction between [WR]4 and PEpYLGLD. The binding isotherm curves, derived from sequential binding models, showed an exothermic interaction driven by entropy. These studies suggest that amphiphilic peptide [WR]4 can be used as a cellular delivery tool of cell-impermeable negatively charged phosphopeptides.
Collapse
Affiliation(s)
- Amir Nasrolahi Shirazi
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, United States
| | - Rakesh Kumar Tiwari
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, United States
| | - Donghoon Oh
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, United States
| | - Antara Banerjee
- Department of Chemistry, University Institute of Engineering and Technology, Chhatrapati Shahuji Maharaj University, Kanpur 208024, India
| | - Arpita Yadav
- Department of Chemistry, University Institute of Engineering and Technology, Chhatrapati Shahuji Maharaj University, Kanpur 208024, India
| | - Keykavous Parang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, United States
| |
Collapse
|
9
|
Trellet M, Melquiond ASJ, Bonvin AMJJ. A unified conformational selection and induced fit approach to protein-peptide docking. PLoS One 2013; 8:e58769. [PMID: 23516555 PMCID: PMC3596317 DOI: 10.1371/journal.pone.0058769] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/05/2013] [Indexed: 01/01/2023] Open
Abstract
Protein-peptide interactions are vital for the cell. They mediate, inhibit or serve as structural components in nearly 40% of all macromolecular interactions, and are often associated with diseases, making them interesting leads for protein drug design. In recent years, large-scale technologies have enabled exhaustive studies on the peptide recognition preferences for a number of peptide-binding domain families. Yet, the paucity of data regarding their molecular binding mechanisms together with their inherent flexibility makes the structural prediction of protein-peptide interactions very challenging. This leaves flexible docking as one of the few amenable computational techniques to model these complexes. We present here an ensemble, flexible protein-peptide docking protocol that combines conformational selection and induced fit mechanisms. Starting from an ensemble of three peptide conformations (extended, a-helix, polyproline-II), flexible docking with HADDOCK generates 79.4% of high quality models for bound/unbound and 69.4% for unbound/unbound docking when tested against the largest protein-peptide complexes benchmark dataset available to date. Conformational selection at the rigid-body docking stage successfully recovers the most relevant conformation for a given protein-peptide complex and the subsequent flexible refinement further improves the interface by up to 4.5 Å interface RMSD. Cluster-based scoring of the models results in a selection of near-native solutions in the top three for ∼75% of the successfully predicted cases. This unified conformational selection and induced fit approach to protein-peptide docking should open the route to the modeling of challenging systems such as disorder-order transitions taking place upon binding, significantly expanding the applicability limit of biomolecular interaction modeling by docking.
Collapse
Affiliation(s)
- Mikael Trellet
- Computational Structural Biology Group, Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Adrien S. J. Melquiond
- Computational Structural Biology Group, Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Utrecht, The Netherlands
- * E-mail: (AM); (AB)
| | - Alexandre M. J. J. Bonvin
- Computational Structural Biology Group, Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Utrecht, The Netherlands
- * E-mail: (AM); (AB)
| |
Collapse
|
10
|
Mandal D, Nasrolahi Shirazi A, Parang K. Cell-penetrating homochiral cyclic peptides as nuclear-targeting molecular transporters. Angew Chem Int Ed Engl 2011; 50:9633-9637. [PMID: 21919161 DOI: 10.1002/anie.201102572] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 07/14/2011] [Indexed: 11/09/2022]
Affiliation(s)
- Deendayal Mandal
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, 41 Lower College Road, Kingston, RI 02881, USA
| | | | | |
Collapse
|
11
|
Mandal D, Nasrolahi Shirazi A, Parang K. Cell-Penetrating Homochiral Cyclic Peptides as Nuclear-Targeting Molecular Transporters. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201102572] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
Bai S, Du T, Khosravi E. Applying internal coordinate mechanics to model the interactions between 8R-lipoxygenase and its substrate. BMC Bioinformatics 2010; 11 Suppl 6:S2. [PMID: 20946603 PMCID: PMC3026367 DOI: 10.1186/1471-2105-11-s6-s2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Lipoxygenases (LOX) play pivotal roles in the biosynthesis of leukotrienes and other biologically active potent signalling compounds. Developing inhibitors for LOX is of high interest to researchers. Modelling the interactions between LOX and its substrate arachidonic acid is critical for developing LOX specific inhibitors. Currently, there are no LOX-substrate structures. Recently, the structure of a coral LOX, 8R-LOX, which is 41% sequence identical to the human 5-LOX was solved to 1.85Å resolution. This structure provides a foundation for modelling enzyme-substrate interactions. Methods In this research, we applied a computational method, Internal Coordinate Mechanics (ICM), to model the interactions between 8R-LOX and its substrate arachidonic acid. Docking arachidonic acid to 8R-LOX was performed. The most favoured docked ligand conformations were retained. We compared the results of our simulation with a proposed model and concluded that the binding pocket identified in this study agrees with the proposed model partially. Results The results showed that the conformation of arachidonic acid docked into the ICM-identified docking site has less energy than that docked into the manually defined docking site for pseudo wild type 8R-LOX. The mutation at I805 resulted in no docking pocket found near Fe atom. The energy of the arachidonic acid conformation docked into the manually defined docking site is higher in mutant 8R-LOX than in wild type 8R-LOX. The arachidonic acid conformations are not productive conformations. Conclusions We concluded that, for the wild type 8R-LOX, the conformation of arachidonic acid docked into the ICM-identified docking site is more stable than that docked into the manually defined docking site. Mutation affects the structure of the putative active site pocket of 8R-LOX, and leads no docking pockets around the catalytic Fe atom. The docking simulation in a mutant 8R-LOX demonstrated that the structural change due to the mutation impacts the enzyme activity. Further research and analysis is required to obtain the 8R-LOX-substrate model.
Collapse
Affiliation(s)
- Shuju Bai
- Department of Computer Science, Southern University and A&M College, Baton Rouge, LA 70813, USA.
| | | | | |
Collapse
|
13
|
Wu YW, Goody RS, Abagyan R, Alexandrov K. Structure of the disordered C terminus of Rab7 GTPase induced by binding to the Rab geranylgeranyl transferase catalytic complex reveals the mechanism of Rab prenylation. J Biol Chem 2009; 284:13185-92. [PMID: 19240028 DOI: 10.1074/jbc.m900579200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Protein prenylation is a widespread process that involves the transfer of either a farnesyl or a geranylgeranyl moiety to one or more C-terminal cysteines of the target protein. Rab geranylgeranyl transferase (RabGGTase) is responsible for the largest number of individual protein prenylation events in the cell. A decade-long effort to crystallize the catalytic ternary complex of RabGGTase has remained fruitless, prompting us to use a computational approach to predict the structure of this 200-kDa assembly. On the basis of high resolution structures of two sub-complexes, we have generated a composite model where the rigid parts of the protein are represented by precomputed grid potentials, whereas the mobile parts are described in atomic details using Internal Coordinate Mechanics. Selection of the best docking solution of the flexible parts on the grid is followed by explicit atomistic refinement of the lowest energy conformations enabling realistic modeling of complex structures. Using this approach we demonstrate that the flexible C terminus of Rab7 substrate forms a series of progressively weaker and less specific interactions that channel it into the active site of RabGGTase. We have validated the computational model through biochemical experiments and demonstrated that to be prenylated RabGTPase must possess at least nine amino acids between the prenylation motif and the hydrophobic sequence anchoring the beginning of the Rab C terminus on the enzyme. This sequence, known as the C-terminal interacting motif is shown to play a dual role in Rab prenylation by contributing a significant fraction of binding energy to the catalytic complex assembly and by orienting the C terminus of RabGTPase in the vicinity of the active site of RabGGTase. This mechanism is unique to RabGGTase when compared with other prenyltransferases, which encode the specificity for their cognate substrates directly at their active site.
Collapse
Affiliation(s)
- Yao-Wen Wu
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | | | | | | |
Collapse
|
14
|
Kiel C, Beltrao P, Serrano L. Analyzing Protein Interaction Networks Using Structural Information. Annu Rev Biochem 2008; 77:415-41. [DOI: 10.1146/annurev.biochem.77.062706.133317] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Christina Kiel
- EMBL-CRG Systems Biology Unit, Center de Regulacio Genomica, Barcelona 08003, Spain; ,
| | - Pedro Beltrao
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany;
| | - Luis Serrano
- EMBL-CRG Systems Biology Unit, Center de Regulacio Genomica, Barcelona 08003, Spain; ,
| |
Collapse
|
15
|
Sánchez IE, Beltrao P, Stricher F, Schymkowitz J, Ferkinghoff-Borg J, Rousseau F, Serrano L. Genome-wide prediction of SH2 domain targets using structural information and the FoldX algorithm. PLoS Comput Biol 2008; 4:e1000052. [PMID: 18389064 PMCID: PMC2271153 DOI: 10.1371/journal.pcbi.1000052] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Accepted: 03/07/2008] [Indexed: 11/30/2022] Open
Abstract
Current experiments likely cover only a fraction of all protein-protein interactions. Here, we developed a method to predict SH2-mediated protein-protein interactions using the structure of SH2-phosphopeptide complexes and the FoldX algorithm. We show that our approach performs similarly to experimentally derived consensus sequences and substitution matrices at predicting known in vitro and in vivo targets of SH2 domains. We use our method to provide a set of high-confidence interactions for human SH2 domains with known structure filtered on secondary structure and phosphorylation state. We validated the predictions using literature-derived SH2 interactions and a probabilistic score obtained from a naive Bayes integration of information on coexpression, conservation of the interaction in other species, shared interaction partners, and functions. We show how our predictions lead to a new hypothesis for the role of SH2 domains in signaling. Understanding the functional role of every protein in the cell is a long-standing goal of cellular biology. An important step in this direction is to discover how and when proteins interact inside the cell to accomplish their tasks. Many of the cellular functions depend on reversible protein modifications like phosphorylation. To sense these modifications, cells have protein domains capable of binding phosphorylated proteins such as the SH2 domain. In this work, we show that it is possible to use the three-dimensional structure of protein domains to predict its binding preferences. Using a computational tool called FoldX, we have predicted the binding specificity of several human SH2 domains. These predictions, based on the computational analysis of the 3-D structure, were shown to be of similar accuracy as those obtained from experimental binding assays. We show here that it is also possible to understand how a mutation changes the binding preference of protein binding domains, opening the way for better understanding of some disease causing mutations. The combination of this novel computational approach with other sources of information allowed us to provide a set of high-confidence novel interactions for the proteins here studied.
Collapse
Affiliation(s)
| | - Pedro Beltrao
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Francois Stricher
- European Molecular Biology Laboratory, Heidelberg, Germany
- EMBL-CRG Systems Biology Unit, CRG-Centre de Regulacio Genomica, Barcelona, Spain
| | - Joost Schymkowitz
- Switch Laboratory, Flanders Interuniversity Institute for Biotechnology (VIB), Brussels, Belgium
| | | | - Frederic Rousseau
- Switch Laboratory, Flanders Interuniversity Institute for Biotechnology (VIB), Brussels, Belgium
| | - Luis Serrano
- European Molecular Biology Laboratory, Heidelberg, Germany
- EMBL-CRG Systems Biology Unit, CRG-Centre de Regulacio Genomica, Barcelona, Spain
- * E-mail:
| |
Collapse
|
16
|
Audie J, Scarlata S. A novel empirical free energy function that explains and predicts protein–protein binding affinities. Biophys Chem 2007; 129:198-211. [PMID: 17600612 DOI: 10.1016/j.bpc.2007.05.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 05/31/2007] [Accepted: 05/31/2007] [Indexed: 11/22/2022]
Abstract
A free energy function can be defined as a mathematical expression that relates macroscopic free energy changes to microscopic or molecular properties. Free energy functions can be used to explain and predict the affinity of a ligand for a protein and to score and discriminate between native and non-native binding modes. However, there is a natural tension between developing a function fast enough to solve the scoring problem but rigorous enough to explain and predict binding affinities. Here, we present a novel, physics-based free energy function that is computationally inexpensive, yet explanatory and predictive. The function results from a derivation that assumes the cost of polar desolvation can be ignored and that includes a unique and implicit treatment of interfacial water-bridged interactions. The function was parameterized on an internally consistent, high quality training set giving R2=0.97 and Q2=0.91. We used the function to blindly and successfully predict binding affinities for a diverse test set of 31 wild-type protein-protein and protein-peptide complexes (R2=0.79, rmsd=1.2 kcal mol(-1)). The function performed very well in direct comparison with a recently described knowledge-based potential and the function appears to be transferable. Our results indicate that our function is well suited for solving a wide range of protein/peptide design and discovery problems.
Collapse
Affiliation(s)
- Joseph Audie
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony, Brook, NY 11794, USA
| | | |
Collapse
|
17
|
Ye G, Nam NH, Kumar A, Saleh A, Shenoy DB, Amiji MM, Lin X, Sun G, Parang K. Synthesis and evaluation of tripodal peptide analogues for cellular delivery of phosphopeptides. J Med Chem 2007; 50:3604-3617. [PMID: 17580848 PMCID: PMC2539070 DOI: 10.1021/jm070416o] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tripodal peptide analogues were designed on the basis of the phosphotyrosine binding pocket of the Src SH2 domain and assayed for their ability to bind to fluorescein-labeled phosphopeptides. Fluorescence polarization assays showed that a number of amphipathic linear peptide analogues (LPAs), such as LPA4, bind to fluorescein-labeled GpYEEI (F-GpYEEI). LPA4 was evaluated for potential application in cellular delivery of phosphopeptides. Fluorescence microimaging cellular uptake studies with fluorescein-attached LPA4 (F-LPA4) alone or with the mixture of LPA4 and F-GpYEEI in BT-20 cells showed dramatic increase of the fluorescence intensity in cytosol of cells, indicating that LPA4 can function as a delivery tool of F-GpYEEI across the cell membrane. Fluorescent flow cytometry studies showed the cellular uptake of F-LPA4 in an energy-independent pathway and confirmed the cellular uptake of F-GpYEEI in the presence of LPA4. These studies suggest that amphipathic tripodal peptide analogues, such as LPA4, can be used for cellular delivery of phosphopeptides.
Collapse
Affiliation(s)
- Guofeng Ye
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881 USA
| | - Nguyen-Hai Nam
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881 USA
| | - Anil Kumar
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881 USA
| | - Ali Saleh
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881 USA
| | - Dinesh B. Shenoy
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115 USA
| | - Mansoor M. Amiji
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115 USA
| | - Xiaofeng Lin
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881 USA
| | - Gongqin Sun
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881 USA
| | - Keykavous Parang
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881 USA
| |
Collapse
|
18
|
Naïm M, Bhat S, Rankin KN, Dennis S, Chowdhury SF, Siddiqi I, Drabik P, Sulea T, Bayly CI, Jakalian A, Purisima EO. Solvated interaction energy (SIE) for scoring protein-ligand binding affinities. 1. Exploring the parameter space. J Chem Inf Model 2007; 47:122-33. [PMID: 17238257 DOI: 10.1021/ci600406v] [Citation(s) in RCA: 335] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a binding free energy function that consists of force field terms supplemented by solvation terms. We used this function to calibrate the solvation model along with the binding interaction terms in a self-consistent manner. The motivation for this approach was that the solute dielectric-constant dependence of calculated hydration gas-to-water transfer free energies is markedly different from that of binding free energies (J. Comput. Chem. 2003, 24, 954). Hence, we sought to calibrate directly the solvation terms in the context of a binding calculation. The five parameters of the model were systematically scanned to best reproduce the absolute binding free energies for a set of 99 protein-ligand complexes. We obtained a mean unsigned error of 1.29 kcal/mol for the predicted absolute binding affinity in a parameter space that was fairly shallow near the optimum. The lowest errors were obtained with solute dielectric values of Din = 20 or higher and scaling of the intermolecular van der Waals interaction energy by factors ranging from 0.03 to 0.15. The high apparent Din and strong van der Waals scaling may reflect the anticorrelation of the change in solvated potential energy and configurational entropy, that is, enthalpy-entropy compensation in ligand binding (Biophys. J. 2004, 87, 3035-3049). Five variations of preparing the protein-ligand data set were explored in order to examine the effect of energy refinement and the presence of bound water on the calculated results. We find that retaining water in the final protein structure used for calculating the binding free energy is not necessary to obtain good results; that is the continuum solvation model is sufficient. Virtual screening enrichment studies on estrogen receptor and thymidine kinase showed a good ability of the binding free energy function to recover true hits in a collection of decoys.
Collapse
Affiliation(s)
- Marwen Naïm
- Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec, Canada H4P 2R2
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Buscaglia CA, Hol WGJ, Nussenzweig V, Cardozo T. Modeling the interaction between aldolase and the thrombospondin-related anonymous protein, a key connection of the malaria parasite invasion machinery. Proteins 2006; 66:528-37. [PMID: 17154157 DOI: 10.1002/prot.21266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A complex molecular motor empowers substrate-dependent motility and host cell invasion in malaria parasites. The interaction between aldolase and the transmembrane adhesin thrombospondin-related anonymous protein (TRAP) transduces the motor force across the parasite surface. Here, we analyzed this interaction by using state-of-the-art flexible docking. Besides algorithms to account for induced fit in the side-chains of the Plasmodium falciparum aldolase (PfAldo) structure, we used additional in silico receptors modeled upon crystallographic structures of evolutionarily related aldolases to incorporate enzyme backbone flexibility, and to overcome structure inaccuracies due to the relatively low resolution (3.0 A) of the genuine PfAldo structure. Our results indicate that, in spite of multiple intermolecular contacts, only the six C-terminal residues of the TRAP cytoplasmic tail bind in an ordered manner to PfAldo. This portion of TRAP targets the PfAldo active site, with its n-1 Trp residue, which is essential for this interaction, buried within the PfAldo catalytic pocket. Docking of a TRAP peptide bearing a Trp to Ala mutation rendered the lower energy configurations either bound weakly outside the active site or not bound to PfAldo at all. The position of the bound TRAP peptide, and particularly the close proximity between the carbonyl of its n-2 Asp residue and the experimentally determined position of the phosphate-6 group of fructose 1,6-phosphate bound to mammalian aldolases, predicts an inhibitory effect of TRAP on catalysis. Enzymatic and TRAP-binding assays using mutant PfAldo molecules strongly support the overall structural model. These results might provide the initial framework for the identification of novel antiparasitic compounds.
Collapse
Affiliation(s)
- Carlos A Buscaglia
- Michael Heidelberg Division of Pathology of Infectious Diseases, Department of Pathology, New York University School of Medicine, New York, USA.
| | | | | | | |
Collapse
|
20
|
Groban ES, Narayanan A, Jacobson MP. Conformational changes in protein loops and helices induced by post-translational phosphorylation. PLoS Comput Biol 2006; 2:e32. [PMID: 16628247 PMCID: PMC1440919 DOI: 10.1371/journal.pcbi.0020032] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Accepted: 03/01/2006] [Indexed: 12/26/2022] Open
Abstract
Post-translational phosphorylation is a ubiquitous mechanism for modulating protein activity and protein-protein interactions. In this work, we examine how phosphorylation can modulate the conformation of a protein by changing the energy landscape. We present a molecular mechanics method in which we phosphorylate proteins in silico and then predict how the conformation of the protein will change in response to phosphorylation. We apply this method to a test set comprised of proteins with both phosphorylated and non-phosphorylated crystal structures, and demonstrate that it is possible to predict localized phosphorylation-induced conformational changes, or the absence of conformational changes, with near-atomic accuracy in most cases. Examples of proteins used for testing our methods include kinases and prokaryotic response regulators. Through a detailed case study of cyclin-dependent kinase 2, we also illustrate how the computational methods can be used to provide new understanding of how phosphorylation drives conformational change, why substituting Glu or Asp for a phosphorylated amino acid does not always mimic the effects of phosphorylation, and how a phosphatase can “capture” a phosphorylated amino acid. This work illustrates how computational methods can be used to elucidate principles and mechanisms of post-translational phosphorylation, which can ultimately help to bridge the gap between the number of known sites of phosphorylation and the number of structures of phosphorylated proteins. Many proteins are chemically modified after they are synthesized in the cell. These post-translational modifications can modulate the ability of a protein to perform chemical reactions and to interact with other proteins. At the cellular level, for example, these chemical modifications are critical for allowing the cell to respond to its environment and control its division. One of the most common mechanisms by which proteins can be modified is by phosphorylation—the addition of a phosphate group to an amino acid side chain of the protein. Thousands of proteins are known to be modified by phosphorylation, but only for a small minority of these do we have any detailed understanding of how the chemical modification regulates the function of the protein. The authors describe a computational method that can make testable predictions about the structural changes that occur in a protein induced by post-translational phosphorylation. Their results show that the method can produce structural models of the phosphorylated proteins with near-atomic accuracy, and provide insight into the energetics of conformational switches driven by phosphorylation. As such, the computational method complements experiments aimed at understanding the mechanisms of protein regulation by phosphorylation.
Collapse
Affiliation(s)
- Eli S Groban
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
- Graduate Group in Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Arjun Narayanan
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
- Graduate Group in Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
- Graduate Group in Biophysics, University of California San Francisco, San Francisco, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
21
|
Otte L, Knaute T, Schneider-Mergener J, Kramer A. Molecular basis for the binding polyspecificity of an anti-cholera toxin peptide 3 monoclonal antibody. J Mol Recognit 2006; 19:49-59. [PMID: 16273596 DOI: 10.1002/jmr.757] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The onset of autoimmune diseases is proposed to involve binding promiscuity of antibodies (Abs) and T-cells, an often reported yet poorly understood phenomenon. Here, we attempt to approach two questions: first, is binding promiscuity a general feature of monoclonal antibodies (mAbs) and second, what is the molecular basis for polyspecificity? To this end, the anti-cholera toxin peptide 3 (CTP3) mAb TE33 was investigated for polyspecific binding properties. Screening of phage display libraries identified two epitope-unrelated peptides that specifically bound TE33 with affinities similar to or 100-fold higher than the wild-type epitope. Substitutional analyses revealed distinct key residue patterns recognized by the antibody suggesting a unique binding mode for each peptide. A database query with one of the consensus motifs and a subsequent binding study uncovered 45 peptides (derived from heterologous proteins) that bound TE33. To better understand the structural basis of the observed polyspecificity we modeled the new cyclic epitope in complex with TE33. The interactions between this peptide and TE33 suggested by our model are substantially different from the interactions observed in the X-ray structure of the wild-type epitope complex. However, the overall binding conformation of the peptides is similar. Together, our results support the theory of a general polyspecific potential of mAbs.
Collapse
Affiliation(s)
- Livia Otte
- Institut für Medizinische Immunologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
22
|
Sood VD, Baker D. Recapitulation and design of protein binding peptide structures and sequences. J Mol Biol 2006; 357:917-27. [PMID: 16473368 DOI: 10.1016/j.jmb.2006.01.045] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 01/03/2006] [Accepted: 01/09/2006] [Indexed: 11/23/2022]
Abstract
An important objective of computational protein design is the generation of high affinity peptide inhibitors of protein-peptide interactions, both as a precursor to the development of therapeutics aimed at disrupting disease causing complexes, and as a tool to aid investigators in understanding the role of specific complexes in the cell. We have developed a computational approach to increase the affinity of a protein-peptide complex by designing N or C-terminal extensions which interact with the protein outside the canonical peptide binding pocket. In a first in silico test, we show that by simultaneously optimizing the sequence and structure of three to nine residue peptide extensions starting from short (1-6 residue) peptide stubs in the binding pocket of a peptide binding protein, the approach can recover both the conformations and the sequences of known binding peptides. Comparison with phage display and other experimental data suggests that the peptide extension approach recapitulates naturally occurring peptide binding specificity better than fixed backbone design, and that it should be useful for predicting peptide binding specificities from crystal structures. We then experimentally test the approach by designing extensions for p53 and dystroglycan-based peptides predicted to bind with increased affinity to the Mdm2 oncoprotein and to dystrophin, respectively. The measured increases in affinity are modest, revealing some limitations of the method. Based on these in silico and experimental results, we discuss future applications of the approach to the prediction and design of protein-peptide interactions.
Collapse
Affiliation(s)
- Vanita D Sood
- Department of Biochemistry, Box 357350, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
23
|
Zhang C, Liu S, Zhu Q, Zhou Y. A knowledge-based energy function for protein-ligand, protein-protein, and protein-DNA complexes. J Med Chem 2005; 48:2325-35. [PMID: 15801826 DOI: 10.1021/jm049314d] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We developed a knowledge-based statistical energy function for protein-ligand, protein-protein, and protein-DNA complexes by using 19 atom types and a distance-scale finite ideal-gas reference (DFIRE) state. The correlation coefficients between experimentally measured protein-ligand binding affinities and those predicted by the DFIRE energy function are around 0.63 for one training set and two testing sets. The energy function also makes highly accurate predictions of binding affinities of protein-protein and protein-DNA complexes. Correlation coefficients between theoretical and experimental results are 0.73 for 82 protein-protein (peptide) complexes and 0.83 for 45 protein-DNA complexes, despite the fact that the structures of protein-protein (peptide) and protein-DNA complexes were not used in training the energy function. The results of the DFIRE energy function on protein-ligand complexes are compared to the published results of 12 other scoring functions generated from either physical-based, knowledge-based, or empirical methods. They include AutoDock, X-Score, DrugScore, four scoring functions in Cerius 2 (LigScore, PLP, PMF, and LUDI), four scoring functions in SYBYL (F-Score, G-Score, D-Score, and ChemScore), and BLEEP. While the DFIRE energy function is only moderately successful in ranking native or near native conformations, it yields the strongest correlation between theoretical and experimental binding affinities of the testing sets and between rmsd values and energy scores of docking decoys in a benchmark of 100 protein-ligand complexes. The parameters and the program of the all-atom DFIRE energy function are freely available for academic users at http://theory.med.buffalo.edu.
Collapse
Affiliation(s)
- Chi Zhang
- Howard Hughes Medical Institute Center for Single Molecule Biophysics, Department of Physiology & Biophysics, State University of New York at Buffalo, 124 Sherman Hall, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
24
|
Imhof D, Wieligmann K, Hampel K, Nothmann D, Zoda MS, Schmidt-Arras D, Zacharias M, Böhmer FD, Reissmann S. Design and Biological Evaluation of Linear and Cyclic Phosphopeptide Ligands of the N-Terminal SH2 Domain of Protein Tyrosine Phosphatase SHP-1. J Med Chem 2005; 48:1528-39. [PMID: 15743195 DOI: 10.1021/jm049151t] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In an effort to gain further insight into the conformational and topographical requirements for recognition by the N-terminal SH2 domain of protein tyrosine phosphatase SHP-1, we synthesized a series of linear and cyclic peptides derived from the sequence surrounding phosphotyrosine 2267 in the receptor tyrosine kinase Ros (EGLNpYMVL). A molecular modeling approach was used to suggest peptide modifications sterically compatible with the N-SH2-peptide binding groove and possibly enhanced binding affinities compared to the parent peptide. The potencies of the synthesized compounds were evaluated by assaying their ability to stimulate phosphatase activity as well as by their binding affinities to the GST-fused N-SH2 domain of SHP-1. In the series of linear peptides, structural modifications of Ros pY2267 in positions pY + 1 to pY + 3 by amino acid residues structurally related to Phe, for example l-erythro/threo-Abu(betaPh) (5a, 5b), yielded ligands with increased binding affinity. The incorporation of d-amino acid residues at pY + 1 and pY + 3 led to inactive peptides. The replacement of Phe in both pY + 1 and pY + 3 by Tic (1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) was also not tolerated due to steric hindrance. Cyclic peptides (13, 14) that were linked via residues in positions pY - 1 (Lys) and pY + 2 (Asp/Glu) and contained a Gly residue in the bridging unit displayed much lower potencies for the stimulation of SHP-1 activity but increased binding affinities compared to Ros pY2267. They partially competed with Ros pY2267 in the activation assay. Such cyclic structures may serve as scaffolds for competitive SHP-1 inhibitor design targeting N-SH2 domain-protein interactions that block SHP-1 activation.
Collapse
Affiliation(s)
- Diana Imhof
- Institute of Biochemistry and Biophysics, Biological and Pharmaceutical Faculty, Friedrich-Schiller-University, Philosophenweg 12, 07743 Jena, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Imhof D, Nothmann D, Zoda MS, Hampel K, Wegert J, Böhmer FD, Reissmann S. Synthesis of linear and cyclic phosphopeptides as ligands for theN-terminal SH2-domain of protein tyrosine phosphatase SHP-1. J Pept Sci 2005; 11:390-400. [PMID: 15635669 DOI: 10.1002/psc.631] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Linear and cyclic phosphopeptides related to the pY2267 binding site of the epithelial receptor tyrosine kinase Ros have been synthesized as ligands for the amino-terminal SH2 (src homology) domain of protein tyrosine phosphatase SHP-1. The synthesis was accomplished by Fmoc-based solid-phase methodology using side-chain unprotected phosphotyrosine for the linear and mono-benzyl protected phosphotyrosine for the cyclic peptides. According to molecular modelling, the incorporation of a glycine residue between Lys (position pY-1 relative to phosphotyrosine) and Asp or Glu (position pY+2) was recommended for the cyclic candidates. The preparation of these peptides was successfully performed by the incorporation of a Fmoc-Xxx(Gly-OAll)-OH (Xxx = Asp, Glu) dipeptide building block that was prepared in solution prior to SPPS. The cyclization was achieved with PyBOP following Alloc/OAll-deprotection. This study demonstrates the usefulness of allyl-type protecting groups for the generation of side-chain cyclized phosphopeptides. Alloc/OAll-deprotection and cyclization are compatible with phosphorylated tyrosine.
Collapse
Affiliation(s)
- Diana Imhof
- Institute of Biochemistry and Biophysics, Biological-Pharmaceutical Faculty, Friedrich-Schiller-University, Philosophenweg 12, D-07743 Jena, Germany.
| | | | | | | | | | | | | |
Collapse
|
26
|
Liu S, Zhang C, Zhou H, Zhou Y. A physical reference state unifies the structure-derived potential of mean force for protein folding and binding. Proteins 2004; 56:93-101. [PMID: 15162489 DOI: 10.1002/prot.20019] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Extracting knowledge-based statistical potential from known structures of proteins is proved to be a simple, effective method to obtain an approximate free-energy function. However, the different compositions of amino acid residues at the core, the surface, and the binding interface of proteins prohibited the establishment of a unified statistical potential for folding and binding despite the fact that the physical basis of the interaction (water-mediated interaction between amino acids) is the same. Recently, a physical state of ideal gas, rather than a statistically averaged state, has been used as the reference state for extracting the net interaction energy between amino acid residues of monomeric proteins. Here, we find that this monomer-based potential is more accurate than an existing all-atom knowledge-based potential trained with interfacial structures of dimers in distinguishing native complex structures from docking decoys (100% success rate vs. 52% in 21 dimer/trimer decoy sets). It is also more accurate than a recently developed semiphysical empirical free-energy functional enhanced by an orientation-dependent hydrogen-bonding potential in distinguishing native state from Rosetta docking decoys (94% success rate vs. 74% in 31 antibody-antigen and other complexes based on Z score). In addition, the monomer potential achieved a 93% success rate in distinguishing true dimeric interfaces from artificial crystal interfaces. More importantly, without additional parameters, the potential provides an accurate prediction of binding free energy of protein-peptide and protein-protein complexes (a correlation coefficient of 0.87 and a root-mean-square deviation of 1.76 kcal/mol with 69 experimental data points). This work marks a significant step toward a unified knowledge-based potential that quantitatively captures the common physical principle underlying folding and binding. A Web server for academic users, established for the prediction of binding free energy and the energy evaluation of the protein-protein complexes, may be found at http://theory.med.buffalo.edu.
Collapse
Affiliation(s)
- Song Liu
- Howard Hughes Medical Institute Center for Single Molecule Biophysics, Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
27
|
Abstract
Several methodologies were employed to calculate the Gibbs standard free energy of binding for a collection of protein-ligand complexes, where the ligand is a peptide and the protein is representative for various protein families. Almost 40 protein-ligand complexes were employed for a continuum approach, which considers the protein and the peptide at the atomic level, but includes solvent as a polarizable continuum. Five protein-ligand complexes were employed for an all-atom approach that relies on a combination of the double decoupling method with thermodynamic integration and molecular dynamics. These affinities were also computed by means of the linear interaction energy method. Although it generally proved rather difficult to predict the absolute free energies correctly, for some protein families the experimental ranking order was correctly reproduced by the continuum and all-atom approach. Considerable attention has also been given to correctly analyze the affinities of charged peptides, where it is required to judge the effect of one or more ions that are being decoupled in an all-atom approach to preserve electroneutrality. The various methods are further judged upon their merits.
Collapse
Affiliation(s)
- Serena Donnini
- The Biocenter and the Department of Biochemistry, University of Oulu, P.O. Box 3000, FIN-90014 University of Oulu, Finland
| | | |
Collapse
|
28
|
Abstract
Protein phosphorylation provides molecular control of complex physiological events within cells. In many cases, phosphorylation on specific amino acids directly controls the assembly of multi-protein complexes by recruiting phospho-specific binding modules. Here, the function, structure, and cell biology of phosphotyrosine-binding domains is discussed.
Collapse
Affiliation(s)
- Michael B Yaffe
- Center for Cancer Research, E18-580, Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA.
| |
Collapse
|
29
|
Verkhivker GM, Bouzida D, Gehlhaar DK, Rejto PA, Schaffer L, Arthurs S, Colson AB, Freer ST, Larson V, Luty BA, Marrone T, Rose PW. Hierarchy of simulation models in predicting structure and energetics of the Src SH2 domain binding to tyrosyl phosphopeptides. J Med Chem 2002; 45:72-89. [PMID: 11754580 DOI: 10.1021/jm0101141] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structure and energetics of the Src Src Homology 2 (SH2) domain binding with the recognition phosphopeptide pYEEI and its mutants are studied by a hierarchical computational approach. The proposed structure prediction strategy includes equilibrium sampling of the peptide conformational space by simulated tempering dynamics with the simplified, knowledge-based energy function, followed by structural clustering of the resulting conformations and binding free energy evaluation of a single representative from each cluster, a cluster center. This protocol is robust in rapid screening of low-energy conformations and recovers the crystal structure of the pYEEI peptide. Thermodynamics of the peptide-SH2 domain binding is analyzed by computing the average energy contributions over conformations from the clusters, structurally similar to the predicted peptide bound structure. Using this approach, the binding thermodynamics for a panel of studied peptides is predicted in a better agreement with the experiment than previously suggested models. However, the overall correlation between computed and experimental binding affinity remains rather modest. The results of this study show that small differences in binding free energies between the Ala and Gly mutants of the pYEEI peptide are considerably more difficult to predict than the structure of the bound peptides, indicating that accurate computational prediction of binding affinities still remains a major methodological and technical challenge.
Collapse
Affiliation(s)
- Gennady M Verkhivker
- Agouron Pharmaceuticals, Inc., A Pfizer Company, 10777 Science Center Drive, San Diego, California 92121-1111, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Verkhivker GM, Bouzida D, Gehlhaar DK, Rejto PA, Schaffer L, Arthurs S, Colson AB, Freer ST, Larson V, Luty BA, Marrone T, Rose PW. Hierarchy of simulation models in predicting molecular recognition mechanisms from the binding energy landscapes: structural analysis of the peptide complexes with SH2 domains. Proteins 2001; 45:456-70. [PMID: 11746693 DOI: 10.1002/prot.10019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Computer simulations using the simplified energy function and simulated tempering dynamics have accurately determined the native structure of the pYVPML, SVLpYTAVQPNE, and SPGEpYVNIEF peptides in the complexes with SH2 domains. Structural and equilibrium aspects of the peptide binding with SH2 domains have been studied by generating temperature-dependent binding free energy landscapes. Once some native peptide-SH2 domain contacts are constrained, the underlying binding free energy profile has the funnel-like shape that leads to a rapid and consistent acquisition of the native structure. The dominant native topology of the peptide-SH2 domain complexes represents an extended peptide conformation with strong specific interactions in the phosphotyrosine pocket and hydrophobic interactions of the peptide residues C-terminal to the pTyr group. The topological features of the peptide-protein interface are primarily determined by the thermodynamically stable phosphotyrosyl group. A diversity of structurally different binding orientations has been observed for the amino-terminal residues to the phosphotyrosine. The dominant native topology for the peptide residues carboxy-terminal to the phosphotyrosine is tolerant to flexibility in this region of the peptide-SH2 domain interface observed in equilibrium simulations. The energy landscape analysis has revealed a broad, entropically favorable topology of the native binding mode for the bound peptides, which is robust to structural perturbations. This could provide an additional positive mechanism underlying tolerance of the SH2 domains to hydrophobic conservative substitutions in the peptide specificity region.
Collapse
Affiliation(s)
- G M Verkhivker
- Agouron Pharmaceuticals, Inc., San Diego, California 92121-1111, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Burke TR, Yao ZJ, Liu DG, Voigt J, Gao Y. Phosphoryltyrosyl mimetics in the design of peptide-based signal transduction inhibitors. Biopolymers 2001; 60:32-44. [PMID: 11376431 DOI: 10.1002/1097-0282(2001)60:1<32::aid-bip1002>3.0.co;2-i] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The central roles played by protein-tyrosine kinase (PTK)-dependent signal transduction in normal cellular regulation and homeostasis have made inappropriate or aberrant functions of certain of these pathways contributing factors to a variety of diseases, including several cancers. For this reason, development of PTK signaling inhibitors has evolved into an important approach toward new therapeutics. Since in these pathways phosphotyrosyl (pTyr) residues provide unique and defining functions either by their creation under the catalysis of PTKs, their recognition and binding by protein modules such as SH2 and phosphotyrosyl binding (PTB) domains, or their destruction by protein-tyrosine phosphatases, pTyr mimetics provide useful general starting points for inhibitor design. Important considerations in the development of such pTyr mimetics include enzymatic stability (particularly toward PTPs), high affinity recognition by target pTyr binding proteins, and good cellular bioavailability. Although small molecule, nonpeptide inhibitors may be ultimate objectives of inhibitor development, peptides frequently serve as display platforms for pTyr mimetics, which afford useful and conceptually straightforward starting points in the development process. Reported herein is a limited overview of pTyr mimetic development as it relates to peptide-based agents. Of particular interest are recent findings that highlight potential limitations of peptides as display platforms for the identification of small molecule leads. One conclusion that results from this work is that while peptide-based approaches toward small molecule inhibitor design are often intellectually satisfying from a structure-based perspective, extrapolation of negative findings to small molecule, nonpeptide contexts should be undertaken with extreme caution.
Collapse
Affiliation(s)
- T R Burke
- Laboratory of Medicinal Chemistry, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
32
|
|
33
|
Hoffmüller U, Knaute T, Hahn M, Höhne W, Schneider-Mergener J, Kramer A. Evolutionary transition pathways for changing peptide ligand specificity and structure. EMBO J 2000; 19:4866-74. [PMID: 10990450 PMCID: PMC314224 DOI: 10.1093/emboj/19.18.4866] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We identified evolutionary pathways for the inter- conversion of three sequentially and structurally unrelated peptides, GATPEDLNQKL, GLYEWGGARI and FDKEWNLIEQN, binding to the same site of the hypervariable region of the anti-p24 (HIV-1) monoclonal antibody CB4-1. Conversion of these peptides into each other could be achieved in nine or 10 single amino acid substitution steps without loss of antibody binding. Such pathways were identified by analyzing all 7 620 480 pathways connecting 2560 different peptides, and testing them for CB4-1 binding. The binding modes of intermediate peptides of selected optimal pathways were characterized using complete sets of substitution analogs, revealing that a number of sequential substitutions accumulated without changing the pattern of key interacting residues. At a distinct step, however, one single amino acid exchange induces a sudden change in the binding mode, indicating a flip in specificity and conformation. Our data represent a model of how different specificities, structures and functions might evolve in protein-protein recognition.
Collapse
Affiliation(s)
- U Hoffmüller
- Institut für Medizinische Immunologie and Institut für Biochemie, Universitätsklinikum Charité, Humboldt-Universität zu Berlin, Schumannstrasse 20/21, 10098 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Gao Y, Wu L, Luo JH, Guo R, Yang D, Zhang ZY, Burke TR. Examination of novel non-phosphorus-containing phosphotyrosyl mimetics against protein-tyrosine phosphatase-1B and demonstration of differential affinities toward Grb2 SH2 domains. Bioorg Med Chem Lett 2000; 10:923-7. [PMID: 10853661 DOI: 10.1016/s0960-894x(00)00124-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Inhibitory potencies were compared of several mono- and dicarboxy-based pTyr mimetics in Grb2 SH2 domain versus PTP1B assays. Although in both systems pTyr residues provide critical binding elements, significant differences in the manner of recognition exist between the two. This is reflected in the current study, where marked variation in relative potencies was observed between the two systems. Of particular note was the poor potency of all monocarboxy-based pTyr mimetics against PTP1B when incorporated into a hexapeptide platform. The recently reported high PTP1B inhibitory potency of similar phenylphosphate mimicking moieties displayed in small molecule, non-peptide structures, raises questions on the limitations of using peptides as platforms for pTyr mimetics in the discovery of small molecule inhibitors.
Collapse
Affiliation(s)
- Y Gao
- Laboratory of Medicinal Chemistry, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Phosphotyrosine-binding (PTB) domains were originally identified as modular domains that recognize phosphorylated Asn-Pro-Xxx-p Tyr-containing proteins. Recent binding and structural studies of PTB domain complexes with target peptides have revealed a number of deviations from the previously described mode of interaction, with respect to both the sequences of possible targets and their structures within the complexes. This diversity of recognition by PTB domains extends and strengthens our general understanding of modular binding domain recognition.
Collapse
Affiliation(s)
- J D Forman-Kay
- Department of Biochemistry, Structural Biology and Biochemistry Program, Research Institute, Hospital for Sick Children, University of Toronto, Toronto, M5G 1X8, M5S 1A8, Canada.
| | | |
Collapse
|
36
|
Stigler RD, Hoffmann B, Abagyan R, Schneider-Mergener J. Soft docking an L and a D peptide to an anticholera toxin antibody using internal coordinate mechanics. Structure 1999; 7:663-70. [PMID: 10404595 DOI: 10.1016/s0969-2126(99)80087-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The tremendous increase in sequential and structural information is a challenge for computer-assisted modelling to predict the binding modes of interacting biomolecules. One important area is the structural understanding of protein-peptide interactions, information that is increasingly important for the design of biologically active compounds. RESULTS We predicted the three-dimensional structure of a complex between the monoclonal antibody TE33 and its cholera-toxin-derived peptide epitope VPGSQHID. Using the internal coordinate mechanics (ICM) method of flexible docking, the bound conformation of the initially extended peptide epitope to the antibody crystal or modelled structure reproduced the known binding conformation to a root mean square deviation of between 1.9 A and 3.1 A. The predicted complexes are in good agreement with binding data obtained from substitutional analyses in which each epitope residue is replaced by all other amino acids. Furthermore, a de novo prediction of the recently discovered TE33-binding D peptide dwGsqhydp (single-letter amino acid code where D amino acids are represented by lower-case letters) explains results obtained from binding studies with 172 peptide analogues. CONCLUSIONS Despite the difficulties arising from the huge conformational space of a peptide, this approach allowed the prediction of the correct binding orientation and the majority of essential binding features of a peptide-antibody complex.
Collapse
Affiliation(s)
- R D Stigler
- Institut für Medizinische Immunologie, Universitätsklinikum Charité, Humboldt-Universität zu Berlin, Germany.
| | | | | | | |
Collapse
|
37
|
|
38
|
Abstract
A fast and reliable evaluation of the binding energy from a single conformation of a molecular complex is an important practical task. Knowledge-based scoring schemes may not be sufficiently general and transferable, while molecular dynamics or Monte Carlo calculations with explicit solvent are too computationally expensive for many applications. Recently, several empirical schemes using finite difference Poisson-Boltzmann electrostatics to predict energies for particular types of complexes were proposed. Here, an improved empirical binding energy function has been derived and validated on three different types of complexes: protein-small ligand, protein-peptide and protein-protein. The function uses the boundary element algorithm to evaluate the electrostatic solvation energy. We show that a single set of parameters can predict the relative binding energies of the heterogeneous validation set of complexes with 2.5 kcal/mol accuracy. We also demonstrate that global optimization of the ligand and of the flexible side-chains of the receptor improves the accuracy of the evaluation.
Collapse
Affiliation(s)
- M Schapira
- Skirball Institute of Biomolecular Medicine, Structural Biology, New York University Medical Center, 540 First Avenue, New York, NY 10016, USA
| | | | | |
Collapse
|