1
|
Park H, Norby FL, Kim D, Jang E, Yu HT, Kim TH, Uhm JS, Sung JH, Pak HN, Lee MH, Yang PS, Joung B. Proteomic Signatures for Risk Prediction of Atrial Fibrillation. Circulation 2025. [PMID: 40401370 DOI: 10.1161/circulationaha.124.073457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/29/2025] [Indexed: 05/23/2025]
Abstract
BACKGROUND Proteomic signatures might improve disease prediction and enable targeted disease prevention and management. We explored whether a protein risk score derived from large-scale proteomics data improves risk prediction of atrial fibrillation (AF). METHODS A total of 51 680 individuals with 1459 unique plasma protein measurements and without a history of AF were included from the UKB-PPP (UK Biobank Pharma Proteomics Project). A protein risk score was developed with lasso-penalized Cox regression from a random subset of 70% (36 176 individuals, 54.4% women, 2155 events) and was tested on the remaining 30% (15 504 individuals, 54.4% women, 910 events). The protein risk score was externally replicated with the ARIC study (Atherosclerosis Risk in Communities; 11 012 individuals, 54.8% women, 1260 events). RESULTS The protein risk score formula developed from the UKB-PPP derivation set was composed of 165 unique plasma proteins, and 15 of them were associated with atrial remodeling. In the UKB-PPP test set, a 1-SD increase in protein risk score was associated with a hazard ratio of 2.20 (95% CI, 2.05-2.41) for incident AF. The C index for a model including CHARGE-AF (Cohorts for Heart and Aging Research in Genomic Epidemiology Atrial Fibrillation), NT-proBNP (N-terminal B-type natriuretic peptide), polygenic risk score, and protein risk score was 0.816 (95% CI, 0.802-0.829) compared with 0.771 (95% CI, 0.755-0.787) for a model including CHARGE-AF, NT-proBNP, and polygenic risk score (C-index change, 0.044 [95% CI, 0.039-0.055]). Protein risk score added to CHARGE-AF, NT-proBNP, and polygenic risk score resulted in a risk reclassification of 5.4% (95% CI, 2.9%-7.9%) with a 5-year risk threshold of 5%. In the decision curve, the predicted net benefit before and after the addition of protein risk score to a model including CHARGE-AF, NT-proBNP, and polygenic risk score was 3.8 and 5.4 per 1000 people, respectively, at a 5-year risk threshold of 5%. External replication of a protein risk score in the ARIC study showed consistent improvement in risk stratification of AF. CONCLUSIONS Protein risk score derived from a single plasma sample improved risk prediction of AF. Further research using proteomic signatures in AF screening and prevention is needed.
Collapse
Affiliation(s)
- Hanjin Park
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea (H.P., D.K., E.J., H.T.Y., T.-H.K., J.-S.U., H.-N.P., M.-H.L., B.J.)
| | - Faye L Norby
- Division of Epidemiology and Community Health, University of Minnesota, School of Public Health, Minneapolis (F.L.N.)
| | - Daehoon Kim
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea (H.P., D.K., E.J., H.T.Y., T.-H.K., J.-S.U., H.-N.P., M.-H.L., B.J.)
| | - Eunsun Jang
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea (H.P., D.K., E.J., H.T.Y., T.-H.K., J.-S.U., H.-N.P., M.-H.L., B.J.)
| | - Hee Tae Yu
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea (H.P., D.K., E.J., H.T.Y., T.-H.K., J.-S.U., H.-N.P., M.-H.L., B.J.)
| | - Tae-Hoon Kim
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea (H.P., D.K., E.J., H.T.Y., T.-H.K., J.-S.U., H.-N.P., M.-H.L., B.J.)
| | - Jae-Sun Uhm
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea (H.P., D.K., E.J., H.T.Y., T.-H.K., J.-S.U., H.-N.P., M.-H.L., B.J.)
| | - Jung-Hoon Sung
- Division of Cardiology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (J.-H.S., P.-S.Y.)
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea (H.P., D.K., E.J., H.T.Y., T.-H.K., J.-S.U., H.-N.P., M.-H.L., B.J.)
| | - Moon-Hyoung Lee
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea (H.P., D.K., E.J., H.T.Y., T.-H.K., J.-S.U., H.-N.P., M.-H.L., B.J.)
| | - Pil-Sung Yang
- Division of Cardiology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (J.-H.S., P.-S.Y.)
| | - Boyoung Joung
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea (H.P., D.K., E.J., H.T.Y., T.-H.K., J.-S.U., H.-N.P., M.-H.L., B.J.)
| |
Collapse
|
2
|
Zhou Y, Wang G, Liu L, Song L, Hu L, Liu L, Xu L, Wang T, Liu L, Wang Y, Zhang T, Guo B. Cellular crosstalk mediated by Meteorin-like regulating hepatic stellate cell activation during hepatic fibrosis. Cell Death Dis 2025; 16:405. [PMID: 40393967 DOI: 10.1038/s41419-025-07734-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/26/2025] [Accepted: 05/12/2025] [Indexed: 05/22/2025]
Abstract
Liver fibrosis is characterized by an excessive accumulation of extracellular matrix (ECM), primarily produced by activated hepatic stellate cells (HSCs). The activation of HSCs is influenced by paracrine signaling interactions among various liver cell types, but molecular mechanisms remain to be elucidated. Secretory Meteorin-like (Metrnl) can effectively ameliorate fulminant hepatitis. However, little is known about its role in liver fibrosis. In our study, we found that hepatic Metrnl mRNA transcripts and protein expression were significantly downregulated in patients and mouse models of hepatic fibrosis. Hepatocyte-specific and global knockout of Metrnl exacerbated CCl4-induced liver fibrosis. In contrast, the administration recombinant Metrnl or AAV-Metrnl overexpression markedly ameliorated CCl4-induced liver fibrosis in mice, suggesting a protective role for Metrnl. Mechanistically, hepatocyte-derived Metrnl not only influences the activation of HSCs through paracrine signaling but also modulates the release of the fibrogenic cytokine PDGFB via the transcription factor EGR1, thereby regulating PDGFB/PDGFRβ signaling to affect HSC activation. Furthermore, Metrnl absence in hepatocytes and HSCs leads to the downregulation of the E3 ubiquitin ligase HECW2, inhibiting K48-linked ubiquitination of FN and preventing its proteasomal degradation, thus promoting FN secretion from HSCs. These effects contribute to ECM deposition and the activation of HSCs, ultimately exacerbating liver fibrosis. Collectively, our study reveals Metrnl as a novel regulator of liver fibrosis that mediates communication between hepatocytes and HSCs, indicating its potential as a therapeutic target for liver fibrosis. The identification of Metrnl as a critical player in the pathogenesis of hepatic fibrosis underscores the importance of understanding cellular crosstalk in the progression of liver disease.
Collapse
Affiliation(s)
- Yuxia Zhou
- Department of Pathophysiology, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Province Talent Base of Research on the Pathogenesis and Drug Prevention and Treatment for Common Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Guifang Wang
- Department of Pathophysiology, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Province Talent Base of Research on the Pathogenesis and Drug Prevention and Treatment for Common Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Pathology, People's Hospital of Qianxinan Prefecture, Xingyi, Guizhou, China
| | - Lingling Liu
- Department of Pathophysiology, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Province Talent Base of Research on the Pathogenesis and Drug Prevention and Treatment for Common Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Lingyu Song
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guizhou Provincial Key Laboratory for Digestive System Diseases, Guiyang, Guizhou, China
| | - Laying Hu
- Department of Pathophysiology, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Province Talent Base of Research on the Pathogenesis and Drug Prevention and Treatment for Common Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Lu Liu
- Department of Pathophysiology, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Province Talent Base of Research on the Pathogenesis and Drug Prevention and Treatment for Common Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Lifen Xu
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Tuanlao Wang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, China
| | - Lirong Liu
- Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuanyuan Wang
- Department of Pathophysiology, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Province Talent Base of Research on the Pathogenesis and Drug Prevention and Treatment for Common Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Tian Zhang
- Department of Pathophysiology, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Province Talent Base of Research on the Pathogenesis and Drug Prevention and Treatment for Common Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Bing Guo
- Department of Pathophysiology, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Province Talent Base of Research on the Pathogenesis and Drug Prevention and Treatment for Common Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
3
|
Gao L, Zhang R, Zhang W, Lan Y, Li X, Cai Q, Liu J. Integrated bioinformatics analysis and experimental validation on malignant progression and immune cell infiltration of LTBP2 in gliomas. BMC Cancer 2024; 24:1252. [PMID: 39390437 PMCID: PMC11466037 DOI: 10.1186/s12885-024-12976-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Gliomas are the highly aggressive brain tumor and also the most devastating human tumors. The latent TGF binding proteins (LTBP) had been found to be involved in malignant biological process and could be used as potent biomarkers in several solid tumors. While the role of LTBP family in human glioma remain to be elucidated. METHODS Normalized gene expression and corresponding clinical data of 2407 gliomas samples in public datasets were downloaded from Gliovis. Kaplan-Meier methods and Cox regression analysis was used for survival analyses.Western blot (WB) and Immunohistochemical (IHC) testing were employed to test LTBPs protein level in 154 gliomas samples. Correlation between LTBP2 expression and immune infiltration was evaluated by immunofluorescence (IF) and IHC in glioma tissues. CCK8 and flow cytometric analysis were used to detect the effect of LTBP2 on glioma cells. Orthotopic glioma- mouse models were utilized to evaluate effects in vivo. RESULTS LTBP2 mRNA level was dramatically higher in glioma samples compared with non-tumor brain tissues in XENA-TCGA_GTEx, Gill and Gravendeel datasets (all P < 0.01), and its expression positively correlated with glioma WHO grade, IDH1/2 wildtype and mesenchymal subtypes. These results were confirmed by In-house cohort which was detected by WB and IHC. We found that gliomas patients with high LTBP2 level had shorter OS than those with low LTBP2 level. LTBP2 expression significantly associated with glioma immune score (Spearman r = 0.68, P < 0.01)) and strongly correlated with infiltration degreee of macrophages both in lower grade gliomas (LGG) and GBM. Knocking down LTBP2 obviously reduced proliferation and enhanced sensitivity to temozolomide in U87 and U251 cells. Nude mice with lower expression of LTBP2 had slower tumor growth, and accompanied by less tumor-associated macrophages (TAMs) infiltration detected by IHC staining in vivo. Finally, low LTBP2 expression glioma patients who received chemotherapy survived longer than patients with high LTBP2 expression. CONCLUSION LTBP2 could be used as a prognostic marker, and high LTBP2 expression related to abundant TAMs infiltration and with a worse response to chemotherapy.
Collapse
Affiliation(s)
- Lun Gao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Rui Zhang
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wenbin Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yanfang Lan
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiangpan Li
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qiang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Junhui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
4
|
Pan Y, Iwata T. Exploring the Genetic Landscape of Childhood Glaucoma. CHILDREN (BASEL, SWITZERLAND) 2024; 11:454. [PMID: 38671671 PMCID: PMC11048810 DOI: 10.3390/children11040454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
Childhood glaucoma, a significant cause of global blindness, represents a heterogeneous group of disorders categorized into primary or secondary forms. Primary childhood glaucoma stands as the most prevalent subtype, comprising primary congenital glaucoma (PCG) and juvenile open-angle glaucoma (JOAG). Presently, multiple genes are implicated in inherited forms of primary childhood glaucoma. This comprehensive review delves into genetic investigations into primary childhood glaucoma, with a focus on identifying causative genes, understanding their inheritance patterns, exploring essential biological pathways in disease pathogenesis, and utilizing animal models to study these mechanisms. Specifically, attention is directed towards genes such as CYP1B1 (cytochrome P450 family 1 subfamily B member 1), LTBP2 (latent transforming growth factor beta binding protein 2), TEK (TEK receptor tyrosine kinase), ANGPT1 (angiopoietin 1), and FOXC1 (forkhead box C1), all associated with PCG; and MYOC (myocilin), associated with JOAG. Through exploring these genetic factors, this review aims to deepen our understanding of the intricate pathogenesis of primary childhood glaucoma, thereby facilitating the development of enhanced diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
| | - Takeshi Iwata
- National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo 152-8902, Japan;
| |
Collapse
|
5
|
Manzanares-Guzmán A, Lugo-Fabres PH, Camacho-Villegas TA. vNARs as Neutralizing Intracellular Therapeutic Agents: Glioblastoma as a Target. Antibodies (Basel) 2024; 13:25. [PMID: 38534215 DOI: 10.3390/antib13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Glioblastoma is the most prevalent and fatal form of primary brain tumors. New targeted therapeutic strategies for this type of tumor are imperative given the dire prognosis for glioblastoma patients and the poor results of current multimodal therapy. Previously reported drawbacks of antibody-based therapeutics include the inability to translocate across the blood-brain barrier and reach intracellular targets due to their molecular weight. These disadvantages translate into poor target neutralization and cancer maintenance. Unlike conventional antibodies, vNARs can permeate tissues and recognize conformational or cryptic epitopes due to their stability, CDR3 amino acid sequence, and smaller molecular weight. Thus, vNARs represent a potential antibody format to use as intrabodies or soluble immunocarriers. This review comprehensively summarizes key intracellular pathways in glioblastoma cells that induce proliferation, progression, and cancer survival to determine a new potential targeted glioblastoma therapy based on previously reported vNARs. The results seek to support the next application of vNARs as single-domain antibody drug-conjugated therapies, which could overcome the disadvantages of conventional monoclonal antibodies and provide an innovative approach for glioblastoma treatment.
Collapse
Affiliation(s)
- Alejandro Manzanares-Guzmán
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico
| | - Pavel H Lugo-Fabres
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)-Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico
| | - Tanya A Camacho-Villegas
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)-Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico
| |
Collapse
|
6
|
Liu Y, Fan H, Kang X, Hao Y, Wang N, Zheng H, Li Y, Kang S. A rare germline BMP15 missense mutation causes hereditary ovarian immature teratoma in human. Proc Natl Acad Sci U S A 2024; 121:e2310409121. [PMID: 38427603 DOI: 10.1073/pnas.2310409121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/11/2024] [Indexed: 03/03/2024] Open
Abstract
Ovarian immature teratomas (OITs) are malignant tumors originating from the ovarian germ cells that mainly occur during the first 30 y of a female's life. Early age of onset strongly suggests the presence of susceptibility gene mutations for the disease yet to be discovered. Whole exon sequencing was used to screen pathogenic mutations from pedigrees with OITs. A rare missense germline mutation (C262T) in the first exon of the BMP15 gene was identified. In silico calculation suggested that the mutation could impair the formation of mature peptides. In vitro experiments on cell lines confirmed that the mutation caused an 84.7% reduction in the secretion of mature BMP15. Clinical samples from OIT patients also showed a similar pattern of decrease in the BMP15 expression. In the transgenic mouse model, the spontaneous parthenogenetic activation significantly increased in oocytes carrying the T allele. Remarkably, a mouse carrying the T allele developed the phenotype of OIT. Oocyte-specific RNA sequencing revealed that abnormal activation of the H-Ras/MAPK pathway might contribute to the development of OIT. BMP15 was identified as a pathogenic gene for OIT which improved our understanding of the etiology of OIT and provided a potential biomarker for genetic screening of this disorder.
Collapse
Affiliation(s)
- Yakun Liu
- Department of Gynecology, Fourth Hospital, Hebei Medical University, Shijiazhuang 050011, China
| | - Hongwei Fan
- Department of Gynecology, Fourth Hospital, Hebei Medical University, Shijiazhuang 050011, China
| | - Xi Kang
- Department of Surgery, Fourth Hospital, Hebei Medical University, Shijiazhuang 050011, China
| | - Yuntao Hao
- Department of Gynecology, Fourth Hospital, Hebei Medical University, Shijiazhuang 050011, China
| | - Na Wang
- Department of Molecular Biology, Fourth Hospital, Hebei Medical University, Shijiazhuang 050011, China
| | - Hui Zheng
- Nanjing Personal Oncology Biotechnology Co., Ltd., Nanjing, Jiangsu 211103, China
| | - Yan Li
- Department of Molecular Biology, Fourth Hospital, Hebei Medical University, Shijiazhuang 050011, China
| | - Shan Kang
- Department of Gynecology, Fourth Hospital, Hebei Medical University, Shijiazhuang 050011, China
| |
Collapse
|
7
|
Jiang X, Yin S, Yin X, Wang Y, Fang T, Yang S, Bian X, Li G, Xue Y, Zhang L. A prognostic marker LTBP1 is associated with epithelial mesenchymal transition and can promote the progression of gastric cancer. Funct Integr Genomics 2024; 24:30. [PMID: 38358412 DOI: 10.1007/s10142-024-01311-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
LTBP1 is closely related to TGF-β1 function as an essential component, which was unclear in gastric cancer (GC). Harbin Medical University (HMU)-GC cohort and The Cancer Genome Atlas (TCGA) dataset were combined to form a training cohort to calculate the connection between LTBP1 mRNA expression, prognosis and clinicopathological features. The training cohort was also used to verify the biological function of LTBP1 and its relationship with immune microenvironment and chemosensitivity. In the tissue microarrays (TMAs), immunohistochemical (IHC) staining was performed to observe LTBP1 protein expression. The correlation between LTBP1 protein expression level and prognosis was also analyzed, and a nomogram model was constructed. Western blotting (WB) was used in cell lines to assess LTBP1 expression. Transwell assays and CCK-8 were employed to assess LTBP1's biological roles. In compared to normal gastric tissues, LTBP1 expression was upregulated in GC tissues, and high expression was linked to a bad prognosis for GC patients. Based on a gene enrichment analysis, LTBP1 was primarily enriched in the TGF-β and EMT signaling pathways. Furthermore, high expression of LTBP1 in the tumor microenvironment was positively correlated with an immunosuppressive response. We also found that LTBP1 expression (p = 0.006) and metastatic lymph node ratio (p = 0.044) were independent prognostic risk factors for GC patients. The prognostic model combining LTBP1 expression and lymph node metastasis ratio reliably predicted the prognosis of GC patients. In vitro proliferation and invasion of MKN-45 GC cells were inhibited and their viability was decreased by LTBP1 knockout. LTBP1 plays an essential role in the development and progression of GC, and is a potential prognostic biomarker and therapeutic target for GC.
Collapse
Affiliation(s)
- Xinju Jiang
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shengjie Yin
- Department of Medical Oncology, Municipal Hospital of Chifeng, Chifeng, Inner Mongolia Autonomous Region, China
| | - Xin Yin
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yufei Wang
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Tianyi Fang
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shuo Yang
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiulan Bian
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang, China
| | - Guoli Li
- Department of Colorectal and Anal Surgery, Chifeng Municipal Hospital, Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, Inner Mongolia Autonomous Region, China
| | - Yingwei Xue
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lei Zhang
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
8
|
Chen R, Cheng Y, Zhang Y, Chen J. Identification and expression analysis of Oxfibrillin gene involved in the regeneration process of Ophryotrocha xiamen (Annelida, Dorcilleidae). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 151:105102. [PMID: 37995918 DOI: 10.1016/j.dci.2023.105102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Regeneration of lost body parts is a widespread phenomenon across annelids. However, the molecular inducers of the cell sources for this reparative morphogenesis have not been identified. We have identified a regeneration-related gene Oxfibrillin from the transcriptome analysis of a polychaeta, Ophryotrocha xiamen, which is found to be a well-suited model to study the mechanisms of regeneration. Fibrillins are large glycoproteins that assemble to form the microfibrils and regulate growth factors or other transfer processes. Here, we obtained the 31,274 bp genomic DNA sequences of Oxfibrillin. The coding sequence length was 5784 bp encoding 1927 amino acids with a VWD domain, EGF/cb-EGF domains, a TR domain, and a transmembrane domain. Oxfibrillin was positioned within the subgroup of invertebrates and showed low scores for homology to mammalian fibrillin. In gene expression analysis, Oxfibrillin genes were constantly upregulated during the early regeneration process and then remained stable until the formation of the complete tail which indicated that it might be a vital factor to affect posterior regeneration process. Therefore, the Oxfibrillin of O. xiamen might play important roles in the regeneration process.
Collapse
Affiliation(s)
- Ruanni Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Yunying Cheng
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Yuting Zhang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Jianming Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
| |
Collapse
|
9
|
Li A, Li Z, Chiu W, Xiong C, Chen Q, Chen J, Lai X, Li W, Ke Q, Liu J, Zhang X. Efficient Treatment of Pulpitis via Transplantation of Human Pluripotent Stem Cell-Derived Pericytes Partially through LTBP1-Mediated T Cell Suppression. Biomedicines 2023; 11:3199. [PMID: 38137420 PMCID: PMC10740489 DOI: 10.3390/biomedicines11123199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Dental pulp pericytes are reported to have the capacity to generate odontoblasts and express multiple cytokines and chemokines that regulate the local immune microenvironment, thus participating in the repair of dental pulp injury in vivo. However, it has not yet been reported whether the transplantation of exogenous pericytes can effectively treat pulpitis, and the underlying molecular mechanism remains unknown. In this study, using a lineage-tracing mouse model, we showed that most dental pulp pericytes are derived from cranial neural crest. Then, we demonstrated that the ablation of pericytes could induce a pulpitis-like phenotype in uninfected dental pulp in mice, and we showed that the significant loss of pericytes occurs during pupal inflammation, implying that the transplantation of pericytes may help to restore dental pulp homeostasis during pulpitis. Subsequently, we successfully generated pericytes with immunomodulatory activity from human pluripotent stem cells through the intermediate stage of the cranial neural crest with a high level of efficiency. Most strikingly, for the first time we showed that, compared with the untreated pulpitis group, the transplantation of hPSC-derived pericytes could substantially inhibit vascular permeability (the extravascular deposition of fibrinogen, ** p < 0.01), alleviate pulpal inflammation (TCR+ cell infiltration, * p < 0.05), and promote the regeneration of dentin (** p < 0.01) in the mouse model of pulpitis. In addition, we discovered that the knockdown of latent transforming growth factor beta binding protein 1 (LTBP1) remarkably suppressed the immunoregulation ability of pericytes in vitro and compromised their in vivo regenerative potential in pulpitis. These results indicate that the transplantation of pericytes could efficiently rescue the aberrant phenotype of pulpal inflammation, which may be partially due to LTBP1-mediated T cell suppression.
Collapse
Affiliation(s)
- Anqi Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (A.L.); (W.C.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Zhuoran Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; (Z.L.); (C.X.); (Q.C.); (J.C.); (W.L.); (Q.K.)
| | - Weicheng Chiu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (A.L.); (W.C.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Chuanfeng Xiong
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; (Z.L.); (C.X.); (Q.C.); (J.C.); (W.L.); (Q.K.)
| | - Qian Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; (Z.L.); (C.X.); (Q.C.); (J.C.); (W.L.); (Q.K.)
| | - Junhua Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; (Z.L.); (C.X.); (Q.C.); (J.C.); (W.L.); (Q.K.)
| | - Xingqiang Lai
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China;
| | - Weiqiang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; (Z.L.); (C.X.); (Q.C.); (J.C.); (W.L.); (Q.K.)
- Guangdong Key Laboratory of Reproductive Medicine, Guangzhou 510080, China
| | - Qiong Ke
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; (Z.L.); (C.X.); (Q.C.); (J.C.); (W.L.); (Q.K.)
| | - Jia Liu
- VIP Medical Service Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Xinchun Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (A.L.); (W.C.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| |
Collapse
|
10
|
Vafaeie F, Miri Karam Z, Yari A, Safarpour H, Kazemi T, Etesam S, Mohammadpour M, Miri‐Moghaddam E. Clinical and genetic screening in a large Iranian family with Marfan syndrome: A case study. Health Sci Rep 2023; 6:e1647. [PMID: 37877128 PMCID: PMC10591539 DOI: 10.1002/hsr2.1647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/13/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
Background and Aims Marfan syndrome (MFS) is an autosomal dominant genetic disorder caused by pathogenic variants of the fibrillin-1-encoding FBN1 gene that commonly affects the cardiovascular, skeletal, and ocular systems. This study aimed to evaluate the clinical features and genetic causes of the MFS phenotype in a large Iranian family. Methods Seventeen affected family members were examined clinically by cardiologists and ophthalmologists. The proband, a 48-year-old woman with obvious signs of MFS, her DNA sample subjected to whole-exome sequencing (WES). The candidate variant was validated by bidirectional sequencing of proband and other available family members. In silico analysis and molecular modeling were conducted to determine the pathogenic effects of the candidate variants. Results The most frequent cardiac complications are mitral valve prolapse and regurgitation. Ophthalmic examination revealed iridodonesis and ectopic lentis. A heterozygous missense variant (c.2179T>C/p.C727R) in exon 19 of FBN1 gene was identified and found to cosegregate with affected family members. Its pathogenicity has been predicted using several in silico predictive algorithms. Molecular docking analysis indicated that the variant might affect the binding affinity between FBN1 and LTBP1 proteins by impairing disulfide bond formation. Conclusion Our report expands the spectrum of the Marfan phenotype by providing details of its clinical manifestations and disease-associated molecular changes. It also highlights the value of WES in genetic diagnosis and contributes to genetic counseling in families with MFS.
Collapse
Affiliation(s)
- Farzane Vafaeie
- Cellular and Molecular Research CenterBirjand University of Medical SciencesBirjandIran
| | - Zahra Miri Karam
- Physiology Research Center, Institute of NeuropharmacologyKerman University of Medical SciencesKermanIran
- Department of Medical Genetics, Afzalipour Faculty of MedicineKerman University of Medical SciencesKermanIran
| | - Abolfazl Yari
- Cellular and Molecular Research CenterBirjand University of Medical SciencesBirjandIran
- Department of Medical Genetics, Afzalipour Faculty of MedicineKerman University of Medical SciencesKermanIran
| | - Hossein Safarpour
- Cellular and Molecular Research CenterBirjand University of Medical SciencesBirjandIran
| | - Tooba Kazemi
- Cardiovascular Disease Research Center, Razi HospitalBirjand University of Medical SciencesBirjandIran
| | - Shokoofeh Etesam
- Department of Biological SciencesTechnical and Vocational University (TVU)TehranIran
| | - Mojtaba Mohammadpour
- Department of Optometry, School of RehabilitationShahid Beheshti University of Medical SciencesTehranIran
| | - Ebrahim Miri‐Moghaddam
- Cardiovascular Disease Research Center, Razi HospitalBirjand University of Medical SciencesBirjandIran
| |
Collapse
|
11
|
Burioli EAV, Hammel M, Vignal E, Vidal-Dupiol J, Mitta G, Thomas F, Bierne N, Destoumieux-Garzón D, Charrière GM. Transcriptomics of mussel transmissible cancer MtrBTN2 suggests accumulation of multiple cancer traits and oncogenic pathways shared among bilaterians. Open Biol 2023; 13:230259. [PMID: 37816387 PMCID: PMC10564563 DOI: 10.1098/rsob.230259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023] Open
Abstract
Transmissible cancer cell lines are rare biological entities giving rise to diseases at the crossroads of cancer and parasitic diseases. These malignant cells have acquired the amazing capacity to spread from host to host. They have been described only in dogs, Tasmanian devils and marine bivalves. The Mytilus trossulus bivalve transmissible neoplasia 2 (MtrBTN2) lineage has even acquired the capacity to spread inter-specifically between marine mussels of the Mytilus edulis complex worldwide. To identify the oncogenic processes underpinning the biology of these atypical cancers we performed transcriptomics of MtrBTN2 cells. Differential expression, enrichment, protein-protein interaction network, and targeted analyses were used. Overall, our results suggest the accumulation of multiple cancerous traits that may be linked to the long-term evolution of MtrBTN2. We also highlight that vertebrate and lophotrochozoan cancers could share a large panel of common drivers, which supports the hypothesis of an ancient origin of oncogenic processes in bilaterians.
Collapse
Affiliation(s)
- E A V Burioli
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - M Hammel
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - E Vignal
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - J Vidal-Dupiol
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - G Mitta
- IFREMER, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre Ifremer du Pacifique, Tahiti, Polynésie française
| | - F Thomas
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - N Bierne
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - D Destoumieux-Garzón
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - G M Charrière
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| |
Collapse
|
12
|
Raghunathan V, Nartey A, Dhamodaran K, Baidouri H, Staverosky JA, Keller KE, Zientek K, Reddy A, Acott T, Vranka JA. Characterization of extracellular matrix deposited by segmental trabecular meshwork cells. Exp Eye Res 2023; 234:109605. [PMID: 37506755 PMCID: PMC11104015 DOI: 10.1016/j.exer.2023.109605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
PURPOSE Biophysical and biochemical attributes of the extracellular matrix are major determinants of cell fate in homeostasis and disease. Ocular hypertension and glaucoma are diseases where the trabecular meshwork tissue responsible for aqueous humor egress becomes stiffer accompanied by changes in its matrisome in a segmental manner with regions of high or low flow. Prior studies demonstrate these alterations in the matrix are dynamic in response to age and pressure changes. The underlying reason for segmentation or differential response to pressure and stiffening are unknown. This is largely due to a lack of appropriate models (in vitro or ex vivo) to study this phenomena. METHODS Primary trabecular meshwork cells were isolated from segmental flow regions, and cells were cultured for 4 weeks in the presence or absence or dexamethasone to obtain cell derived matrices (CDM). The biomechanical attributes of the CDM, composition of the matrisome, and incidence of crosslinks were determined by atomic force microscopy and mass spectrometry. RESULTS Data demonstrate that matrix deposited by cells from low flow regions are stiffer and exhibit a greater number of immature and mature crosslinks, and that these are exacerbated in the presence of steroid. We also show a differential response of high or low flow cells to steroid via changes observed in the matrix composition. However, no correlations were observed between elastic moduli and presence or absence of mature and immature crosslinks in the CDMs. CONCLUSION Regardless of a direct correlation between matrix stiffness and crosslinks, we observed distinct differences in the composition and mechanics of the matrices deposited by segmental flow cells. These results suggest distinct differences in cellular identify and likely a basis for mechanical memory post isolation and culture. Nevertheless, we conclude that although a mechanistic basis for matrix stiffness was undetermined in this study, it is a viable tool to study cell-matrix interactions and further our understanding of trabecular meshwork pathobiology.
Collapse
Affiliation(s)
| | - Andrews Nartey
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, USA
| | - Kamesh Dhamodaran
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, USA
| | - Hasna Baidouri
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, USA
| | | | - Kate E Keller
- Ophthalmology and Visual Sciences, Casey Eye Institute, USA
| | - Keith Zientek
- Proteomics Shared Resources, Oregon Health & Science University, Portland, OR, USA
| | - Ashok Reddy
- Proteomics Shared Resources, Oregon Health & Science University, Portland, OR, USA
| | - Ted Acott
- Ophthalmology and Visual Sciences, Casey Eye Institute, USA
| | | |
Collapse
|
13
|
Raghunathan V, Nartey A, Dhamodaran K, Baidouri H, Staverosky JA, Keller KE, Zientek K, Reddy A, Acott T, Vranka JA. Characterization of extracellular matrix deposited by segmental trabecular meshwork cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.11.532242. [PMID: 36945588 PMCID: PMC10028995 DOI: 10.1101/2023.03.11.532242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Biophysical and biochemical attributes of the extracellular matrix are major determinants of cell fate in homeostasis and disease. Ocular hypertension and glaucoma are diseases where the trabecular meshwork tissue responsible for aqueous humor egress becomes stiffer accompanied by changes in its matrisome in a segmental manner with regions of high or low flow. Prior studies demonstrate these alterations in the matrix are dynamic in response to age and pressure changes. The underlying reason for segmentation or differential response to pressure and stiffening are unknown. This is largely due to a lack of appropriate models ( in vitro or ex vivo ) to study this phenomena. In this study, we characterize the biomechanical attributes, matrisome, and incidence of crosslinks in the matrix deposited by primary cells isolated from segmental flow regions and when treated with glucocorticosteroid. Data demonstrate that matrix deposited by cells from low flow regions are stiffer and exhibit a greater number of immature and mature crosslinks, and that these are exacerbated in the presence of steroid. We also show a differential response of high or low flow cells to steroid via changes observed in the matrix composition. We conclude that although a mechanistic basis for matrix stiffness was undetermined in this study, it is a viable tool to study cell-matrix interactions and further our understanding of trabecular meshwork pathobiology.
Collapse
|
14
|
Bertolini TB, Herzog RW, Kumar SRP, Sherman A, Rana J, Kaczmarek R, Yamada K, Arisa S, Lillicrap D, Terhorst C, Daniell H, Biswas M. Suppression of anti-drug antibody formation against coagulation factor VIII by oral delivery of anti-CD3 monoclonal antibody in hemophilia A mice. Cell Immunol 2023; 385:104675. [PMID: 36746071 PMCID: PMC9993859 DOI: 10.1016/j.cellimm.2023.104675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/26/2022] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
Active tolerance to ingested dietary antigens forms the basis for oral immunotherapy to food allergens or autoimmune self-antigens. Alternatively, oral administration of anti-CD3 monoclonal antibody can be effective in modulating systemic immune responses without T cell depletion. Here we assessed the efficacy of full length and the F(ab')2 fragment of oral anti-CD3 to prevent anti-drug antibody (ADA) formation to clotting factor VIII (FVIII) protein replacement therapy in hemophilia A mice. A short course of low dose oral anti-CD3 F(ab')2 reduced the production of neutralizing ADAs, and suppression was significantly enhanced when oral anti-CD3 was timed concurrently with FVIII administration. Tolerance was accompanied by the early induction of FoxP3+LAP-, FoxP3+LAP+, and FoxP3-LAP+ populations of CD4+ T cells in the spleen and mesenteric lymph nodes. FoxP3+LAP+ Tregs expressing CD69, CTLA-4, and PD1 persisted in spleens of treated mice, but did not produce IL-10. Finally, we attempted to combine the anti-CD3 approach with oral intake of FVIII antigen (using our previously established method of using lettuce plant cells transgenic for FVIII antigen fused to cholera toxin B (CTB) subunit, which suppresses ADAs in part through induction of IL-10 producing FoxP3-LAP+ Treg). However, combining these two approaches failed to improve suppression of ADAs. We conclude that oral anti-CD3 treatment is a promising approach to prevention of ADA formation in systemic protein replacement therapy, albeit via mechanisms distinct from and not synergistic with oral intake of bioencapsulated antigen.
Collapse
Affiliation(s)
- Thais B Bertolini
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Roland W Herzog
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Sandeep R P Kumar
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexandra Sherman
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jyoti Rana
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Radoslaw Kaczmarek
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kentaro Yamada
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sreevani Arisa
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David Lillicrap
- Division of Immunology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, USA
| | - Cox Terhorst
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Canada
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Moanaro Biswas
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
15
|
Chen Z, Yu H, Chen X, Chen W, Song W, Li Z. Mutual regulation between glycosylation and transforming growth factor-β isoforms signaling pathway. Int J Biol Macromol 2023; 236:123818. [PMID: 36858092 DOI: 10.1016/j.ijbiomac.2023.123818] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/18/2023] [Accepted: 02/19/2023] [Indexed: 03/02/2023]
Abstract
Transforming growth factor-beta (TGF-β) superfamily members orchestrate a wide breadth of biological processes. Through Sma and Mad (Smad)-related dependent or noncanonical pathways, TGF-β members involve in the occurrence and development of many diseases such as cancers, fibrosis, autoimmune diseases, cardiovascular diseases and brain diseases. Glycosylation is one kind of the most common posttranslational modifications on proteins or lipids. Abnormal protein glycosylation can lead to protein malfunction and biological process disorder, thereby causing serious diseases. Previously, researchers commonly make comprehensive systematic overviews on the roles of TGF-β signaling in a specific disease or biological process. In recent years, more and more evidences associate glycosylation modification with TGF-β signaling pathway, and we can no longer disengage and ignore the roles of glycosylation from TGF-β signaling to make investigation. In this review, we provide an overview of current findings involved in glycosylation within TGF-βs and theirs receptors, and the interaction effects between glycosylation and TGF-β subfamily signaling, concluding that there is an intricate mutual regulation between glycosylation and TGF-β signaling, hoping to present the glycosylation regulatory patterns that concealed in TGF-βs signaling pathways.
Collapse
Affiliation(s)
- Zhuo Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Xiangqin Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Wentian Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Wanghua Song
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China.
| |
Collapse
|
16
|
Liu B, Wang Y, He D, Han G, Wang H, Lin Y, Zhang T, Yi C, Li H. LTBP1 Gene Expression in the Cerebral Cortex and its Neuroprotective Mechanism in Mice with Postischemic Stroke Epilepsy. Curr Pharm Biotechnol 2023; 24:317-329. [PMID: 35676846 DOI: 10.2174/1389201023666220608091511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/08/2022] [Accepted: 03/30/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVE This study aimed at exploring the expression level of LTBP1 in the mouse model of epilepsy. The mechanism of LTBP1 in epileptic cerebral neural stem cells was deeply investigated to control the occurrence of epilepsy with neuroprotection. METHODS qRT-PCR was conducted for the expression levels of LTBP1 in clinical human epileptic tissues and neural stem cells, as well as normal cerebral tissues and neural stem cells. The mouse model of postischemic stroke epilepsy (PSE) was established by the middle cerebral artery occlusion (MCAO). Then, qRT-PCR was conducted again for the expression levels of LTBP1 in mouse epileptic tissues and neural stem cells as well as normal cerebral tissues and neural stem cells. The activation and inhibitory vectors of LTBP1 were constructed to detect the effects of LTBP1 on the proliferation of cerebral neural stem cells in the PSE model combined with CCK-8. Finally, Western blot was conducted for the specific mechanism of LTBP1 affecting the development of epileptic cells. RESULTS Racine score and epilepsy index of 15 mice showed epilepsy symptoms after the determination with MCAO, showing a successful establishment of the PSE model. LTBP1 expression in both diseased epileptic tissues and cells was higher than that in normal clinical epileptic tissues and cells. Meanwhile, qRT-PCR showed higher LTBP1 expression in both mouse epileptic tissues and their neural stem cells compared to that in normal tissues and cells. CCK-8 showed that the activation of LTBP1 stimulated the increased proliferative capacity of epileptic cells, while the inhibition of LTBP1 expression controlled the proliferation of epileptic cells. Western blot showed an elevated expression of TGFβ/SMAD signaling pathway-associated protein SMAD1/5/8 after activating LTBP1. The expression of molecular MMP-13 associated with the occurrence of inflammation was also activated. CONCLUSION LTBP1 can affect the changes in inflammation-related pathways by activating the TGFβ/SMAD signaling pathway and stimulate the development of epilepsy, and the inhibition of LTBP1 expression can control the occurrence of epilepsy with neuroprotection.
Collapse
Affiliation(s)
- Bo Liu
- Department of Neurology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161000, China
| | - Yan Wang
- Department of Neurology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161000, China
| | - Dongruo He
- Department of Neurophysiology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161000, China
| | - Guochao Han
- Department of Neurophysiology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161000, China
| | - Hao Wang
- Department of Neurophysiology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161000, China
| | - Yuan Lin
- Department of Neurophysiology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161000, China
| | - Tianyu Zhang
- Department of CT, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161000, China
| | - Chao Yi
- Department of Neurosurgery, Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161000, China
| | - Hui Li
- Department of Neurophysiology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161000, China
| |
Collapse
|
17
|
Atashi H, Bastin C, Wilmot H, Vanderick S, Hubin X, Gengler N. Genome-wide association study for selected cheese-making properties in Dual-Purpose Belgian Blue cows. J Dairy Sci 2022; 105:8972-8988. [PMID: 36175238 DOI: 10.3168/jds.2022-21780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/21/2022] [Indexed: 01/05/2023]
Abstract
This study aimed to estimate genetic parameters and identify genomic region(s) associated with selected cheese-making properties (CMP) in Dual-Purpose Belgian Blue (DPBB) cows. Edited data were 46,301 test-day records of milk yield, fat percentage, protein percentage, casein percentage, milk calcium content (CC), coagulation time (CT), curd firmness after 30 min from rennet addition (a30), and milk titratable acidity (MTA) collected from 2014 to 2020 on 4,077 first-parity (26,027 test-day records), and 3,258 second-parity DPBB cows (20,274 test-day records) distributed in 124 herds in the Walloon Region of Belgium. Data of 28,266 SNP, located on 29 Bos taurus autosomes (BTA) of 1,699 animals were used. Random regression test-day models were used to estimate genetic parameters through the Bayesian Gibbs sampling method. The SNP solutions were estimated using a single-step genomic BLUP approach. The proportion of the total additive genetic variance explained by windows of 25 consecutive SNPs (with an average size of ∼2 Mb) was calculated, and regions accounting for at least 1.0% of the total additive genetic variance were used to search for candidate genes. Heritability estimates for the included CMP ranged from 0.19 (CC) to 0.50 (MTA), and 0.24 (CC) to 0.41 (MTA) in the first and second parity, respectively. The genetic correlation estimated between CT and a30 varied from -0.61 to -0.41 and from -0.55 to -0.38 in the first and second lactations, respectively. Negative genetic correlations were found between CT and milk yield and composition, while those estimated between curd firmness and milk composition were positive. Genome-wide association analyses results identified 4 genomic regions (BTA1, BTA3, BTA7, and BTA11) associated with the considered CMP. The identified genomic regions showed contrasting results between parities and among the different stages of each parity. It suggests that different sets of candidate genes underlie the phenotypic expression of the considered CMP between parities and lactation stages of each parity. The findings of this study can be used for future implementation and use of genomic evaluation to improve the cheese-making traits in DPBB cows.
Collapse
Affiliation(s)
- H Atashi
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; Department of Animal Science, Shiraz University, 71441-65186 Shiraz, Iran.
| | - C Bastin
- Walloon Breeders Association, 5590 Ciney, Belgium
| | - H Wilmot
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; National Fund for Scientific Research (FRS-FNRS), Rue d'Egmont 5, B-1000 Brussels, Belgium
| | - S Vanderick
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - X Hubin
- Walloon Breeders Association, 5590 Ciney, Belgium
| | - N Gengler
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| |
Collapse
|
18
|
Song X, Shi J, Liu J, Liu Y, Yu Y, Qiu Y, Cao Z, Pan Y, Yuan X, Chu Y, Wu D. Recombinant truncated latency-associated peptide alleviates liver fibrosis in vitro and in vivo via inhibition of TGF-β/Smad pathway. Mol Med 2022; 28:80. [PMID: 35842576 PMCID: PMC9288003 DOI: 10.1186/s10020-022-00508-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Background Liver fibrosis is a progressive liver injury response. Transforming growth factor β1 (TGF-β1) is oversecreted during liver fibrosis and promotes the development of liver fibrosis. Therapeutic approaches targeting TGF-β1 and its downstream pathways are essential to inhibit liver fibrosis. The N-terminal latency-associated peptide (LAP) blocks the binding of TGF-β1 to its receptor. Removal of LAP is critical for the activation of TGF-β1. Therefore, inhibition of TGF-β1 and its downstream pathways by LAP may be a potential approach to affect liver fibrosis. Methods Truncated LAP (tLAP) plasmids were constructed. Recombinant proteins were purified by Ni affinity chromatography. The effects of LAP and tLAP on liver fibrosis were investigated in TGF-β1-induced HSC-T6 cells, AML12 cells and CCl4-induced liver fibrosis mice by real time cellular analysis (RTCA), western blot, real-time quantitative PCR (RT-qPCR), immunofluorescence and pathological staining. Results LAP and tLAP could inhibit TGF-β1-induced AML12 cells inflammation, apoptosis and EMT, and could inhibit TGF-β1-induced HSC-T6 cells proliferation and fibrosis. LAP and tLAP could attenuate the pathological changes of liver fibrosis and inhibit the expression of fibrosis-related proteins and mRNAs in CCl4-induced liver fibrosis mice. Conclusion LAP and tLAP could alleviate liver fibrosis in vitro and in vivo via inhibition of TGF-β/Smad pathway. TLAP has higher expression level and more effective anti-fibrosis activity compared to LAP. This study may provide new ideas for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Xudong Song
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No. 3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China.,College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Jiayi Shi
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No. 3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China.,College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Jieting Liu
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No. 3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China.,College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Yong Liu
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No. 3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China.,Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Yang Yu
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No. 3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China.,College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Yufei Qiu
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No. 3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China.,College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Zhiqin Cao
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No. 3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China.,College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Yu Pan
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No. 3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China.,College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Xiaohuan Yuan
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No. 3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China.,College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Yanhui Chu
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No. 3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China. .,College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China.
| | - Dan Wu
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No. 3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China. .,College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China.
| |
Collapse
|
19
|
Tossetta G, Fantone S, Licini C, Marzioni D, Mattioli-Belmonte M. The multifaced role of HtrA1 in the development of joint and skeletal disorders. Bone 2022; 157:116350. [PMID: 35131488 DOI: 10.1016/j.bone.2022.116350] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 12/15/2022]
Abstract
HtrA1 (High temperature requirement A1) family proteins include four members, widely conserved from prokaryotes to eukaryotes, named HtrA1, HtrA2, HtrA3 and HtrA4. HtrA1 is a serine protease involved in a variety of biological functions regulating many signaling pathways degrading specific components and playing key roles in many human diseases such as neurodegenerative disorders, pregnancy complications and cancer. Due to its role in the breakdown of many ExtraCellular Matrix (ECM) components of articular cartilage such as fibronectin, decorin and aggrecan, HtrA1 encouraged many researches on studying its role in several skeletal diseases (SDs). These studies were further inspired by the fact that HtrA1 is able to regulate the signaling of one of the most important cytokines involved in SDs, the TGFβ-1. This review aims to summarize the data currently available on the role of HtrA1 in skeletal diseases such as Osteoporosis, Rheumatoid Arthritis, Osteoarthritis and Intervertebral Disc Degeneration (IDD). The use of HtrA1 as a marker of frailty in geriatric medicine would represent a powerful tool for identifying older individuals at risk of developing skeletal disorders, evaluating an appropriate intervention to improve quality care in these people avoiding or improving age-related SDs in the elderly population.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, Ancona, Italy.
| | - Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Caterina Licini
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Via Tronto 10/a, Ancona 60126, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Monica Mattioli-Belmonte
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Via Tronto 10/a, Ancona 60126, Italy
| |
Collapse
|
20
|
Liu S, Guo J, Cheng X, Li W, Lyu S, Chen X, Li Q, Wang H. Molecular Evolution of Transforming Growth Factor-β (TGF-β) Gene Family and the Functional Characterization of Lamprey TGF-β2. Front Immunol 2022; 13:836226. [PMID: 35309318 PMCID: PMC8931421 DOI: 10.3389/fimmu.2022.836226] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
The transforming growth factor-βs (TGF-βs) are multifunctional cytokines capable of regulating a wide range of cellular behaviors and play a key role in maintaining the homeostasis of the immune system. The TGF-β subfamily, which is only present in deuterostomes, expands from a single gene in invertebrates to multiple members in jawed vertebrates. However, the evolutionary processes of the TGF-β subfamily in vertebrates still lack sufficient elucidation. In this study, the TGF-β homologs are identified at the genome-wide level in the reissner lamprey (Lethenteron reissneri), the sea lamprey (Petromyzon marinus), and the Japanese lamprey (Lampetra japonica), which are the extant representatives of jawless vertebrates with a history of more than 350 million years. The molecular evolutionary analyses reveal that the lamprey TGF-β subfamily contains two members representing ancestors of TGF-β2 and 3 in vertebrates, respectively, but TGF-β1 is absent. The transcriptional expression patterns show that the lamprey TGF-β2 may play a central regulatory role in the innate immune response of the lamprey since it exhibits a more rapid and significant upregulation of expression than TGF-β3 during lipopolysaccharide stimuli. The incorporation of BrdU assay reveals that the lamprey TGF-β2 recombinant protein exerts the bipolar regulation on the proliferation of the supraneural myeloid body cells (SMB cells) in the quiescent and LPS-activated state, while plays an inhibitory role in the proliferation of quiescent and activated leukocytes in lampreys. Furthermore, caspase-3/7 activity analysis indicates that the lamprey TGF-β2 protects SMB cells from apoptosis after serum deprivation, in contrast to promoting apoptosis of leukocytes. Our composite results offer valuable clues to the origin and evolution of the TGF-β subfamily and imply that TGF-βs are among the most ancestral immune regulators in vertebrates.
Collapse
Affiliation(s)
- Siqi Liu
- College of Life Sciences, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Junfu Guo
- College of Life Sciences, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Xianda Cheng
- College of Life Sciences, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Wenna Li
- College of Life Sciences, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Shuangyu Lyu
- College of Life Sciences, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Xuanyi Chen
- College of Life Sciences, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
- *Correspondence: Hao Wang, ; Qingwei Li,
| | - Hao Wang
- College of Life Sciences, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
- *Correspondence: Hao Wang, ; Qingwei Li,
| |
Collapse
|
21
|
Arany PR. Photobiomodulation-Activated Latent Transforming Growth Factor-β1: A Critical Clinical Therapeutic Pathway and an Endogenous Optogenetic Tool for Discovery. Photobiomodul Photomed Laser Surg 2022; 40:136-147. [PMID: 34905400 DOI: 10.1089/photob.2021.0109] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Objective: The central role of the TGF-β pathway in embryonic development, immune responses, tissue healing, and malignancies is well established. Prior attempts with small molecules, peptides, and regulatory RNAs have failed mainly due to off-target effects in clinical studies. This review outlines the evidence for selectively activating the endogenous, latent transforming growth factor (TGF)-β1 with photobiomodulation (PBM) treatments. Background: Light treatments play a central role in current-directed energy therapeutics in medicine. Therapeutic use of low-dose light treatments has been noted since the 1960s. However, the breadth of treatments and inconsistencies with clinical outcomes have led to much skepticism. This can be primarily attributed to a lack of understanding of the fundamental light-tissue interactions and optimization of clinical treatment protocols. Methods: Recent advances in molecular mechanisms and improved biophotonic device technologies have led to a resurgence of interest in this field. Results: Over the past two decades, our work has focused on outlining a direct molecular mechanism involving PBM-generated redox-mediated activation of endogenous latent TGF-β1. Conclusions: Despite its critical roles in these processes, the complexity and cross talk in this potent growth factor signaling network have prevented the development of directed targeted therapeutics. PBM treatments offer a novel therapeutic and discovery tool in this aspect, especially with the growing evidence for its roles in cancer immunotherapy and stem cell biology.
Collapse
Affiliation(s)
- Praveen R Arany
- Department of Oral Biology, Surgery and Biomedical Engineering, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
22
|
Li Y, Fan W, Link F, Wang S, Dooley S. Transforming growth factor β latency: A mechanism of cytokine storage and signalling regulation in liver homeostasis and disease. JHEP REPORTS : INNOVATION IN HEPATOLOGY 2022; 4:100397. [PMID: 35059619 PMCID: PMC8760520 DOI: 10.1016/j.jhepr.2021.100397] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022]
Abstract
Transforming growth factor-β (TGF-β) is a potent effector in the liver, which is involved in a plethora of processes initiated upon liver injury. TGF-β affects parenchymal, non-parenchymal, and inflammatory cells in a highly context-dependent manner. Its bioavailability is critical for a fast response to various insults. In the liver – and probably in other organs – this is made possible by the deposition of a large portion of TGF-β in the extracellular matrix as an inactivated precursor form termed latent TGF-β (L-TGF-β). Several matrisomal proteins participate in matrix deposition, latent complex stabilisation, and activation of L-TGF-β. Extracellular matrix protein 1 (ECM1) was recently identified as a critical factor in maintaining the latency of deposited L-TGF-β in the healthy liver. Indeed, its depletion causes spontaneous TGF-β signalling activation with deleterious effects on liver architecture and function. This review article presents the current knowledge on intracellular L-TGF-β complex formation, secretion, matrix deposition, and activation and describes the proteins and processes involved. Further, we emphasise the therapeutic potential of toning down L-TGF-β activation in liver fibrosis and liver cancer.
Collapse
Affiliation(s)
- Yujia Li
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Weiguo Fan
- Division of Gastroenterology and Hepatology, Stanford University, Stanford CA, USA
| | - Frederik Link
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sai Wang
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; Tel.: 06213835595.
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Corresponding authors. Addresses: Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; Tel.: 06213833768;
| |
Collapse
|
23
|
Rifkin D, Sachan N, Singh K, Sauber E, Tellides G, Ramirez F. The role of LTBPs in TGF beta signaling. Dev Dyn 2022; 251:95-104. [PMID: 33742701 DOI: 10.1002/dvdy.331] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/25/2021] [Accepted: 03/13/2021] [Indexed: 01/20/2023] Open
Abstract
The purpose of this review is to discuss the transforming growth factor beta (TGFB) binding proteins (LTBP) with respect to their participation in the activity of TGFB. We first describe pertinent aspects of the biology and cell function of the LTBPs. We then summarize the physiological consequences of LTBP loss in humans and mice. Finally, we consider a number of outstanding questions relating to LTBP function.
Collapse
Affiliation(s)
- Daniel Rifkin
- Department of Cell Biology, NYU Grossman School of Medicine, New York, New York, USA
| | - Nalani Sachan
- Department of Cell Biology, NYU Grossman School of Medicine, New York, New York, USA
| | - Karan Singh
- Department of Cell Biology, NYU Grossman School of Medicine, New York, New York, USA
| | - Elyse Sauber
- Department of Cell Biology, NYU Grossman School of Medicine, New York, New York, USA
| | - George Tellides
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Francesco Ramirez
- Department of Pharmacological Sciences, Icahn School of Medicine at Mt Sinai, New York, New York, USA
| |
Collapse
|
24
|
Zhu G, Luo M, Chen Q, Zhang Y, Zhao K, Zhang Y, Shu C, Yang H, Zhou Z. Novel LTBP3 mutations associated with thoracic aortic aneurysms and dissections. Orphanet J Rare Dis 2021; 16:513. [PMID: 34906192 PMCID: PMC8670144 DOI: 10.1186/s13023-021-02143-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Thoracic aortic aneurysm and dissection (TAAD) is a hidden-onset but life-threatening disorder with high clinical variability and genetic heterogeneity. In recent years, an increasing number of genes have been identified to be related to TAAD. However, some genes remain uncertain because of limited case reports and/or functional studies. LTBP3 was such an ambiguous gene that was previously known for dental and skeletal dysplasia and then noted to be associated with TAAD. More research on individuals or families harboring variants in this gene would be helpful to obtain full knowledge of the disease and clarify its association with TAAD. METHODS A total of 266 TAAD probands with no causative mutations in known genes had been performed wholeexome sequencing (WES) to identify potentially pathogenic variants. In this study, rare LTBP3 variants were the focus of analysis. RESULTS Two compound heterozygous mutations, c.625dup (p.Leu209fs) and c.1965del (p.Arg656fs), in LTBP3 were identified in a TAAD patient along with short stature and dental problems, which was the first TAAD case with biallelic LTBP3 null mutations in an Asian population. Additionally, several rare heterozygous LTBP3 variants were also detected in other sporadic TAAD patients. CONCLUSION The identification of LTBP3 mutations in TAAD patients in our study provided more clinical evidence to support its association with TAAD, which broadens the gene spectrum of LTBP3. LTBP3 should be considered to be incorporated into the routine genetic analysis of heritable aortopathy, which might help to fully understand its phenotypic spectrum and improve the diagnostic rate of TAAD.
Collapse
Affiliation(s)
- Guoyan Zhu
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Mingyao Luo
- State Key Laboratory of Cardiovascular Disease, Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Qianlong Chen
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yinhui Zhang
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Kun Zhao
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yujing Zhang
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Chang Shu
- State Key Laboratory of Cardiovascular Disease, Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Hang Yang
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Zhou Zhou
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
25
|
Identification of Estrogen Signaling in a Prioritization Study of Intraocular Pressure-Associated Genes. Int J Mol Sci 2021; 22:ijms221910288. [PMID: 34638643 PMCID: PMC8508848 DOI: 10.3390/ijms221910288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
Elevated intraocular pressure (IOP) is the only modifiable risk factor for primary open-angle glaucoma (POAG). Herein we sought to prioritize a set of previously identified IOP-associated genes using novel and previously published datasets. We identified several genes for future study, including several involved in cytoskeletal/extracellular matrix reorganization, cell adhesion, angiogenesis, and TGF-β signaling. Our differential correlation analysis of IOP-associated genes identified 295 pairs of 201 genes with differential correlation. Pathway analysis identified β-estradiol as the top upstream regulator of these genes with ESR1 mediating 25 interactions. Several genes (i.e., EFEMP1, FOXC1, and SPTBN1) regulated by β-estradiol/ESR1 were highly expressed in non-glaucomatous human trabecular meshwork (TM) or Schlemm’s canal (SC) cells and specifically expressed in TM/SC cell clusters defined by single-cell RNA-sequencing. We confirmed ESR1 gene and protein expression in human TM cells and TM/SC tissue with quantitative real-time PCR and immunofluorescence, respectively. 17β-estradiol was identified in bovine, porcine, and human aqueous humor (AH) using ELISA. In conclusion, we have identified estrogen receptor signaling as a key modulator of several IOP-associated genes. The expression of ESR1 and these IOP-associated genes in TM/SC tissue and the presence of 17β-estradiol in AH supports a role for estrogen signaling in IOP regulation.
Collapse
|
26
|
Liu A, Chen X, Liu M, Zhang L, Ma X, Tian S. Differential Expression and Functional Analysis of CircRNA in the Ovaries of Low and High Fecundity Hanper Sheep. Animals (Basel) 2021; 11:ani11071863. [PMID: 34201517 PMCID: PMC8300399 DOI: 10.3390/ani11071863] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/30/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Litter size is an important trait affecting reproductive capacity and breeding economics in meat sheep. Consequently, revealing its molecular mechanism helps us understand multiple lambs from the genetic perspective. In this study, we provide a genome-wide expression profile of circular RNAs (circRNAs) expression in Hanper sheep, which is a new breed of meat sheep raised by cross and self-group breeding for 15 years. In this study, ovarian circular RNAs and miRNAs associated with high and low fertility Hanper sheep are identified during the follicular and luteal phases of the estrous cycle, and their potential biological functions are predicted through Gene Ontology (GO), KEGG, GSEA, STEM, WGCNA analysis. Abstract Litter size is a considerable quality that determines the production efficiency of mutton sheep. Therefore, revealing the molecular regulation of high and low fertility may aid the breeding process to develop new varieties of mutton sheep. CircRNAs are the important factors regulating follicular development, but their mechanism role in the regulation of litter size in Hanper sheep is not clear. In the present study, ovarian tissues from the follicular (F) or luteal phase (L) of Hanper sheep that were either consecutive monotocous (M) or polytocous were collected. Then, we performed transcriptome sequencing to screen for differentially expressed circRNAs (DE-circRNAs) and elucidate their function. In total, 4256 circRNA derived from 2184 host genes were identified in which 183 (146 were upregulated, while 37 were downregulated) were differentially expressed in monotocous sheep in the follicular phase versus polytocous sheep in the follicular phase (MF vs. PF). Moreover, 34 circRNAs (14 were upregulated, while 20 were downregulated) were differentially expressed in monotocous sheep in the luteal phase versus polytocous sheep in the luteal sheep (ML vs. PL). This was achieved through DE-circRNAs function enrichment annotation analysis by GESA, GO, and KEGG, which function through the EGF-EGFR-RAS-JNK, TGF-β and thyroid hormone signaling pathway to affect the litter size of Hanper sheep in MF vs. PF and ML vs. PL. STEM results showed that MAPK signaling pathways play a key role in MF vs. PF and ML vs. PL. Through WGCNA analysis, AKT3 was a core gene in MF vs. PF and ML vs. PL. Moreover, competitive endogenous RNA (ceRNA) network analysis revealed the target binding sites for miRNA such as oar-miR-27a, oar-miR-16b, oar-miR-200a/b/c, oar-miR-181a, oar-miR-10a/b, and oar-miR-432 in the identified DE-cirRNAs.
Collapse
Affiliation(s)
- Aiju Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (A.L.); (X.C.); (X.M.)
| | - Xiaoyong Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (A.L.); (X.C.); (X.M.)
| | - Menghe Liu
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Limeng Zhang
- Laboratory of Molecular Biology, Zhengzhou Normal University, Zhengzhou 450000, China;
| | - Xiaofei Ma
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (A.L.); (X.C.); (X.M.)
| | - Shujun Tian
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (A.L.); (X.C.); (X.M.)
- The Research Center of Cattle and Sheep Embryonic Technique of Hebei Province, Baoding 071000, China
- Correspondence: ; Tel.: +86-312-752-8449
| |
Collapse
|
27
|
Su CT, Urban Z. LTBP4 in Health and Disease. Genes (Basel) 2021; 12:genes12060795. [PMID: 34071145 PMCID: PMC8224675 DOI: 10.3390/genes12060795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 12/20/2022] Open
Abstract
Latent transforming growth factor β (TGFβ)-binding protein (LTBP) 4, a member of the LTBP family, shows structural homology with fibrillins. Both these protein types are characterized by calcium-binding epidermal growth factor-like repeats interspersed with 8-cysteine domains. Based on its domain composition and distribution, LTBP4 is thought to adopt an extended structure, facilitating the linear deposition of tropoelastin onto microfibrils. In humans, mutations in LTBP4 result in autosomal recessive cutis laxa type 1C, characterized by redundant skin, pulmonary emphysema, and valvular heart disease. LTBP4 is an essential regulator of TGFβ signaling and is related to development, immunity, injury repair, and diseases, playing a central role in regulating inflammation, fibrosis, and cancer progression. In this review, we focus on medical disorders or diseases that may be manipulated by LTBP4 in order to enhance the understanding of this protein.
Collapse
Affiliation(s)
- Chi-Ting Su
- Department of Internal Medicine, Renal Division, National Taiwan University Hospital Yunlin Branch, Douliu 640, Taiwan;
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Medicine, National Taiwan University Cancer Center Hospital, Taipei 106, Taiwan
| | - Zsolt Urban
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Correspondence: ; Tel.: +1-412-648-8269
| |
Collapse
|
28
|
Russell JJ, Grisanti LA, Brown SM, Bailey CA, Bender SB, Chandrasekar B. Reversion inducing cysteine rich protein with Kazal motifs and cardiovascular diseases: The RECKlessness of adverse remodeling. Cell Signal 2021; 83:109993. [PMID: 33781845 DOI: 10.1016/j.cellsig.2021.109993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/19/2022]
Abstract
The Reversion Inducing Cysteine Rich Protein With Kazal Motifs (RECK) is a glycosylphosphatidylinositol (GPI) anchored membrane-bound regulator of matrix metalloproteinases (MMPs). It is expressed throughout the body and plays a role in extracellular matrix (ECM) homeostasis and inflammation. In initial studies, RECK expression was found to be downregulated in various invasive cancers and associated with poor prognostic outcome. Restoring RECK, however, has been shown to reverse the metastatic phenotype. Downregulation of RECK expression is also reported in non-malignant diseases, such as periodontal disease, renal fibrosis, and myocardial fibrosis. As such, RECK induction has therapeutic potential in several chronic diseases. Mechanistically, RECK negatively regulates various matrixins involved in cell migration, proliferation, and adverse remodeling by targeting the expression and/or activation of multiple MMPs, A Disintegrin And Metalloproteinase Domain-Containing Proteins (ADAMs), and A Disintegrin And Metalloproteinase With Thrombospondin Motifs (ADAMTS). Outside of its role in remodeling, RECK has also been reported to exert anti-inflammatory effects. In cardiac diseases, for example, it has been shown to counteract several downstream effectors of Angiotensin II (Ang-II) that play a role in adverse cardiac and vascular remodeling, such as Interleukin-6 (IL-6)/IL-6 receptor (IL-6R)/glycoprotein 130 (IL-6 signal transducer) signaling and Epidermal Growth Factor Receptor (EGFR) transactivation. This review article focuses on the current understanding of the multifunctional effects of RECK and how its downregulation may contribute to adverse cardiovascular remodeling.
Collapse
Affiliation(s)
- Jacob J Russell
- Biomedical Sciences, University of Missouri, Columbia, MO, United States of America; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America.
| | - Laurel A Grisanti
- Biomedical Sciences, University of Missouri, Columbia, MO, United States of America.
| | - Scott M Brown
- Biomedical Sciences, University of Missouri, Columbia, MO, United States of America; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America.
| | - Chastidy A Bailey
- Biomedical Sciences, University of Missouri, Columbia, MO, United States of America; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America.
| | - Shawn B Bender
- Biomedical Sciences, University of Missouri, Columbia, MO, United States of America; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America; Dalton Cardiovascular Center, University of Missouri, Columbia, MO, United States of America.
| | - B Chandrasekar
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America; Medicine, University of Missouri School of Medicine, Columbia, MO, United States of America; Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States of America; Dalton Cardiovascular Center, University of Missouri, Columbia, MO, United States of America.
| |
Collapse
|
29
|
D Prabhu Y, Valsala Gopalakrishnan A. Can polyunsaturated fatty acids regulate Polycystic Ovary Syndrome via TGF-β signalling? Life Sci 2021; 276:119416. [PMID: 33774033 DOI: 10.1016/j.lfs.2021.119416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/10/2021] [Accepted: 03/20/2021] [Indexed: 11/26/2022]
Abstract
Polycystic Ovary Syndrome (PCOS) is a metabolic condition that affects women in their reproductive age by altering the ovarian hormone levels, leading to infertility. Increased inflammation, insulin resistance, hyperandrogenism, irregular menses, and infertility are the causes of morbidity when PCOS is the disease in question. PCOS is considered a multifactorial disease resulting from the disruption of multiple signalling pathways. Hence, the mono-targeted drugs are hardly adequate and conventional therapeutic strategies provide only palliative care. Studies show that the consumption of polyunsaturated fatty acids (PUFAs) regulates menstrual cycle, decrease testosterone and insulin levels, and improve metabolic health. This could favourably affect diabetes and infertility. In recent years, the fibrillin-3 gene has been linked to PCOS. Fibrillins along with the molecules in the extracellular matrix modulate the Transforming Growth Factor-β (TGF-β) signalling. So, mutations in the fibrillin-3 gene could cause TGF-β dysregulation, which might further contribute to PCOS pathogenesis. Therefore, the current study aimed to understand whether PUFAs could manage PCOS via the TGF-β pathway and function as a therapeutic agent for PCOS and its complications. To understand this, we have focused on the involvement of TGF-β in PCOS pathogenesis, discussed the effect of PUFA on hormones, insulin resistance, inflammation, obesity, adiponectin, and cardiovascular conditions. Using PUFAs to target TGF-β or its receptor molecules to modulate the TGF-β production might function as a treatment option for PCOS. PUFA therapy could be a good alternative, supportive medication for PCOS.
Collapse
Affiliation(s)
- Yogamaya D Prabhu
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
30
|
Gu YY, Liu XS, Huang XR, Yu XQ, Lan HY. Diverse Role of TGF-β in Kidney Disease. Front Cell Dev Biol 2020; 8:123. [PMID: 32258028 PMCID: PMC7093020 DOI: 10.3389/fcell.2020.00123] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/12/2020] [Indexed: 12/13/2022] Open
Abstract
Inflammation and fibrosis are two pathological features of chronic kidney disease (CKD). Transforming growth factor-β (TGF-β) has been long considered as a key mediator of renal fibrosis. In addition, TGF-β also acts as a potent anti-inflammatory cytokine that negatively regulates renal inflammation. Thus, blockade of TGF-β inhibits renal fibrosis while promoting inflammation, revealing a diverse role for TGF-β in CKD. It is now well documented that TGF-β1 activates its downstream signaling molecules such as Smad3 and Smad3-dependent non-coding RNAs to transcriptionally and differentially regulate renal inflammation and fibrosis, which is negatively regulated by Smad7. Therefore, treatments by rebalancing Smad3/Smad7 signaling or by specifically targeting Smad3-dependent non-coding RNAs that regulate renal fibrosis or inflammation could be a better therapeutic approach. In this review, the paradoxical functions and underlying mechanisms by which TGF-β1 regulates in renal inflammation and fibrosis are discussed and novel therapeutic strategies for kidney disease by targeting downstream TGF-β/Smad signaling and transcriptomes are highlighted.
Collapse
Affiliation(s)
- Yue-Yu Gu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xu-Sheng Liu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Xue-Qing Yu
- Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| |
Collapse
|
31
|
Accorsi A, Cramer ML, Girgenrath M. Fibrogenesis in LAMA2-Related Muscular Dystrophy Is a Central Tenet of Disease Etiology. Front Mol Neurosci 2020; 13:3. [PMID: 32116541 PMCID: PMC7010923 DOI: 10.3389/fnmol.2020.00003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
LAMA2-related congenital muscular dystrophy, also known as MDC1A, is caused by loss-of-function mutations in the alpha2 chain of Laminin-211. Loss of this protein interrupts the connection between the muscle cell and its extracellular environment and results in an aggressive, congenital-onset muscular dystrophy characterized by severe hypotonia, lack of independent ambulation, and early mortality driven by respiratory complications and/or failure to thrive. Of the pathomechanisms of MDC1A, the earliest and most prominent is widespread and rampant fibrosis. Here, we will discuss some of the key drivers of fibrosis including TGF-beta and renin–angiotensin system signaling and consequences of these pathways including myofibroblast transdifferentiation and matrix remodeling. We will also highlight some of the differences in fibrogenesis in congenital muscular dystrophy (CMD) with that seen in Duchenne muscular dystrophy (DMD). Finally, we will connect the key signaling pathways in the pathogenesis of MDC1A to the current status of the therapeutic approaches that have been tested in the preclinical models of MDC1A to treat fibrosis.
Collapse
Affiliation(s)
| | - Megan L Cramer
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA, United States
| | | |
Collapse
|
32
|
Wang X, Ali MS, Lacerda CMR. Osteogenesis inducers promote distinct biological responses in aortic and mitral valve interstitial cells. J Cell Biochem 2019; 120:11158-11171. [PMID: 30746757 DOI: 10.1002/jcb.28392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/27/2018] [Accepted: 01/09/2019] [Indexed: 01/24/2023]
Abstract
Both aortic and mitral valves calcify in pathological conditions; however, the prevalence of aortic valve calcification is high whereas mitral valve leaflet calcification is somewhat rare. Patterns of valvular calcification may differ due to valvular architecture, but little is known to that effect. In this study, we investigated the intrinsic osteogenic differentiation potential of aortic versus mitral valve interstitial cells provided minimal differentiation conditions. For the assessment of calcification at the cellular level, we used classic inducers of osteogenesis in stem cells: β-glycerophosphate (β-Gly), dexamethasone (Dex), and ascorbate (Asc). In addition to proteomic analyses, osteogenic markers and calcium precipitates were evaluated across treatments of aortic and mitral valve cells. The combination of β-Gly, Asc, and Dex induced aortic valve interstitial cells to synthesize extracellular matrix, overexpress osteoblastic markers, and deposit calcium. However, no strong evidence showed the calcification of mitral valve interstitial cells. Mitral cells mainly responded to Asc and Dex by cell activation. These findings provide a deeper understanding of the physiological properties of aortic and mitral valves and tendencies for calcific changes within each valve type, contributing to the development of future therapeutics for heart valve diseases.
Collapse
Affiliation(s)
- Xinmei Wang
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas
| | - Mir S Ali
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas
| | - Carla M R Lacerda
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas
| |
Collapse
|
33
|
Riazifar M, Mohammadi MR, Pone EJ, Yeri A, Lässer C, Segaliny AI, McIntyre LL, Shelke GV, Hutchins E, Hamamoto A, Calle EN, Crescitelli R, Liao W, Pham V, Yin Y, Jayaraman J, Lakey JRT, Walsh CM, Van Keuren-Jensen K, Lotvall J, Zhao W. Stem Cell-Derived Exosomes as Nanotherapeutics for Autoimmune and Neurodegenerative Disorders. ACS NANO 2019; 13:6670-6688. [PMID: 31117376 PMCID: PMC6880946 DOI: 10.1021/acsnano.9b01004] [Citation(s) in RCA: 402] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
To dissect therapeutic mechanisms of transplanted stem cells and develop exosome-based nanotherapeutics in treating autoimmune and neurodegenerative diseases, we assessed the effect of exosomes secreted from human mesenchymal stem cells (MSCs) in treating multiple sclerosis using an experimental autoimmune encephalomyelitis (EAE) mouse model. We found that intravenous administration of exosomes produced by MSCs stimulated by IFNγ (IFNγ-Exo) (i) reduced the mean clinical score of EAE mice compared to PBS control, (ii) reduced demyelination, (iii) decreased neuroinflammation, and (iv) upregulated the number of CD4+CD25+FOXP3+ regulatory T cells (Tregs) within the spinal cords of EAE mice. Co-culture of IFNγ-Exo with activated peripheral blood mononuclear cells (PBMCs) cells in vitro reduced PBMC proliferation and levels of pro-inflammatory Th1 and Th17 cytokines including IL-6, IL-12p70, IL-17AF, and IL-22 yet increased levels of immunosuppressive cytokine indoleamine 2,3-dioxygenase. IFNγ-Exo could also induce Tregs in vitro in a murine splenocyte culture, likely mediated by a third-party accessory cell type. Further, IFNγ-Exo characterization by deep RNA sequencing suggested that IFNγ-Exo contains anti-inflammatory RNAs, where their inactivation partially hindered the exosomes potential to induce Tregs. Furthermore, we found that IFNγ-Exo harbors multiple anti-inflammatory and neuroprotective proteins. These results not only shed light on stem cell therapeutic mechanisms but also provide evidence that MSC-derived exosomes can potentially serve as cell-free therapies in creating a tolerogenic immune response to treat autoimmune and central nervous system disorders.
Collapse
Affiliation(s)
- Milad Riazifar
- Department of Pharmaceutical Sciences, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, Edwards Life Sciences Center for Advanced Cardiovascular Technology, Department of Biomedical Engineering, and Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - M. Rezaa Mohammadi
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Egest J. Pone
- Department of Pharmaceutical Sciences, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, Edwards Life Sciences Center for Advanced Cardiovascular Technology, Department of Biomedical Engineering, and Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697, United States
- Department of Physiology and Biophysics, Vaccine Research and Development Center, University of California, Irvine, Irvine, California 92697, United States
| | - Ashish Yeri
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona 85004, United States
| | - Cecilia Lässer
- Krefting Research Center, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Aude I. Segaliny
- Department of Pharmaceutical Sciences, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, Edwards Life Sciences Center for Advanced Cardiovascular Technology, Department of Biomedical Engineering, and Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Laura L. McIntyre
- Department of Molecular Biology and Biochemistry, Sue and Bill Gross Stem Cell Center, Multiple Sclerosis Research Center, University of California, Irvine, Irvine, California 92697, United States
| | - Ganesh Vilas Shelke
- Krefting Research Center, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
- Department of Surgery, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg 41345, Sweden
| | - Elizabeth Hutchins
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona 85004, United States
| | - Ashley Hamamoto
- Department of Pharmaceutical Sciences, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, Edwards Life Sciences Center for Advanced Cardiovascular Technology, Department of Biomedical Engineering, and Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Erika N. Calle
- Department of Pharmaceutical Sciences, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, Edwards Life Sciences Center for Advanced Cardiovascular Technology, Department of Biomedical Engineering, and Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Rossella Crescitelli
- Krefting Research Center, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Wenbin Liao
- Department of Pharmaceutical Sciences, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, Edwards Life Sciences Center for Advanced Cardiovascular Technology, Department of Biomedical Engineering, and Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Victor Pham
- Department of Pharmaceutical Sciences, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, Edwards Life Sciences Center for Advanced Cardiovascular Technology, Department of Biomedical Engineering, and Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Yanan Yin
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jayapriya Jayaraman
- Department of Pharmaceutical Sciences, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, Edwards Life Sciences Center for Advanced Cardiovascular Technology, Department of Biomedical Engineering, and Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Jonathan R. T. Lakey
- Department of Surgery, University of California, Irvine, Orange, California 92868, United States
| | - Craig M. Walsh
- Department of Molecular Biology and Biochemistry, Sue and Bill Gross Stem Cell Center, Multiple Sclerosis Research Center, University of California, Irvine, Irvine, California 92697, United States
| | - Kendall Van Keuren-Jensen
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona 85004, United States
| | - Jan Lotvall
- Krefting Research Center, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Weian Zhao
- Department of Pharmaceutical Sciences, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, Edwards Life Sciences Center for Advanced Cardiovascular Technology, Department of Biomedical Engineering, and Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697, United States
- Corresponding Author:
| |
Collapse
|
34
|
Iung LHS, Petrini J, Ramírez-Díaz J, Salvian M, Rovadoscki GA, Pilonetto F, Dauria BD, Machado PF, Coutinho LL, Wiggans GR, Mourão GB. Genome-wide association study for milk production traits in a Brazilian Holstein population. J Dairy Sci 2019; 102:5305-5314. [PMID: 30904307 DOI: 10.3168/jds.2018-14811] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 10/19/2018] [Indexed: 12/19/2022]
Abstract
Advances in the molecular area of selection have expanded knowledge of the genetic architecture of complex traits through genome-wide association studies (GWAS). Several GWAS have been performed so far, but confirming these results is not always possible due to several factors, including environmental conditions. Thus, our objective was to identify genomic regions associated with traditional milk production traits, including milk yield, somatic cell score, fat, protein and lactose percentages, and fatty acid composition in a Holstein cattle population producing under tropical conditions. For this, 75,228 phenotypic records from 5,981 cows and genotypic data of 56,256 SNP from 1,067 cows were used in a weighted single-step GWAS. A total of 46 windows of 10 SNP explaining more than 1% of the genetic variance across 10 Bos taurus autosomes (BTA) harbored well-known and novel genes. The MGST1 (BTA5), ABCG2 (BTA6), DGAT1 (BTA14), and PAEP (BTA11) genes were confirmed within some of the regions identified in our study. Potential novel genes involved in tissue damage and repair of the mammary gland (COL18A1), immune response (LTTC19), glucose homeostasis (SLC37A1), synthesis of unsaturated fatty acids (LTBP1), and sugar transport (SLC37A1 and MFSD4A) were found for milk yield, somatic cell score, fat percentage, and fatty acid composition. Our findings may assist genomic selection by using these regions to design a customized SNP array to improve milk production traits on farms with similar environmental conditions.
Collapse
Affiliation(s)
- L H S Iung
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo 13418900, Brazil
| | - J Petrini
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo 13418900, Brazil
| | - J Ramírez-Díaz
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo 13418900, Brazil
| | - M Salvian
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo 13418900, Brazil
| | - G A Rovadoscki
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo 13418900, Brazil
| | - F Pilonetto
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo 13418900, Brazil
| | - B D Dauria
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo 13418900, Brazil
| | - P F Machado
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo 13418900, Brazil
| | - L L Coutinho
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo 13418900, Brazil
| | - G R Wiggans
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705-2350
| | - G B Mourão
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo 13418900, Brazil.
| |
Collapse
|
35
|
Low EL, Baker AH, Bradshaw AC. TGFβ, smooth muscle cells and coronary artery disease: a review. Cell Signal 2019; 53:90-101. [PMID: 30227237 PMCID: PMC6293316 DOI: 10.1016/j.cellsig.2018.09.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 12/15/2022]
Abstract
Excessive vascular smooth muscle cell (SMC) proliferation, migration and extracellular matrix (ECM) synthesis are key events in the development of intimal hyperplasia, a pathophysiological response to acute or chronic sources of vascular damage that can lead to occlusive narrowing of the vessel lumen. Atherosclerosis, the primary cause of coronary artery disease, is characterised by chronic vascular inflammation and dyslipidemia, while revascularisation surgeries such as coronary stenting and bypass grafting represent acute forms of vascular injury. Gene knockouts of transforming growth factor-beta (TGFβ), its receptors and downstream signalling proteins have demonstrated the importance of this pleiotropic cytokine during vasculogenesis and in the maintenance of vascular homeostasis. Dysregulated TGFβ signalling is a hallmark of many vascular diseases, and has been associated with the induction of pathological vascular cell phenotypes, fibrosis and ECM remodelling. Here we present an overview of TGFβ signalling in SMCs, highlighting the ways in which this multifaceted cytokine regulates SMC behaviour and phenotype in cardiovascular diseases driven by intimal hyperplasia.
Collapse
Affiliation(s)
- Emma L Low
- Institute for Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Andrew H Baker
- Queen's Medical Research Institute, University of Edinburgh, 47 Little Crescent, Edinburgh EH16 4TJ, UK
| | - Angela C Bradshaw
- Institute for Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK.
| |
Collapse
|
36
|
Wadhwan V, Venkatesh A, Reddy V, Malik S. The role of myofibroblasts in the progression of oral submucous fibrosis: A systematic review. J Oral Maxillofac Pathol 2019; 23:257-266. [PMID: 31516233 PMCID: PMC6714277 DOI: 10.4103/jomfp.jomfp_238_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Oral Submucous Fibrosis (OSMF) is a chronic progressive scarring oral disease predominantly affecting people of South Asian origin. It is characterized by juxtaepithelial inflammatory cell infiltration followed by fibrosis in the lamina propria and submucosa of the oral mucosa. The pathogenesis of the disease is not well established and a number of mechanisms have been proposed regarding the pathogenesis. A renewed interest has been shown in myofibrobasts which have been implicated to play a significant role in the pathogenesis of OSMF. The myofibroblast were initially identified by means of electron microscopy in granulation tissue of healing wounds as a modulated fibroblast exhibiting features of smooth muscle cells, with prominent bundles of microfilaments, dense bodies scattered in between, and gap junctions. The presence of myofibroblasts has successively been described in practically all fibrotic situations characterized by tissue retraction and remodeling. This review paper is an attempt to identify all the studies involving myofibroblasts and explaining the pathogenesis in a simplified manner.
Collapse
Affiliation(s)
- Vijay Wadhwan
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Subharti Dental College, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Arvind Venkatesh
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Smile Square Multispecialty Dental Centre, Karur, Tamil Nadu, India
| | - Vandana Reddy
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Subharti Dental College, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Sangeeta Malik
- Department of Oral Medicine and Radiology, Subharti Dental College, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| |
Collapse
|
37
|
Dynamic matrisome: ECM remodeling factors licensing cancer progression and metastasis. Biochim Biophys Acta Rev Cancer 2018; 1870:207-228. [DOI: 10.1016/j.bbcan.2018.09.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/07/2018] [Accepted: 09/30/2018] [Indexed: 01/04/2023]
|
38
|
Engineered systems to study the synergistic signaling between integrin-mediated mechanotransduction and growth factors (Review). Biointerphases 2018; 13:06D302. [DOI: 10.1116/1.5045231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
39
|
Yuzhalin AE, Gordon-Weeks AN, Tognoli ML, Jones K, Markelc B, Konietzny R, Fischer R, Muth A, O'Neill E, Thompson PR, Venables PJ, Kessler BM, Lim SY, Muschel RJ. Colorectal cancer liver metastatic growth depends on PAD4-driven citrullination of the extracellular matrix. Nat Commun 2018; 9:4783. [PMID: 30429478 PMCID: PMC6235861 DOI: 10.1038/s41467-018-07306-7] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 10/22/2018] [Indexed: 12/20/2022] Open
Abstract
Citrullination of proteins, a post-translational conversion of arginine residues to citrulline, is recognized in rheumatoid arthritis, but largely undocumented in cancer. Here we show that citrullination of the extracellular matrix by cancer cell derived peptidylarginine deiminase 4 (PAD4) is essential for the growth of liver metastases from colorectal cancer (CRC). Using proteomics, we demonstrate that liver metastases exhibit higher levels of citrullination and PAD4 than unaffected liver, primary CRC or adjacent colonic mucosa. Functional significance for citrullination in metastatic growth is evident in murine models where inhibition of citrullination substantially reduces liver metastatic burden. Additionally, citrullination of a key matrix component collagen type I promotes greater adhesion and decreased migration of CRC cells along with increased expression of characteristic epithelial markers, suggesting a role for citrullination in promoting mesenchymal-to-epithelial transition and liver metastasis. Overall, our study reveals the potential for PAD4-dependant citrullination to drive the progression of CRC liver metastasis.
Collapse
Affiliation(s)
- A E Yuzhalin
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.
| | - A N Gordon-Weeks
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - M L Tognoli
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - K Jones
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - B Markelc
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - R Konietzny
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FZ, UK
| | - R Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FZ, UK
| | - A Muth
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - E O'Neill
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - P R Thompson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - P J Venables
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7FY, UK
| | - B M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FZ, UK
| | - S Y Lim
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - R J Muschel
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| |
Collapse
|
40
|
Extracellular Interactions between Fibulins and Transforming Growth Factor (TGF)-β in Physiological and Pathological Conditions. Int J Mol Sci 2018; 19:ijms19092787. [PMID: 30227601 PMCID: PMC6163299 DOI: 10.3390/ijms19092787] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/25/2022] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional peptide growth factor that has a vital role in the regulation of cell growth, differentiation, inflammation, and repair in a variety of tissues, and its dysregulation mediates a number of pathological conditions including fibrotic disorders, chronic inflammation, cardiovascular diseases, and cancer progression. Regulation of TGF-β signaling is multifold, but one critical site of regulation is via interaction with certain extracellular matrix (ECM) microenvironments, as TGF-β is primarily secreted as a biologically inactive form sequestrated into ECM. Several ECM proteins are known to modulate TGF-β signaling via cell–matrix interactions, including thrombospondins, SPARC (Secreted Protein Acidic and Rich in Cystein), tenascins, osteopontin, periostin, and fibulins. Fibulin family members consist of eight ECM glycoproteins characterized by a tandem array of calcium-binding epidermal growth factor-like modules and a common C-terminal domain. Fibulins not only participate in structural integrity of basement membrane and elastic fibers, but also serve as mediators for cellular processes and tissue remodeling as they are highly upregulated during embryonic development and certain disease processes, especially at the sites of epithelial–mesenchymal transition (EMT). Emerging studies have indicated a close relationship between fibulins and TGF-β signaling, but each fibulin plays a different role in a context-dependent manner. In this review, regulatory interactions between fibulins and TGF-β signaling are discussed. Understanding biological roles of fibulins in TGF-β regulation may introduce new insights into the pathogenesis of some human diseases.
Collapse
|
41
|
Littwitz-Salomon E, Malyshkina A, Schimmer S, Dittmer U. The Cytotoxic Activity of Natural Killer Cells Is Suppressed by IL-10 + Regulatory T Cells During Acute Retroviral Infection. Front Immunol 2018; 9:1947. [PMID: 30210499 PMCID: PMC6119693 DOI: 10.3389/fimmu.2018.01947] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/07/2018] [Indexed: 12/26/2022] Open
Abstract
Natural killer (NK) cells play a key role in host defense against cancer and viral infections. It was shown that NK cells are important for the control of acute retroviral infections, but their antiviral activity depends on multiple parameters such as viral inoculation dose, interactions with myeloid cell types and the cytokine milieu. In addition, during an ongoing retroviral infection regulatory T cells (Tregs) can suppress NK cell functions. However, the precise role of Tregs on the initial NK cell response and their immediate antiviral activity after an acute retroviral infection is still unknown. Here we show that thymus-derived Tregs suppress the proliferation, effector functions and cytotoxicity of NK cells very early during acute Friend Retrovirus (FV) infection. Tregs exhibited an activated phenotype and increased the production of the immunosuppressive cytokines IL-10 and TGF-β after FV infection of mice. Neutralization of the immunosuppressive cytokine IL-10 resulted in a significant augmentation of NK cell functions. Although the activation of dendritic cells (DCs) and macrophages as well as the IL-15 cytokine levels were increased after Treg depletion, Tregs mainly affect the NK cell activity in an IL-10-regulated pathway. In this study we demonstrate an IL-10-dependent suppression of NK cells by activated Tregs during the first days of a retroviral infection.
Collapse
Affiliation(s)
| | - Anna Malyshkina
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Simone Schimmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
42
|
Cutting to the Chase: How Matrix Metalloproteinase-2 Activity Controls Breast-Cancer-to-Bone Metastasis. Cancers (Basel) 2018; 10:cancers10060185. [PMID: 29874869 PMCID: PMC6025260 DOI: 10.3390/cancers10060185] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 01/16/2023] Open
Abstract
Bone metastatic breast cancer is currently incurable and will be evident in more than 70% of patients that succumb to the disease. Understanding the factors that contribute to the progression and metastasis of breast cancer can reveal therapeutic opportunities. Matrix metalloproteinases (MMPs) are a family of proteolytic enzymes whose role in cancer has been widely documented. They are capable of contributing to every step of the metastatic cascade, but enthusiasm for the use of MMP inhibition as a therapeutic approach has been dampened by the disappointing results of clinical trials conducted more than 20 years ago. Since the trials, our knowledge of MMP biology has expanded greatly. Combined with advances in the selective targeting of individual MMPs and the specific delivery of therapeutics to the tumor microenvironment, we may be on the verge of finally realizing the promise of MMP inhibition as a treatment strategy. Here, as a case in point, we focus specifically on MMP-2 as an example to show how it can contribute to each stage of breast-cancer-to-bone metastasis and also discuss novel approaches for the selective targeting of MMP-2 in the setting of the bone-cancer microenvironment.
Collapse
|
43
|
Spreafico F, Bongarzone I, Pizzamiglio S, Magni R, Taverna E, De Bortoli M, Ciniselli CM, Barzanò E, Biassoni V, Luchini A, Liotta LA, Zhou W, Signore M, Verderio P, Massimino M. Proteomic analysis of cerebrospinal fluid from children with central nervous system tumors identifies candidate proteins relating to tumor metastatic spread. Oncotarget 2018; 8:46177-46190. [PMID: 28526811 PMCID: PMC5542258 DOI: 10.18632/oncotarget.17579] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 04/11/2017] [Indexed: 12/11/2022] Open
Abstract
Central nervous system (CNS) tumors are the most common solid tumors in childhood. Since the sensitivity of combined cerebrospinal fluid (CSF) cytology and radiological neuroimaging in detecting meningeal metastases remains relatively low, we sought to characterize the CSF proteome of patients with CSF tumors to identify biomarkers predictive of metastatic spread. CSF samples from 27 children with brain tumors and 13 controls (extra-CNS non-Hodgkin lymphoma) were processed using core-shell hydrogel nanoparticles, and analyzed with reverse-phase liquid chromatography/electrospray tandem mass spectrometry (LC-MS/MS). Candidate proteins were identified with Fisher's exact test and/or a univariate logistic regression model. Reverse phase protein array (RPPA), Western blot (WB), and ELISA were used in the training set and in an independent set of CFS samples (60 cases, 14 controls) to validate our discovery findings. Among the 558 non-redundant proteins identified by LC-MS/MS, 147 were missing from the CSF database at http://www.biosino.org. Fourteen of the 26 final top-candidate proteins were chosen for validation with WB, RPPA and ELISA methods. Six proteins (type 1 collagen, insulin-like growth factor binding protein 4, procollagen C-endopeptidase enhancer 1, glial cell-line derived neurotrophic factor receptor α2, inter-alpha-trypsin inhibitor heavy chain 4, neural proliferation and differentiation control protein-1) revealed the ability to discriminate metastatic cases from controls. Combining a unique dataset of CSFs from pediatric CNS tumors with a novel enabling nanotechnology led us to identify CSF proteins potentially related to metastatic status.
Collapse
Affiliation(s)
- Filippo Spreafico
- Pediatric Oncology Unit, Department of Hematology and Pediatric Hematology-Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Italia Bongarzone
- Proteomics Laboratory, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Pizzamiglio
- Unit of Medical Statistics, Biometry and Bioinformatics, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ruben Magni
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Elena Taverna
- Proteomics Laboratory, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maida De Bortoli
- Proteomics Laboratory, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara M Ciniselli
- Unit of Medical Statistics, Biometry and Bioinformatics, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elena Barzanò
- Pediatric Oncology Unit, Department of Hematology and Pediatric Hematology-Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Veronica Biassoni
- Pediatric Oncology Unit, Department of Hematology and Pediatric Hematology-Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Lance A Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Michele Signore
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Paolo Verderio
- Unit of Medical Statistics, Biometry and Bioinformatics, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maura Massimino
- Pediatric Oncology Unit, Department of Hematology and Pediatric Hematology-Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
44
|
Differential Expression and Clinical Significance of Transforming Growth Factor-Beta Isoforms in GBM Tumors. Int J Mol Sci 2018; 19:ijms19041113. [PMID: 29642484 PMCID: PMC5979513 DOI: 10.3390/ijms19041113] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/19/2018] [Accepted: 04/03/2018] [Indexed: 12/26/2022] Open
Abstract
Glioblastoma (GBM) represents the most common and aggressive malignant primary brain tumors in adults. Response to standard treatment is transitory and the survival of clinical trial cohorts are little more than 14 months. GBM are characterized by excessive proliferation, invasiveness, and radio-/chemoresistance features; which are strongly upregulated by transforming growth factor-beta (TGF-β). We hypothesized that TGF-β gene expression could correlate with overall survival (OS) and serve as a prognostic biomarker. TGF-β1 and -β2 expression were analyzed by qPCR in 159 GBM tumor specimens. Kaplan–Meier and multivariate analyses were used to correlate expression with OS and progression-free survival (PFS). In GBM, TGF-β1 and -β2 levels were 33- and 11-fold higher respectively than in non-tumoral samples. Kaplan–Meier and multivariate analyses revealed that high to moderate expressions of TGF-β1 significantly conferred a strikingly poorer OS and PFS in newly diagnosed patients. Interestingly, at relapse, neither isoforms had meaningful impact on clinical evolution. We demonstrate that TGF-β1 is the dominant isoform in newly diagnosed GBM rather than the previously acknowledged TGF-β2. We believe our study is the first to unveil a significant relationship between TGF-β1 expression and OS or PFS in newly diagnosed GBM. TGF-β1 could serve as a prognostic biomarker or target affecting treatment planning and patient follow-up.
Collapse
|
45
|
Han L, Tang MM, Xu X, Jiang B, Huang J, Feng X, Qiang J. LTBP2 is a prognostic marker in head and neck squamous cell carcinoma. Oncotarget 2018; 7:45052-45059. [PMID: 27281608 PMCID: PMC5216705 DOI: 10.18632/oncotarget.8855] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 04/02/2016] [Indexed: 12/15/2022] Open
Abstract
Latent transforming growth factor (TGF)-beta binding protein 2 (LTBP2) belongs to the fibrillin/LTBP extracellular matrix glycoprotein superfamily. It plays vital roles in tumorigenesis through regulating TGFβ activity, elastogenesis and maintenance of the extracellular matrix (ECM) structure. In this study, we determined the expression levels of LTBP2 mRNA and protein in head and neck squamous cell carcinoma (HNSCC) tissues and adjacent normal tissues by quantitative reverse transcription PCR (qRT-PCR) and tissue microarray immunohistochemistry analysis (TMA-IHC) respectively. LTBP2 protein levels in cancer tissues were correlated with HNSCC patients' clinical characteristics and overall survival. Both LTBP2 mRNA and protein levels were significantly higher in HNSCC tissues than in adjacent normal tissues. High LTBP2 protein level was associated with lymph node metastasis and higher pTNM stages. High LTBP2 protein level is an independent prognostic marker in HNSCC. Our data suggest that LTBP2 acts as an oncogene in HNSCC development and progression. Detection of LTBP2 expression could be a useful prognosis marker and targeting LTBP2 may represent a novel strategy for cancer treatment through regulating activities of TGFβ.
Collapse
Affiliation(s)
- Liang Han
- Department of Head and Neck Surgery, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Ming Ming Tang
- Department of Head and Neck Surgery, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Xinjiang Xu
- Department of Head and Neck Surgery, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Bin Jiang
- Department of Head and Neck Surgery, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Jianfei Huang
- Department of Clinical Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jianfeng Qiang
- Department of Graduate, Medical School of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
46
|
Schrenk S, Cenzi C, Bertalot T, Conconi MT, Di Liddo R. Structural and functional failure of fibrillin‑1 in human diseases (Review). Int J Mol Med 2017; 41:1213-1223. [PMID: 29286095 DOI: 10.3892/ijmm.2017.3343] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/29/2017] [Indexed: 11/06/2022] Open
Abstract
Fibrillins (FBNs) are key relay molecules that form the backbone of microfibrils in elastic and non‑elastic tissues. Interacting with other components of the extracellular matrix (ECM), these ubiquitous glycoproteins exert pivotal roles in tissue development, homeostasis and repair. In addition to mechanical support, FBN networks also exhibit regulatory activities on growth factor signalling, ECM formation, cell behaviour and the immune response. Consequently, mutations affecting the structure, assembly and stability of FBN microfibrils have been associated with impaired biomechanical tissue properties, altered cell‑matrix interactions, uncontrolled growth factor or cytokine activation, and the development of fibrillinopathies and associated severe complications in multiple organs. Beyond a panoramic overview of structural cues of the FBN network, the present review will also describe the pathological implications of FBN disorders in the development of inflammatory and fibrotic conditions.
Collapse
Affiliation(s)
- Sandra Schrenk
- Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, I‑35131 Padova, Italy
| | - Carola Cenzi
- Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, I‑35131 Padova, Italy
| | - Thomas Bertalot
- Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, I‑35131 Padova, Italy
| | - Maria Teresa Conconi
- Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, I‑35131 Padova, Italy
| | - Rosa Di Liddo
- Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, I‑35131 Padova, Italy
| |
Collapse
|
47
|
LTBPs in biology and medicine: LTBP diseases. Matrix Biol 2017; 71-72:90-99. [PMID: 29217273 DOI: 10.1016/j.matbio.2017.11.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 12/21/2022]
Abstract
The latent transforming growth factor (TGF) β binding proteins (LTBP) are crucial mediators of TGFβ function, as they control growth factor secretion, matrix deposition, presentation and activation. Deficiencies in specific LTBP isoforms yield discrete phenotypes representing defects in bone, lung and cardiovascular development mediated by loss of TGFβ signaling. Additional phenotypes represent loss of unique TGFβ-independent features of LTBP effects on elastogenesis and microfibril assembly. Thus, the LTBPs act as sensors for the regulation of both growth factor activity and matrix function.
Collapse
|
48
|
Rocchiccioli S, Cecchettini A, Panesi P, Farneti PA, Mariani M, Ucciferri N, Citti L, Andreassi MG, Foffa I. Hypothesis-free secretome analysis of thoracic aortic aneurysm reinforces the central role of TGF-β cascade in patients with bicuspid aortic valve. J Cardiol 2017; 69:570-576. [DOI: 10.1016/j.jjcc.2016.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 05/11/2016] [Accepted: 05/16/2016] [Indexed: 12/13/2022]
|
49
|
Delaney K, Kasprzycka P, Ciemerych MA, Zimowska M. The role of TGF-β1 during skeletal muscle regeneration. Cell Biol Int 2017; 41:706-715. [PMID: 28035727 DOI: 10.1002/cbin.10725] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/26/2016] [Indexed: 02/06/2023]
Abstract
The injury of adult skeletal muscle initiates series of well-coordinated events that lead to the efficient repair of the damaged tissue. Any disturbances during muscle myolysis or reconstruction may result in the unsuccessful regeneration, characterised by strong inflammatory response and formation of connective tissue, that is, fibrosis. The switch between proper regeneration of skeletal muscle and development of fibrosis is controlled by various factors. Amongst them are those belonging to the transforming growth factor β family. One of the TGF-β family members is TGF-β1, a multifunctional cytokine involved in the regulation of muscle repair via satellite cells activation, connective tissue formation, as well as regulation of the immune response intensity. Here, we present the role of TGF-β1 in myogenic differentiation and muscle repair. The understanding of the mechanisms controlling these processes can contribute to the better understanding of skeletal muscle atrophy and diseases which consequence is fibrosis disrupting muscle function.
Collapse
Affiliation(s)
- Kamila Delaney
- Faculty of Biology, Department of Cytology, Institute of Zoology, University of Warsaw, 1 Miecznikowa St., 02-096 Warsaw, Poland
| | - Paulina Kasprzycka
- Faculty of Biology, Department of Cytology, Institute of Zoology, University of Warsaw, 1 Miecznikowa St., 02-096 Warsaw, Poland
| | - Maria Anna Ciemerych
- Faculty of Biology, Department of Cytology, Institute of Zoology, University of Warsaw, 1 Miecznikowa St., 02-096 Warsaw, Poland
| | - Malgorzata Zimowska
- Faculty of Biology, Department of Cytology, Institute of Zoology, University of Warsaw, 1 Miecznikowa St., 02-096 Warsaw, Poland
| |
Collapse
|
50
|
Prime S, Pring M, Davies M, Paterson I. TGF-β Signal Transduction in Oro-facial Health and Non-malignant Disease (Part I). ACTA ACUST UNITED AC 2016; 15:324-36. [DOI: 10.1177/154411130401500602] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The transforming growth factor-beta (TGF-β) family of cytokines consists of multi-functional polypeptides that regulate a variety of cell processes, including proliferation, differentiation, apoptosis, extracellular matrix elaboration, angiogenesis, and immune suppression, among others. In so doing, TGF-β plays a key role in the control of cell behavior in both health and disease. In this report, we review what is known about the mechanisms of activation of the peptide, together with details of TGF-β signal transduction pathways. This review summarizes the evidence implicating TGF-β in normal physiological processes of the craniofacial complex—such as palatogenesis, tooth formation, wound healing, and scarring—and then evaluates its role in non-malignant disease processes such as scleroderma, submucous fibrosis, periodontal disease, and lichen planus.
Collapse
Affiliation(s)
- S.S. Prime
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - M. Pring
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - M. Davies
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - I.C. Paterson
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| |
Collapse
|