1
|
Javid N, Abdoli S, Shahbazi M. Rational strategies for designing next-generation oncolytic viruses based on transcriptome analysis of tumor cells infected with oncolytic herpes simplex virus-1. Front Oncol 2025; 14:1469511. [PMID: 39850819 PMCID: PMC11754274 DOI: 10.3389/fonc.2024.1469511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/09/2024] [Indexed: 01/25/2025] Open
Abstract
Introduction Oncolytic herpes simplex viruses (oHSVs) are a type of biotherapeutic utilized in cancer therapy due to their ability to selectively infect and destroy tumor cells without harming healthy cells. We sought to investigate the functional genomic response and altered metabolic pathways of human cancer cells to oHSV-1 infection and to elucidate the influence of these responses on the relationship between the virus and the cancer cells. Methods Two datasets containing gene expression profiles of tumor cells infected with oHSV-1 (G207) and non-infected cells from the Gene Expression Omnibus (GEO) database were processed and normalized using the R software. Common differentially expressed genes between datasets were selected to identify hub genes and were further analyzed. Subsequently, the expression of hub genes was verified by real-time polymerase chain reaction (qRT-PCR) in MDA-MB-231 (a breast cancer cell line) infected with oHSV-1 and non-infected cells. Results The results of our data analysis indicated notable disparities in the genes associated with the proteasome pathway between infected and non-infected cells. Our ontology analysis revealed that the proteasome-mediated ubiquitin-dependent protein catabolic process was a significant biological process, with a p-value of 5.8E-21. Additionally, extracellular exosomes and protein binding were identified as significant cellular components and molecular functions, respectively. Common hub genes with degree and maximum neighborhood component (MNC) methods, including PSMD2, PSMD4, PSMA2, PSMD14, PSMD11, PSMC3, PSMC2, PSMD8, and PSMA4, were also identified. Analysis of gene expression by qRT-PCR and differential gene expression revealed that GADD45g genes can be effective genes in the proliferation of oncolytic HSV-1 virus. Conclusion The transcriptome changes in tumor cells infected by oHSV-1 may be utilized to predict oncolytic efficacy and provide rational strategies for designing next-generation oncolytic viruses.
Collapse
Affiliation(s)
- Naeme Javid
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Shahriyar Abdoli
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Majid Shahbazi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- AryaTina Gene (ATG) Biopharmaceutical Company Gorgan, Gorgan, Iran
| |
Collapse
|
2
|
Ahmadi SS, Bagherzadeh O, Sargazi M, Kalantar F, Najafi MAE, Vahedi MM, Afshari AR, Sahebkar A. Harnessing the therapeutic potential of phytochemicals in neuroblastoma. Biofactors 2025; 51:e2115. [PMID: 39189819 DOI: 10.1002/biof.2115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024]
Abstract
Neuroblastomas are the most common solid tumors outside of the brain that originate from immature neural crest cells, accounting for about 10% of all pediatric malignancies. The treatment for neuroblastomas involves a multimodal schedule, including surgery, radiation, chemotherapy, and immunotherapy. All these modalities are limited by side effects that might be severe, poor prognosis, and a high risk of recurrence. In the quest for additional therapeutic approaches, phytochemicals have attracted attention owing to their reported antitumor properties, safety, and multimechanistic mode of action. Several studies have used plant-derived bioactive compounds such as phenolics and flavonoids, suggesting modulation of biomolecules and signal transduction pathways involved in neuroblastoma. We reviewed the findings of recent preclinical and clinical studies demonstrating the effects of phytochemicals on neuroblastoma, shedding light on their molecular mechanism of action and potential therapeutic applications.
Collapse
Affiliation(s)
- Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Bagherzadeh
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Sargazi
- Department of Ophthalmology, Alzahra Eye Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Farnaz Kalantar
- Departman of Pharmacology, Faculty of Pharmacy and Pharmaceutical sciences, Islamic Azad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Amin Elahi Najafi
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Mohammad Mahdi Vahedi
- Department of Pharmacology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Amir R Afshari
- Department of Basic Sciences, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Alshehri MA, Seyed MA, Panneerselvam C, Sayed SM, Shukry M. Mechanistic insights into Retama raetam's anti-proliferative and pro-apoptotic effects in A549 lung cancer cells: targeting PI3K/Akt pathway and ROS production. Toxicol Res (Camb) 2024; 13:tfae137. [PMID: 39233844 PMCID: PMC11368664 DOI: 10.1093/toxres/tfae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
Lung cancer, particularly non-small cell lung cancer (NSCLC), is a leading cause of cancer-related deaths worldwide. This study investigates the molecular mechanisms behind the anti-cancer effects of the tropical desert plant Retama raetam (R. raetam) on the A549 NSCLC cell line. The research examined R. raetam's anti-proliferative effects, cytotoxicity, apoptosis, reactive oxygen species (ROS) generation, mitochondrial membrane potential, and cell morphology in NSCLC A549 and L-132 cells. In addition, the influence of R. raetam on DNA fragmentation, apoptotic signaling, and PI3K/Akt pathways for its anti-cancer mechanism was examined. Our results indicated that R. raetam's effects were dose- and time-dependent to exhibit anti-proliferative effects on A549 cells. R. raetam treatment promoted apoptotic cell death cycle arrest, increased apoptotic cells, depolarized the mitochondrial membrane, and induced morphological alterations in cells and nuclei. It also inhibited A549 cell migration (P < 0.05), colonization, and invasiveness. Moreover, the study demonstrated that R. raetam treatment resulted in the upregulation of Bax expression, downregulation of Bcl-2 expression, and apoptotic fragmented DNA in A549 cells. The top five bioactive compounds derived from R. raetam exhibited molecular interactions that inhibit PIK3CA and AKT1. This inhibition leads to an increased frequency of apoptosis and subsequent death of cancer cells. Additionally, R. raetam extract induced an increase in ROS formation and cytochrome c levels, indicating that its toxic effects on A549 cells involve both ROS-dependent cytotoxicity through the disruption of mitochondrial transmembrane potential ΔΨm and ROS-independent cell cycle arrest through downregulation BCL-2, PARP, E-Cadherin, PI3K, and Akt expressions pathways.
Collapse
Affiliation(s)
- Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohamed Ali Seyed
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Chellasamy Panneerselvam
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Samy M Sayed
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
4
|
He Q, He Y, Li C, Wang J, Xia T, Xiong X, Xu J, Liu L. Downregulated BIRC5 inhibits proliferation and metastasis of melanoma through the β-catenin/HIF-1α/VEGF/MMPs pathway. J Cancer Res Clin Oncol 2023; 149:16797-16809. [PMID: 37728702 DOI: 10.1007/s00432-023-05425-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE Melanoma is a malignant skin tumor caused by melanocytes and associated with high mortality rates. This study aims to investigate the specific mechanism of ZWZ-3 in melanoma proliferation and metastasis. METHODS RNA sequencing was performed to identify the effect of ZWZ-3 on gene expression. siRNA was used to inhibit BIRC5 gene expression in the B16F10 cell line. A zebrafish tumor model was used to assess the therapeutic effect of ZWZ-3 in vivo. Mechanistic insights into the inhibition of tumor metastasis by ZWZ-3 were obtained through analysis of tumor tissue sections in mice. RESULTS Our findings demonstrated that ZWZ-3 suppressed melanoma cell proliferation and migration. We performed RNA sequencing in melanoma cells after the treatment with ZWZ-3 and found that Birc5, which is closely associated with tumor metastasis, was significantly down-regulated. Bioinformatics analysis and the immuno-histochemical results of tissue chips for melanoma further confirmed the high expression of BIRC5 in melanoma and its effect on disease progression. Moreover, Birc5 knock-down significantly inhibited melanoma cell proliferation and metastasis, which was correlated with the β-catenin/HIF-1α/VEGF/MMPs pathway. Additionally, ZWZ-3 significantly inhibited tumor growth in the zebrafish tumor model without any evident side effects. Histological and immuno-histochemical analyses revealed that ZWZ-3 inhibited tumor cell metastasis by down-regulating HIF-1α, VEGF, and MMP9. CONCLUSION Our findings revealed that ZWZ-3 could downregulate BIRC5 and inhibit melanoma proliferation and metastasis through the β-catenin/HIF-1α/VEGF/MMPs pathway. Therefore, BIRC5 represents a promising therapeutic target for the treatment of melanoma.
Collapse
Affiliation(s)
- Qingqing He
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yijing He
- Department of Science and Technology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Changqiang Li
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jianv Wang
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Tong Xia
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jixiang Xu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Li Liu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
5
|
Chen W, Ni D, Zhang H, Li X, Jiang Y, Wu J, Gu Y, Gao M, Shi W, Song J, Shi W. Over-expression of USP15/MMP3 predict poor prognosis and promote growth, migration in non-small cell lung cancer cells. Cancer Genet 2023; 272-273:9-15. [PMID: 36640492 DOI: 10.1016/j.cancergen.2023.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/09/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Aberrant ubiquitin modifications caused by an imbalance in the activities of ubiquitinases and de-ubiquitinases are emerging as important mechanisms underlying non-small cell lung cancer (NSCLC) progression. The deubiquitinating enzyme ubiquitin-specific peptidase 15 (USP15) has been identified as an important factor in oncogenesis and a potential therapeutic target. However, the expression profile and function of USP15 in NSCLC remain elusive. In the present study, we investigated the expression pattern and the potential biological functions of USP15 in NSCLC both in cells and animal models. Our data revealed that USP15 was highly expressed in NSCLC tissues and cells compared with normal counterpart. We subsequently knocked down USP15 expression in two NSCLC cell lines, which significantly suppressed cell proliferation. In addition, knocking down USP15 expression reduced NSCLC cell migration and invasion according to the results from Matrigel-Transwell analysis. NSCLC animal model results showed that USP15 knockdown also reduced NSCLC size. Biochemical analysis revealed that USP15 knockdown inhibited matrix metalloproteinase (MMP)3 and MMP9 expression. Furthermore, high levels of USP15 and MMP3 expression were associated with poor prognosis in NSCLC. In conclusion, the results from the present study suggest that the high expression of USP15 promotes NSCLC tumorigenesis. Therefore, it is proposed that USP15 and MMPs may represent novel biomarkers for NSCLC progression and prognosis.
Collapse
Affiliation(s)
- Weiwei Chen
- Medical School of Nantong University, Nantong, 226007, China; Department of Oncology, Affiliated Hospital of Nantong University, Nantong, 226001, China; Department of Radiotherapy, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng 224002, China.
| | - Daguang Ni
- Department of Radiotherapy, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng 224002, China.
| | - Hailin Zhang
- Department of Pneumology, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng 224002, China.
| | - Xia Li
- Department of General Medicine, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng 224002, China.
| | - Youqin Jiang
- Department of Radiotherapy, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng 224002, China.
| | - Jixiang Wu
- Department of Cardiothoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng 224002, China.
| | - Yan Gu
- Department of Cardiothoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng 224002, China.
| | - Mingcheng Gao
- Department of Cardiothoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng 224002, China.
| | - Woda Shi
- Department of Cardiothoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng 224002, China.
| | - Jianxiang Song
- Department of Cardiothoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng 224002, China.
| | - Wenyu Shi
- Medical School of Nantong University, Nantong, 226007, China; Department of Oncology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
6
|
Khan H, Pandey SN, Mishra A, Srivastava R. Suppression of TLR signaling by IRAK-1 and -4 dual inhibitor decreases TPF-resistance-induced pro-oncogenic effects in HNSCC. 3 Biotech 2023; 13:14. [PMID: 36540413 PMCID: PMC9759608 DOI: 10.1007/s13205-022-03420-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Combination of docetaxel, cisplatin and 5-FU, known as TPF, is an FDA-approved treatment for head and neck squamous cell carcinoma (HNSCC). Acquired chemo-resistance to TPF, a primary reason for non-responsiveness to the treatment and relapse of tumor is a major concern for treatment failure, especially in elder patients. In this study, we investigated the role of Interleukin-1 receptor-associated kinases (IRAK) mediated Toll-like receptor (TLR)-signaling in chemo-resistance using a cell line-based in-vitro TPF-resistant HNSCC model of laryngeal origin. TPF chemo-resistant state showed over-expression and phosphorylation of the active downstream kinases IRAK-1 and IRAK-4 along with enhanced proliferative potential, survival, stemness and metastatic capability as compared to the parent cell line. Pharmacological inhibition of IRAK-1 and -4 had a cytostatic effect on chemo-resistant cells and re-sensitized them to chemotherapy. The treatment also decreased the pro-oncogenic effects of the chemo-resistant cells. Our study provides insights into the pro-oncogenic role of amplified IRAK-1 and-4 mediated TLR signaling in TPF-resistant HNSCC. Pharmacological inhibition of IRAK-1 and-4 signaling is a promising therapeutic strategy for TPF-resistant HNSCC. It can also be used as a combination therapy or a chemo-drug sparing regimen in HNSCC.
Collapse
Affiliation(s)
- Humayara Khan
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390020 India
| | | | - Abhishek Mishra
- King George Medical University, Lucknow, Uttar Pradesh 226003 India
| | - Ratika Srivastava
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390020 India
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Rae Bareli Road, Lucknow, Uttar Pradesh 226025 India
| |
Collapse
|
7
|
Oh HM, Cho CK, Son CG. Experimental Evidence for the Anti-Metastatic Action of Ginsenoside Rg3: A Systematic Review. Int J Mol Sci 2022; 23:9077. [PMID: 36012338 PMCID: PMC9409359 DOI: 10.3390/ijms23169077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022] Open
Abstract
Cancer metastasis is the leading cause of death in cancer patients. Due to the limitations of conventional cancer treatment, such as chemotherapy, there is a need for novel therapeutics to prevent metastasis. Ginsenoside Rg3, a major active component of Panax ginseng C.A. Meyer, inhibits tumor growth and has the potential to prevent tumor metastasis. Herein, we systematically reviewed the anti-metastatic effects of Rg3 from experimental studies. We searched for articles in three research databases, MEDLINE (PubMed), EMBASE, and the Cochrane Central Register of Controlled Trials (CENTRAL) through March 2022. In total, 14 studies (eight animal and six in vitro) provide data on the anti-metastatic effects of Rg3 and the relevant mechanisms. The major anti-metastatic mechanisms of Rg3 involve cancer stemness, epithelial mesenchymal transition (EMT) behavior, and angiogenesis. Taken together, Rg3 would be one of the herbal resources in anti-metastatic drug developments through further well-designed investigations and clinical studies. Our review provides valuable reference data for Rg3-derived studies targeting tumor metastasis.
Collapse
Affiliation(s)
- Hyeon-Muk Oh
- College of Korean Medicine, Daejeon University, Daejeon 35235, Korea
| | - Chong-Kwan Cho
- College of Korean Medicine, Daejeon University, Daejeon 35235, Korea
- East-West Cancer Center, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon 35235, Korea
| | - Chang-Gue Son
- College of Korean Medicine, Daejeon University, Daejeon 35235, Korea
- Liver and Immunology Research Center, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon 35235, Korea
| |
Collapse
|
8
|
Ming J, Bhatti MZ, Ali A, Zhang Z, Wang N, Mohyuddin A, Chen J, Zhang Y, Rahman FU. Vitamin B6 based Pt(II) complexes: Biomolecule derived potential cytotoxic agents for thyroid cancer. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6649654. [PMID: 35876659 DOI: 10.1093/mtomcs/mfac053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 07/20/2022] [Indexed: 11/14/2022]
Abstract
Vitamin B6 is an essential vitamin that serves as a co-enzyme in a number of enzymatic reactions in metabolism of lipids, amino acids and glucose. In the current study, we synthesized vitamin B6 derived ligand (L) and its complex Pt(L)Cl (C1). The ancillary chloride ligand of C1 was exchanged with pyridine co-ligand and another complex Pt(L)(py).BF4 (C2) was obtained. Both these complexes were obtained in excellent isolated yields and characterized thoroughly by different analytical methods. Thyroid cancer is one of the most common malignancies of the endocrine system, we studied the in vitro anticancer activity and mechanism of these vitamin B6 derived L and Pt(II) complexes in thyroid cancer cell line (FTC). Based on MTT assay, cell proliferation rate was reduced in a dose-dependent manner. According to apoptosis analysis, vitamin B6 based Pt(II) complexes treated cells depicted necrotic effect and TUNEL based apoptosis was observed in cancer cells. Furthermore, qRT-PCR analyses of cancer cells treated with C1 and/or C2 showed regulated expression of anti-apoptotic, pro-apoptosis and autophagy related genes. Western blot results demonstrated that C1 and C2 induced the activation of p53 and the cleavage of Poly (ADP-ribose) polymerase (PARP). These results suggest that these complexes inhibit the growth of FTC cells and induce apoptosis through p53 signaling. Thus, vitamin B6 derived Pt(II) complexes C1 and C2 may be potential cytotoxic agents for the treatment of thyroid cancer.
Collapse
Affiliation(s)
- Jialin Ming
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot People's Republic of China, Inner Mongolia 010031, China
| | - Muhammad Zeeshan Bhatti
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Amjad Ali
- Institute of Integrative Biosciences, CECOS University of IT and Emerging Sciences, Peshawar, KPK 25000, Pakistan
| | - Zeqing Zhang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot People's Republic of China, Inner Mongolia 010031, China
| | - Na Wang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot People's Republic of China, Inner Mongolia 010031, China
| | - Aisha Mohyuddin
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Jiwu Chen
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yongmin Zhang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot People's Republic of China, Inner Mongolia 010031, China
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France
| | - Faiz-Ur Rahman
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot People's Republic of China, Inner Mongolia 010031, China
| |
Collapse
|
9
|
Human γδ T Cell Subsets and Their Clinical Applications for Cancer Immunotherapy. Cancers (Basel) 2022; 14:cancers14123005. [PMID: 35740670 PMCID: PMC9221220 DOI: 10.3390/cancers14123005] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Research into the immunotherapeutic potential of T cells has predominantly focused on conventional alpha beta (αβ) T cells, which recognize peptide antigens presented by polymorphic major histocompatibility complex (MHC) class I and class II molecules. However, innate-like T cells, such as gamma delta (γδ) T cells, also play important roles in antitumor immunity. Here, we review the current understanding of γδ T cells in antitumor immunity and discuss strategies that could potentially maximize their potential in cancer immunotherapy. Abstract Gamma delta (γδ) T cells are a minor population of T cells that share adaptive and innate immune properties. In contrast to MHC-restricted alpha beta (αβ) T cells, γδ T cells are activated in an MHC-independent manner, making them ideal candidates for developing allogeneic, off-the-shelf cell-based immunotherapies. As the field of cancer immunotherapy progresses rapidly, different subsets of γδ T cells have been explored. In addition, γδ T cells can be engineered using different gene editing technologies that augment their tumor recognition abilities and antitumor functions. In this review, we outline the unique features of different subsets of human γδ T cells and their antitumor properties. We also summarize the past and the ongoing pre-clinical studies and clinical trials utilizing γδ T cell-based cancer immunotherapy.
Collapse
|
10
|
C-Type Natriuretic Peptide (CNP) Induces Cell Death and Sensitizes the Effect of Cisplatin in Human Non-small Cell Lung Cancer Cells (A549). Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10420-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Saeedi Sadr A, Ehteram H, Seyed Hosseini E, Alizadeh Zarei M, Hassani Bafrani H, Haddad Kashani H. The Effect of Irisin on Proliferation, Apoptosis, and Expression of Metastasis Markers in Prostate Cancer Cell Lines. Oncol Ther 2022; 10:377-388. [PMID: 35467303 DOI: 10.1007/s40487-022-00194-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/08/2022] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION Irisin is a newly discovered myokine released from skeletal muscle during exercise. The matrix metalloproteinases (MMPs) are a family of proteolytic enzymes that play a key role in the metastatic process via degrading extracellular matrix. The aim of this study was to investigate the effect of irisin on expression of metastatic markers MMP2 and MMP9 and induced apoptosis in human prostate cancer cells. METHODS In this study, we examined the effect of different concentrations of irisin on induced apoptosis and cell viability of two cell lines, LNCaP and DU-145, by using flow cytometry and MTT assay, respectively. The expression of MMP2 and MMP9 genes was also analyzed by real-time PCR after irisin treatment. Data were analyzed using the comparative cycle threshold 2-∆∆Ct method. RESULTS Cell viability was reduced in both LNCaP and DU-145 cell lines at different concentrations of irisin. However, this decreased cell viability was strongly significant (p < 0.05) only at 5 and 10 nM concentrations of irisin in the LNCaP cell line. Furthermore, irisin could induce apoptosis in both cell lines at a concentration of 10 nM compared to 5 nM. Real-time PCR results also demonstrated a decreased expression in MMP2 and MMP9 genes in a concentration-dependent manner in both cell lines. CONCLUSION These results showed the anticancer effects of irisin on cell viability of both LNCaP and DU-145 cell lines and also on the expression of MMP2 and MMP9 genes occurred in a dose- and time-dependent manner.
Collapse
Affiliation(s)
- Atiye Saeedi Sadr
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hassan Ehteram
- Department of Pathology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Elahe Seyed Hosseini
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Marziyeh Alizadeh Zarei
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hassan Hassani Bafrani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Haddad Kashani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
12
|
Chivu-Economescu M, Necula LG, Matei L, Dragu D, Bleotu C, Sorop A, Herlea V, Dima S, Popescu I, Diaconu CC. Collagen Family and Other Matrix Remodeling Proteins Identified by Bioinformatics Analysis as Hub Genes Involved in Gastric Cancer Progression and Prognosis. Int J Mol Sci 2022; 23:3214. [PMID: 35328635 PMCID: PMC8950589 DOI: 10.3390/ijms23063214] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer has remained in the top five cancers for over ten years, both in terms of incidence and mortality due to the shortage of biomarkers for disease follow-up and effective therapies. Aiming to fill this gap, we performed a bioinformatics assessment on our data and two additional GEO microarray profiles, followed by a deep analysis of the 40 differentially expressed genes identified. PPI network analysis and MCODE plug-in pointed out nine upregulated hub genes coding for proteins from the collagen family (COL12A1, COL5A2, and COL10A1) or involved in the assembly (BGN) or degradation of collagens (CTHRC1), and also associated with cell adhesion (THBS2 and SPP1) and extracellular matrix degradation (FAP, SULF1). Those genes were highly upregulated at the mRNA and protein level, the increase being correlated with pathological T stages. The high expression of BGN (p = 8 × 10-12), THBS2 (p = 1.2 × 10-6), CTHRC1 (p = 1.1 × 10-4), SULF1 (p = 3.8 × 10-4), COL5A1 (p = 1.3 × 10-4), COL10A1 (p = 5.7 × 10-4), COL12A1 (p = 2 × 10-3) correlated with poor overall survival and an immune infiltrate based especially on immunosuppressive M2 macrophages (p-value range 4.82 × 10-7-1.63 × 10-13). Our results emphasize that these genes could be candidate biomarkers for GC progression and prognosis and new therapeutic targets.
Collapse
Affiliation(s)
- Mihaela Chivu-Economescu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania; (L.G.N.); (L.M.); (D.D.); (C.B.); (C.C.D.)
| | - Laura G. Necula
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania; (L.G.N.); (L.M.); (D.D.); (C.B.); (C.C.D.)
- Faculty of Medicine, Titu Maiorescu University, 040441 Bucharest, Romania; (V.H.); (I.P.)
| | - Lilia Matei
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania; (L.G.N.); (L.M.); (D.D.); (C.B.); (C.C.D.)
| | - Denisa Dragu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania; (L.G.N.); (L.M.); (D.D.); (C.B.); (C.C.D.)
| | - Coralia Bleotu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania; (L.G.N.); (L.M.); (D.D.); (C.B.); (C.C.D.)
| | - Andrei Sorop
- Center of Excellence for Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania; (A.S.); (S.D.)
| | - Vlad Herlea
- Faculty of Medicine, Titu Maiorescu University, 040441 Bucharest, Romania; (V.H.); (I.P.)
- Department of Pathology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Simona Dima
- Center of Excellence for Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania; (A.S.); (S.D.)
- Center of General Surgery and Liver Transplantation, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Irinel Popescu
- Faculty of Medicine, Titu Maiorescu University, 040441 Bucharest, Romania; (V.H.); (I.P.)
- Center of General Surgery and Liver Transplantation, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Carmen C. Diaconu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania; (L.G.N.); (L.M.); (D.D.); (C.B.); (C.C.D.)
| |
Collapse
|
13
|
Bernegger S, Jarzab M, Wessler S, Posselt G. Proteolytic Landscapes in Gastric Pathology and Cancerogenesis. Int J Mol Sci 2022; 23:2419. [PMID: 35269560 PMCID: PMC8910283 DOI: 10.3390/ijms23052419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Gastric cancer is a leading cause of cancer-related death, and a large proportion of cases are inseparably linked to infections with the bacterial pathogen and type I carcinogen Helicobacter pylori. The development of gastric cancer follows a cascade of transformative tissue events in an inflammatory environment. Proteases of host origin as well as H. pylori-derived proteases contribute to disease progression at every stage, from chronic gastritis to gastric cancer. In the present article, we discuss the importance of (metallo-)proteases in colonization, epithelial inflammation, and barrier disruption in tissue transformation, deregulation of cell proliferation and cell death, as well as tumor metastasis and neoangiogenesis. Proteases of the matrix metalloproteinase (MMP) and a disintegrin and metalloproteinase domain-containing protein (ADAM) families, caspases, calpain, and the H. pylori proteases HtrA, Hp1012, and Hp0169 cleave substrates including extracellular matrix molecules, chemokines, and cytokines, as well as their cognate receptors, and thus shape the pathogenic microenvironment. This review aims to summarize the current understanding of how proteases contribute to disease progression in the gastric compartment.
Collapse
Affiliation(s)
- Sabine Bernegger
- Division of Microbiology, Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria; (S.B.); (M.J.); (S.W.)
| | - Miroslaw Jarzab
- Division of Microbiology, Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria; (S.B.); (M.J.); (S.W.)
| | - Silja Wessler
- Division of Microbiology, Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria; (S.B.); (M.J.); (S.W.)
- Cancer Cluster Salzburg and Allergy Cancer BioNano Research Centre, University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria
| | - Gernot Posselt
- Division of Microbiology, Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria; (S.B.); (M.J.); (S.W.)
| |
Collapse
|
14
|
Jeong HS, Lee DH, Kim SH, Lee CH, Shin HM, Kim HR, Cho CH. Hyperglycemia-induced oxidative stress promotes tumor metastasis by upregulating vWF expression in endothelial cells through the transcription factor GATA1. Oncogene 2022; 41:1634-1646. [DOI: 10.1038/s41388-022-02207-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 01/16/2023]
|
15
|
Djediai S, Gonzalez Suarez N, El Cheikh-Hussein L, Rodriguez Torres S, Gresseau L, Dhayne S, Joly-Lopez Z, Annabi B. MT1-MMP Cooperates with TGF-β Receptor-Mediated Signaling to Trigger SNAIL and Induce Epithelial-to-Mesenchymal-like Transition in U87 Glioblastoma Cells. Int J Mol Sci 2021; 22:13006. [PMID: 34884812 PMCID: PMC8657819 DOI: 10.3390/ijms222313006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 12/27/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) recapitulates metastasis and can be induced in vitro through transforming growth factor (TGF)-β signaling. A role for MMP activity in glioblastoma multiforme has been ascribed to EMT, but the molecular crosstalk between TGF-β signaling and membrane type 1 MMP (MT1-MMP) remains poorly understood. Here, the expression of common EMT biomarkers, induced through TGF-β and the MT1-MMP inducer concanavalin A (ConA), was explored using RNA-seq analysis and differential gene arrays in human U87 glioblastoma cells. TGF-β triggered SNAIL and fibronectin expressions in 2D-adherent and 3D-spheroid U87 glioblastoma cell models. Those inductions were antagonized by the TGF-β receptor kinase inhibitor galunisertib, the JAK/STAT inhibitors AG490 and tofacitinib, and by the diet-derived epigallocatechin gallate (EGCG). Transient gene silencing of MT1-MMP prevented the induction of SNAIL by ConA and abrogated TGF-β-induced cell chemotaxis. Moreover, ConA induced STAT3 and Src phosphorylation, suggesting these pathways to be involved in the MT1-MMP-mediated signaling axis that led to SNAIL induction. Our findings highlight a new signaling axis linking MT1-MMP to TGF-β-mediated EMT-like induction in glioblastoma cells, the process of which can be prevented by the diet-derived EGCG.
Collapse
Affiliation(s)
- Souad Djediai
- Laboratoire d’Oncologie Moléculaire, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montreal, QC H3C 3P8, Canada; (S.D.); (N.G.S.); (L.E.C.-H.); (S.R.T.); (L.G.)
- Département de Chimie, and CERMO-FC, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada; (S.D.); (Z.J.-L.)
| | - Narjara Gonzalez Suarez
- Laboratoire d’Oncologie Moléculaire, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montreal, QC H3C 3P8, Canada; (S.D.); (N.G.S.); (L.E.C.-H.); (S.R.T.); (L.G.)
- Département de Chimie, and CERMO-FC, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada; (S.D.); (Z.J.-L.)
| | - Layal El Cheikh-Hussein
- Laboratoire d’Oncologie Moléculaire, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montreal, QC H3C 3P8, Canada; (S.D.); (N.G.S.); (L.E.C.-H.); (S.R.T.); (L.G.)
- Département de Chimie, and CERMO-FC, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada; (S.D.); (Z.J.-L.)
| | - Sahily Rodriguez Torres
- Laboratoire d’Oncologie Moléculaire, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montreal, QC H3C 3P8, Canada; (S.D.); (N.G.S.); (L.E.C.-H.); (S.R.T.); (L.G.)
- Département de Chimie, and CERMO-FC, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada; (S.D.); (Z.J.-L.)
| | - Loraine Gresseau
- Laboratoire d’Oncologie Moléculaire, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montreal, QC H3C 3P8, Canada; (S.D.); (N.G.S.); (L.E.C.-H.); (S.R.T.); (L.G.)
- Département de Chimie, and CERMO-FC, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada; (S.D.); (Z.J.-L.)
| | - Sheraz Dhayne
- Département de Chimie, and CERMO-FC, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada; (S.D.); (Z.J.-L.)
| | - Zoé Joly-Lopez
- Département de Chimie, and CERMO-FC, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada; (S.D.); (Z.J.-L.)
| | - Borhane Annabi
- Laboratoire d’Oncologie Moléculaire, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montreal, QC H3C 3P8, Canada; (S.D.); (N.G.S.); (L.E.C.-H.); (S.R.T.); (L.G.)
- Département de Chimie, and CERMO-FC, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada; (S.D.); (Z.J.-L.)
| |
Collapse
|
16
|
Enhanced Expression but Decreased Specific Activity of Matrix Metalloproteinase 10 (MMP-10) in Comparison with Matrix Metalloproteinase 3 (MMP-3) in Human Urinary Bladder Carcinoma. J Clin Med 2021; 10:jcm10163683. [PMID: 34441979 PMCID: PMC8397099 DOI: 10.3390/jcm10163683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 12/30/2022] Open
Abstract
Human urinary bladder cancer is a huge worldwide oncological problem causing many deaths every year. The degradation of extracellular matrix (ECM) induced by molecules such as matrix metalloproteinases (MMPs) is one of the main factors influencing the process of metastasis origination. The MMP expression is tied to tumor aggressiveness, stage, and patient prognosis. The cleavage of constituent proteins is initiated and prolonged by matrix metalloproteinases, such as MMP-3 and MMP-10. The aim of this study was to evaluate the expression and activity of both MMPs in human urinary bladder cancer occurring at various stages of the disease. Tissue samples from patients with urinary bladder cancer were analyzed. Samples were collected from patients with a low- and high-grade cancer. Control tissue was collected from the site opposite to the tumor. DNA content, MMPs content, and activity of MMP-3 and MMP-10 were measured using ELISA and Western blot techniques. MMP-3 and MMP-10 occur in high molecular complexes in human urinary bladder in healthy and cancerous tissues. Particularly, in high-grade tumors, the content of MMP-10 prevails over MMP-3. The actual and specific activities vary in both grades of urinary bladder cancer; however, the highest activity for MMP-3 and MMP-10 was found in low-grade tissues. In conclusion, MMP-10 had a higher content, but a lower activity in all investigated tissues compared to MMP-3. Generally, obtained results demonstrated a contrary participation of MMP-3 and MMP-10 in ECM remodeling what may be crucial in the pathogenesis of human urinary bladder carcinoma.
Collapse
|
17
|
Miki K, Imaizumi N, Nogita K, Oe M, Mu H, Huo W, Ohe K. Aluminum naphthalocyanine conjugate as an MMP-2-activatable photoacoustic probe for in vivo tumor imaging. Methods Enzymol 2021; 657:89-109. [PMID: 34353500 DOI: 10.1016/bs.mie.2021.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Matrix metalloproteinase-2 (MMP-2), which is one of MMPs family, is known as an extracellular gelatinase controlling cancer cell adhesion, growth, and metastasis. Because of the great interest in MMP-2 activity, the detailed protocols for evaluating MMP-2-responsive contrast agents, especially photoacoustic probes for in vivo use, are helpful for researchers in the field. We here describe the detailed synthetic procedure of MMP-2-activatable photoacoustic probe AlNc-pep-PEG consisting of aluminum naphthalocyanine, MMP-2-responsive peptide sequence, and poly(ethylene glycol), which has recently been developed in our research group. The detailed measurement protocol of photoacoustic signal intensity in vitro and in vivo by using in-house built photoacoustic signal measurement system and photoacoustic imaging apparatus are also summarized.
Collapse
Affiliation(s)
- Koji Miki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
| | - Naoto Imaizumi
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kohei Nogita
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Masahiro Oe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Huiying Mu
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Wenting Huo
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kouichi Ohe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
| |
Collapse
|
18
|
Control of Tumor Progression by Angiocrine Factors. Cancers (Basel) 2021; 13:cancers13112610. [PMID: 34073394 PMCID: PMC8198241 DOI: 10.3390/cancers13112610] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 12/24/2022] Open
Abstract
Tumor progression, therapy resistance and metastasis are profoundly controlled by the tumor microenvironment. The contribution of endothelial cells to tumor progression was initially only attributed to the formation of new blood vessels (angiogenesis). Research in the last decade has revealed however that endothelial cells control their microenvironment through the expression of membrane-bound and secreted factors. Such angiocrine functions are frequently hijacked by cancer cells, which deregulate the signaling pathways controlling the expression of angiocrine factors. Here, we review the crosstalk between cancer cells and endothelial cells and how this contributes to the cancer stem cell phenotype, epithelial to mesenchymal transition, immunosuppression, remodeling of the extracellular matrix and intravasation of cancer cells into the bloodstream. We also address the long-distance crosstalk of a primary tumor with endothelial cells at the pre-metastatic niche and how this contributes to metastasis.
Collapse
|
19
|
Huo Q, He X, Li Z, Yang F, He S, Shao L, Hu Y, Chen S, Xie N. SCUBE3 serves as an independent poor prognostic factor in breast cancer. Cancer Cell Int 2021; 21:268. [PMID: 34006286 PMCID: PMC8130162 DOI: 10.1186/s12935-021-01947-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Accumulating evidences indicate that the signal peptide-CUB-EGF-like domain-containing protein 3 (SCUBE3) plays a key role in the development and progression of many human cancers. However, the underlying mechanism and prognosis value of SCUBE3 in breast cancer are still unclear. METHODS The clinical data of 137 patients with breast cancer who underwent surgical resection in Taizhou Hospital of Zhejiang Province were retrospectively analyzed. We first conducted a comprehensive study on the expression pattern of SCUBE3 using the Tumor Immune Estimation Resource (TIMER) and UALCAN databases. In addition, the expression of SCUBE3 in breast tumor tissues was confirmed by immunohistochemistry. The protein-protein interaction analysis and functional enrichment analysis of SCUBE3 were analyzed using the STRING and Enrichr databases. Moreover, tissue microarray (TMA) was used to analyze the relationship between SCUBE3 expression levels and clinical-pathological parameters, such as histological type, grade, the status of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor (HER2). We further supplemented and identified the above results using the UALCAN and bc-GenExMiner v4.4 databases from TCGA data. The correlation between the expression of SCUBE3 and survival was calculated by multivariate Cox regression analysis to investigate whether SCUBE3 expression may be an independent prognostic factor of breast cancer. RESULTS We found that the expression level of SCUBE3 was significantly upregulated in breast cancer tissue compared with adjacent normal tissues. The results showed that the distribution of breast cancer patients in the high expression group and the low expression group was significantly different in ER, PR, HER2, E-cadherin, and survival state (p < 0.05), but there was no significant difference in histologic grade, histologic type, tumor size, lymph node metastasis, TMN stage, subtypes, or recurrence (p > 0.05). In addition, the high expression of SCUBE3 was associated with relatively poor prognosis of ER- (p = 0.012), PR- (p = 0.029), HER2 + (p = 0.007). The multivariate Cox regression analysis showed that the hazard ratio (HR) was 2.80 (95% CI 1.20-6.51, p = 0.0168) in individuals with high SCUBE3 expression, and HR was increased by 1.86 (95% CI 1.06-3.25, p = 0.0300) for per 1-point increase of SCUBE3 expression. CONCLUSIONS These findings demonstrate that the high expression of SCUBE3 indicates poor prognosis in breast cancer. SCUBE3 expression may serve as a potential diagnostic indicator of breast cancer.
Collapse
Affiliation(s)
- Qin Huo
- Biobank, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Xi He
- Biobank, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.,The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Zhenwei Li
- Biobank, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Fan Yang
- Biobank, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Shengnan He
- Biobank, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Ling Shao
- Biobank, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Ye Hu
- Biobank, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Siqi Chen
- Biobank, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Ni Xie
- Biobank, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
| |
Collapse
|
20
|
Nurmamat M, Yan H, Wang R, Zhao H, Li Y, Wang X, Nurmaimaiti K, Kurmanjiang T, Luo D, Baodi J, Xu G, Li J. Novel Copper(II) Complex with a 4-Acylpyrazolone Derivative and Coligand Induce Apoptosis in Liver Cancer Cells. ACS Med Chem Lett 2021; 12:467-476. [PMID: 33738074 DOI: 10.1021/acsmedchemlett.0c00680] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
A novel pyrazolone-based copper complex [CuL(phen)(CH3OH)][CuL(phen)]·CH3CH2OH·CH3OH (P-FAH-Cu-phen) was synthesized and characterized. The asymmetric structural unit of P-FAH-Cu-phen was composed of two independent complex units [CuL(phen)(CH3OH)] and [CuL(phen)]:Cu12+ center with six coordination mode and Cu22+ center with five coordination mode. The growth of BEL-7404 cells and H22 cells was significantly inhibited by P-FAH-Cu-phen with IC50 values of 1.175 μg/mL and 1.097 μg/mL, respectively, which were much lower than IC50 of cisplatin for BEL-7404 cells (23.32 μg/mL) and H22 cells (27.5 μg/mL). P-FAH-Cu-phen induced cell cycle arrest at G2/M and apoptosis in BEL-7404 cells through mitochondria- and endoplasmic reticulum stress-associated pathways. Moreover, P-FAH-Cu-phen significantly suppressed the migration of BEL-7404 cells and the tumor growth in H22 tumor mouse model without severe side effects and improved the survival of tumor mice. The results suggested that P-FAH-Cu-phen might be a potential drug candidate for the treatment of live cancer.
Collapse
Affiliation(s)
- Marhaba Nurmamat
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China
| | - Haili Yan
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China
| | - Ru Wang
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China
| | - Huixin Zhao
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China
| | - Yanhong Li
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China
| | - Xiaojing Wang
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China
| | | | | | - Difang Luo
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China
| | - Jumagul Baodi
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China
| | - Guancheng Xu
- Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi 830046, China
| | - Jinyu Li
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China
| |
Collapse
|
21
|
Kim EA, Lee JH, Heo SJ, Jeon YJ. Saringosterol acetate isolated from Hizikia fusiforme, an edible brown alga, suppressed hepatocellular carcinoma growth and metastasis in a zebrafish xenograft model. Chem Biol Interact 2021; 335:109362. [PMID: 33358999 DOI: 10.1016/j.cbi.2020.109362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/09/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022]
Abstract
Saringosterol acetate (SSA) was isolated from an edible brown alga Hizikia fusiforme. In this study, we developed an adult zebrafish human hepatocellular carcinoma (HCC) xenograft model to confirm that SSA inhibits tumor growth and metastasis. Established Hep3B cells labeled with the fluorescent tracker CM-Dil were xenografted into the abdominal cavity of zebrafish once every three days for one month. Compared with the control group, the fish injected with Hep3B showed a significant increase in α-fetoprotein (AFP) and factors related to tumor growth and metastasis (IL-6, TNF-α, TGFβ, MMP2, and MMP9). Using the model, it was proven that SSA affected survival rate, AFP production, and the levels of factors related to tumor growth and metastasis via the PI3K/AKT/mTOR and TGFβ/Smad pathways. In conclusion, this HCC model can be used for in vivo experiments to investigate the inhibition of cancer, and SSA may be useful for the treatment of cancer.
Collapse
Affiliation(s)
- Eun-A Kim
- Jeju Marine Research Center, Korea Institute of Ocean Science & Technology (KIOST), Jeju, 63349, Republic of Korea
| | - Ji-Hyeok Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21936, Republic of Korea
| | - Soo-Jin Heo
- Jeju Marine Research Center, Korea Institute of Ocean Science & Technology (KIOST), Jeju, 63349, Republic of Korea; Jeju Department of Marine Biology, Korea University of Science and Technology, Deajeon, 34113, Republic of Korea.
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
22
|
Therapeutic Potential of Natural Products in Treatment of Cervical Cancer: A Review. Nutrients 2021; 13:nu13010154. [PMID: 33466408 PMCID: PMC7824868 DOI: 10.3390/nu13010154] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/03/2021] [Accepted: 01/03/2021] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer is the fourth most common cancer among women worldwide. Though several natural products have been reported regarding their efficacies against cervical cancer, there has been no review article that categorized them according to their anti-cancer mechanisms. In this study, anti-cancerous natural products against cervical cancer were collected using Pubmed (including Medline) and google scholar, published within three years. Their mechanisms were categorized as induction of apoptosis, inhibition of angiogenesis, inhibition of metastasis, reduction of resistance, and regulation of miRNAs. A total of 64 natural products suppressed cervical cancer. Among them, Penicillium sclerotiorum extracts from Cassia fistula L., ethanol extracts from Bauhinia variegate candida, thymoquinone obtained from Nigella sativa, lipid-soluble extracts of Pinellia pedatisecta Schott., and 1'S-1'-acetoxychavicol extracted from Alpinia conchigera have been shown to have multi-effects against cervical cancer. In conclusion, natural products could be attractive candidates for novel anti-cancer drugs.
Collapse
|
23
|
Yang C, Wang Y, Hardy P. Emerging roles of microRNAs and their implications in uveal melanoma. Cell Mol Life Sci 2021; 78:545-559. [PMID: 32783068 PMCID: PMC11072399 DOI: 10.1007/s00018-020-03612-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/14/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022]
Abstract
Uveal melanoma (UM) is the most common intraocular malignant tumor in adults with an extremely high mortality rate. Genetic and epigenetic dysregulation contribute to the development of UM. Recent discoveries have revealed dysregulation of the expression levels of microRNAs (miRNAs) as one of the epigenetic mechanisms underlying UM tumorigenesis. Based on their roles, miRNAs are characterized as either oncogenic or tumor suppressive. This review focuses on the roles of miRNAs in UM tumorigenesis, diagnosis, and prognosis, as well as their therapeutic potentials. Particularly, the actions of collective miRNAs are summarized with respect to their involvement in major, aberrant signaling pathways that are implicated in the development and progression of UM. Elucidation of the underlying functional mechanisms and biological aspects of miRNA dysregulation in UM is invaluable in the development of miRNA-based therapeutics, which may be used in combination with conventional treatments to improve therapeutic outcomes. In addition, the expression levels of some miRNAs are correlated with UM initiation and progression and, therefore, may be used as biomarkers for diagnosis and prognosis.
Collapse
Affiliation(s)
- Chun Yang
- Departments of Pediatrics, Pharmacology, and Physiology, University of Montréal, Montréal, Québec, H3T 1C5, Canada
| | - Yuejiao Wang
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Pierre Hardy
- Departments of Pediatrics, Pharmacology, and Physiology, University of Montréal, Montréal, Québec, H3T 1C5, Canada.
- Research Center of CHU Sainte-Justine, 3175 Côte-Sainte-Catherine, Room 2.17.004, Montréal, Québec, H3T 1C5, Canada.
| |
Collapse
|
24
|
George CN, Canuas-Landero V, Theodoulou E, Muthana M, Wilson C, Ottewell P. Oestrogen and zoledronic acid driven changes to the bone and immune environments: Potential mechanisms underlying the differential anti-tumour effects of zoledronic acid in pre- and post-menopausal conditions. J Bone Oncol 2020; 25:100317. [PMID: 32995253 PMCID: PMC7516134 DOI: 10.1016/j.jbo.2020.100317] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
Late stage breast cancer commonly metastasises to bone and patient survival averages 2-3 years following diagnosis of bone involvement. One of the most successful treatments for bone metastases is the bisphosphonate, zoledronic acid (ZOL). ZOL has been used in the advanced setting for many years where it has been shown to reduce skeletal complications associated with bone metastasis. More recently, several large adjuvant clinical trials have demonstrated that administration of ZOL can prevent recurrence and improve survival when given in early breast cancer. However, these promising effects were only observed in post-menopausal women with confirmed low concentrations of circulating ovarian hormones. In this review we focus on potential interactions between the ovarian hormone, oestrogen, and ZOL to establish credible hypotheses that could explain why anti-tumour effects are specific to post-menopausal women. Specifically, we discuss the molecular and immune cell driven mechanisms by which ZOL and oestrogen affect the tumour microenvironment to inhibit/induce tumour growth and how oestrogen can interact with zoledronic acid to inhibit its anti-tumour actions.
Collapse
Affiliation(s)
- Christopher N. George
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, United Kingdom
| | - Victor Canuas-Landero
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, United Kingdom
| | - Elizavet Theodoulou
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, United Kingdom
| | - Munitta Muthana
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, United Kingdom
| | - Caroline Wilson
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, United Kingdom
| | - Penelope Ottewell
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, United Kingdom
| |
Collapse
|
25
|
Rodrigues FS, Miranda VS, Carneiro-Lobo TC, Scalabrini LC, Kruspig B, Levantini E, Murphy DJ, Bassères DS. IKKβ Kinase Promotes Stemness, Migration, and Invasion in KRAS-Driven Lung Adenocarcinoma Cells. Int J Mol Sci 2020; 21:E5806. [PMID: 32823550 PMCID: PMC7460870 DOI: 10.3390/ijms21165806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/25/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
KRAS oncogenic mutations are widespread in lung cancer and, because direct targeting of KRAS has proven to be challenging, KRAS-driven cancers lack effective therapies. One alternative strategy for developing KRAS targeted therapies is to identify downstream targets involved in promoting important malignant features, such as the acquisition of a cancer stem-like and metastatic phenotype. Based on previous studies showing that KRAS activates nuclear factor kappa-B (NF-κB) through inhibitor of nuclear factor kappa-B kinase β (IKKβ) to promote lung tumourigenesis, we hypothesized that inhibition of IKKβ would reduce stemness, migration and invasion of KRAS-mutant human lung cancer cells. We show that KRAS-driven lung tumoursphere-derived cells exhibit stemness features and increased IKKβ kinase activity. IKKβ targeting by different approaches reduces the expression of stemness-associated genes, tumoursphere formation, and self-renewal, and preferentially impairs the proliferation of KRAS-driven lung tumoursphere-derived cells. Moreover, we show that IKKβ targeting reduces tumour cell migration and invasion, potentially by regulating both expression and activity of matrix metalloproteinase 2 (MMP2). In conclusion, our results indicate that IKKβ is an important mediator of KRAS-induced stemness and invasive features in lung cancer, and, therefore, might constitute a promising strategy to lower recurrence rates, reduce metastatic dissemination, and improve survival of lung cancer patients with KRAS-driven disease.
Collapse
Affiliation(s)
- Felipe Silva Rodrigues
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, Brazil; (F.S.R.); (V.S.M.); (T.C.C.-L.); (L.C.S.)
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK; (B.K.); (D.J.M.)
| | - Vanessa Silva Miranda
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, Brazil; (F.S.R.); (V.S.M.); (T.C.C.-L.); (L.C.S.)
| | - Tatiana Correa Carneiro-Lobo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, Brazil; (F.S.R.); (V.S.M.); (T.C.C.-L.); (L.C.S.)
| | - Luiza Coimbra Scalabrini
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, Brazil; (F.S.R.); (V.S.M.); (T.C.C.-L.); (L.C.S.)
| | - Björn Kruspig
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK; (B.K.); (D.J.M.)
| | - Elena Levantini
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA;
- Istituto di Tecnologie Biomediche, Consiglio Nazionale dele Ricerche, 56124 Pisa, Italy
| | - Daniel J. Murphy
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK; (B.K.); (D.J.M.)
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Daniela Sanchez Bassères
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, Brazil; (F.S.R.); (V.S.M.); (T.C.C.-L.); (L.C.S.)
| |
Collapse
|
26
|
Eldawud R, Wagner A, Dong C, Gupta N, Rojanasakul Y, O'Doherty G, Stueckle TA, Dinu CZ. Potential antitumor activity of digitoxin and user-designed analog administered to human lung cancer cells. Biochim Biophys Acta Gen Subj 2020; 1864:129683. [PMID: 32679249 DOI: 10.1016/j.bbagen.2020.129683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/19/2020] [Accepted: 07/09/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cardiac glycosides (CGs), such as digitoxin, are traditionally used for treatment of congestive heart failure; recently they also gained attention for their anticancer properties. Previous studies showed that digitoxin and a synthetic L-sugar monosaccharide analog treatment decreases cancer cell proliferation, increases apoptosis, and pro-adhesion abilities; however, no reports are available on their potential to alter lung cancer cell cytoskeleton structure and reduce migratory ability. Herein, we investigated the anticancer effects of digitoxin and its analog, digitoxigenin-α-L-rhamnoside (D6MA), to establish whether cytoskeleton reorganization and reduced motility are drug-induced cellular outcomes. METHODS We treated non-small cell lung carcinoma cells (NSCLCs) with sub-therapeutic, therapeutic, and toxic concentrations of digitoxin and D6MA respectively, followed by both single point and real-time assays to evaluate changes in cellular gene and protein expression, adhesion, elasticity, and migration. RESULTS Digitoxin and D6MA induced a decrease in matrix metalloproteinases expression via altered focal adhesion signaling and a suppression of the phosphoinositide 3-kinases / protein kinase B pathway which lead to enhanced adhesion, altered elasticity, and reduced motility of NSCLCs. Global gene expression analysis identified dose-dependent changes to nuclear factor kappa-light-chain-enhancer, epithelial tumor, and microtubule dynamics signaling. CONCLUSIONS Our study demonstrates that digitoxin and D6MA can target antitumor signaling pathways to alter NSCLC cytoskeleton and migratory ability to thus potentially reduce their tumorigenicity. SIGNIFICANCE Discovering signaling pathways that control cancer's cell phenotype and how such pathways are affected by CG treatment will potentially allow for active usage of synthetic CG analogs as therapeutic agents in advanced lung conditions.
Collapse
Affiliation(s)
- Reem Eldawud
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Alixandra Wagner
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Chenbo Dong
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Neha Gupta
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Yon Rojanasakul
- Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - George O'Doherty
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Todd A Stueckle
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Cerasela Zoica Dinu
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
27
|
Najafi M, Asadi H, van den Dikkenberg J, van Steenbergen MJ, Fens MHAM, Hennink WE, Vermonden T. Conversion of an Injectable MMP-Degradable Hydrogel into Core-Cross-Linked Micelles. Biomacromolecules 2020; 21:1739-1751. [PMID: 31945299 PMCID: PMC7218746 DOI: 10.1021/acs.biomac.9b01675] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/16/2020] [Indexed: 01/01/2023]
Abstract
In this study, a new type of injectable hydrogel called "HyMic" that can convert into core cross-linked (CCL) micelles upon exposure to matrix metalloproteinases (MMP's), was designed and developed for drug delivery applications. HyMic is composed of CCL micelles connected via an enzyme cleavable linker. To this end, two complementary ABA block copolymers with polyethylene glycol (PEG) as B block were synthesized using atom transfer radical polymerization (ATRP). The A blocks were composed of a random copolymer of N-isopropylacrylamide (NIPAM) and either N-(2-hydroxypropyl)methacrylamide-cysteine (HPMA-Cys) or N-(2-hydroxypropyl) methacrylamide-ethylthioglycolate succinic acid (HPMA-ETSA). Mixing the aqueous solutions of the obtained polymers and rising the temperature above the cloud point of the PNIPAM block resulted in the self-assembly of these polymers into flower-like micelles composed of a hydrophilic PEG shell and hydrophobic core. The micellar core was cross-linked by native chemical ligation between the cysteine (in HPMA-Cys) and thioester (in HPMA-ETSA) functionalities. A slight excess of thioester to cysteine groups (molar ratio 3:2) was used to allow further chemical reactions exploiting the unreacted thioester groups. The obtained micelles displayed a Z-average diameter of 80 ± 1 nm (PDI 0.1), and ζ-potential of -4.2 ± 0.4 mV and were linked using two types of pentablock copolymers of P(NIPAM-co-HPMA-Cys)-PEG-peptide-PEG-P(NIPAM-co-HPMA-Cys) (Pep-NC) to yield hydrogels. The pentablock copolymers were synthesized using a PEG-peptide-PEG ATRP macroinitiator and the peptide midblock (lysine-glycine-proline-glutamine-isoleucine-phenylalanine-glycine-glutamine-lysine (Lys-Gly-Pro-Gln-Gly-Ile-Phe-Gly-Gln-Lys)) consisted of either l- or d-amino acids (l-Pep-NC or d-Pep-NC), of which the l-amino acid sequence is a substrate for matrix metalloproteases 2 and 9 (MMPs 2 and 9). Upon mixing of the CCL micelles and the linker (l/d-Pep-NC), the cysteine functionalities of the l/d-Pep-NC reacted with remaining thioester moieties in the micellar core via native chemical ligation yielding a hydrogel within 160 min as demonstrated by rheological measurements. As anticipated, the gel cross-linked with l-Pep-NC was degraded in 7-45 days upon exposure to metalloproteases in a concentration-dependent manner, while the gel cross-linked with the d-Pep-NC remained intact even after 2 months. Dynamic light scattering analysis of the release medium revealed the presence of nanoparticles with a Z-average diameter of ∼120 nm (PDI < 0.3) and ζ-potential of ∼-3 mV, indicating release of core cross-linked micelles upon HyMic exposure to metalloproteases. An in vitro study demonstrated that the released CCL micelles were taken up by HeLa cells. Therefore, HyMic as an injectable and enzyme degradable hydrogel displaying controlled and on-demand release of CCL micelles has potential for intracellular drug delivery in tissues with upregulation of MMPs, for example, in cancer tissues.
Collapse
Affiliation(s)
- Marzieh Najafi
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Science for Life, Faculty of Science, Utrecht
University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Hamed Asadi
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Science for Life, Faculty of Science, Utrecht
University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
- Polymer
Laboratory, Chemistry Department, School of Science, University of Tehran, Tehran, Iran
| | - Joep van den Dikkenberg
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Science for Life, Faculty of Science, Utrecht
University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Mies J. van Steenbergen
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Science for Life, Faculty of Science, Utrecht
University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Marcel H. A. M. Fens
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Science for Life, Faculty of Science, Utrecht
University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Wim E. Hennink
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Science for Life, Faculty of Science, Utrecht
University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Tina Vermonden
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Science for Life, Faculty of Science, Utrecht
University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
28
|
Anthraquinone: a promising scaffold for the discovery and development of therapeutic agents in cancer therapy. Future Med Chem 2020; 12:1037-1069. [PMID: 32349522 DOI: 10.4155/fmc-2019-0198] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cancer, characterized by uncontrolled malignant neoplasm, is a leading cause of death in both advanced and emerging countries. Although, ample drugs are accessible in the market to intervene with tumor progression, none are totally effective and safe. Natural anthraquinone (AQ) equivalents such as emodin, aloe-emodin, alchemix and many synthetic analogs extend their antitumor activity on different targets including telomerase, topoisomerases, kinases, matrix metalloproteinases, DNA and different phases of cell lines. Nano drug delivery strategies are advanced tools which deliver drugs into tumor cells with minimum drug leakage to normal cells. This review delineates the way AQ derivatives are binding on these targets by abolishing tumor cells to produce anticancer activity and purview of nanoformulations related to AQ analogs.
Collapse
|
29
|
Chen Y, Ding Y. LINC00467 enhances head and neck squamous cell carcinoma progression and the epithelial-mesenchymal transition process via miR-299-5p/ubiquitin specific protease-48 axis. J Gene Med 2020; 22:e3184. [PMID: 32159247 DOI: 10.1002/jgm.3184] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) has attracted the attention of researchers as a result of its high incidence around the world. This malignancy occurs in the oral cavity, pharynx and larynx in most cases. A number of lncRNAs have been revealed to regulate the malignant neoplasia of several cancers. Nevertheless, the effects of lncRNA LINC00467 in HNSCC have not yet been reported. METHODS The expression of LINC00467, miR-299-5p and ubiquitin specific protease-48 (USP48) in HNSCC cells was quantified by a quantitative reverse transcriptase-polymerase chain reaction. The influences of LINC00467 deficiency on HNSCC progression were reflected by cell counting kit-8, colony formation, ethynyl-2-deoxyuridine, wound healing and western blot assays. RIP and luciferase reporter assays were conducted to confirm the interaction among LINC00467, miR-299-5p and USP48. RESULTS LINC00467 was considerably upregulated in HNSCC cells, and an absence of LINC00467 suppressed cell growth, cell migration and the epithelial-mesenchymal process in HNSCC. In addition, miR-299-5p expression was notably downregulated in HNSCC cells, and miR-299-5p could bind with LINC00467. Furthermore, USP48 was conspicuously overexpressed in HNSCC cells and capable of binding with miR-299-5p. LINC00467 could upregulate USP48 expression via sponging miR-299-5p. Finally, rescue assays proved that USP48 overexpression could compensate for the suppressive effects on HNSCC progression mediated by LINC00467 deficiency. CONCLUSIONS LINC00467 enhances HNSCC progression by serving as a sponge of miR-299-5p to increase USP48 expression.
Collapse
Affiliation(s)
- Ye Chen
- Department of Stomatology, The Affiliated Hanyang Hospital of Wuhan University of Science and Technology, Wuhan, China
| | - Yiying Ding
- Department of Outpatient Service, the Affiliated Hanyang Hospital of Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
Hoesl C, Zanuttigh E, Fröhlich T, Philippou-Massier J, Krebs S, Blum H, Dahlhoff M. The secretome of skin cancer cells activates the mTOR/MYC pathway in healthy keratinocytes and induces tumorigenic properties. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118717. [PMID: 32283126 DOI: 10.1016/j.bbamcr.2020.118717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/20/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the most prominent tumor of non-melanoma skin cancers and the most aggressive tumor among keratinocyte carcinoma of the skin, showing a high potential for local invasion and metastasis. The cSCC incidences increased dramatically in recent years and the disease occurs more commonly than any other malignancy. The secretome of cancer cells is currently the focus of many studies in order to identify new marker proteins for different types of cancer and to investigate its influence on the tumor microenvironment. In our study we evaluated whether the secretome of cSCC cells has an impact on keratinocytes, the surrounding tissue cells of cSCC. Therefore, we analyzed and compared the secretome of human A431 cancer cells and of HaCaT keratinocytes by mass spectrometry. In a second experiment, keratinocytes were exposed to the secretome of A431 cells and vice versa and the transcriptome was analyzed by next-generation sequencing. HaCaT cells incubated with A431 conditioned medium revealed a significantly activated mammalian target of rapamycin pathway with a concomitant increase in proliferation and migration. In conclusion, our data demonstrate the impact of the secretome of cancer cells on the transcription machinery of the cells surrounding the tumor, leading to a tumorigenic cell fate.
Collapse
Affiliation(s)
- Christine Hoesl
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU, München, Germany
| | - Enrica Zanuttigh
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU, München, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU, München, Germany
| | | | - Stefan Krebs
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU, München, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU, München, Germany
| | - Maik Dahlhoff
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU, München, Germany.
| |
Collapse
|
31
|
Kudelski J, Młynarczyk G, Darewicz B, Bruczko-Goralewska M, Romanowicz L. Dominative role of MMP-14 over MMP-15 in human urinary bladder carcinoma on the basis of its enhanced specific activity. Medicine (Baltimore) 2020; 99:e19224. [PMID: 32049862 PMCID: PMC7035044 DOI: 10.1097/md.0000000000019224] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Human urinary bladder cancer is one of the most common cancers worldwide with the mortality rate of approximately 165,000 people annually. The modulation of extracellular matrix is a crucial event in the metastatic spread, among others in angiogenesis. It is initiated and prolonged by the cascade of matrix metalloproteinases. MMP-14 and MMP-15 are associated with a high degree of malignancy, aggressiveness, and survival prognosis by the activation of other matrix metalloproteinases (MMPs). This study was aimed at evaluating the expression and the activity of selected transmembrane metalloproteinases at different stages of human urinary bladder cancer. METHODS Western blot and enzyme linked immunosorbent assay (ELISA) method were used to evaluate the expression and content of MMPs and TIMP-1. The activity of studied enzymes was determined with fluorometric method. RESULTS Both transmembrane metalloproteinases are found in healthy or cancerous tissue in high molecular complexes of human urinary bladder. MMP-14 dominates over MMP-15, particularly in high-grade urinary bladder cancer. Their contents significantly change with the grade of bladder tumor. The amount of MMP-14 increases with increasing grade of tumor. MMP-15 content decreases in high-grade bladder cancer. With increasing grade of urinary bladder cancer their actual activity (per kg of total protein content) is varying in different ways. In all examined tissues, the specific activity of MMP-15 (per kg of the enzyme content) is much higher in comparison to MMP-14. Human urinary bladder cancer contains higher TIMP-1 amounts than control tissue but with the decrease with an increase in tumor grade. CONCLUSION Comparison of investigated enzymes' activity and the inhibitor content suggests it opposite effects, higher suppression of MMP-14 than MMP-15 activity in low-grade bladder cancer and reverse TIMP-1 action in high-grade cancer. The MMP-14 activity determination in urinary bladder cancer tissue may be used as a predictor of a risk of metastasis.
Collapse
Affiliation(s)
- Jacek Kudelski
- Department of Urology, Medical University of Białystok, Poland
| | - Grzegorz Młynarczyk
- Department of Medical Biochemistry
- Department of Urology, Medical University of Białystok, Poland
| | | | | | | |
Collapse
|
32
|
Chakroun RW, Sneider A, Anderson CF, Wang F, Wu P, Wirtz D, Cui H. Supramolecular Design of Unsymmetric Reverse Bolaamphiphiles for Cell‐Sensitive Hydrogel Degradation and Drug Release. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rami W. Chakroun
- Department of Chemical and Biomolecular Engineering Institute for NanoBiotechnology The Johns Hopkins University 3400 North Charles Street Baltimore MD 21218 USA
| | - Alexandra Sneider
- Department of Chemical and Biomolecular Engineering Institute for NanoBiotechnology The Johns Hopkins University 3400 North Charles Street Baltimore MD 21218 USA
| | - Caleb F. Anderson
- Department of Chemical and Biomolecular Engineering Institute for NanoBiotechnology The Johns Hopkins University 3400 North Charles Street Baltimore MD 21218 USA
| | - Feihu Wang
- Department of Chemical and Biomolecular Engineering Institute for NanoBiotechnology The Johns Hopkins University 3400 North Charles Street Baltimore MD 21218 USA
| | - Pei‐Hsun Wu
- Department of Chemical and Biomolecular Engineering Institute for NanoBiotechnology The Johns Hopkins University 3400 North Charles Street Baltimore MD 21218 USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center Johns Hopkins University School of Medicine 400 North Broadway Baltimore MD 21231 USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering Institute for NanoBiotechnology The Johns Hopkins University 3400 North Charles Street Baltimore MD 21218 USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center Johns Hopkins University School of Medicine 400 North Broadway Baltimore MD 21231 USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering Institute for NanoBiotechnology The Johns Hopkins University 3400 North Charles Street Baltimore MD 21218 USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center Johns Hopkins University School of Medicine 400 North Broadway Baltimore MD 21231 USA
- Center for Nanomedicine The Wilmer Eye Institute Johns Hopkins University School of Medicine USA
| |
Collapse
|
33
|
Chakroun RW, Sneider A, Anderson CF, Wang F, Wu P, Wirtz D, Cui H. Supramolecular Design of Unsymmetric Reverse Bolaamphiphiles for Cell‐Sensitive Hydrogel Degradation and Drug Release. Angew Chem Int Ed Engl 2020; 59:4434-4442. [DOI: 10.1002/anie.201913087] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/02/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Rami W. Chakroun
- Department of Chemical and Biomolecular Engineering Institute for NanoBiotechnology The Johns Hopkins University 3400 North Charles Street Baltimore MD 21218 USA
| | - Alexandra Sneider
- Department of Chemical and Biomolecular Engineering Institute for NanoBiotechnology The Johns Hopkins University 3400 North Charles Street Baltimore MD 21218 USA
| | - Caleb F. Anderson
- Department of Chemical and Biomolecular Engineering Institute for NanoBiotechnology The Johns Hopkins University 3400 North Charles Street Baltimore MD 21218 USA
| | - Feihu Wang
- Department of Chemical and Biomolecular Engineering Institute for NanoBiotechnology The Johns Hopkins University 3400 North Charles Street Baltimore MD 21218 USA
| | - Pei‐Hsun Wu
- Department of Chemical and Biomolecular Engineering Institute for NanoBiotechnology The Johns Hopkins University 3400 North Charles Street Baltimore MD 21218 USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center Johns Hopkins University School of Medicine 400 North Broadway Baltimore MD 21231 USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering Institute for NanoBiotechnology The Johns Hopkins University 3400 North Charles Street Baltimore MD 21218 USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center Johns Hopkins University School of Medicine 400 North Broadway Baltimore MD 21231 USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering Institute for NanoBiotechnology The Johns Hopkins University 3400 North Charles Street Baltimore MD 21218 USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center Johns Hopkins University School of Medicine 400 North Broadway Baltimore MD 21231 USA
- Center for Nanomedicine The Wilmer Eye Institute Johns Hopkins University School of Medicine USA
| |
Collapse
|
34
|
Khan A, Fan K, Sun N, Yin W, Sun Y, Sun P, Jahejo AR, Li H. Recombinant porcine NK-lysin inhibits the invasion of hepatocellular carcinoma cells in vitro. Int J Biol Macromol 2019; 140:1249-1259. [PMID: 31465800 DOI: 10.1016/j.ijbiomac.2019.08.212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 02/07/2023]
Abstract
The therapeutics having ability to target cancer cells specifically and exhibit nominal cytopathic effect on normal healthy cells are highly significant for cancer therapeutic applications. Recombinant porcine natural killer lysin (rpNK-lysin) has proven cationic anti-bacterial and anti-tumor peptide. Herein, we report its anti-invasion and anti-metastasis effects on hepatocellular carcinoma (HCC) cells in vitro. We first investigate the maximum non-toxic concentration (MNTC) of rpNK-lysin for the normal hepato cells (L-02). Using MNTC rpNK-lysin, we explore anti-proliferative, anti-adhesive, anti-invasive and anti-metastatic effect of rpNK-lysin on three different HCC cells lines (SMMC-7721, 97-H and HepG2) through MTT, wound-healing, adhesion and invasion assay along with mRNA and protein expression. The results reveal that rpNK-lysin has potential to specifically inhibit HCC cells growth in a dose and time-dependent manner with a little cytopathic effect on the L-02 cells, effectively reduce migration, adhesion and invasion ability of HCC cells. rpNK-lysin significantly reduce Fascin1 expression, which subsequently decrease β-catenin expression and metaloproteinases (MMP-2 and MMP9). This study suggest that MNTC rpNK-lysin has an anti-invasion and anti-metastasis effect on HCC cells in vitro through inhibition of Fascin 1 expression which regulates Wnt/β-catenin signaling pathway by inducing β-catenin degradation and subsequently results in suppression of MMP-2 and MMP9 expression.
Collapse
Affiliation(s)
- Ajab Khan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Kuohai Fan
- Laboratory Animal Center, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Na Sun
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Wei Yin
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Yaogui Sun
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Panpan Sun
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Ali Raza Jahejo
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Hongquan Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China.
| |
Collapse
|
35
|
Mu L, Liu X, Liu X, Sa N, Zhou S, Lv Z, Xu W. Loss of CDH1 promotes the metastasis of hypopharyngeal squamous cell carcinoma through the STAT3-MMP-9 signaling pathway. Transl Cancer Res 2019; 8:1476-1485. [PMID: 35116890 PMCID: PMC8799152 DOI: 10.21037/tcr.2019.07.51] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 07/11/2019] [Indexed: 11/06/2022]
Abstract
BACKGROUND Distant metastasis is the major cause of death in patients with hypopharyngeal squamous cell carcinoma (HSCC). CDH1 is correlated with tumor invasion and metastasis; however, its function in HSCC remains unclear. METHODS We used immunohistochemistry (IHC) staining to evaluate the expression of CDH1 in 31 and 78 specimens from primary HSCC patients with and without postoperative lung metastases respectively. Sulforhodamine B (SRB) and CCK-8 assays were used to test the proliferation of HSCC cells. Motility of HSCC cells was investigated by migration and invasion assays. Western blot analysis was used to measure the levels of CDH1 and other proteins. RESULTS We found that the low expression of CDH1 was significantly associated with postoperative lung metastasis in HSCC (P<0.001). Moreover, CDH1 was reduced concomitantly with the upregulation of MMP-9 in the same HSCC sample. Further mechanistic investigation showed that silencing CDH1 elevated the level of MMP-9, which was coupled with the phosphorylation of STAT3. Subsequently, inhibiting STAT3 either by siRNA transfection or by pharmacological suppression with AG490 attenuated MMP-9 upregulation and prevented the enhanced proliferation and invasion caused by CDH1 loss in FaDu cells. CONCLUSIONS CDH1 plays vital roles in HSCC metastasis and might serve as a potential therapeutic target for the clinical treatment of HSCC.
Collapse
Affiliation(s)
- Lan Mu
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial ENT Hospital Affiliated to Shandong University, Shandong Provincial ENT Hospital, Jinan 250021, China.,Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Xianfang Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial ENT Hospital Affiliated to Shandong University, Shandong Provincial ENT Hospital, Jinan 250021, China.,Key Laboratory of Otorhinolaryngology, National Health Commission (Shandong University), Jinan 250012, China.,Shandong Provincial Key Laboratory of Otology, Jinan 250022, China
| | - Xiuxiu Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial ENT Hospital Affiliated to Shandong University, Shandong Provincial ENT Hospital, Jinan 250021, China.,Key Laboratory of Otorhinolaryngology, National Health Commission (Shandong University), Jinan 250012, China.,Shandong Provincial Key Laboratory of Otology, Jinan 250022, China
| | - Na Sa
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial ENT Hospital Affiliated to Shandong University, Shandong Provincial ENT Hospital, Jinan 250021, China
| | - Shengli Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial ENT Hospital Affiliated to Shandong University, Shandong Provincial ENT Hospital, Jinan 250021, China.,Key Laboratory of Otorhinolaryngology, National Health Commission (Shandong University), Jinan 250012, China.,Shandong Provincial Key Laboratory of Otology, Jinan 250022, China
| | - Zhenghua Lv
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial ENT Hospital Affiliated to Shandong University, Shandong Provincial ENT Hospital, Jinan 250021, China
| | - Wei Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial ENT Hospital Affiliated to Shandong University, Shandong Provincial ENT Hospital, Jinan 250021, China.,Key Laboratory of Otorhinolaryngology, National Health Commission (Shandong University), Jinan 250012, China.,Shandong Provincial Key Laboratory of Otology, Jinan 250022, China
| |
Collapse
|
36
|
Meng L, Ji R, Dong X, Xu X, Xin Y, Jiang X. Antitumor activity of ginsenoside Rg3 in melanoma through downregulation of the ERK and Akt pathways. Int J Oncol 2019; 54:2069-2079. [PMID: 31081060 PMCID: PMC6521931 DOI: 10.3892/ijo.2019.4787] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/02/2019] [Indexed: 12/13/2022] Open
Abstract
Advanced metastatic melanoma is a malignant tumor for which there is currently no effective treatment due to resistance development. Ginsenoside Rg3, a saponin component extracted from ginseng roots, has been shown to reduce melanoma cell proliferation by decreasing histone deacetylase 3 and increasing p53 acetylation. The availability of data on the role of Rg3 in melanoma is currently extremely limited. The aim of the present study was to further investigate the effects of Rg3 on B16 melanoma cells and the underlying molecular events. The findings demonstrated that Rg3 suppressed the proliferation and DNA synthesis of B16 cells. Rg3 exposure induced tumor cell cycle arrest at the S phase and reduced the expression of proliferating cell nuclear antigen (PCNA). Rg3 treatment also decreased metastasis of B16 cells in vitro and in vivo. The results indicated that this reduction was due to downregulation of matrix metalloproteinase (MMP)-2 and MMP-9. Moreover, Rg3 inhibited melanoma-induced angiogenesis, most likely by downregulating vascular endothelial growth factor (VEGF) in B16 cells. Rg3 exposure decreased the expression of VEGF in B16 cells and the VEGF downregulation further suppressed angiogenesis by attenuating the proliferation and migration of vascular endothelial cells. Finally, the western blotting data demonstrated that Rg3 reduced the expression of extracellular signal-regulated kinase (ERK) and protein kinase B (Akt) in vitro and in vivo. This result indicated that the antimelanoma effects of Rg3 may be mediated through suppression of ERK and Akt signaling. Further research is required to assess the value of Rg3 as a novel therapeutic strategy for melanoma in the clinical setting.
Collapse
Affiliation(s)
- Lingbin Meng
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Rui Ji
- Department of Biology, Valencia College, Orlando, FL 32825, USA
| | - Xiaoming Dong
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiaochun Xu
- Department of Clinical Cancer Prevention, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
37
|
Desjarlais M, Annabi B. Dual functions of ARP101 in targeting membrane type-1 matrix metalloproteinase: Impact on U87 glioblastoma cell invasion and autophagy signaling. Chem Biol Drug Des 2019; 93:272-282. [PMID: 30291676 DOI: 10.1111/cbdd.13410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/24/2018] [Accepted: 09/20/2018] [Indexed: 12/11/2022]
Abstract
Membrane type-1 matrix metalloproteinase (MT1-MMP) possesses both extracellular proteolytic and intracellular signal-transducing functions in tumorigenesis. An imbalance in MT1-MMP expression and/or function triggers a metastatic, invasive, and therapy resistance phenotype. MT1-MMP is involved in extracellular matrix (ECM) proteolysis, activation of latent MMPs, as well as in autophagy signaling in human hepatoma and glioblastoma cells. A low autophagy index in tumorigenesis has been inferred by recent studies where autophagic capacity was decreased during tumor progression. Here, we establish ARP101 as a dual-function small-molecule inhibitor against MT1-MMP ECM hydrolysis and autophagy signal-transducing functions in a model of grade IV glioblastoma cells. ARP101 inhibited concanavalin-A-mediated proMMP-2 activation into MMP-2, as well as MT1-MMP auto-proteolytic processing. When overexpressing recombinant Wt MT1-MMP, ARP101 inhibited proMMP-2 activation and triggered the formation of MT1-MMP oligomers that required trafficking to the plasma membrane. ARP101 further induced cell autophagy as reflected by increased formation of acidic vacuole organelles, LC3 puncta, and autophagy-related protein ATG9 transcription. These were all significantly reversed upon siRNA-mediated gene silencing of MT1-MMP. ARP101 can thus concomitantly inhibit MT1-MMP extracellular catalytic function and exploit its intracellular transducing signal function to trigger autophagy-mediated cell death in U87 glioblastoma cancer cells.
Collapse
Affiliation(s)
- Michel Desjarlais
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre de recherche BIOMED, Université du Québec à Montréal, Montréal, Quebec, Canada
| | - Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre de recherche BIOMED, Université du Québec à Montréal, Montréal, Quebec, Canada
| |
Collapse
|
38
|
Suppression of miR-93-5p inhibits high-risk HPV-positive cervical cancer progression via targeting of BTG3. Hum Cell 2019; 32:160-171. [DOI: 10.1007/s13577-018-00225-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/23/2018] [Indexed: 12/25/2022]
|
39
|
Han T, Wu N, Wang Y, Shen W, Zou J. miR‑16‑2‑3p inhibits cell proliferation and migration and induces apoptosis by targeting PDPK1 in maxillary primordium mesenchymal cells. Int J Mol Med 2019; 43:1441-1451. [PMID: 30664182 PMCID: PMC6365086 DOI: 10.3892/ijmm.2019.4070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/16/2019] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) post-transcriptionally regulate gene expression by targeting the 3′ untranslated region (UTR) of target genes, and serve diverse roles in cell proliferation, differentiation and apoptosis. However, the association between miR-16-2-3p and 3-phosphoinositide-dependent protein kinase-1 (PDPK1) in nonsyndromic cleft lip (NSCL) remains unclear. In the present study, a luciferase activity assay indicated that miR-16-2-3p negatively regulated PDPK1 in maxillary primordium mesenchymal cells (MPMCs). In addition, it was confirmed that the expression levels of miR-16-2-3p was markedly increased in cleft lip tissues compared with those in adjacent normal lip tissues. A negative correlation between miR-16-2-3p and PDPK1 in cleft lip tissues was observed. Furthermore, miR-16-2-3p inhibited cell proliferation and migration, and induced apoptosis of MPMCs via repressing PDPK1. Finally, miR-16-2-3p exerted its suppressive role in MPMCs by inhibiting the PDPK1/protein kinase B signaling pathway. These results indicate that miR-16-2-3p may inhibit cell proliferation and migration, and promote apoptosis in MPMCs through repression of PDPK1 and may be a potential target for future clinical prevention and treatment of NSCL.
Collapse
Affiliation(s)
- Tao Han
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Ni Wu
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Youjing Wang
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Weimin Shen
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Jijun Zou
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
40
|
Xu D, Su C, Guo L, Yan H, Wang S, Yuan C, Chen G, Pang L, Zhang N. Predictive Significance of Serum MMP-9 in Papillary Thyroid Carcinoma. Open Life Sci 2019; 14:275-287. [PMID: 33817161 PMCID: PMC7874766 DOI: 10.1515/biol-2019-0031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 03/22/2019] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE The incidence of papillary thyroid carcinoma (PTC) is increasing, and there are no reliable serum biomarkers for the diagnosis and prognosis of PTC. This study aimed to assess whether serum matrix metalloproteinase-9 (MMP-9) could serve as an auxiliary diagnostic/prognostic marker for PTC after total and partial thyroidectomy. MATERIAL AND METHODS Postoperative serum MMP-9 concentrations were measured in 182 male patients with PTC, 86 male patients with benign thyroid nodule (BTN), and 62 male healthy controls (HCs). Multivariate logistic regression and Cox regression were applied to evaluate the correlation between variables. The performance of serum MMP-9 in diagnosing PTC and predicting structural persistent/recurrent disease (SPRD) during 48 months of follow-up after initial surgery was evaluated by receiving operating characteristic curve analysis. RESULTS The median serum MMP-9 concentration in the PTC group (79.45 ng/ml) was significantly higher than those in the BTN group (47.35 ng/ml) and HC group (47.71 ng/ml). The area under the curve (AUC) for predicting PTC from BTN was 0.852 at a cut-off value of 60.59 ng/ml. Serum MMP-9 was negatively correlated with disease-free survival (OR 1.026, P=0.001). Serum MMP-9 exhibited good performance in predicting SPRD at a cutoff value of 99.25 ng/ml with an AUC of 0.818. Advanced TNM stage (OR 31.371, P=0.019) and serum MMP-9 ≥99.25 ng/ml (OR 4.103, P=0.022) were independent risk factors for SPRD. CONCLUSIONS Serum MMP-9 potentially represents a good predictive biomarker for PTC diagnosis and prognosis after thyroidectomy in Chinese male patients for whom radio-imaging indicates suspected PTC.
Collapse
Affiliation(s)
- Dahai Xu
- Department of Emergency, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021,China
| | - Chang Su
- Department of Thyroid Surgery, the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Liang Guo
- Department of Pathology, the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - He Yan
- Department of Emergency, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021,China
| | - Shaokun Wang
- Department of Emergency, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021,China
| | - Congwang Yuan
- Department of Pain, Yancheng First People’s Hospital, Yancheng, Jiangsu, 224000, China
| | - Guohui Chen
- Department of Pathology, Jilin City People’s Hospital, Jilin, 132000, China
| | - Li Pang
- Department of Emergency, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021,China
| | - Nan Zhang
- Department of Emergency, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021,China
| |
Collapse
|
41
|
MicroRNA-17 promotes osteosarcoma cells proliferation and migration and inhibits apoptosis by regulating SASH1 expression. Pathol Res Pract 2018; 215:115-120. [PMID: 30396754 DOI: 10.1016/j.prp.2018.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/17/2018] [Accepted: 10/17/2018] [Indexed: 01/21/2023]
Abstract
MicroRNAs (miRNAs) are abnormally expressed in numerous diseases, which are intimately associated with cell proliferation, migration and invasion. Recent study indicated that miR-17 may be involved in regulating osteosarcoma (OS) occurrence and development, but its function and mechanism have not been reported. In this study, quantitative real-time PCR (qRT-PCR) was used to measure the expression of miR-17, and Western blotting assay was performed to measure the expressions of SAM and SH3 domain containing 1 (SASH1), phosphoinoinositide-3 kinase (PI3K), protein kinase B (AKT), Caspase3, Bcl-2 gene family (Bcl-2, Bax) and matrix metalloprotein (MMP-2, MMP-9) in MG-63 cells. Luciferase reporter assay was conducted to confirm the target of SASH1 by miR-17. Cell proliferation, migration, invasion and apoptosis assay was performed to investigate the role of miR-17 in OS cells. We found that the expression of miR-17 was significantly up-regulated in OS cell lines. MiR-17 inhibitor inhibited the proliferation ability, and induced apoptosis of OS cells. Besides, miR-17 inhibitor prevented the migration and invasion of OS cells. Further, we identified that SASH1 was a target gene of miR-17. In addition, knockdown of miR-17 increased the protein expression of SASH1, and regulate related genes of cell proliferation, invasion and anti-apoptosis in the downstream of OS cells. These findings indicated that miR-17 was over-expressed and promoted cell proliferation, migration and inhibited cell apoptosis by targeting SASH1 in OS cells.
Collapse
|
42
|
Microfluidic-Based 3D Engineered Microvascular Networks and Their Applications in Vascularized Microtumor Models. MICROMACHINES 2018; 9:mi9100493. [PMID: 30424426 PMCID: PMC6215090 DOI: 10.3390/mi9100493] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023]
Abstract
The microvasculature plays a critical role in human physiology and is closely associated to various human diseases. By combining advanced microfluidic-based techniques, the engineered 3D microvascular network model provides a precise and reproducible platform to study the microvasculature in vitro, which is an essential and primary component to engineer organ-on-chips and achieve greater biological relevance. In this review, we discuss current strategies to engineer microvessels in vitro, which can be broadly classified into endothelial cell lining-based methods, vasculogenesis and angiogenesis-based methods, and hybrid methods. By closely simulating relevant factors found in vivo such as biomechanical, biochemical, and biological microenvironment, it is possible to create more accurate organ-specific models, including both healthy and pathological vascularized microtissue with their respective vascular barrier properties. We further discuss the integration of tumor cells/spheroids into the engineered microvascular to model the vascularized microtumor tissue, and their potential application in the study of cancer metastasis and anti-cancer drug screening. Finally, we conclude with our commentaries on current progress and future perspective of on-chip vascularization techniques for fundamental and clinical/translational research.
Collapse
|
43
|
[How to predict the relapse after surgery or radiofrequency of liver metastases of colorectal cancer? Interest of the serum kinetic variation of a matrix metalloproteinase cluster]. Bull Cancer 2018; 105:884-895. [PMID: 30243479 DOI: 10.1016/j.bulcan.2018.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Recurrence after liver surgery or radiofrequency is a clinical and biological challenge because it worsens the colorectal cancer prognosis. To date, no biomarker is yet validated to predict the recurrence in order to intensify adjuvant therapy for patients with higher risk. Matrix metalloproteinases play a major role in the metastasis dissemination and tumoral microenvironment and could be a potential biomarker of interest. METHODS Forty-four patients with liver metastasis treated by surgery or radiofrequency were enrolled in this study. Serum levels of MMP-1, MMP-2, MMP-7, MMP-9 and TIMP-1 were monitored in Elisa after therapy and correlated to the recurrence from January 2004 to December 2007. After the curative treatment, patients were assessed for the recurence for two years by CT-scan and examination. RESULTS Post-operative serum level of MMP-9 was significantly higher between J0, J1 and J45 after liver surgery or radiofrequency (***P≤0.001). Level of MMP-2 was significantly increased at M3 and M6 (***P≤0.001) but does not appear to be a risk factor of liver recurrence. The level of TIMP-1 at J0 is a deleterious factor (HR=1.76, P=0.042*). CONCLUSION This is the first study wich correlates the post-operative level of 4 MMPs and TIMP-1 with the risk of liver recurrence after surgery or radiofrequency. Serum TIMP-1 level at J0 could be helpful to identify patients with higher risk but these results need to be confirmed in a large-scale study.
Collapse
|
44
|
Wang RX, Chen S, Huang L, Shao ZM. Predictive and prognostic value of Matrix metalloproteinase (MMP) - 9 in neoadjuvant chemotherapy for triple-negative breast cancer patients. BMC Cancer 2018; 18:909. [PMID: 30241470 PMCID: PMC6151029 DOI: 10.1186/s12885-018-4822-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 09/14/2018] [Indexed: 12/19/2022] Open
Abstract
Background This study aimed to investigate the clinical utility of serum and histological MMP-9 detection during neoadjuvant chemotherapy (NAC) for triple-negative breast cancer (TNBC). Methods A total of 303 TNBC patients who underwent weekly paclitaxel plus carboplatin treatments followed by surgical resection were included in this study. Enzyme-linked immunosorbent assay (ELISA) was used to detect the serum level of Matrix metalloproteinase-9 (sMMP-9) at baseline and prior to surgery. Immunohistochemistry was used to detect histological MMP-9 (hMMP-9) expression in patients with residual tumors after NAC. The value of MMP-9 to predict the response to NAC and patient survival was studied. Results Of the 303 patients, 103 (34.0%) patients experienced pathological complete response (pCR) after completion of NAC. Univariate and multivariate analyses revealed that the relative change in sMMP-9, rather than sMMP-9 at baseline or surgery, had a remarkable predictive value for pCR. Each 1 ng/ml decrease in sMMP-9 after NAC was shown to result in a 0.3% increase in pCR rate. Additionally, in survival analyses, hMMP-9 expression in residual tumors was independently correlated with disease-free survival for non-pCR responders (P < 0.001). Conclusions Our findings indicate that monitoring serum MMP-9 and detection of histological MMP-9 could help identify TNBC patients who will respond to NAC and will display varying risks of disease relapse. MMP-9 may serve as a predictive and prognostic biomarker for tailoring and modifying the NAC strategy for TNBC.
Collapse
Affiliation(s)
- Ruo-Xi Wang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center/Cancer Institute, 399 Ling-Ling Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Sheng Chen
- Department of Breast Surgery, Fudan University Shanghai Cancer Center/Cancer Institute, 399 Ling-Ling Road, Shanghai, 200032, People's Republic of China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| | - Liang Huang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center/Cancer Institute, 399 Ling-Ling Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center/Cancer Institute, 399 Ling-Ling Road, Shanghai, 200032, People's Republic of China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China. .,Institutes of Biomedical Science, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
45
|
Khathi SP, Chandrasekaran B, Karunanidhi S, Tham CL, Kozielski F, Sayyad N, Karpoormath R. Design and synthesis of novel thiadiazole-thiazolone hybrids as potential inhibitors of the human mitotic kinesin Eg5. Bioorg Med Chem Lett 2018; 28:2930-2938. [DOI: 10.1016/j.bmcl.2018.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 12/16/2022]
|
46
|
Ge SS, Chen B, Wu YY, Long QS, Zhao YL, Wang PY, Yang S. Current advances of carbene-mediated photoaffinity labeling in medicinal chemistry. RSC Adv 2018; 8:29428-29454. [PMID: 35547988 PMCID: PMC9084484 DOI: 10.1039/c8ra03538e] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/07/2018] [Indexed: 12/21/2022] Open
Abstract
Photoaffinity labeling (PAL) in combination with a chemical probe to covalently bind its target upon UV irradiation has demonstrated considerable promise in drug discovery for identifying new drug targets and binding sites. In particular, carbene-mediated photoaffinity labeling (cmPAL) has been widely used in drug target identification owing to its excellent photolabeling efficiency, minimal steric interference and longer excitation wavelength. Specifically, diazirines, which are among the precursors of carbenes and have higher carbene yields and greater chemical stability than diazo compounds, have proved to be valuable photolabile reagents in a diverse range of biological systems. This review highlights current advances of cmPAL in medicinal chemistry, with a focus on structures and applications for identifying small molecule-protein and macromolecule-protein interactions and ligand-gated ion channels, coupled with advances in the discovery of targets and inhibitors using carbene precursor-based biological probes developed in recent decades.
Collapse
Affiliation(s)
- Sha-Sha Ge
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
| | - Biao Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
| | - Yuan-Yuan Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
| | - Qing-Su Long
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
| | - Yong-Liang Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
- College of Pharmacy, East China University of Science & Technology Shanghai 200237 China
| |
Collapse
|
47
|
Gong WJ, Liu JY, Yin JY, Cui JJ, Xiao D, Zhuo W, Luo C, Liu RJ, Li X, Zhang W, Zhou HH, Liu ZQ. Resistin facilitates metastasis of lung adenocarcinoma through the TLR4/Src/EGFR/PI3K/NF-κB pathway. Cancer Sci 2018; 109:2391-2400. [PMID: 29927028 PMCID: PMC6113506 DOI: 10.1111/cas.13704] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/14/2018] [Indexed: 12/21/2022] Open
Abstract
Metastasis is the main cause of lung cancer‐related death. The tumor microenvironment greatly contributes to tumor metastasis. Resistin, mainly secreted by tumor‐associated macrophages in tumor tissues, is a 12.5‐kDa cysteine‐rich secretory protein that is found at significantly higher levels in the serum or plasma of cancer patients compared with healthy controls. In this study, we explored the expression and role of resistin in lung adenocarcinoma. Our study showed that resistin was strongly expressed in lung adenocarcinoma tissues and promoted the migration and invasion of lung adenocarcinoma cells in a dose‐dependent manner. Toll‐like receptor 4 (TLR4) was the functional receptor of resistin for migration and invasion in A549 cells. Src/epidermal growth factor receptor (EGFR) was involved in resistin‐induced migration and invasion. Resistin increased the phosphorylation of EGFR through the TLR4/Src pathway. We also found that PI3K/nuclear factor (NF)‐κB were the intracellular downstream effectors mediating resistin‐induced migration and invasion. Taken together, our results suggested that resistin promoted lung adenocarcinoma metastasis through the TLR4/Src/EGFR/PI3K/NF‐κB pathway.
Collapse
Affiliation(s)
- Wei-Jing Gong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun-Yan Liu
- Department of orthopaedics, The First Affiliated Hospital of the University of South China, Hengyang, China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Jia Cui
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Di Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhuo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Chao Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Rui-Jie Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
48
|
Wang X, Li X, Dai X, Zhang X, Zhang J, Xu T, Lan Q. Coaxial extrusion bioprinted shell-core hydrogel microfibers mimic glioma microenvironment and enhance the drug resistance of cancer cells. Colloids Surf B Biointerfaces 2018; 171:291-299. [PMID: 30048904 DOI: 10.1016/j.colsurfb.2018.07.042] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 07/08/2018] [Accepted: 07/19/2018] [Indexed: 12/31/2022]
Abstract
Glioblastoma (GBM) is the most common primary malignant central nervous system tumor. The current treatment is mainly surgical resection combined with radiotherapy, chemotherapy and other comprehensive treatment methods. However, the treatment effect is unsatisfactory, the resistance of cancer cells to alkylating agent is the major reason for the recurrence of GBM. It is necessary to develop an ideal in vitro model to investigate the drug resistance of glioma cells. In this study, shell-glioma stem cell GSC23/core-glioma cell line U118 (G/U) hydrogel microfibers with high cell viability were constructed by coaxial extrusion bioprinting. It was found that core-U118 cells gradually proliferated to form fiber-like cell aggregates and the interactions between cell-cell and cell-extracellular matrix (ECM) were increased. Furthermore, compared with shell/core-U118 (U) hydrogel microfibers, the expressions of matrix metalloproteinase-2 (MMP2), MMP9, vascular endothelial growth factor receptor-2 (VEGFR2) and O6-methylguanine-DNA methyltransferase (MGMT) which are related to tumor invasion and drug resistance were significantly enhanced in G/U hydrogel microfibers. Moreover, U118 cells derived from G/U microfibers had greater drug resistance in vitro and the level of MGMT promoter methylation in G/U cultured U118 cells was significantly lower than that of U cultured cells. In summary, coaxial extrusion bioprinted G/U hydrogel microfiber is a preferable platform for mimicking glioma microenvironment, as well as for drug development and screening.
Collapse
Affiliation(s)
- Xuanzhi Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, People's Republic of China
| | - Xinda Li
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Xingliang Dai
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, People's Republic of China
| | - Xinzhi Zhang
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China; Medprin Regenerative Medical Technologies Co., Ltd., Guangzhou 510663, China
| | - Jing Zhang
- Medprin Regenerative Medical Technologies Co., Ltd., Guangzhou 510663, China; East China Institute of Digital Medical Engineering, Shangrao 334000, People's Republic of China
| | - Tao Xu
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China; Department of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, People's Republic of China.
| | - Qing Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, People's Republic of China.
| |
Collapse
|
49
|
Zhang Y, Li Z, Fan X, Xiong J, Zhang G, Luo X, Li K, Jie Z, Cao Y, Huang Z, Wu F, Xiao L, Duan G, Chen H. PRL-3 promotes gastric cancer peritoneal metastasis via the PI3K/AKT signaling pathway in vitro and in vivo. Oncol Lett 2018; 15:9069-9074. [PMID: 29805638 PMCID: PMC5958648 DOI: 10.3892/ol.2018.8467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 03/02/2018] [Indexed: 12/30/2022] Open
Abstract
The peritoneal metastasis-associated phosphatase of regenerating liver-3 (PRL-3) is upregulated in gastric cancer. The phosphatidylinositol 3-kinase (PI3K)/RAC serine/threonine-protein kinase (AKT) signaling pathway acts downstream of PRL-3 in gastric cancer. However, the exact PRL-3 signaling mechanisms are poorly understood. The present study investigated whether PRL-3 facilitates the peritoneal metastasis of gastric cancer via the PI3K/AKT pathway in vivo and in vitro. Nude mouse models of peritoneal metastasis were established using SGC7901/PRL-3 cell lines. The results confirmed that the invasion and migration abilities of SGC7901/PRL-3 cells were significantly increased in these models. Furthermore, western blotting demonstrated that the expression of p-AKT, matrix metallopeptidase-2 (MMP-2) and -9 proteins increased in SGC7901/PRL-3 cells. These effects were suppressed in SGC7901 cell lines when PI3K was inhibited by LY294002. Furthermore, tumors derived from the peritoneal injection of SGC7901/PRL-3 cells were significantly smaller when the cells were grown in the presence of LY249002, compared with cells grown in its absence. These results indicated that targeted inhibition of the PI3K/AKT signaling pathway decreased the effects of PRL-3 on metastasis in vivo. Collectively, the results of the present study indicated that PRL-3 acts via the PI3K/AKT pathway to promote peritoneal metastasis and invasion of gastric cancer cells in vitro and in vivo.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Zhengrong Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Xiaole Fan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Jianbo Xiong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Guoyang Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Xianshi Luo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Kun Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Zhigang Jie
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Yi Cao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Zuoxi Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Feng Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Lin Xiao
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Guangling Duan
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Heping Chen
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
50
|
He W, Zhang H, Wang Y, Zhou Y, Luo Y, Cui Y, Jiang N, Jiang W, Wang H, Xu D, Li S, Wang Z, Chen Y, Sun Y, Zhang Y, Tseng HR, Zou X, Wang L, Ke Z. CTHRC1 induces non-small cell lung cancer (NSCLC) invasion through upregulating MMP-7/MMP-9. BMC Cancer 2018; 18:400. [PMID: 29631554 PMCID: PMC5891957 DOI: 10.1186/s12885-018-4317-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 03/28/2018] [Indexed: 12/21/2022] Open
Abstract
Background The strong invasive and metastatic nature of non-small cell lung cancer (NSCLC) leads to poor prognosis. Collagen triple helix repeat containing 1 (CTHRC1) is involved in cell migration, motility and invasion. The object of this study is to investigate the involvement of CTHRC1 in NSCLC invasion and metastasis. Methods A proteomic analysis was performed to identify the different expression proteins between NSCLC and normal tissues. Cell lines stably express CTHRC1, MMP7, MMP9 were established. Invasion and migration were determined by scratch and transwell assays respectively. Clinical correlations of CTHRC1 in a cohort of 230 NSCLC patients were analysed. Results CTHRC1 is overexpressed in NSCLC as measured by proteomic analysis. Additionally, CTHRC1 increases tumour cell migration and invasion in vitro. Furthermore, CTHRC1 expression is significantly correlated with matrix metalloproteinase (MMP)7 and MMP9 expression in sera and tumour tissues from NSCLC. The invasion ability mediated by CTHRC1 were mainly MMP7- and MMP9-dependent. MMP7 or MMP9 depletion significantly eradicated the pro-invasive effects mediated by CTHRC1 on NSCLC cells. Clinically, patients with high CTHRC1 expression had poor survival. Conclusions CTHRC1 serves as a pro-metastatic gene that contributes to NSCLC invasion and metastasis, which are mediated by upregulated MMP7 and MMP9 expression. Targeting CTHRC1 may be beneficial for inhibiting NSCLC metastasis. Electronic supplementary material The online version of this article (10.1186/s12885-018-4317-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weiling He
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, ZhongShan Second Road, Guangdong, 510080, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58, ZhongShan Second Road, Guangdong, 510080, China
| | - Hui Zhang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, ZhongShan Second Road, Guangdong, 510080, China
| | - Yuefeng Wang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, ZhongShan Second Road, Guangdong, 510080, China
| | - Yanbin Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, ZhongShan Second Road, Guangdong, 510080, China
| | - Yifeng Luo
- Department of Respiratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, ZhongShan Second Road, Guangdong, 510080, China
| | - Yongmei Cui
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, ZhongShan Second Road, Guangdong, 510080, China
| | - Neng Jiang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, ZhongShan Second Road, Guangdong, 510080, China
| | - Wenting Jiang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, ZhongShan Second Road, Guangdong, 510080, China
| | - Han Wang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, ZhongShan Second Road, Guangdong, 510080, China
| | - Di Xu
- Department of Thoracic Surgery, The Central Hospital of Wuhan, No.26 Shenli Street, Jiang'an District, Wuhan, 430014, Hubei Province, China
| | - Shuhua Li
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, ZhongShan Second Road, Guangdong, 510080, China
| | - Zhuo Wang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, ZhongShan Second Road, Guangdong, 510080, China
| | - Yangshan Chen
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, ZhongShan Second Road, Guangdong, 510080, China
| | - Yu Sun
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, ZhongShan Second Road, Guangdong, 510080, China
| | - Yang Zhang
- Biomedical Engineering, The University of Texas at El Paso, El Paso, TX, USA
| | - Hsian-Rong Tseng
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging (CIMI), California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, California, Los Angeles, 90095-1770, USA
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, ZhongShan Second Road, Guangdong, 510080, China
| | - Liantang Wang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, ZhongShan Second Road, Guangdong, 510080, China
| | - Zunfu Ke
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, ZhongShan Second Road, Guangdong, 510080, China.
| |
Collapse
|