1
|
Bardon AG, Ballesteros JJ, Brincat SL, Roy JE, Mahnke MK, Ishizawa Y, Brown EN, Miller EK. Convergent effects of different anesthetics on changes in phase alignment of cortical oscillations. Cell Rep 2025; 44:115685. [PMID: 40349347 DOI: 10.1016/j.celrep.2025.115685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 03/15/2025] [Accepted: 04/18/2025] [Indexed: 05/14/2025] Open
Abstract
Many anesthetics cause loss of consciousness despite having diverse underlying molecular and circuit actions. To explore the convergent effects of these drugs, we examine how anesthetic doses of ketamine and dexmedetomidine affect bilateral oscillations in the prefrontal cortex of nonhuman primates. Both anesthetics increase phase locking in the ventrolateral and dorsolateral prefrontal cortex, within and across hemispheres. However, the nature of the phase locking varies. Neighboring prefrontal subregions within a hemisphere show decreased phase alignment with both drugs. Local analyses within a region suggest that this finding could be explained by broad cortical distance-based effects, such as large traveling waves. In contrast, homologous areas across hemispheres become more aligned in phase. Our results suggest that both anesthetics induce strong patterns of cortical phase alignment that are markedly different from those during waking and that these patterns may be a common feature driving loss of responsiveness from different anesthetic drugs.
Collapse
Affiliation(s)
- Alexandra G Bardon
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jesus J Ballesteros
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Psychology, Ruhr-Universität-Bochum, 44801 Bochum, Germany
| | - Scott L Brincat
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jefferson E Roy
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Meredith K Mahnke
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yumiko Ishizawa
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - Emery N Brown
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - Earl K Miller
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
2
|
Angel R, Park SW. Dynamic interactions between discrete and rhythmic bimanual movement. Exp Brain Res 2025; 243:76. [PMID: 39992394 DOI: 10.1007/s00221-025-07028-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/09/2025] [Indexed: 02/25/2025]
Abstract
Many motor tasks in everyday life, such as driving and cooking, involve a combination of discrete and rhythmic movements. While an increasing number of studies have identified discrete and rhythmic movements as fundamental components in complex motor control, the dynamic interactions between them remain elusive. This study aimed to quantify changes in kinematics when ongoing rhythmic movement of the right arm is perturbed by either rhythmic (RI) or discrete initiation (DI) of the left arm. Fourteen young adults (12 right-handed, 2 ambidextrous) performed bimanual forearm rotations on a horizontal plane under two conditions, i.e., RI and DI. We analyzed the change of instantaneous phase progression. Results showed that the perturbed magnitude and direction in the ongoing right arm were dependent on the relative phase between the two arms at the initiation of the left arm in both DI and RI. When observing the phase progression over the duration of the movement of discrete reaching, perturbations in the DI condition were comparable to those in the RI condition. However, over an extended duration beyond the discrete movement time, perturbations in the DI condition were significantly larger than those in the RI condition. The results suggest that, while the bimanual interaction appears consistent across the two types of movement, termination rather than initiation of discrete movements may engage distinct motor control processes compared to rhythmic movements.
Collapse
Affiliation(s)
- Remington Angel
- Department of Kinesiology, the University of Texas at San Antonio, San Antonio, TX, USA
| | - Se-Woong Park
- Department of Kinesiology, the University of Texas at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
3
|
Hira R, Townsend LB, Smith IT, Yu CH, Stirman JN, Yu Y, Smith SL. Mesoscale functional architecture in medial posterior parietal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.27.555017. [PMID: 39677676 PMCID: PMC11642780 DOI: 10.1101/2023.08.27.555017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The posterior parietal cortex (PPC) in mice has various functions including multisensory integration1-3, vision-guided behaviors4-6, working memory7-13, and posture control14,15. However, an integrated understanding of these functions and their cortical localizations in and around the PPC and higher visual areas (HVAs), has not been completely elucidated. Here we simultaneously imaged the activity of thousands of neurons within a 3 × 3 mm2 field-of-view, including eight cortical areas around the PPC, during behavior with a two-photon mesoscope16. Mice performed both a vision-guided task and a choice history-dependent task, and the imaging results revealed distinct, localized, behavior-related functions of two medial PPC areas. Neurons in the anteromedial (AM) HVA responded to both vision and choice information, and thus AM is a locus of association between these channels. By contrast, the anterior (A) HVA stores choice history with sequential dynamics and represents posture. Mesoscale correlation analysis on the intertrial variability of neuronal activity demonstrated that neurons in area A shared fluctuations with the primary somatosensory area, while neurons in AM exhibited diverse, area-dependent interactions. Pairwise interarea interactions among neurons were precisely predicted by the anatomical input correlations, with the exception of some global interactions. Thus, the medial PPC has two distinct modules, areas A and AM, which each have distinctive modes of cortical communication. These medial PPC modules can serve separate higher-order functions: area A for transmission of information including posture, movement, and working memory; and area AM for multisensory and cognitive integration with locally processed signals.
Collapse
Affiliation(s)
- Riichiro Hira
- Department of Electrical and Computer Engineering, University of California Santa Barbara
- Neuroscience Center, University of North Carolina Chapel Hill
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University
| | | | - Ikuko T. Smith
- Department of Molecular, Cellular, and Developmental Biology, Department of Psychology and Brain Sciences, University of California Santa Barbara
| | - Che-Hang Yu
- Department of Electrical and Computer Engineering, University of California Santa Barbara
| | | | - Yiyi Yu
- Department of Electrical and Computer Engineering, University of California Santa Barbara
| | - Spencer LaVere Smith
- Department of Electrical and Computer Engineering, University of California Santa Barbara
- Neuroscience Center, University of North Carolina Chapel Hill
| |
Collapse
|
4
|
Rabinovich M, Bick C, Varona P. Beyond neurons and spikes: cognon, the hierarchical dynamical unit of thought. Cogn Neurodyn 2024; 18:3327-3335. [PMID: 39712132 PMCID: PMC11655723 DOI: 10.1007/s11571-023-09987-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/17/2023] [Accepted: 06/14/2023] [Indexed: 12/24/2024] Open
Abstract
From the dynamical point of view, most cognitive phenomena are hierarchical, transient and sequential. Such cognitive spatio-temporal processes can be represented by a set of sequential metastable dynamical states together with their associated transitions: The state is quasi-stationary close to one metastable state before a rapid transition to another state. Hence, we postulate that metastable states are the central players in cognitive information processing. Based on the analogy of quasiparticles as elementary units in physics, we introduce here the quantum of cognitive information dynamics, which we term "cognon". A cognon, or dynamical unit of thought, is represented by a robust finite chain of metastable neural states. Cognons can be organized at multiple hierarchical levels and coordinate complex cognitive information representations. Since a cognon is an abstract conceptualization, we link this abstraction to brain sequential dynamics that can be measured using common modalities and argue that cognons and brain rhythms form binding spatiotemporal complexes to keep simultaneous dynamical information which relate the 'what', 'where' and 'when'.
Collapse
Affiliation(s)
| | - Christian Bick
- Department of Mathematics, Vrije Universiteit, Amsterdam, The Netherlands
| | - Pablo Varona
- Dpto. de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
5
|
Pessoa L. The Spiraling Cognitive-Emotional Brain: Combinatorial, Reciprocal, and Reentrant Macro-organization. J Cogn Neurosci 2024; 36:2697-2711. [PMID: 38530327 PMCID: PMC12005377 DOI: 10.1162/jocn_a_02146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
This article proposes a framework for understanding the macro-scale organization of anatomical pathways in the mammalian brain. The architecture supports flexible behavioral decisions across a spectrum of spatiotemporal scales. The proposal emphasizes the combinatorial, reciprocal, and reentrant connectivity-called CRR neuroarchitecture-between cortical, BG, thalamic, amygdala, hypothalamic, and brainstem circuits. Thalamic nuclei, especially midline/intralaminar nuclei, are proposed to act as hubs routing the flow of signals between noncortical areas and pFC. The hypothalamus also participates in multiregion circuits via its connections with cortex and thalamus. At slower timescales, long-range behaviors integrate signals across levels of the neuroaxis. At fast timescales, parallel engagement of pathways allows urgent behaviors while retaining flexibility. Overall, the proposed architecture enables context-dependent, adaptive behaviors spanning proximate to distant spatiotemporal scales. The framework promotes an integrative perspective and a distributed, heterarchical view of brain function.
Collapse
|
6
|
Parida S, Yurasits K, Cancel VE, Zink ME, Mitchell C, Ziliak MC, Harrison AV, Bartlett EL, Parthasarathy A. Rapid and objective assessment of auditory temporal processing using dynamic amplitude-modulated stimuli. Commun Biol 2024; 7:1517. [PMID: 39548272 PMCID: PMC11568220 DOI: 10.1038/s42003-024-07187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
Current tests of hearing fail to diagnose pathologies in ~10% of patients seeking help for hearing difficulties. Neural ensemble responses to perceptually relevant cues in the amplitude envelope, termed envelope following responses (EFR), hold promise as an objective diagnostic tool to probe these 'hidden' hearing difficulties. But clinical translation is impeded by current measurement approaches involving static amplitude modulated (AM) tones, which are time-consuming and lack optimal spectrotemporal resolution. Here we develop a framework to rapidly measure EFRs using dynamically varying AMs combined with spectrally specific analyses. These analyses offer 5x improvement in time and 30x improvement in spectrotemporal resolution, and more generally, are optimal for analyzing time-varying signals with known spectral trajectories of interest. We validate this approach across several mammalian species, including humans, and demonstrate robust responses that are highly correlated with traditional static EFRs. Our analytic technique facilitates rapid and objective neural assessment of temporal processing throughout the brain that can be applied to track auditory neurodegeneration using EFRs, as well as tracking recovery after therapeutic interventions.
Collapse
Affiliation(s)
- Satyabrata Parida
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Kimberly Yurasits
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Victoria E Cancel
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maggie E Zink
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Claire Mitchell
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Meredith C Ziliak
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Audrey V Harrison
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Edward L Bartlett
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Aravindakshan Parthasarathy
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of BioEngineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Man H, Gong A, Song X, Zhang Y, Zhou Y, Fu Y. Decoding the Preparation Stage of Target Shooting under Audiovisual Restricted Conditions: Investigating Neural Mechanisms Using Microstate Analysis. Brain Topogr 2024; 37:1118-1138. [PMID: 38990422 DOI: 10.1007/s10548-024-01066-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Shooting is a fine sport that is greatly influenced by mental state, and the neural activity of brain in the preparation stage of shooting has a direct influence on the level of shooting. In order to explore the brain neural mechanism in the preparation stage of pistol shooting under audiovisual restricted conditions, and to reveal the intrinsic relationship between brain activity and shooting behavior indicators, the electroencephalography (EEG) signals and seven shooting behaviors including shooting performance, gun holding stability, and firing stability, were experimentally captured from 30 shooters, these shooters performed pistol shooting under three conditions, normal, dim, and noisy. Using EEG microstates combined with standardized low-resolution brain electromagnetic tomography (sLORETA) traceability analysis method, we investigated the difference between the microstates characteristics under audiovisual restricted conditions and normal condition, the relationship between the microstates characteristics and the behavioral indicators during the shooting preparation stage under different conditions. The experimental results showed that microstate 1 corresponded to microstate A, microstate 2 corresponded to microstate B, and microstate 4 corresponded to microstate D; Microstate 3 was a unique template, which was localized in the occipital lobe, its function was to generate the "vision for action"; The dim condition significantly reduced the shooter's performance, whereas the noisy condition had less effect on the shooter's performance; In audiovisual restricted conditions, the microstate characteristics were significantly different from those in the normal condition. Microstate 4' parameters decreased significantly while microstate 3' parameters increased significantly under restricted visual and auditory conditions; Dim condition required more shooting skills from the shooter; There was a significant relationship between characteristics of microstates and indicators of shooting behavior; It was concluded that in order to obtain good shooting performance, shooters should improve attention and concentrate on the adjustment of collimator and target's center leveling relation, but the focus was slightly different in the three conditions; Microstates that are more important for accomplishing the task have less variation in their characteristics over time; Similar conclusions to previous studies were obtained at the same time, i.e., increased visual attention prior to shooting is detrimental to shooting performance, and there is a high positive correlation with microstate D for task completion. The experimental results further reveal the brain neural mechanism in the shooting preparation stage, and the extracted neural markers can be used as effective functional indicators for monitoring the brain state in the shooting preparation stage of pistols.
Collapse
Affiliation(s)
- Huijie Man
- College of information Engineering, Engineering University of PAP, Xi'an, 710086, China
| | - Anmin Gong
- College of information Engineering, Engineering University of PAP, Xi'an, 710086, China.
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Xiaoou Song
- College of information Engineering, Engineering University of PAP, Xi'an, 710086, China
| | - Yijing Zhang
- Center for Psychological Sciences, Zhejiang University, Hangzhou, 200234, China
| | - Yalan Zhou
- College of information Engineering, Engineering University of PAP, Xi'an, 710086, China
| | - Yunfa Fu
- School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650000, China.
| |
Collapse
|
8
|
Bardon AG, Ballesteros JJ, Brincat SL, Roy JE, Mahnke MK, Ishizawa Y, Brown EN, Miller EK. Convergent effects of different anesthetics on changes in phase alignment of cortical oscillations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585943. [PMID: 38562734 PMCID: PMC10983946 DOI: 10.1101/2024.03.20.585943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Many anesthetics cause loss of responsiveness despite having diverse underlying molecular and circuit actions. To explore the convergent effects of these drugs, we examined how anesthetic doses of ketamine and dexmedetomidine affected oscillations in the prefrontal cortex of nonhuman primates. Both anesthetics caused increases in phase locking in the ventrolateral and dorsolateral prefrontal cortex, within and across hemispheres. However, the nature of the phase locking varied. Activity in different subregions within a hemisphere became more anti-phase with both drugs. Local analyses within a region suggested that this finding could be explained by broad cortical distance-based effects, such as large traveling waves. By contrast, homologous areas across hemispheres became more in-phase. Our results suggest that both anesthetics induce strong patterns of cortical phase alignment that are markedly different from those in the awake state, and that these patterns may be a common feature driving loss of responsiveness from different anesthetic drugs.
Collapse
|
9
|
Duecker K, Doelling KB, Breska A, Coffey EBJ, Sivarao DV, Zoefel B. Challenges and Approaches in the Study of Neural Entrainment. J Neurosci 2024; 44:e1234242024. [PMID: 39358026 PMCID: PMC11450538 DOI: 10.1523/jneurosci.1234-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 10/04/2024] Open
Abstract
When exposed to rhythmic stimulation, the human brain displays rhythmic activity across sensory modalities and regions. Given the ubiquity of this phenomenon, how sensory rhythms are transformed into neural rhythms remains surprisingly inconclusive. An influential model posits that endogenous oscillations entrain to external rhythms, thereby encoding environmental dynamics and shaping perception. However, research on neural entrainment faces multiple challenges, from ambiguous definitions to methodological difficulties when endogenous oscillations need to be identified and disentangled from other stimulus-related mechanisms that can lead to similar phase-locked responses. Yet, recent years have seen novel approaches to overcome these challenges, including computational modeling, insights from dynamical systems theory, sophisticated stimulus designs, and study of neuropsychological impairments. This review outlines key challenges in neural entrainment research, delineates state-of-the-art approaches, and integrates findings from human and animal neurophysiology to provide a broad perspective on the usefulness, validity, and constraints of oscillatory models in brain-environment interaction.
Collapse
Affiliation(s)
- Katharina Duecker
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | - Keith B Doelling
- Université Paris Cité, Institut Pasteur, AP-HP, Inserm, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, Paris F-75012, France
| | - Assaf Breska
- Max-Planck Institute for Biological Cybernetics, D-72076 Tübingen, Germany
| | | | - Digavalli V Sivarao
- Department of Pharmaceutical Sciences, East Tennessee State University, Johnson City, Tennessee 37614
| | - Benedikt Zoefel
- Centre de Recherche Cerveau et Cognition (CerCo), UMR 5549 CNRS - Université Paul Sabatier Toulouse III, Toulouse F-31052, France
| |
Collapse
|
10
|
Niu R, Xu X, Tang W, Xiao Y, Tang R. Dance of two brains: Interval subdivision in alternated condition enhances resistance to interference by others. Neuroimage 2024; 298:120788. [PMID: 39147295 DOI: 10.1016/j.neuroimage.2024.120788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/04/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024] Open
Abstract
The accomplishment of interpersonal sensorimotor synchronization is a challenging endeavor because it requires the achievement of a balance between accurate temporal control within individuals and smooth communication between them. This raises a critical question: How does the brain comprehend and process the perceptual information of others to guarantee accurate temporal control of action goals in a social context? A joint synchronization - continuation tapping task was conducted together with varying relative phases (0°/180°) and intervals of tempos (400 ms/800 ms/1600 ms) while neural data was collected using fNIRS (functional near-infrared spectroscopy). Individuals showed better behavioral performance and greater interpersonal brain synchronization(IBS) in the left dorsolateral prefrontal cortex at alternated condition (180° relative phase) compared to symmetric condition (0° relative phase), suggesting that the individual can better maintain behavioral performance and show improved IBS when the partner taps between the individual's gaps. Meanwhile, in most levels of alternated condition, IBS is inversely proportional to interference from partner, implying the counteraction of IBS against interference from others. In addition, when the interval of tempo was 1600 ms, behavioral performance showed a sharp decline, accompanied by a decrease in IBS, reflecting that IBS in SMS reflects effective information exchange between individuals rather than ineffective interference with each other. This study provides insight into the mechanisms underlying sensorimotor synchronization between individuals.
Collapse
Affiliation(s)
- Ruoyu Niu
- Department of Psychology, Nanjing University, Nanjing 210023, China
| | - Xiaodan Xu
- National Key Laboratory of Human Factors Engineering, China Astronauts Research and Training Center, Beijing 100094, China
| | - Weicai Tang
- National Key Laboratory of Human Factors Engineering, China Astronauts Research and Training Center, Beijing 100094, China
| | - Yi Xiao
- National Key Laboratory of Human Factors Engineering, China Astronauts Research and Training Center, Beijing 100094, China.
| | - Rixin Tang
- Department of Psychology, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
11
|
Lim RY, Lew WCL, Ang KK. Review of EEG Affective Recognition with a Neuroscience Perspective. Brain Sci 2024; 14:364. [PMID: 38672015 PMCID: PMC11048077 DOI: 10.3390/brainsci14040364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Emotions are a series of subconscious, fleeting, and sometimes elusive manifestations of the human innate system. They play crucial roles in everyday life-influencing the way we evaluate ourselves, our surroundings, and how we interact with our world. To date, there has been an abundance of research on the domains of neuroscience and affective computing, with experimental evidence and neural network models, respectively, to elucidate the neural circuitry involved in and neural correlates for emotion recognition. Recent advances in affective computing neural network models often relate closely to evidence and perspectives gathered from neuroscience to explain the models. Specifically, there has been growing interest in the area of EEG-based emotion recognition to adopt models based on the neural underpinnings of the processing, generation, and subsequent collection of EEG data. In this respect, our review focuses on providing neuroscientific evidence and perspectives to discuss how emotions potentially come forth as the product of neural activities occurring at the level of subcortical structures within the brain's emotional circuitry and the association with current affective computing models in recognizing emotions. Furthermore, we discuss whether such biologically inspired modeling is the solution to advance the field in EEG-based emotion recognition and beyond.
Collapse
Affiliation(s)
- Rosary Yuting Lim
- Institute for Infocomm Research, Agency for Science, Technology and Research, A*STAR, 1 Fusionopolis Way, #21-01 Connexis, Singapore 138632, Singapore; (R.Y.L.); (W.-C.L.L.)
| | - Wai-Cheong Lincoln Lew
- Institute for Infocomm Research, Agency for Science, Technology and Research, A*STAR, 1 Fusionopolis Way, #21-01 Connexis, Singapore 138632, Singapore; (R.Y.L.); (W.-C.L.L.)
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Ave., 32 Block N4 02a, Singapore 639798, Singapore
| | - Kai Keng Ang
- Institute for Infocomm Research, Agency for Science, Technology and Research, A*STAR, 1 Fusionopolis Way, #21-01 Connexis, Singapore 138632, Singapore; (R.Y.L.); (W.-C.L.L.)
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Ave., 32 Block N4 02a, Singapore 639798, Singapore
| |
Collapse
|
12
|
Sanchez-Bornot J, Sotero RC, Kelso JAS, Şimşek Ö, Coyle D. Solving large-scale MEG/EEG source localisation and functional connectivity problems simultaneously using state-space models. Neuroimage 2024; 285:120458. [PMID: 37993002 DOI: 10.1016/j.neuroimage.2023.120458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/28/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023] Open
Abstract
State-space models are widely employed across various research disciplines to study unobserved dynamics. Conventional estimation techniques, such as Kalman filtering and expectation maximisation, offer valuable insights but incur high computational costs in large-scale analyses. Sparse inverse covariance estimators can mitigate these costs, but at the expense of a trade-off between enforced sparsity and increased estimation bias, necessitating careful assessment in low signal-to-noise ratio (SNR) situations. To address these challenges, we propose a three-fold solution: (1) Introducing multiple penalised state-space (MPSS) models that leverage data-driven regularisation; (2) Developing novel algorithms derived from backpropagation, gradient descent, and alternating least squares to solve MPSS models; (3) Presenting a K-fold cross-validation extension for evaluating regularisation parameters. We validate this MPSS regularisation framework through lower and more complex simulations under varying SNR conditions, including a large-scale synthetic magneto- and electro-encephalography (MEG/EEG) data analysis. In addition, we apply MPSS models to concurrently solve brain source localisation and functional connectivity problems for real event-related MEG/EEG data, encompassing thousands of sources on the cortical surface. The proposed methodology overcomes the limitations of existing approaches, such as constraints to small-scale and region-of-interest analyses. Thus, it may enable a more accurate and detailed exploration of cognitive brain functions.
Collapse
Affiliation(s)
- Jose Sanchez-Bornot
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Magee campus, Derry∼Londonderry, United Kingdom.
| | - Roberto C Sotero
- Department of Radiology and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - J A Scott Kelso
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Magee campus, Derry∼Londonderry, United Kingdom; Human Brain & Behavior laboratory, Center for Complex Systems & Brain Sciences, Florida Atlantic University, Boca Raton, FL, USA
| | - Özgür Şimşek
- Bath Institute for the Augmented Human, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Damien Coyle
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Magee campus, Derry∼Londonderry, United Kingdom; Bath Institute for the Augmented Human, University of Bath, Bath, BA2 7AY, United Kingdom
| |
Collapse
|
13
|
Capouskova K, Zamora‐López G, Kringelbach ML, Deco G. Integration and segregation manifolds in the brain ensure cognitive flexibility during tasks and rest. Hum Brain Mapp 2023; 44:6349-6363. [PMID: 37846551 PMCID: PMC10681658 DOI: 10.1002/hbm.26511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023] Open
Abstract
Adapting to a constantly changing environment requires the human brain to flexibly switch among many demanding cognitive tasks, processing both specialized and integrated information associated with the activity in functional networks over time. In this study, we investigated the nature of the temporal alternation between segregated and integrated states in the brain during rest and six cognitive tasks using functional MRI. We employed a deep autoencoder to explore the 2D latent space associated with the segregated and integrated states. Our results show that the integrated state occupies less space in the latent space manifold compared to the segregated states. Moreover, the integrated state is characterized by lower entropy of occupancy than the segregated state, suggesting that integration plays a consolidating role, while segregation may serve as cognitive expertness. Comparing rest and the tasks, we found that rest exhibits higher entropy of occupancy, indicating a more random wandering of the mind compared to the expected focus during task performance. Our study demonstrates that both transient, short-lived integrated and segregated states are present during rest and task performance, flexibly switching between them, with integration serving as information compression and segregation related to information specialization.
Collapse
Affiliation(s)
- Katerina Capouskova
- Center for Brain and Cognition, Computational Neuroscience Group, DTICUniversitat Pompeu FabraBarcelonaSpain
| | - Gorka Zamora‐López
- Center for Brain and Cognition, Computational Neuroscience Group, DTICUniversitat Pompeu FabraBarcelonaSpain
| | - Morten L. Kringelbach
- Department of PsychiatryUniversity of OxfordOxfordUnited Kingdom
- Center for Music in the Brain, Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Centre for Eudaimonia and Human Flourishing, Linacre CollegeUniversity of OxfordOxfordUnited Kingdom
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, DTICUniversitat Pompeu FabraBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| |
Collapse
|
14
|
Northoff G, Daub J, Hirjak D. Overcoming the translational crisis of contemporary psychiatry - converging phenomenological and spatiotemporal psychopathology. Mol Psychiatry 2023; 28:4492-4499. [PMID: 37704861 PMCID: PMC10914603 DOI: 10.1038/s41380-023-02245-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023]
Abstract
Despite all neurobiological/neurocomputational progress in psychiatric research, recent authors speak about a 'crisis of contemporary psychiatry'. Some argue that we do not yet know the computational mechanisms underlying the psychopathological symptoms ('crisis of mechanism') while others diagnose a neglect of subjectivity, namely first-person experience ('crisis of subjectivity'). In this perspective, we propose that Phenomenological Psychopathology, due to its focus on first-person experience of space and time, is in an ideal position to address the crisis of subjectivity and, if extended to the brain's spatiotemporal topographic-dynamic structure as key focus of Spatiotemporal Psychopathology, the crisis of mechanism. We demonstrate how the first-person experiences of space and time differ between schizophrenia, mood disorders and anxiety disorders allowing for their differential-diagnosis - this addresses the crisis of subjectivity. Presupposing space and time as shared features of brain, experience, and symptoms as their "common currency", the structure of abnormal space and time experience may also serve as template for the structure of the brain's spatiotemporal neuro-computational mechanisms - this may address the crisis of mechanism. Preliminary scientific evidence in our examples of schizophrenia, bipolar disorder, anxiety disorder, and depression support such clinically relevant spatiotemporal determination of both first-person experience (crisis of subjectivity) and the brain's neuro-computational structure (crisis of mechanism). In conclusion, converging Phenomenological Psychopathology with Spatiotemporal Psychopathology might help to overcome the translational crisis in psychiatry by delineating more fine-grained neuro computational and -phenomenal mechanisms; this offers novel candidate biomarkers for diagnosis and therapy including both pharmacological and non-pharmacological treatment.
Collapse
Affiliation(s)
- Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada.
| | - Jonas Daub
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
15
|
Trofimova I. Anticipatory attractors, functional neurochemistry and "Throw & Catch" mechanisms as illustrations of constructivism. Rev Neurosci 2023; 34:737-762. [PMID: 36584323 DOI: 10.1515/revneuro-2022-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022]
Abstract
This review explores several rarely discussed examples illustrating constructivism principles, generative and selective features of neuronal regulation of behaviour. First, the review highlights Walter Freeman's experiments and mathematical analysis that uncovered the existence of anticipatory attractors, i.e. non-random dynamical patterns in neurodynamics. Since Freeman's work did not extend to neurochemistry, this paper then points to the proposed earlier neurochemical framework summarizing the managerial roles of monoaminergic, cholinergic and opioid receptor systems likely contributing to anticipatory attractors in line with functional constructivism. As a third example, neurochemistry's evidence points to the "Throw & Catch" (T&C) principle in neurodynamics. This principle refers to the pro-active, neurochemically expensive, massive but topical increase of potentials ("Throw") within electrodynamics and neurotransmission in the brain whenever there is an uncertainty in selection of degrees of freedom (DFs). The T&C also underlines the relay-like processes during the selection of DFs. The "Throw" works as an internally generated "flashlight" that, contrarily to the expectations of entropy reduction, increases entropy and variance observed in processes related to orientation and action-formation. The discussed examples highlight the deficiency of structures-oriented projects and excitation-inhibition concepts in neuroscience. The neural regulation of behaviour appears to be a fluid, constructive process, constantly upgrading the choice of behavioural DFs, to ensure the compatibility between the environmental and individual's individuals' needs and capacities.
Collapse
Affiliation(s)
- Irina Trofimova
- Laboratory of Collective Intelligence, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton L8S 2T6, ON, Canada
| |
Collapse
|
16
|
Dowdall JR, Schneider M, Vinck M. Attentional modulation of inter-areal coherence explained by frequency shifts. Neuroimage 2023; 277:120256. [PMID: 37392809 PMCID: PMC7616852 DOI: 10.1016/j.neuroimage.2023.120256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023] Open
Abstract
Inter-areal coherence has been hypothesized as a mechanism for inter-areal communication. Indeed, empirical studies have observed an increase in inter-areal coherence with attention. Yet, the mechanisms underlying changes in coherence remain largely unknown. Both attention and stimulus salience are associated with shifts in the peak frequency of gamma oscillations in V1, which suggests that the frequency of oscillations may play a role in facilitating changes in inter-areal communication and coherence. In this study, we used computational modeling to investigate how the peak frequency of a sender influences inter-areal coherence. We show that changes in the magnitude of coherence are largely determined by the peak frequency of the sender. However, the pattern of coherence depends on the intrinsic properties of the receiver, specifically whether the receiver integrates or resonates with its synaptic inputs. Because resonant receivers are frequency-selective, resonance has been proposed as a mechanism for selective communication. However, the pattern of coherence changes produced by a resonant receiver is inconsistent with empirical studies. By contrast, an integrator receiver does produce the pattern of coherence with frequency shifts in the sender observed in empirical studies. These results indicate that coherence can be a misleading measure of inter-areal interactions. This led us to develop a new measure of inter-areal interactions, which we refer to as Explained Power. We show that Explained Power maps directly to the signal transmitted by the sender filtered by the receiver, and thus provides a method to quantify the true signals transmitted between the sender and receiver. Together, these findings provide a model of changes in inter-areal coherence and Granger-causality as a result of frequency shifts.
Collapse
Affiliation(s)
- Jarrod Robert Dowdall
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Germany; Robarts Research Institute, Western University, London, Ontario, Canada; Donders Centre for Neuroscience, Department of Neurophysics, Radboud University, Nijmegen, the Netherlands.
| | - Marius Schneider
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Germany; Donders Centre for Neuroscience, Department of Neurophysics, Radboud University, Nijmegen, the Netherlands
| | - Martin Vinck
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Germany; Donders Centre for Neuroscience, Department of Neurophysics, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
17
|
Li Y, Wang Y, Chen A. Flexible integration and segregation of large-scale networks during adaptive control. Behav Brain Res 2023; 451:114521. [PMID: 37268251 DOI: 10.1016/j.bbr.2023.114521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/08/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
Adaptive control characterizes the dynamic adjustment of cognitive control to changing environmental demand, and has obtained growing interests in its neural mechanism for the past two decades. Recent years, interpreting network reconfiguration in terms of integration and segregation has been proved to shed light on neural structure underlying various cognitive tasks. However, the relationship between network architecture and adaptive control remains unclear. Here, we quantified the network integration (global efficiency, participation coefficient, inter-subnetwork efficiency) and segregation (local efficiency, modularity) in the whole-brain and analyzed how these graph theory metrics were modulated by adaptive control. The results showed that the integration of the cognitive control network (the fronto-parietal network, FPN), the visual network (VIN) and the sensori-motor network (SMN) was significantly improved when conflict was rare, so as to cope with the incongruent trials of high cognitive control demands. Additionally, as the conflict proportion increased, the segregation of the cingulo-opercular network (CON) and the default mode network (DMN) significantly enhanced, which may contribute to specialized functioning or automatic processing, and help to solve conflict in a less resource-intensive mode. Finally, using graph metrics as features, the multivariate classifier reliably predicted the context condition. These results demonstrate how large-scale brain networks support adaptive control through flexible integration and segregation.
Collapse
Affiliation(s)
- Yilu Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yanqing Wang
- Institute of Psychology, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Beijing 100101, China
| | - Antao Chen
- School of Psychology, Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
18
|
Monroe DC, Berry NT, Fino PC, Rhea CK. A Dynamical Systems Approach to Characterizing Brain-Body Interactions during Movement: Challenges, Interpretations, and Recommendations. SENSORS (BASEL, SWITZERLAND) 2023; 23:6296. [PMID: 37514591 PMCID: PMC10385586 DOI: 10.3390/s23146296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023]
Abstract
Brain-body interactions (BBIs) have been the focus of intense scrutiny since the inception of the scientific method, playing a foundational role in the earliest debates over the philosophy of science. Contemporary investigations of BBIs to elucidate the neural principles of motor control have benefited from advances in neuroimaging, device engineering, and signal processing. However, these studies generally suffer from two major limitations. First, they rely on interpretations of 'brain' activity that are behavioral in nature, rather than neuroanatomical or biophysical. Second, they employ methodological approaches that are inconsistent with a dynamical systems approach to neuromotor control. These limitations represent a fundamental challenge to the use of BBIs for answering basic and applied research questions in neuroimaging and neurorehabilitation. Thus, this review is written as a tutorial to address both limitations for those interested in studying BBIs through a dynamical systems lens. First, we outline current best practices for acquiring, interpreting, and cleaning scalp-measured electroencephalography (EEG) acquired during whole-body movement. Second, we discuss historical and current theories for modeling EEG and kinematic data as dynamical systems. Third, we provide worked examples from both canonical model systems and from empirical EEG and kinematic data collected from two subjects during an overground walking task.
Collapse
Affiliation(s)
- Derek C Monroe
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Nathaniel T Berry
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
- Under Armour, Inc., Innovation, Baltimore, MD 21230, USA
| | - Peter C Fino
- Department of Health and Kinesiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Christopher K Rhea
- College of Health Sciences, Old Dominion University, Norfolk, VA 23508, USA
| |
Collapse
|
19
|
Yurchenko SB. A systematic approach to brain dynamics: cognitive evolution theory of consciousness. Cogn Neurodyn 2023; 17:575-603. [PMID: 37265655 PMCID: PMC10229528 DOI: 10.1007/s11571-022-09863-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 12/18/2022] Open
Abstract
The brain integrates volition, cognition, and consciousness seamlessly over three hierarchical (scale-dependent) levels of neural activity for their emergence: a causal or 'hard' level, a computational (unconscious) or 'soft' level, and a phenomenal (conscious) or 'psyche' level respectively. The cognitive evolution theory (CET) is based on three general prerequisites: physicalism, dynamism, and emergentism, which entail five consequences about the nature of consciousness: discreteness, passivity, uniqueness, integrity, and graduation. CET starts from the assumption that brains should have primarily evolved as volitional subsystems of organisms, not as prediction machines. This emphasizes the dynamical nature of consciousness in terms of critical dynamics to account for metastability, avalanches, and self-organized criticality of brain processes, then coupling it with volition and cognition in a framework unified over the levels. Consciousness emerges near critical points, and unfolds as a discrete stream of momentary states, each volitionally driven from oldest subcortical arousal systems. The stream is the brain's way of making a difference via predictive (Bayesian) processing. Its objective observables could be complexity measures reflecting levels of consciousness and its dynamical coherency to reveal how much knowledge (information gain) the brain acquires over the stream. CET also proposes a quantitative classification of both disorders of consciousness and mental disorders within that unified framework.
Collapse
|
20
|
Vinck M, Uran C, Spyropoulos G, Onorato I, Broggini AC, Schneider M, Canales-Johnson A. Principles of large-scale neural interactions. Neuron 2023; 111:987-1002. [PMID: 37023720 DOI: 10.1016/j.neuron.2023.03.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 04/08/2023]
Abstract
What mechanisms underlie flexible inter-areal communication in the cortex? We consider four mechanisms for temporal coordination and their contributions to communication: (1) Oscillatory synchronization (communication-through-coherence); (2) communication-through-resonance; (3) non-linear integration; and (4) linear signal transmission (coherence-through-communication). We discuss major challenges for communication-through-coherence based on layer- and cell-type-specific analyses of spike phase-locking, heterogeneity of dynamics across networks and states, and computational models for selective communication. We argue that resonance and non-linear integration are viable alternative mechanisms that facilitate computation and selective communication in recurrent networks. Finally, we consider communication in relation to cortical hierarchy and critically examine the hypothesis that feedforward and feedback communication use fast (gamma) and slow (alpha/beta) frequencies, respectively. Instead, we propose that feedforward propagation of prediction errors relies on the non-linear amplification of aperiodic transients, whereas gamma and beta rhythms represent rhythmic equilibrium states that facilitate sustained and efficient information encoding and amplification of short-range feedback via resonance.
Collapse
Affiliation(s)
- Martin Vinck
- Ernst Struengmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany; Donders Centre for Neuroscience, Department of Neurophysics, Radboud University Nijmegen, 6525 Nijmegen, the Netherlands.
| | - Cem Uran
- Ernst Struengmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany; Donders Centre for Neuroscience, Department of Neurophysics, Radboud University Nijmegen, 6525 Nijmegen, the Netherlands
| | - Georgios Spyropoulos
- Ernst Struengmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany
| | - Irene Onorato
- Ernst Struengmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany; Donders Centre for Neuroscience, Department of Neurophysics, Radboud University Nijmegen, 6525 Nijmegen, the Netherlands
| | - Ana Clara Broggini
- Ernst Struengmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany
| | - Marius Schneider
- Ernst Struengmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany; Donders Centre for Neuroscience, Department of Neurophysics, Radboud University Nijmegen, 6525 Nijmegen, the Netherlands
| | - Andres Canales-Johnson
- Department of Psychology, University of Cambridge, CB2 3EB Cambridge, UK; Centro de Investigacion en Neuropsicologia y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Catolica del Maule, 3480122 Talca, Chile.
| |
Collapse
|
21
|
Fingelkurts AA, Fingelkurts AA. Turning Back the Clock: A Retrospective Single-Blind Study on Brain Age Change in Response to Nutraceuticals Supplementation vs. Lifestyle Modifications. Brain Sci 2023; 13:520. [PMID: 36979330 PMCID: PMC10046544 DOI: 10.3390/brainsci13030520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND There is a growing consensus that chronological age (CA) is not an accurate indicator of the aging process and that biological age (BA) instead is a better measure of an individual's risk of age-related outcomes and a more accurate predictor of mortality than actual CA. In this context, BA measures the "true" age, which is an integrated result of an individual's level of damage accumulation across all levels of biological organization, along with preserved resources. The BA is plastic and depends upon epigenetics. Brain state is an important factor contributing to health- and lifespan. METHODS AND OBJECTIVE Quantitative electroencephalography (qEEG)-derived brain BA (BBA) is a suitable and promising measure of brain aging. In the present study, we aimed to show that BBA can be decelerated or even reversed in humans (N = 89) by using customized programs of nutraceutical compounds or lifestyle changes (mean duration = 13 months). RESULTS We observed that BBA was younger than CA in both groups at the end of the intervention. Furthermore, the BBA of the participants in the nutraceuticals group was 2.83 years younger at the endpoint of the intervention compared with their BBA score at the beginning of the intervention, while the BBA of the participants in the lifestyle group was only 0.02 years younger at the end of the intervention. These results were accompanied by improvements in mental-physical health comorbidities in both groups. The pre-intervention BBA score and the sex of the participants were considered confounding factors and analyzed separately. CONCLUSIONS Overall, the obtained results support the feasibility of the goal of this study and also provide the first robust evidence that halting and reversal of brain aging are possible in humans within a reasonable (practical) timeframe of approximately one year.
Collapse
|
22
|
Kaur J, Proksch S, Balasubramaniam R. The effect of elastic and viscous force fields on bimanual coordination. Exp Brain Res 2023; 241:1117-1130. [PMID: 36914895 PMCID: PMC10081978 DOI: 10.1007/s00221-023-06589-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Bimanual in-phase and anti-phase coordination modes represent two basic movement patterns with distinct characteristics-homologous muscle contraction and non-homologous muscle contraction, respectively. A method to understand the contribution of each limb to the overall coordination pattern involves detuning (Δω) the natural eigenfrequency of each limb. In the present experiment, we experimentally broke the symmetry between the two upper limbs by adding elastic and viscous force fields using a Kinarm robot exoskeleton. We measured the effect of this symmetry breaking on coordination stability as participants performed bimanual in-phase and anti-phase movements using their left and right hand in 1:1 frequency locking mode. Differences between uncoupled frequencies were manipulated via the application of viscous & elastic force fields and using fast and slow oscillation frequencies with a custom task developed using the Kinarm robotic exoskeleton. The effects of manipulating the asymmetry between the limbs were measured through the mean and variability of relative phase (ϕ) from the intended modes of 0 ° or 180 °. In general, participants deviated less from intended phase irrespective of coordination mode in all matched conditions, except for when elastic loads are applied to both arms in the anti-phase coordination. Second, we found that when force fields were mismatched participants exhibited a larger deviation from the intended phase. Overall, there was increased phase deviation during anti-phase coordination. Finally, participants exhibited higher variability in relative phase in mismatched force conditions compared to matched force conditions, with overall higher variability during anti-phase coordination mode. We extend previous research by demonstrating that symmetry breaking caused by force differences between the limbs disrupts stability in each coordination mode.
Collapse
Affiliation(s)
- Jaskanwaljeet Kaur
- Sensorimotor Neuroscience Laboratory, Cognitive and Information Sciences, University of California, 5200 N Lake Road Merced, Merced, CA, 95343, USA.
| | - Shannon Proksch
- Sensorimotor Neuroscience Laboratory, Cognitive and Information Sciences, University of California, 5200 N Lake Road Merced, Merced, CA, 95343, USA.,Department of Psychology, Augustana University, Sioux Falls, SD, 57197, USA
| | - Ramesh Balasubramaniam
- Sensorimotor Neuroscience Laboratory, Cognitive and Information Sciences, University of California, 5200 N Lake Road Merced, Merced, CA, 95343, USA
| |
Collapse
|
23
|
Peng X, Liu Q, Hubbard CS, Wang D, Zhu W, Fox MD, Liu H. Robust dynamic brain coactivation states estimated in individuals. SCIENCE ADVANCES 2023; 9:eabq8566. [PMID: 36652524 PMCID: PMC9848428 DOI: 10.1126/sciadv.abq8566] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 12/14/2022] [Indexed: 06/01/2023]
Abstract
A confluence of evidence indicates that brain functional connectivity is not static but rather dynamic. Capturing transient network interactions in the individual brain requires a technology that offers sufficient within-subject reliability. Here, we introduce an individualized network-based dynamic analysis technique and demonstrate that it is reliable in detecting subject-specific brain states during both resting state and a cognitively challenging language task. We evaluate the extent to which brain states show hemispheric asymmetries and how various phenotypic factors such as handedness and gender might influence network dynamics, discovering a right-lateralized brain state that occurred more frequently in men than in women and more frequently in right-handed versus left-handed individuals. Longitudinal brain state changes were also shown in 42 patients with subcortical stroke over 6 months. Our approach could quantify subject-specific dynamic brain states and has potential for use in both basic and clinical neuroscience research.
Collapse
Affiliation(s)
- Xiaolong Peng
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Liu
- Changping Laboratory, Beijing, China
| | - Catherine S. Hubbard
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Danhong Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Michael D. Fox
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Hesheng Liu
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- Changping Laboratory, Beijing, China
- Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| |
Collapse
|
24
|
Lea-Carnall CA, Tanner LI, Montemurro MA. Noise-modulated multistable synapses in a Wilson-Cowan-based model of plasticity. Front Comput Neurosci 2023; 17:1017075. [PMID: 36817317 PMCID: PMC9931909 DOI: 10.3389/fncom.2023.1017075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
Frequency-dependent plasticity refers to changes in synaptic strength in response to different stimulation frequencies. Resonance is a factor known to be of importance in such frequency dependence, however, the role of neural noise in the process remains elusive. Considering the brain is an inherently noisy system, understanding its effects may prove beneficial in shaping therapeutic interventions based on non-invasive brain stimulation protocols. The Wilson-Cowan (WC) model is a well-established model to describe the average dynamics of neural populations and has been shown to exhibit bistability in the presence of noise. However, the important question of how the different stable regimes in the WC model can affect synaptic plasticity when cortical populations interact has not yet been addressed. Therefore, we investigated plasticity dynamics in a WC-based model of interacting neural populations coupled with activity-dependent synapses in which a periodic stimulation was applied in the presence of noise of controlled intensity. The results indicate that for a narrow range of the noise variance, synaptic strength can be optimized. In particular, there is a regime of noise intensity for which synaptic strength presents a triple-stable state. Regulating noise intensity affects the probability that the system chooses one of the stable states, thereby controlling plasticity. These results suggest that noise is a highly influential factor in determining the outcome of plasticity induced by stimulation.
Collapse
Affiliation(s)
- Caroline A Lea-Carnall
- School of Health Sciences, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Lisabel I Tanner
- School of Health Sciences, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Marcelo A Montemurro
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| |
Collapse
|
25
|
Hilditch CJ, Bansal K, Chachad R, Wong LR, Bathurst NG, Feick NH, Santamaria A, Shattuck NL, Garcia JO, Flynn-Evans EE. Reconfigurations in brain networks upon awakening from slow wave sleep: Interventions and implications in neural communication. Netw Neurosci 2023; 7:102-121. [PMID: 37334002 PMCID: PMC10270716 DOI: 10.1162/netn_a_00272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/05/2022] [Indexed: 04/04/2024] Open
Abstract
Sleep inertia is the brief period of impaired alertness and performance experienced immediately after waking. Little is known about the neural mechanisms underlying this phenomenon. A better understanding of the neural processes during sleep inertia may offer insight into the awakening process. We observed brain activity every 15 min for 1 hr following abrupt awakening from slow wave sleep during the biological night. Using 32-channel electroencephalography, a network science approach, and a within-subject design, we evaluated power, clustering coefficient, and path length across frequency bands under both a control and a polychromatic short-wavelength-enriched light intervention condition. We found that under control conditions, the awakening brain is typified by an immediate reduction in global theta, alpha, and beta power. Simultaneously, we observed a decrease in the clustering coefficient and an increase in path length within the delta band. Exposure to light immediately after awakening ameliorated changes in clustering. Our results suggest that long-range network communication within the brain is crucial to the awakening process and that the brain may prioritize these long-range connections during this transitional state. Our study highlights a novel neurophysiological signature of the awakening brain and provides a potential mechanism by which light improves performance after waking.
Collapse
Affiliation(s)
- Cassie J. Hilditch
- Fatigue Countermeasures Laboratory, Department of Psychology, San José State University, San José, CA, USA
| | - Kanika Bansal
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- US DEVCOM Army Research Laboratory, Humans in Complex Systems Division, Aberdeen Proving Ground, MD, USA
| | - Ravi Chachad
- Fatigue Countermeasures Laboratory, Department of Psychology, San José State University, San José, CA, USA
| | - Lily R. Wong
- Fatigue Countermeasures Laboratory, Department of Psychology, San José State University, San José, CA, USA
| | - Nicholas G. Bathurst
- Fatigue Countermeasures Laboratory, Human Systems Integration Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Nathan H. Feick
- Fatigue Countermeasures Laboratory, Department of Psychology, San José State University, San José, CA, USA
| | - Amanda Santamaria
- Cognitive and Systems Neuroscience Research Hub, University of South Australia, Adelaide, SA, Australia
| | - Nita L. Shattuck
- Operations Research Department, Naval Postgraduate School, Monterey, CA, USA
| | - Javier O. Garcia
- US DEVCOM Army Research Laboratory, Humans in Complex Systems Division, Aberdeen Proving Ground, MD, USA
| | - Erin E. Flynn-Evans
- Fatigue Countermeasures Laboratory, Human Systems Integration Division, NASA Ames Research Center, Moffett Field, CA, USA
| |
Collapse
|
26
|
Yurchenko SB. From the origins to the stream of consciousness and its neural correlates. Front Integr Neurosci 2022; 16:928978. [PMID: 36407293 PMCID: PMC9672924 DOI: 10.3389/fnint.2022.928978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/12/2022] [Indexed: 09/22/2023] Open
Abstract
There are now dozens of very different theories of consciousness, each somehow contributing to our understanding of its nature. The science of consciousness needs therefore not new theories but a general framework integrating insights from those, yet not making it a still-born "Frankenstein" theory. First, the framework must operate explicitly on the stream of consciousness, not on its static description. Second, this dynamical account must also be put on the evolutionary timeline to explain the origins of consciousness. The Cognitive Evolution Theory (CET), outlined here, proposes such a framework. This starts with the assumption that brains have primarily evolved as volitional subsystems of organisms, inherited from primitive (fast and random) reflexes of simplest neural networks, only then resembling error-minimizing prediction machines. CET adopts the tools of critical dynamics to account for metastability, scale-free avalanches, and self-organization which are all intrinsic to brain dynamics. This formalizes the stream of consciousness as a discrete (transitive, irreflexive) chain of momentary states derived from critical brain dynamics at points of phase transitions and mapped then onto a state space as neural correlates of a particular conscious state. The continuous/discrete dichotomy appears naturally between the brain dynamics at the causal level and conscious states at the phenomenal level, each volitionally triggered from arousal centers of the brainstem and cognitively modulated by thalamocortical systems. Their objective observables can be entropy-based complexity measures, reflecting the transient level or quantity of consciousness at that moment.
Collapse
|
27
|
Bréchet L, Michel CM. EEG Microstates in Altered States of Consciousness. Front Psychol 2022; 13:856697. [PMID: 35572333 PMCID: PMC9094618 DOI: 10.3389/fpsyg.2022.856697] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Conscious experiences unify distinct phenomenological experiences that seem to be continuously evolving. Yet, empirical evidence shows that conscious mental activity is discontinuous and can be parsed into a series of states of thoughts that manifest as discrete spatiotemporal patterns of global neuronal activity lasting for fractions of seconds. EEG measures the brain’s electrical activity with high temporal resolution on the scale of milliseconds and, therefore, might be used to investigate the fast spatiotemporal structure of conscious mental states. Such analyses revealed that the global scalp electric fields during spontaneous mental activity are parceled into blocks of stable topographies that last around 60–120 ms, the so-called EEG microstates. These brain states may be representing the basic building blocks of consciousness, the “atoms of thought.” Altered states of consciousness, such as sleep, anesthesia, meditation, or psychiatric diseases, influence the spatiotemporal dynamics of microstates. In this brief perspective, we suggest that it is possible to examine the underlying characteristics of self-consciousness using this EEG microstates approach. Specifically, we will summarize recent results on EEG microstate alterations in mind-wandering, meditation, sleep and anesthesia, and discuss the functional significance of microstates in altered states of consciousness.
Collapse
Affiliation(s)
- Lucie Bréchet
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland.,Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland.,Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| |
Collapse
|
28
|
Artoni F, Maillard J, Britz J, Seeber M, Lysakowski C, Bréchet L, Tramèr MR, Michel CM. EEG microstate dynamics indicate a U-shaped path to propofol-induced loss of consciousness. Neuroimage 2022; 256:119156. [PMID: 35364276 DOI: 10.1016/j.neuroimage.2022.119156] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 11/16/2022] Open
Abstract
Evidence suggests that the stream of consciousness is parsed into transient brain states manifesting themselves as discrete spatiotemporal patterns of global neuronal activity. Electroencephalographical (EEG) microstates are proposed as the neurophysiological correlates of these transiently stable brain states that last for fractions of seconds. To further understand the link between EEG microstate dynamics and consciousness, we continuously recorded high-density EEG in 23 surgical patients from their awake state to unconsciousness, induced by step-wise increasing concentrations of the intravenous anesthetic propofol. Besides the conventional parameters of microstate dynamics, we introduce a new implementation of a method to estimate the complexity of microstate sequences. The brain activity under the surgical anesthesia showed a decreased sequence complexity of the stereotypical microstates, which became sparser and longer-lasting. However, we observed an initial increase in microstates' temporal dynamics and complexity with increasing depth of sedation leading to a distinctive "U-shape" that may be linked to the paradoxical excitation induced by moderate levels of propofol. Our results support the idea that the brain is in a metastable state under normal conditions, balancing between order and chaos in order to flexibly switch from one state to another. The temporal dynamics of EEG microstates indicate changes of this critical balance between stability and transition that lead to altered states of consciousness.
Collapse
Affiliation(s)
- Fiorenzo Artoni
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Campus Biotech, Switzerland.
| | - Julien Maillard
- Division of Anesthesiology, Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Juliane Britz
- Department of Psychology, University of Fribourg, Fribourg, Switzerland; CIBM Center for Biomedical Imaging, Lausanne, Geneva, Switzerland
| | - Martin Seeber
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Campus Biotech, Switzerland
| | - Christopher Lysakowski
- Division of Anesthesiology, Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Lucie Bréchet
- CIBM Center for Biomedical Imaging, Lausanne, Geneva, Switzerland; Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Campus Biotech, Switzerland
| | - Martin R Tramèr
- Division of Anesthesiology, Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Campus Biotech, Switzerland; CIBM Center for Biomedical Imaging, Lausanne, Geneva, Switzerland.
| |
Collapse
|
29
|
Fry M. Question-driven stepwise experimental discoveries in biochemistry: two case studies. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2022; 44:12. [PMID: 35320436 DOI: 10.1007/s40656-022-00491-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Philosophers of science diverge on the question what drives the growth of scientific knowledge. Most of the twentieth century was dominated by the notion that theories propel that growth whereas experiments play secondary roles of operating within the theoretical framework or testing theoretical predictions. New experimentalism, a school of thought pioneered by Ian Hacking in the early 1980s, challenged this view by arguing that theory-free exploratory experimentation may in many cases effectively probe nature and potentially spawn higher evidence-based theories. Because theories are often powerless to envisage workings of complex biological systems, theory-independent experimentation is common in the life sciences. Some such experiments are triggered by compelling observation, others are prompted by innovative techniques or instruments, whereas different investigations query big data to identify regularities and underlying organizing principles. A distinct fourth type of experiments is motivated by a major question. Here I describe two question-guided experimental discoveries in biochemistry: the cyclic adenosine monophosphate mediator of hormone action and the ubiquitin-mediated system of protein degradation. Lacking underlying theories, antecedent data bases, or new techniques, the sole guides of the two discoveries were respective substantial questions. Both research projects were similarly instigated by theory-free exploratory experimentation and continued in alternating phases of results-based interim working hypotheses, their examination by experiment, provisional hypotheses again, and so on. These two cases designate theory-free, question-guided, stepwise biochemical investigations as a distinct subtype of the new experimentalism mode of scientific enquiry.
Collapse
Affiliation(s)
- Michael Fry
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, POB 9649, 31096, Haifa, Israel.
| |
Collapse
|
30
|
Stanziano M, Golfrè Andreasi N, Messina G, Rinaldo S, Palermo S, Verri M, Demichelis G, Medina JP, Ghielmetti F, Bonvegna S, Nigri A, Frazzetta G, D'Incerti L, Tringali G, DiMeco F, Eleopra R, Bruzzone MG. Resting State Functional Connectivity Signatures of MRgFUS Vim Thalamotomy in Parkinson's Disease: A Preliminary Study. Front Neurol 2022; 12:786734. [PMID: 35095731 PMCID: PMC8791196 DOI: 10.3389/fneur.2021.786734] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/02/2021] [Indexed: 12/03/2022] Open
Abstract
Magnetic Resonance-guided high-intensity Focused Ultrasound (MRgFUS) of the thalamic ventral intermediate nucleus (Vim) for tremor has increasingly gained interest as a new non-invasive alternative to standard neurosurgery. Resting state functional connectivity (rs-FC) correlates of MRgFUS have not been extensively investigated yet. A region of interest (ROI)-to-ROI rs-FC MRI “connectomic” analysis focusing on brain regions relevant for tremor was conducted on 15 tremor-dominant patients with Parkinson's disease who underwent MRgFUS. We tested whether rs-FC between tremor-related areas was modulated by MRgFUS at 1 and 3 months post-operatively, and whether such changes correlated with individual clinical outcomes assessed by the MDS-UPDRS-III sub items for tremor. Significant increase in FC was detected within bilateral primary motor (M1) cortices, as well as between bilateral M1 and crossed primary somatosensory cortices, and also between pallidum and the dentate nucleus of the untreated hemisphere. Correlation between disease duration and FC increase at 3 months was found between the putamen of both cerebral hemispheres and the Lobe VI of both cerebellar hemispheres, as well as between the Lobe VI of untreated cerebellar hemisphere with bilateral supplementary motor area (SMA). Drop-points value of MDS-UPDRS at 3 months correlated with post-treatment decrease in FC, between the anterior cingulate cortex and bilateral SMA, as well as between the Lobe VI of treated cerebellar hemisphere and the interpositus nucleus of untreated cerebellum. Tremor improvement at 3 months, expressed as percentage of intra-subject MDS-UPDRS changes, correlated with FC decrease between bilateral occipital fusiform gyrus and crossed Lobe VI and Vermis VI. Good responders (≥50% of baseline tremor improvement) showed reduced FC between bilateral SMA, between the interpositus nucleus of untreated cerebellum and the Lobe VI of treated cerebellum, as well as between the untreated SMA and the contralateral putamen. Good responders were characterized at baseline by crossed hypoconnectivity between bilateral putamen and M1, as well as between the putamen of the treated hemisphere and the contralateral SMA. We conclude that MRgFUS can effectively modulate brain FC within the tremor network. Such changes are associated with clinical outcome. The shifting mode of integration among the constituents of this network is, therefore, susceptible to external redirection despite the chronic nature of PD.
Collapse
Affiliation(s)
- Mario Stanziano
- Neuroradiology Unit, Diagnostic and Technology Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy.,Neurosciences Department "Rita Levi Montalcini, " University of Turin, Turin, Italy
| | - Nico Golfrè Andreasi
- Parkinson and Movement Disorders Unit, Clinical Neurosciences Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giuseppe Messina
- Functional Neurosurgery Unit, Neurosurgery Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sara Rinaldo
- Parkinson and Movement Disorders Unit, Clinical Neurosciences Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sara Palermo
- Neuroradiology Unit, Diagnostic and Technology Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy.,European Innovation Partnership on Active and Healthy Ageing, Brussels, Belgium
| | - Mattia Verri
- Neuroradiology Unit, Diagnostic and Technology Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Greta Demichelis
- Neuroradiology Unit, Diagnostic and Technology Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Jean Paul Medina
- Neuroradiology Unit, Diagnostic and Technology Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesco Ghielmetti
- Health Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Salvatore Bonvegna
- Parkinson and Movement Disorders Unit, Clinical Neurosciences Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Anna Nigri
- Neuroradiology Unit, Diagnostic and Technology Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Ludovico D'Incerti
- Neuroradiology Unit, Diagnostic and Technology Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giovanni Tringali
- Functional Neurosurgery Unit, Neurosurgery Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesco DiMeco
- Neurosurgery Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy.,Pathophysiology and Transplantation Department, University of Milan, Milan, Italy.,Neurological Surgery Department, Johns Hopkins Medical School, Baltimore, MD, United States
| | - Roberto Eleopra
- Parkinson and Movement Disorders Unit, Clinical Neurosciences Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maria Grazia Bruzzone
- Neuroradiology Unit, Diagnostic and Technology Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
31
|
Bange M, Gonzalez-Escamilla G, Marquardt T, Radetz A, Dresel C, Herz D, Schöllhorn WI, Groppa S, Muthuraman M. Deficient Interhemispheric Connectivity Underlies Movement Irregularities in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:381-395. [PMID: 34719510 DOI: 10.3233/jpd-212840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND Movement execution is impaired in patients with Parkinson's disease. Evolving neurodegeneration leads to altered connectivity between distinct regions of the brain and altered activity at interconnected areas. How connectivity alterations influence complex movements like drawing spirals in Parkinson's disease patients remains largely unexplored. OBJECTIVE We investigated whether deteriorations in interregional connectivity relate to impaired execution of drawing. METHODS Twenty-nine patients and 31 age-matched healthy control participants drew spirals with both hands on a digital graphics tablet, and the regularity of drawing execution was evaluated by sample entropy. We recorded resting-state fMRI and task-related EEG, and calculated the time-resolved partial directed coherence to estimate effective connectivity for both imaging modalities to determine the extent and directionality of interregional interactions. RESULTS Movement performance in Parkinson's disease patients was characterized by increased sample entropy, corresponding to enhanced irregularities in task execution. Effective connectivity between the motor cortices of both hemispheres, derived from resting-state fMRI, was significantly reduced in Parkinson's disease patients in comparison to controls. The connectivity strength in the nondominant to dominant hemisphere direction in both modalities was inversely correlated with irregularities during drawing, but not with the clinical state. CONCLUSION Our findings suggest that interhemispheric connections are affected both at rest and during drawing movements by Parkinson's disease. This provides novel evidence that disruptions of interhemispheric information exchange play a pivotal role for impairments of complex movement execution in Parkinson's disease patients.
Collapse
Affiliation(s)
- Manuel Bange
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Gabriel Gonzalez-Escamilla
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Tabea Marquardt
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Angela Radetz
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Christian Dresel
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Damian Herz
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, UK
| | | | - Sergiu Groppa
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Muthuraman Muthuraman
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
32
|
Yufik Y, Malhotra R. Situational Understanding in the Human and the Machine. Front Syst Neurosci 2021; 15:786252. [PMID: 35002643 PMCID: PMC8733725 DOI: 10.3389/fnsys.2021.786252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
The Air Force research programs envision developing AI technologies that will ensure battlespace dominance, by radical increases in the speed of battlespace understanding and decision-making. In the last half century, advances in AI have been concentrated in the area of machine learning. Recent experimental findings and insights in systems neuroscience, the biophysics of cognition, and other disciplines provide converging results that set the stage for technologies of machine understanding and machine-augmented Situational Understanding. This paper will review some of the key ideas and results in the literature, and outline new suggestions. We define situational understanding and the distinctions between understanding and awareness, consider examples of how understanding-or lack of it-manifest in performance, and review hypotheses concerning the underlying neuronal mechanisms. Suggestions for further R&D are motivated by these hypotheses and are centered on the notions of Active Inference and Virtual Associative Networks.
Collapse
Affiliation(s)
- Yan Yufik
- Virtual Structures Research, Inc., Potomac, MD, United States
| | - Raj Malhotra
- United States Air Force Sensor Directorate, Dayton, OH, United States
| |
Collapse
|
33
|
|
34
|
Biesaga M, Talaga S, Nowak A. The Effect of Context and Individual Differences in Human-Generated Randomness. Cogn Sci 2021; 45:e13072. [PMID: 34913501 PMCID: PMC9285827 DOI: 10.1111/cogs.13072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 11/02/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022]
Abstract
Many psychological studies have shown that human-generated sequences are hardly ever random in the strict mathematical sense. However, what remains an open question is the degree to which this (in)ability varies between people and is affected by contextual factors. Herein, we investigated this problem. In two studies, we used a modern, robust measure of randomness based on algorithmic information theory to assess human-generated series. In Study 1 ( N = 183 ), in a factorial design with task description as a between-subjects variable, we tested the effects of context and mental fatigue on human-generated randomness. In Study 2 ( N = 266 ), in online research, in experimental design, we further investigated the effect of mental fatigue on the randomness of human-generated series and the relationship between the need for cognition (NFC) and the ability to produce random-like series. Results of Study 1 show that the activation of the ability to produce random-like series depends on the relevance of the contextual cues ( χ 2 ( 2 ) = 7.9828 , p = . 0192 ), whether they activate known representations of a random series generator and consequently help to avoid the production of trivial sequences. Our findings from both studies on the effect of mental fatigue (Study 1 - t ( 47 , 529.5568 ) = - 18.62 , p < . 001 ; Study 2 - F ( e d f = 3.587 , R e f . d f = 3.587 ) = 11.863 , p < . 0001 ) and cognitive motivation ( t ( 180 ) = 2.66 , p = . 009 ) demonstrate that regardless of the context or task's novelty people quickly lose interest in the random series generation. Therefore, their performance decreases over time. However, people high in the NFC can maintain the cognitive motivation for a longer period and consequently on average generate more random series. In general, our results suggest that when contextual cues and intrinsic constraints are in optimal interaction people can temporarily escape the structured and trivial patterns and produce more random-like sequences.
Collapse
Affiliation(s)
- Mikołaj Biesaga
- Robert Zajonc Institute for Social Studies, University of Warsaw
| | - Szymon Talaga
- Robert Zajonc Institute for Social Studies, University of Warsaw
| | - Andrzej Nowak
- Robert Zajonc Institute for Social Studies, University of Warsaw.,Department of Psychology, Florida Atlantic University
| |
Collapse
|
35
|
Schneider M, Broggini AC, Dann B, Tzanou A, Uran C, Sheshadri S, Scherberger H, Vinck M. A mechanism for inter-areal coherence through communication based on connectivity and oscillatory power. Neuron 2021; 109:4050-4067.e12. [PMID: 34637706 PMCID: PMC8691951 DOI: 10.1016/j.neuron.2021.09.037] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 07/14/2021] [Accepted: 09/17/2021] [Indexed: 11/21/2022]
Abstract
Inter-areal coherence between field potentials is a widespread phenomenon in cortex. Coherence has been hypothesized to reflect phase-synchronization between oscillators and flexibly gate communication according to behavioral and cognitive demands. We reveal an alternative mechanism where coherence is not the cause but the consequence of communication and naturally emerges because spiking activity in a sending area causes post-synaptic potentials both in the same and in other areas. Consequently, coherence depends in a lawful manner on power and phase-locking in the sender and connectivity. Changes in oscillatory power explained prominent changes in fronto-parietal and LGN-V1 coherence across behavioral conditions. Optogenetic experiments and excitatory-inhibitory network simulations identified afferent synaptic inputs rather than spiking entrainment as the principal determinant of coherence. These findings suggest that unique spectral profiles of different brain areas automatically give rise to large-scale coherence patterns that follow anatomical connectivity and continuously reconfigure as a function of behavior and cognition.
Collapse
Affiliation(s)
- Marius Schneider
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany; Donders Centre for Neuroscience, Department of Neuroinformatics, Radboud University Nijmegen, 6525 Nijmegen, the Netherlands.
| | - Ana Clara Broggini
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany
| | | | - Athanasia Tzanou
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany
| | - Cem Uran
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany
| | - Swathi Sheshadri
- German Primate Center, 37077 Göttingen, Germany; Faculty of Biology and Psychology, University of Goettingen, 37073 Goettingen, Germany
| | - Hansjörg Scherberger
- German Primate Center, 37077 Göttingen, Germany; Faculty of Biology and Psychology, University of Goettingen, 37073 Goettingen, Germany
| | - Martin Vinck
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany; Donders Centre for Neuroscience, Department of Neuroinformatics, Radboud University Nijmegen, 6525 Nijmegen, the Netherlands.
| |
Collapse
|
36
|
Mosbacher JA, Waser M, Garn H, Seiler S, Coronel C, Dal-Bianco P, Benke T, Deistler M, Ransmayr G, Mayer F, Sanin G, Lechner A, Lackner HK, Schwingenschuh P, Grossegger D, Schmidt R. Functional (un-)Coupling: Impairment, Compensation, and Future Progression in Alzheimer's Disease. Clin EEG Neurosci 2021; 54:316-326. [PMID: 34658289 DOI: 10.1177/15500594211052208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Functional (un-)coupling (task-related change of functional connectivity) between different sites of the brain is a mechanism of general importance for cognitive processes. In Alzheimer's disease (AD), prior research identified diminished cortical connectivity as a hallmark of the disease. However, little is known about the relation between the amount of functional (un-)coupling and cognitive performance and decline in AD. Method: Cognitive performance (based on CERAD-Plus scores) and electroencephalogram (EEG)-based functional (un-)coupling measures (connectivity changes from rest to a Face-Name-Encoding task) were assessed in 135 AD patients (age: M = 73.8 years; SD = 9.0). Of these, 68 patients (M = 73.9 years; SD = 8.9) participated in a follow-up assessment of their cognitive performance 1.5 years later. Results: The amounts of functional (un-)coupling in left anterior-posterior and homotopic interhemispheric connections in beta1-band were related to cognitive performance at baseline (β = .340; p < .001; β = .274; P = .001, respectively). For both markers, a higher amount of functional coupling was associated with better cognitive performance. Both markers also were significant predictors for cognitive decline. However, while patients with greater functional coupling in left anterior-posterior connections declined less in cognitive performance (β = .329; P = .035) those with greater functional coupling in interhemispheric connections declined more (β = -.402; P = .010). Conclusion: These findings suggest an important role of functional coupling mechanisms in left anterior-posterior and interhemispheric connections in AD. Especially the complex relationship with cognitive decline in AD patients might be an interesting aspect for future studies.
Collapse
Affiliation(s)
| | - Markus Waser
- Center for Digital Safety and Security, AIT Austrian Institute of Technology, Vienna, Austria
| | - Heinrich Garn
- Center for Digital Safety and Security, AIT Austrian Institute of Technology, Vienna, Austria
| | - Stephan Seiler
- Department of Neurology, 31475Medical University of Graz, Graz, Austria
| | - Carmina Coronel
- Center for Digital Safety and Security, AIT Austrian Institute of Technology, Vienna, Austria
| | - Peter Dal-Bianco
- Department of Neurology, 27271Medical University of Vienna, Vienna, Austria
| | - Thomas Benke
- Department of Neurology, 27280Medical University of Innsbruck, Innsbruck, Austria
| | - Manfred Deistler
- Institute of Statistics and Mathematical Methods in Economics, 27259Vienna University of Technology, Vienna, Austria
| | - Gerhard Ransmayr
- Department of Neurology 2, 31197Kepler University Hospital Linz, Med Campus III, Linz, Austria
| | - Florian Mayer
- Department of Neurology, 27271Medical University of Vienna, Vienna, Austria
| | - Guenter Sanin
- Department of Neurology, 27280Medical University of Innsbruck, Innsbruck, Austria
| | - Anita Lechner
- Department of Neurology, 31475Medical University of Graz, Graz, Austria
| | - Helmut K Lackner
- Division of Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | | | | | - Reinhold Schmidt
- Department of Neurology, 31475Medical University of Graz, Graz, Austria
| |
Collapse
|
37
|
Owen LLW, Chang TH, Manning JR. High-level cognition during story listening is reflected in high-order dynamic correlations in neural activity patterns. Nat Commun 2021; 12:5728. [PMID: 34593791 PMCID: PMC8484677 DOI: 10.1038/s41467-021-25876-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 08/24/2021] [Indexed: 02/08/2023] Open
Abstract
Our thoughts arise from coordinated patterns of interactions between brain structures that change with our ongoing experiences. High-order dynamic correlations in neural activity patterns reflect different subgraphs of the brain's functional connectome that display homologous lower-level dynamic correlations. Here we test the hypothesis that high-level cognition is reflected in high-order dynamic correlations in brain activity patterns. We develop an approach to estimating high-order dynamic correlations in timeseries data, and we apply the approach to neuroimaging data collected as human participants either listen to a ten-minute story or listen to a temporally scrambled version of the story. We train across-participant pattern classifiers to decode (in held-out data) when in the session each neural activity snapshot was collected. We find that classifiers trained to decode from high-order dynamic correlations yield the best performance on data collected as participants listened to the (unscrambled) story. By contrast, classifiers trained to decode data from scrambled versions of the story yielded the best performance when they were trained using first-order dynamic correlations or non-correlational activity patterns. We suggest that as our thoughts become more complex, they are reflected in higher-order patterns of dynamic network interactions throughout the brain.
Collapse
Affiliation(s)
- Lucy L W Owen
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Thomas H Chang
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
- Amazon.com, Seattle, WA, USA
| | - Jeremy R Manning
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
38
|
van Grinsven EE, Nagtegaal SH, Verhoeff JJ, van Zandvoort MJ. The Impact of Stereotactic or Whole Brain Radiotherapy on Neurocognitive Functioning in Adult Patients with Brain Metastases: A Systematic Review and Meta-Analysis. Oncol Res Treat 2021; 44:622-636. [PMID: 34482312 PMCID: PMC8686730 DOI: 10.1159/000518848] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/31/2021] [Indexed: 11/19/2022]
Abstract
Background & Objectives: Radiotherapy is standard treatment for patients with brain metastases (BMs), although it may lead to radiation-induced cognitive impairment. This review explores the impact of whole-brain radiotherapy (WBRT) or stereotactic radiosurgery (SRS) on cognition. METHODS The PRISMA guidelines were used to identify articles on PubMed and EmBase reporting on objective assessment of cognition before, and at least once after radiotherapy, in adult patients with nonresected BMs. RESULTS Of the 867 records screened, twenty articles (14 unique studies) were included. WBRT lead to decline in cognitive performance, which stabilized or returned to baseline in patients with survival of at least 9-15 months. For SRS, a decline in cognitive performance was sometimes observed shortly after treatment, but the majority of patients returned to or remained at baseline until a year after treatment. CONCLUSIONS These findings suggest that after WBRT, patients can experience deterioration over a longer period of time. The cognitive side effects of SRS are transient. Therefore, this review advices to choose SRS as this will result in lowest risks for cognitive adverse side effects, irrespective of predicted survival. In an already cognitively vulnerable patient population with limited survival, this information can be used in communicating risks and aid in making educated decisions.
Collapse
Affiliation(s)
- Eva Elisabeth van Grinsven
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Steven H.J. Nagtegaal
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Joost J.C. Verhoeff
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martine J.E. van Zandvoort
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- Department of Experimental Psychology and Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
39
|
Bruineberg J, Seifert L, Rietveld E, Kiverstein J. Metastable attunement and real-life skilled behavior. SYNTHESE 2021; 199:12819-12842. [PMID: 35058661 PMCID: PMC8727410 DOI: 10.1007/s11229-021-03355-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/04/2021] [Indexed: 06/01/2023]
Abstract
In everyday situations, and particularly in some sport and working contexts, humans face an inherently unpredictable and uncertain environment. All sorts of unpredictable and unexpected things happen but typically people are able to skillfully adapt. In this paper, we address two key questions in cognitive science. First, how is an agent able to bring its previously learned skill to bear on a novel situation? Second, how can an agent be both sensitive to the particularity of a given situation, while remaining flexibly poised for many other possibilities for action? We will argue that both the sensitivity to novel situations and the sensitivity to a multiplicity of action possibilities are enabled by the property of skilled agency that we will call metastable attunement. We characterize a skilled agent's flexible interactions with a dynamically changing environment in terms of metastable dynamics in agent-environment systems. What we find in metastability is the realization of two competing tendencies: the tendency of the agent to express their intrinsic dynamics and the tendency to search for new possibilities. Metastably attuned agents are ready to engage with a multiplicity of affordances, allowing for a balance between stability and flexibility. On the one hand, agents are able to exploit affordances they are attuned to, while at the same time being ready to flexibly explore for other affordances. Metastable attunement allows agents to smoothly transition between these possible configurations so as to adapt their behaviour to what the particular situation requires. We go on to describe the role metastability plays in learning of new skills, and in skilful behaviour more generally. Finally, drawing upon work in art, architecture and sports science, we develop a number of perspectives on how to investigate metastable attunement in real life situations.
Collapse
Affiliation(s)
- Jelle Bruineberg
- Department of Psychiatry, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
- Department of Industrial Design – Atlas 7.130, Eindhoven University of Technology, PO 513, 5600 MB Eindhoven, The Netherlands
- Department of Philosophy, Macquarie University, Sydney, Australia
| | - Ludovic Seifert
- CETAPS Laboratory - EA 3832, Faculty of Sports Sciences, University of Rouen Normandy, Mont Saint Aignan, France
| | - Erik Rietveld
- Department of Psychiatry, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
- Department of Philosophy, University of Twente, Enschede, The Netherlands
| | - Julian Kiverstein
- Department of Psychiatry, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
40
|
Kelso JAS. The Haken-Kelso-Bunz (HKB) model: from matter to movement to mind. BIOLOGICAL CYBERNETICS 2021; 115:305-322. [PMID: 34406513 DOI: 10.1007/s00422-021-00890-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This article presents a brief retrospective on the Haken-Kelso-Bunz (HKB) model of certain dynamical properties of human movement. Though unanticipated, HKB introduced, and demonstrated the power of, a new vocabulary for understanding behavior, cognition and the brain, revealed through a visually compelling mathematical picture that accommodated highly reproducible experimental facts and predicted new ones. HKB stands as a harbinger of paradigm change in several scientific fields, the effects of which are still being felt. In particular, HKB constitutes the foundation of a mechanistic science of coordination called Coordination Dynamics that extends from matter to movement to mind, and beyond.
Collapse
Affiliation(s)
- J A Scott Kelso
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida, 33431, USA.
- Intelligent Systems Research Centre, Ulster University, Derry~Londonderry, BT48 7JL, Northern Ireland.
| |
Collapse
|
41
|
Vogel SE, De Smedt B. Developmental brain dynamics of numerical and arithmetic abilities. NPJ SCIENCE OF LEARNING 2021; 6:22. [PMID: 34301948 PMCID: PMC8302738 DOI: 10.1038/s41539-021-00099-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 06/24/2021] [Indexed: 05/07/2023]
Abstract
The development of numerical and arithmetic abilities constitutes a crucial cornerstone in our modern and educated societies. Difficulties to acquire these central skills can lead to severe consequences for an individual's well-being and nation's economy. In the present review, we describe our current broad understanding of the functional and structural brain organization that supports the development of numbers and arithmetic. The existing evidence points towards a complex interaction among multiple domain-specific (e.g., representation of quantities and number symbols) and domain-general (e.g., working memory, visual-spatial abilities) cognitive processes, as well as a dynamic integration of several brain regions into functional networks that support these processes. These networks are mainly, but not exclusively, located in regions of the frontal and parietal cortex, and the functional and structural dynamics of these networks differ as a function of age and performance level. Distinctive brain activation patterns have also been shown for children with dyscalculia, a specific learning disability in the domain of mathematics. Although our knowledge about the developmental brain dynamics of number and arithmetic has greatly improved over the past years, many questions about the interaction and the causal involvement of the abovementioned functional brain networks remain. This review provides a broad and critical overview of the known developmental processes and what is yet to be discovered.
Collapse
Affiliation(s)
- Stephan E Vogel
- Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria.
| | - Bert De Smedt
- Faculty of Psychology and Educational Sciences, KU Leuven, University of Leuven, Leuven, Belgium
| |
Collapse
|
42
|
Shen Q, Liu Z. Remote firing propagation in the neural network of C. elegans. Phys Rev E 2021; 103:052414. [PMID: 34134291 DOI: 10.1103/physreve.103.052414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/10/2021] [Indexed: 11/07/2022]
Abstract
Understanding the mechanisms of firing propagation in brain networks has been a long-standing problem in the fields of nonlinear dynamics and network science. In general, it is believed that a specific firing in a brain network may be gradually propagated from a source node to its neighbors and then to the neighbors' neighbors and so on. Here, we explore firing propagation in the neural network of Caenorhabditis elegans and surprisingly find an abnormal phenomenon, i.e., remote firing propagation between two distant and indirectly connected nodes with the intermediate nodes being inactivated. This finding is robust to source nodes but depends on the topology of network such as the unidirectional couplings and heterogeneity of network. Further, a brief theoretical analysis is provided to explain its mechanism and a principle for remote firing propagation is figured out. This finding provides insights for us to understand how those cognitive subnetworks emerge in a brain network.
Collapse
Affiliation(s)
- Qiwei Shen
- School of Physics and Electronic Science, East China Normal University, Shanghai 200062, People's Republic of China
| | - Zonghua Liu
- School of Physics and Electronic Science, East China Normal University, Shanghai 200062, People's Republic of China
| |
Collapse
|
43
|
Abstract
AbstractThis paper explores current developments in evolutionary and bio-inspired approaches to autonomous robotics, concentrating on research from our group at the University of Sussex. These developments are discussed in the context of advances in the wider fields of adaptive and evolutionary approaches to AI and robotics, focusing on the exploitation of embodied dynamics to create behaviour. Four case studies highlight various aspects of such exploitation. The first exploits the dynamical properties of a physical electronic substrate, demonstrating for the first time how component-level analog electronic circuits can be evolved directly in hardware to act as robot controllers. The second develops novel, effective and highly parsimonious navigation methods inspired by the way insects exploit the embodied dynamics of innate behaviours. Combining biological experiments with robotic modeling, it is shown how rapid route learning can be achieved with the aid of navigation-specific visual information that is provided and exploited by the innate behaviours. The third study focuses on the exploitation of neuromechanical chaos in the generation of robust motor behaviours. It is demonstrated how chaotic dynamics can be exploited to power a goal-driven search for desired motor behaviours in embodied systems using a particular control architecture based around neural oscillators. The dynamics are shown to be chaotic at all levels in the system, from the neural to the embodied mechanical. The final study explores the exploitation of the dynamics of brain-body-environment interactions for efficient, agile flapping winged flight. It is shown how a multi-objective evolutionary algorithm can be used to evolved dynamical neural controllers for a simulated flapping wing robot with feathered wings. Results demonstrate robust, stable, agile flight is achieved in the face of random wind gusts by exploiting complex asymmetric dynamics partly enabled by continually changing wing and tail morphologies.
Collapse
|
44
|
Yin D, Kaiser M. Understanding neural flexibility from a multifaceted definition. Neuroimage 2021; 235:118027. [PMID: 33836274 DOI: 10.1016/j.neuroimage.2021.118027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/19/2021] [Accepted: 03/27/2021] [Indexed: 11/19/2022] Open
Abstract
Flexibility is a hallmark of human intelligence. Emerging studies have proposed several flexibility measurements at the level of individual regions, to produce a brain map of neural flexibility. However, flexibility is usually inferred from separate components of brain activity (i.e., intrinsic/task-evoked), and different definitions are used. Moreover, recent studies have argued that neural processing may be more than a task-driven and intrinsic dichotomy. Therefore, the understanding to neural flexibility is still incomplete. To address this issue, we propose a multifaceted definition of neural flexibility according to three key features: broad cognitive engagement, distributed connectivity, and adaptive connectome dynamics. For these three features, we first review the advances in computational approaches, their functional relevance, and their potential pitfalls. We then suggest a set of metrics that can help us assign a flexibility rating to each region. Subsequently, we present an emergent probabilistic view for further understanding the functional operation of individual regions in the unified framework of intrinsic and task-driven states. Finally, we highlight several areas related to the multifaceted definition of neural flexibility for future research. This review not only strengthens our understanding of flexible human brain, but also suggests that the measure of neural flexibility could bridge the gap between understanding intrinsic and task-driven brain function dynamics.
Collapse
Affiliation(s)
- Dazhi Yin
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China.
| | - Marcus Kaiser
- School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK; School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
45
|
Zanesco AP, Skwara AC, King BG, Powers C, Wineberg K, Saron CD. Meditation training modulates brain electric microstates and felt states of awareness. Hum Brain Mapp 2021; 42:3228-3252. [PMID: 33783922 PMCID: PMC8193519 DOI: 10.1002/hbm.25430] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/24/2021] [Accepted: 03/15/2021] [Indexed: 12/27/2022] Open
Abstract
Meditation practice is believed to foster states of mindful awareness and mental quiescence in everyday life. If so, then the cultivation of these qualities with training ought to leave its imprint on the activity of intrinsic functional brain networks. In an intensive longitudinal study, we investigated associations between meditation practitioners' experiences of felt mindful awareness and changes in the spontaneous electrophysiological dynamics of functional brain networks. Experienced meditators were randomly assigned to complete 3 months of full‐time training in focused‐attention meditation (during an initial intervention) or to serve as waiting‐list controls and receive training second (during a later intervention). We collected broadband electroencephalogram (EEG) during rest at the beginning, middle, and end of the two training periods. Using a data‐driven approach, we segmented the EEG into a time series of transient microstate intervals based on clustering of topographic voltage patterns. Participants also provided daily reports of felt mindful awareness and mental quiescence, and reported daily on four experiential qualities of their meditation practice during training. We found that meditation training led to increases in mindful qualities of awareness, which corroborate contemplative accounts of deepening mental calm and attentional focus. We also observed reductions in the strength and duration of EEG microstates across both interventions. Importantly, changes in the dynamic sequencing of microstates were associated with daily increases in felt attentiveness and serenity during training. Our results connect shifts in subjective qualities of meditative experience with the large‐scale dynamics of whole brain functional EEG networks at rest.
Collapse
Affiliation(s)
| | - Alea C Skwara
- Department of Psychology, University of California, Davis, California, USA.,Center for Mind and Brain, University of California, Davis, California, USA
| | - Brandon G King
- Center for Mind and Brain, University of California, Davis, California, USA
| | - Chivon Powers
- Center for Mind and Brain, University of California, Davis, California, USA
| | - Kezia Wineberg
- Center for Mind and Brain, University of California, Davis, California, USA
| | - Clifford D Saron
- Center for Mind and Brain, University of California, Davis, California, USA.,The MIND Institute, University of California, Davis, California, USA
| |
Collapse
|
46
|
Rodriguez AR, Anderson ED, O'Neill KM, McEwan PP, Vigilante NF, Kwon M, Akum BF, Stawicki TM, Meaney DF, Firestein BL. Cytosolic PSD-95 interactor alters functional organization of neural circuits and AMPA receptor signaling independent of PSD-95 binding. Netw Neurosci 2021; 5:166-197. [PMID: 33688611 PMCID: PMC7935033 DOI: 10.1162/netn_a_00173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/26/2020] [Indexed: 11/04/2022] Open
Abstract
Cytosolic PSD-95 interactor (cypin) regulates many aspects of neuronal development and function, ranging from dendritogenesis to synaptic protein localization. While it is known that removal of postsynaptic density protein-95 (PSD-95) from the postsynaptic density decreases synaptic N-methyl-D-aspartate (NMDA) receptors and that cypin overexpression protects neurons from NMDA-induced toxicity, little is known about cypin's role in AMPA receptor clustering and function. Experimental work shows that cypin overexpression decreases PSD-95 levels in synaptosomes and the PSD, decreases PSD-95 clusters/μm2, and increases mEPSC frequency. Analysis of microelectrode array (MEA) data demonstrates that cypin or cypinΔPDZ overexpression increases sensitivity to CNQX (cyanquixaline) and AMPA receptor-mediated decreases in spike waveform properties. Network-level analysis of MEA data reveals that cypinΔPDZ overexpression causes networks to be resilient to CNQX-induced changes in local efficiency. Incorporating these findings into a computational model of a neural circuit demonstrates a role for AMPA receptors in cypin-promoted changes to networks and shows that cypin increases firing rate while changing network functional organization, suggesting cypin overexpression facilitates information relay but modifies how information is encoded among brain regions. Our data show that cypin promotes changes to AMPA receptor signaling independent of PSD-95 binding, shaping neural circuits and output to regions beyond the hippocampus.
Collapse
Affiliation(s)
- Ana R Rodriguez
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Erin D Anderson
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Kate M O'Neill
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Przemyslaw P McEwan
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | | | - Munjin Kwon
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Barbara F Akum
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Tamara M Stawicki
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - David F Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
47
|
Altered temporal, but intact spatial, features of transient network dynamics in psychosis. Mol Psychiatry 2021; 26:2493-2503. [PMID: 33462330 PMCID: PMC8286268 DOI: 10.1038/s41380-020-00983-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/09/2020] [Accepted: 12/02/2020] [Indexed: 01/03/2023]
Abstract
Contemporary models of psychosis suggest that a continuum of severity of psychotic symptoms exists, with subthreshold psychotic experiences (PEs) potentially reflecting some genetic and environmental risk factors shared with clinical psychosis. Thus, identifying abnormalities in brain activity that manifest across this continuum can shed new light on the pathophysiology of psychosis. Here, we investigated the moment-to-moment engagement of brain networks ("states") in individuals with schizophrenia (SCZ) and PEs and identified features of these states that are associated with psychosis-spectrum symptoms. Transient brain states were defined by clustering "single snapshots" of blood oxygen level-dependent images, based on spatial similarity of the images. We found that individuals with SCZ (n = 35) demonstrated reduced recruitment of three brain states compared to demographically matched healthy controls (n = 35). Of these three illness-related states, one specific state, involving primarily the visual and salience networks, also occurred at a lower rate in individuals with persistent PEs (n = 22), compared to demographically matched healthy youth (n = 22). Moreover, the occurrence rate of this marker brain state was negatively correlated with the severity of PEs (r = -0.26, p = 0.003, n = 130). In contrast, the spatial map of this state appeared to be unaffected in the SCZ or PE groups. Thus, reduced engagement of a brain state involving the visual and salience networks was demonstrated across the psychosis continuum, suggesting that early disruptions of perceptual and affective function may underlie some of the core symptoms of the illness.
Collapse
|
48
|
Dodel S, Tognoli E, Kelso JAS. Degeneracy and Complexity in Neuro-Behavioral Correlates of Team Coordination. Front Hum Neurosci 2020; 14:328. [PMID: 33132866 PMCID: PMC7513679 DOI: 10.3389/fnhum.2020.00328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022] Open
Abstract
Team coordination-members of a group acting together rather than performing specific actions individually-is essential for success in many real-world tasks such as military missions, sports, workplace, or school interactions. However, team coordination is highly variable, which is one reason why its underlying neural processes are largely unknown. Here we used dual electroencephalography (EEG) in dyads to study the neurobehavioral dynamics of team coordination in an ecologically valid task that places intensive demands on joint performance. We present a novel conceptual framework to interpret neurobehavioral variability in terms of degeneracy, a fundamental property of complex biological systems said to enhance flexibility and robustness. We characterize degeneracy conceptually in terms of a manifold representing the geometric locus of the dynamics in the high dimensional state-space of neurobehavioral signals. The geometry and dimensionality of the manifold are determined by task constraints and team coordination requirements which restrict the manifold to trajectories that are conducive to successful task performance. Our results indicate that team coordination is associated with dimensionality reduction of the manifold as evident in increased inter-brain phase coherence of beta and gamma rhythms during critical phases of task performance where subjects exchange information. Team coordination was also found to affect the shape of the manifold manifested as a symmetry breaking of centro-parietal wavelet power patterns across subjects in trials with high team coordination. These results open a conceptual and empirical path to identifying the mechanisms underlying team performance in complex tasks.
Collapse
Affiliation(s)
- Silke Dodel
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, United States
| | - Emmanuelle Tognoli
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, United States
| | - J. A. Scott Kelso
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, United States
- Intelligent Systems Research Centre, University of Ulster, Derry∼Londonderry, United Kingdom
| |
Collapse
|
49
|
Le TM, Huang AS, O'Rawe J, Leung HC. Functional neural network configuration in late childhood varies by age and cognitive state. Dev Cogn Neurosci 2020; 45:100862. [PMID: 32920279 PMCID: PMC7494462 DOI: 10.1016/j.dcn.2020.100862] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 07/31/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
fMRI data from 60 children aged 9–12 during resting and tasks involving decision making, visual perception, and working memory were examined. At rest, the child brain exhibited network organization similar to adults though the degree of similarity was age- and network-dependent. During tasks, brain network configurations showed task-induced and age-related changes in integration. Frontoparietal network showed flexible connectivity pattern across states while networks for sensory and motor processing remained stable. Findings demonstrate that network connectivity characteristics may serve as markers for neural and cognitive maturation.
Late childhood and early adolescence is characterized by substantial brain maturation which contributes to both adult-like and age-dependent resting-state network connectivity patterns. However, it remains unclear whether these functional network characteristics in children are subject to differential modulation by distinct cognitive demands as previously found in adults. We conducted network analyses on fMRI data from 60 children (aged 9–12) during resting and during three distinct tasks involving decision making, visual perception, and spatial working memory. Graph measures of network architecture, functional integration, and flexibility were calculated for each of the four states. During resting state, the children’s network architecture was similar to that in young adults (N = 60, aged 20–23) but the degree of similarity was age- and network-dependent. During the task states, the children's whole-brain network exhibited enhanced integration in response to increased cognitive demand. Additionally, the frontoparietal network showed flexibility in connectivity patterns across states while networks implicated in motor and visual processing remained relatively stable. Exploratory analyses suggest different relationships between behavioral performance and connectivity profiles for the working memory and perceptual tasks. Together, our findings demonstrate state- and age-dependent features in functional network connectivity during late childhood, potentially providing markers for brain and cognitive development.
Collapse
Affiliation(s)
- Thang M Le
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA.
| | - Anna S Huang
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | - Jonathan O'Rawe
- Department of Psychology, Integrative Neuroscience Program, Stony Brook University, Stony Brook, NY 11790, USA
| | - Hoi-Chung Leung
- Department of Psychology, Integrative Neuroscience Program, Stony Brook University, Stony Brook, NY 11790, USA.
| |
Collapse
|
50
|
Garcia JO, Ashourvan A, Thurman SM, Srinivasan R, Bassett DS, Vettel JM. Reconfigurations within resonating communities of brain regions following TMS reveal different scales of processing. Netw Neurosci 2020; 4:611-636. [PMID: 32885118 PMCID: PMC7462427 DOI: 10.1162/netn_a_00139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/23/2020] [Indexed: 11/23/2022] Open
Abstract
An overarching goal of neuroscience research is to understand how heterogeneous neuronal ensembles cohere into networks of coordinated activity to support cognition. To investigate how local activity harmonizes with global signals, we measured electroencephalography (EEG) while single pulses of transcranial magnetic stimulation (TMS) perturbed occipital and parietal cortices. We estimate the rapid network reconfigurations in dynamic network communities within specific frequency bands of the EEG, and characterize two distinct features of network reconfiguration, flexibility and allegiance, among spatially distributed neural sources following TMS. Using distance from the stimulation site to infer local and global effects, we find that alpha activity (8–12 Hz) reflects concurrent local and global effects on network dynamics. Pairwise allegiance of brain regions to communities on average increased near the stimulation site, whereas TMS-induced changes to flexibility were generally invariant to distance and stimulation site. In contrast, communities within the beta (13–20 Hz) band demonstrated a high level of spatial specificity, particularly within a cluster comprising paracentral areas. Together, these results suggest that focal magnetic neurostimulation to distinct cortical sites can help identify both local and global effects on brain network dynamics, and highlight fundamental differences in the manifestation of network reconfigurations within alpha and beta frequency bands. TMS may be used to probe the causal link between local regional activity and global brain dynamics. Using simultaneous TMS-EEG and dynamic community detection, we introduce what we call “resonating communities” or frequency band-specific clusters in the brain, as a way to index local and global processing. These resonating communities within the alpha and beta bands display both global (or integrating) behavior and local specificity, highlighting fundamental differences in the manifestation of network reconfigurations.
Collapse
Affiliation(s)
- Javier O Garcia
- U.S. Army CCDC Army Research Laboratory, Aberdeen Proving Ground, MD, USA
| | - Arian Ashourvan
- U.S. Army CCDC Army Research Laboratory, Aberdeen Proving Ground, MD, USA
| | - Steven M Thurman
- U.S. Army CCDC Army Research Laboratory, Aberdeen Proving Ground, MD, USA
| | - Ramesh Srinivasan
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
| | - Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean M Vettel
- U.S. Army CCDC Army Research Laboratory, Aberdeen Proving Ground, MD, USA
| |
Collapse
|