1
|
Lee DH, Yoo HB, Hong KS, Park SR, Jeong S, Yang I. Development of gene-in-plasmid DNA reference materials certified by single-molecule counting. Anal Bioanal Chem 2025; 417:2489-2501. [PMID: 39648227 PMCID: PMC12003533 DOI: 10.1007/s00216-024-05675-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 12/10/2024]
Abstract
The mole, the SI unit for measuring the amount of a substance, was redefined as a fixed number of entities. This definition enables straightforward quantification of substances by counting individual entities. Counting proves particularly effective for quantifying large and discrete biological entities such as DNA, proteins, viruses, and cells, which are challenging to quantify via traditional physical or chemical methods. In this study, we detail our approach to develop gene reference materials certified through single-molecule counting, which enables mole-traceable measurements. We quantified three plasmid DNA constructs, each carrying a specific gene of interest, via single-molecule counting. The resulting values were cross-validated via digital PCR and LC‒MS. Sequence impurities in the certified reference materials were quantified via single-molecule real-time sequencing, whereas fragment impurities were quantified via two-color digital PCR analysis. We precisely accounted for various sources of uncertainty, including measurement precision, weighing, homogeneity, and impurities, when estimating the total uncertainty of the reference materials. In conclusion, a practical format for gene-based DNA reference materials, a measurement method to achieve metrological traceability, and methods for quantifying fragments and sequence impurities were developed and implemented in this study. We anticipate that our gene-based DNA reference materials will serve as valuable higher-order standards for the calibration of other methods or reference materials for DNA quantification in a variety of bioanalytical applications.
Collapse
Affiliation(s)
- Da-Hye Lee
- Bio-Metrology Group, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
- Department of Precision Measurement, University of Science and Technology, Daejeon, Republic of Korea
| | - Hee-Bong Yoo
- Bio-Metrology Group, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Kee-Suk Hong
- Quantum Optics Group, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Sang-Ryoul Park
- Bio-Metrology Group, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | | | - Inchul Yang
- Bio-Metrology Group, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea.
| |
Collapse
|
2
|
Aizpurua O, Dunn RR, Hansen LH, Gilbert MTP, Alberdi A. Field and laboratory guidelines for reliable bioinformatic and statistical analysis of bacterial shotgun metagenomic data. Crit Rev Biotechnol 2024; 44:1164-1182. [PMID: 37731336 DOI: 10.1080/07388551.2023.2254933] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/22/2023] [Accepted: 06/27/2023] [Indexed: 09/22/2023]
Abstract
Shotgun metagenomics is an increasingly cost-effective approach for profiling environmental and host-associated microbial communities. However, due to the complexity of both microbiomes and the molecular techniques required to analyze them, the reliability and representativeness of the results are contingent upon the field, laboratory, and bioinformatic procedures employed. Here, we consider 15 field and laboratory issues that critically impact downstream bioinformatic and statistical data processing, as well as result interpretation, in bacterial shotgun metagenomic studies. The issues we consider encompass intrinsic properties of samples, study design, and laboratory-processing strategies. We identify the links of field and laboratory steps with downstream analytical procedures, explain the means for detecting potential pitfalls, and propose mitigation measures to overcome or minimize their impact in metagenomic studies. We anticipate that our guidelines will assist data scientists in appropriately processing and interpreting their data, while aiding field and laboratory researchers to implement strategies for improving the quality of the generated results.
Collapse
Affiliation(s)
- Ostaizka Aizpurua
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Lars H Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - M T P Gilbert
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- University Museum, NTNU, Trondheim, Norway
| | - Antton Alberdi
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Nalbantoglu D, Preuss JM, Vettorazzi S. Glucocorticoid Receptor-Dependent Binding Analysis Using Chromatin Immunoprecipitation and Quantitative Polymerase Chain Reaction. Methods Mol Biol 2024; 2846:17-34. [PMID: 39141227 DOI: 10.1007/978-1-0716-4071-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
ChIP-qPCR offers the opportunity to identify interactions of DNA-binding proteins such as transcription factors and their respective DNA binding sites. Thereby, transcription factors can interfere with gene expression, resulting in up- or downregulation of their target genes. Utilizing ChIP, it is possible to identify specific DNA binding sites that are bound by the DNA-binding proteins in dependence on treatment or prevailing conditions. During ChIP, DNA-binding proteins are reversibly cross-linked to their DNA binding sites and the DNA itself is fragmented. Using bead-captured antibodies, the target proteins are isolated while still binding their respective DNA response element. Using quantitative PCR, these DNA fragments are amplified and quantified. In this protocol, DNA binding sites of the glucocorticoid receptor are identified by treatment with the synthetic glucocorticoid Dexamethasone in murine bone marrow-derived macrophages.
Collapse
Affiliation(s)
- Denis Nalbantoglu
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany.
| | - Jonathan M Preuss
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany.
| |
Collapse
|
4
|
Redcenko O, Tumova M, Draber P. Simplified PCR-Based Quantification of Proteins with DNA Aptamers and Methylcellulose as a Blocking Agent. Int J Mol Sci 2023; 25:347. [PMID: 38203527 PMCID: PMC10779054 DOI: 10.3390/ijms25010347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Due to their unique three-dimensional structure, DNA or RNA oligonucleotide aptamers bind to various molecules with high affinity and specificity. Aptamers, alone or in combination with antibodies, can be used to sensitively quantify target molecules by quantitative real-time polymerase chain reaction (qPCR). However, the assays are often complicated and unreliable. In this study, we explored the feasibility of performing the entire assay on wells of routinely used polypropylene PCR plates. We found that polypropylene wells efficiently bind proteins. This allows the entire assay to be run in a single well. To minimize nonspecific binding of the assay components to the polypropylene wells, we tested various blocking agents and identified methylcellulose as an effective alternative to the commonly used BSA. Methylcellulose not only demonstrates comparable or superior blocking capabilities but also offers the advantage of a well-defined composition and non-animal origin. Our findings support the utilization of aptamers, either alone or in combination with antibodies, for sensitive quantification of selected molecules immobilized in polypropylene PCR wells in a streamlined one-well qPCR assay under well-defined conditions.
Collapse
Affiliation(s)
| | | | - Petr Draber
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (O.R.); (M.T.)
| |
Collapse
|
5
|
Back to Basics: A Simplified Improvement to Multiple Displacement Amplification for Microbial Single-Cell Genomics. Int J Mol Sci 2023; 24:ijms24054270. [PMID: 36901710 PMCID: PMC10002425 DOI: 10.3390/ijms24054270] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/23/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Microbial single-cell genomics (SCG) provides access to the genomes of rare and uncultured microorganisms and is a complementary method to metagenomics. Due to the femtogram-levels of DNA in a single microbial cell, sequencing the genome requires whole genome amplification (WGA) as a preliminary step. However, the most common WGA method, multiple displacement amplification (MDA), is known to be costly and biased against specific genomic regions, preventing high-throughput applications and resulting in uneven genome coverage. Thus, obtaining high-quality genomes from many taxa, especially minority members of microbial communities, becomes difficult. Here, we present a volume reduction approach that significantly reduces costs while improving genome coverage and uniformity of DNA amplification products in standard 384-well plates. Our results demonstrate that further volume reduction in specialized and complex setups (e.g., microfluidic chips) is likely unnecessary to obtain higher-quality microbial genomes. This volume reduction method makes SCG more feasible for future studies, thus helping to broaden our knowledge on the diversity and function of understudied and uncharacterized microorganisms in the environment.
Collapse
|
6
|
Nuccio EE, Blazewicz SJ, Lafler M, Campbell AN, Kakouridis A, Kimbrel JA, Wollard J, Vyshenska D, Riley R, Tomatsu A, Hestrin R, Malmstrom RR, Firestone M, Pett-Ridge J. HT-SIP: a semi-automated stable isotope probing pipeline identifies cross-kingdom interactions in the hyphosphere of arbuscular mycorrhizal fungi. MICROBIOME 2022; 10:199. [PMID: 36434737 PMCID: PMC9700909 DOI: 10.1186/s40168-022-01391-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Linking the identity of wild microbes with their ecophysiological traits and environmental functions is a key ambition for microbial ecologists. Of many techniques that strive for this goal, Stable-isotope probing-SIP-remains among the most comprehensive for studying whole microbial communities in situ. In DNA-SIP, actively growing microorganisms that take up an isotopically heavy substrate build heavier DNA, which can be partitioned by density into multiple fractions and sequenced. However, SIP is relatively low throughput and requires significant hands-on labor. We designed and tested a semi-automated, high-throughput SIP (HT-SIP) pipeline to support well-replicated, temporally resolved amplicon and metagenomics experiments. We applied this pipeline to a soil microhabitat with significant ecological importance-the hyphosphere zone surrounding arbuscular mycorrhizal fungal (AMF) hyphae. AMF form symbiotic relationships with most plant species and play key roles in terrestrial nutrient and carbon cycling. RESULTS Our HT-SIP pipeline for fractionation, cleanup, and nucleic acid quantification of density gradients requires one-sixth of the hands-on labor compared to manual SIP and allows 16 samples to be processed simultaneously. Automated density fractionation increased the reproducibility of SIP gradients compared to manual fractionation, and we show adding a non-ionic detergent to the gradient buffer improved SIP DNA recovery. We applied HT-SIP to 13C-AMF hyphosphere DNA from a 13CO2 plant labeling study and created metagenome-assembled genomes (MAGs) using high-resolution SIP metagenomics (14 metagenomes per gradient). SIP confirmed the AMF Rhizophagus intraradices and associated MAGs were highly enriched (10-33 atom% 13C), even though the soils' overall enrichment was low (1.8 atom% 13C). We assembled 212 13C-hyphosphere MAGs; the hyphosphere taxa that assimilated the most AMF-derived 13C were from the phyla Myxococcota, Fibrobacterota, Verrucomicrobiota, and the ammonia-oxidizing archaeon genus Nitrososphaera. CONCLUSIONS Our semi-automated HT-SIP approach decreases operator time and improves reproducibility by targeting the most labor-intensive steps of SIP-fraction collection and cleanup. We illustrate this approach in a unique and understudied soil microhabitat-generating MAGs of actively growing microbes living in the AMF hyphosphere (without plant roots). The MAGs' phylogenetic composition and gene content suggest predation, decomposition, and ammonia oxidation may be key processes in hyphosphere nutrient cycling. Video Abstract.
Collapse
Affiliation(s)
- Erin E. Nuccio
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Steven J. Blazewicz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Marissa Lafler
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Ashley N. Campbell
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Anne Kakouridis
- Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
- Department of Environmental Science Policy and Management, University of California, Berkeley, CA USA
| | - Jeffrey A. Kimbrel
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Jessica Wollard
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | | | | | | | - Rachel Hestrin
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA USA
| | | | - Mary Firestone
- Department of Environmental Science Policy and Management, University of California, Berkeley, CA USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
- Life & Environmental Sciences Department, University of California Merced, Merced, CA USA
| |
Collapse
|
7
|
Eitzmann DR, Anderson JL. Evaluating commercial thermoplastic materials in fused deposition modeling 3D printing for their compatibility with DNA storage and analysis by quantitative polymerase chain reaction. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2682-2688. [PMID: 35766132 DOI: 10.1039/d2ay00772j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nucleic acids are ubiquitous in biological samples and can be sensitively detected using nucleic acid amplification assays. To achieve highly accurate and reliable results, nucleic acid isolation and purification is often required and can limit the accessibility of these assays. Encapsulation of these workflows onto a single device may be achieved through fabrication methodologies featuring commercial three-dimensional (3D) printers. This study aims to characterize fused deposition modeling (FDM) filaments based on their compatibility with nucleic acid storage using quantitative polymerase chain reaction (qPCR). To study the adsorption of nucleic acids, storage vessels were fabricated using six common thermoplastics including: polylactic acid (PLA), nylon, acrylonitrile butadiene styrene (ABS), co-polyester (CPE), polycarbonate (PC), and polypropylene (PP). DNA adsorption of a short 98 base pair and a longer 830 base pair fragment to the walls of the vessel was shown to vary significantly among the polymer materials as well as the color varieties of the same polymer. PLA storage vessels were found to adsorb the least amount of the 98 base pair DNA after 12 hours of storage in 2.5 M NaCl TE buffer whereas the ABS and PC vessels adsorbed up to 97.2 ± 0.2% and 97.5 ± 0.2%. DNA adsorption could be reduced by decreasing the layer height of the 3D printed object, thereby increasing the functionality of the ABS storage vessel. Nylon was found to desorb qPCR inhibiting components into the stored solution which led to erroneous DNA quantification data from qPCR analysis.
Collapse
Affiliation(s)
- Derek R Eitzmann
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
| | - Jared L Anderson
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
| |
Collapse
|
8
|
Canh VD, Liu M, Sangsanont J, Katayama H. Capsid integrity detection of pathogenic viruses in waters: Recent progress and potential future applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154258. [PMID: 35248642 DOI: 10.1016/j.scitotenv.2022.154258] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/26/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Waterborne diseases caused by pathogenic human viruses are a major public health concern. To control the potential risk of viral infection through contaminated waters, a rapid, reliable tool to assess the infectivity of pathogenic viruses is required. Recently, an advanced approach (i.e., capsid integrity (RT-)qPCR) was developed to discriminate intact viruses (potentially infectious) from inactivated viruses. In this approach, samples were pretreated with capsid integrity reagents (e.g., monoazide dyes or metal compounds) before (RT -)qPCR. These reagents can only penetrate inactivated viruses with compromised capsids to bind to viral genomes and prevent their amplification, but they cannot enter viruses with intact capsids. Therefore, only viral genomes of intact viruses were amplified or detected by (RT-)qPCR after capsid integrity treatment. In this study, we reviewed recent progress in the development and application of capsid integrity (RT-)qPCR to assess the potential infectivity of viruses (including non-enveloped and enveloped viruses with different genome structures [RNA and DNA]) in water. The efficiency of capsid integrity (RT-)qPCR has been shown to depend on various factors, such as conditions of integrity reagent treatment, types of viruses, environmental matrices, and the capsid structure of viruses after disinfection treatments (e.g., UV, heat, and chlorine). For the application of capsid integrity (RT-)qPCR in real-world samples, the use of suitable virus concentration methods and process controls is important to control the efficiency of capsid integrity (RT-)qPCR. In addition, potential future applications of capsid integrity (RT-)qPCR for determining the mechanism of disinfection treatment on viral structure (e.g., capsid or genome) and a combination of capsid integrity treatment and next-generation sequencing (NGS) (capsid integrity NGS) for monitoring the community of intact pathogenic viruses in water are also discussed. This review provides essential information on the application of capsid integrity (RT-)qPCR as an efficient tool for monitoring the presence of pathogenic viruses with intact capsids in water.
Collapse
Affiliation(s)
- Vu Duc Canh
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Miaomiao Liu
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jatuwat Sangsanont
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Water Science and Technology for Sustainable Environmental Research Group, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hiroyuki Katayama
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
9
|
Chakraborty S, Luchena C, Elton JJ, Schilling MP, Reischl M, Roux M, Levkin PA, Popova AA. "Cells-to-cDNA on Chip": Phenotypic Assessment and Gene Expression Analysis from Live Cells in Nanoliter Volumes Using Droplet Microarrays. Adv Healthc Mater 2022; 11:e2102493. [PMID: 35285171 PMCID: PMC11469226 DOI: 10.1002/adhm.202102493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/08/2022] [Indexed: 11/11/2022]
Abstract
In vitro cell-based experiments are particularly important in fundamental biological research. Microscopy-based readouts to identify cellular changes in response to various stimuli are a popular choice, but gene expression analysis is essential to delineate the underlying molecular dynamics in cells. However, cell-based experiments often suffer from interexperimental variation, especially while using different readout methods. Therefore, establishment of platforms that allow for cell screening, along with parallel investigations of morphological features, as well as gene expression levels, is crucial. The droplet microarray (DMA) platform enables cell screening in hundreds of nanoliter droplets. In this study, a "Cells-to-cDNA on Chip" method is developed enabling on-chip mRNA isolation from live cells and conversion to cDNA in individual droplets of 200 nL. This novel method works efficiently to obtain cDNA from different cell numbers, down to single cell per droplet. This is the first established miniaturized on-chip strategy that enables the entire course of cell screening, phenotypic microscopy-based assessments along with mRNA isolation and its conversion to cDNA for gene expression analysis by real-time PCR on an open DMA platform. The principle demonstrated in this study sets a beginning for myriad of possible applications to obtain detailed information about the molecular dynamics in cultured cells.
Collapse
Affiliation(s)
- Shraddha Chakraborty
- Institute of Biological and Chemical Systems‐Functional Molecular SystemsKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Charlotte Luchena
- Institute of Biological and Chemical Systems‐Functional Molecular SystemsKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Jonathan J. Elton
- Institute of Biological and Chemical Systems‐Functional Molecular SystemsKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Marcel P. Schilling
- Institute for Automation and Applied InformaticsKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Markus Reischl
- Institute for Automation and Applied InformaticsKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Margaux Roux
- Cellenion SASUBioserra 2, 60 avenue RockefellerLyon69008France
| | - Pavel A. Levkin
- Institute of Biological and Chemical Systems‐Functional Molecular SystemsKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
- Institute of Organic ChemistryKarlsruhe Institute of TechnologyFritz‐Haber Weg 6Karlsruhe76131Germany
| | - Anna A. Popova
- Institute of Biological and Chemical Systems‐Functional Molecular SystemsKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| |
Collapse
|
10
|
Geraci-Yee S, Allam B, Collier JL. Keeping up with advances in qPCR pathogen detection: an example for QPX disease in hard clams. DISEASES OF AQUATIC ORGANISMS 2022; 148:127-144. [PMID: 35356896 DOI: 10.3354/dao03648] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With marine diseases on the rise and increased reliance on molecular tools for disease surveillance, validated pathogen detection capabilities are important for effective management, mitigation, and response to disease outbreaks. At the same time, in an era of continual evolution and advancement of molecular tools for pathogen detection, it is critical to regularly reassess previously established assays to incorporate improvements of common practices and procedures, such as the minimum information for publication of quantitative real-time PCR experiments (MIQE) guidelines. Here, we reassessed, re-optimized, and improved the quantitative PCR (qPCR) assay routinely used for Quahog Parasite Unknown (QPX) disease monitoring. We made 19 significant changes to the qPCR assay, including improvements to PCR amplification efficiency, DNA extraction efficiency, inhibition testing, incorporation of linearized standards for absolute quantification, an inter-plate calibration technique, and improved conversion from copy number to number of cells. These changes made the assay a more effective and efficient tool for disease monitoring and pathogen detection, with an improved linear relationship with histopathology compared to the previous version of the assay. To support the wide adoption of validated qPCR assays for marine pathogens, we provide a simple workflow that can be applied to the development of new assays, re-optimization of old or suboptimal assays, or assay validation after changes to the protocol and a MIQE-compliant checklist that should accompany any published qPCR diagnostic assay to increase experimental transparency and reproducibility amongst laboratories.
Collapse
Affiliation(s)
- Sabrina Geraci-Yee
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, USA
| | | | | |
Collapse
|
11
|
Emaus MN, Cagliero C, Gostel MR, Johnson G, Anderson JL. Simple and efficient isolation of plant genomic DNA using magnetic ionic liquids. PLANT METHODS 2022; 18:37. [PMID: 35321738 PMCID: PMC8943943 DOI: 10.1186/s13007-022-00860-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/17/2022] [Indexed: 06/13/2023]
Abstract
BACKGROUND Plant DNA isolation and purification is a time-consuming and laborious process relative to epithelial and viral DNA sample preparation due to the cell wall. The lysis of plant cells to free intracellular DNA normally requires high temperatures, chemical surfactants, and mechanical separation of plant tissue prior to a DNA purification step. Traditional DNA purification methods also do not aid themselves towards fieldwork due to the numerous chemical and bulky equipment requirements. RESULTS In this study, intact plant tissue was coated by hydrophobic magnetic ionic liquids (MILs) and ionic liquids (ILs) and allowed to incubate under static conditions or dispersed in a suspension buffer to facilitate cell disruption and DNA extraction. The DNA-enriched MIL or IL was successfully integrated into the qPCR buffer without inhibiting the reaction. The two aforementioned advantages of ILs and MILs allow plant DNA sample preparation to occur in one minute or less without the aid of elevated temperatures or chemical surfactants that typically inhibit enzymatic amplification methods. MIL or IL-coated plant tissue could be successfully integrated into a qPCR assay without the need for custom enzymes or manual DNA isolation/purification steps that are required for conventional methods. CONCLUSIONS The limited amount of equipment, chemicals, and time required to disrupt plant cells while simultaneously extracting DNA using MILs makes the described procedure ideal for fieldwork and lab work in low resource environments.
Collapse
Affiliation(s)
- Miranda N. Emaus
- Department of Chemistry, Iowa State University, Ames, IA 50011 USA
| | - Cecilia Cagliero
- Dipartimento Di Scienza E Tecnologia del Farmaco, Università Degli Studi Di Torino, 10125 Turin, Italy
| | | | | | - Jared L. Anderson
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, IA 50011 USA
| |
Collapse
|
12
|
Zandieh M, Patel K, Liu J. Adsorption of Linear and Spherical DNA Oligonucleotides onto Microplastics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1915-1922. [PMID: 35094514 DOI: 10.1021/acs.langmuir.1c03190] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microplastic pollution of water and food chains can endanger human health. It has been reported that environmental DNA can be carried by microplastics and spread into the ecosystem. To better comprehend the interactions between microplastics and DNA, we herein investigated the adsorption of DNA oligonucleotides on a few important microplastics. The microplastics were prepared using common plastic objects made of polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), composite of PS/PVC, and polyethylene terephthalate (PET). The effect of environmentally abundant metal ions such as Na+, Mg2+, and Ca2+ on the adsorption was also studied. Among the microplastics, PET and PS had the highest efficiency for the adsorption of linear DNA, likely due to the interactions provided by their aromatic rings. The study of DNA desorption from PET revealed the important role of hydrogen bonding and metal-mediated adsorption, while van der Waals force and hydrophobic interactions were also involved in the adsorption mechanism. The adsorption of spherical DNA (SNA) made of a high density of DNA coated on gold nanoparticles (AuNPs) was also studied, where the adsorption affinity order was found to be PET > PS/PVC > PS. Moreover, a tighter DNA adsorption was achieved in the presence of Ca2+ and Mg2+ compared to Na+.
Collapse
Affiliation(s)
- Mohamad Zandieh
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo Waterloo, Ontario N2L 3G1, Canada
| | - Kshiti Patel
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
13
|
Muterko A. Selective precipitation of RNA with linear polyacrylamide. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2021; 41:61-76. [PMID: 34809521 DOI: 10.1080/15257770.2021.2007397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Selective precipitation of RNA is often used in molecular biology as one of the methods for separation of nucleic acids to obtain samples enriched with DNA or RNA molecules alone or for purification of RNA samples. In the present study a simple and fast approach for selective precipitation of RNA with linear polyacrylamide is proposed for the first time. The method is based on the different predispositions of the DNA and RNA molecules to bind with the polyacrylamide. In this process, the linear polyacrylamide is used as the flocculant, collecting RNA particles to form aggregate, which then precipitated at low alcohol concentration. During and after precipitation the temperature is adjusted to maintain high solubility of DNA and other contaminates at given pH, salt and alcohol concentrations on the one hand, and globular state of polyacrylamide, preventing solubility of the RNA-LPA aggregate, on the other hand. The precipitated RNA can be used directly for RT-qPCR assay. The principal advantage of the present approach is the fast and quantitative precipitation of most RNA species from very dilute solutions. This makes it possible to obtain both almost DNA-free RNA and RNA-free DNA samples in one process.Supplemental data for this article is available online at https://doi.org/10.1080/15257770.2021.2007397 .
Collapse
Affiliation(s)
- Alexandr Muterko
- Institute of Cytology and Genetics, Novosibirsk, Russian Federation
| |
Collapse
|
14
|
Wise NM, Wagner SJ, Worst TJ, Sprague JE, Oechsle CM. Comparison of swab types for collection and analysis of microorganisms. Microbiologyopen 2021; 10:e1244. [PMID: 34964289 PMCID: PMC8591448 DOI: 10.1002/mbo3.1244] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/27/2021] [Indexed: 12/02/2022] Open
Abstract
The human microbiome has begun to emerge as a potential forensic tool, with varied applications ranging from unique identification to investigative leads that link individuals and/or locations. The relative abundance of the combined DNA of the microbiome, compared to human nuclear DNA, may expand potential sources of biological evidence, especially in cases with transfer or low-copy number DNA samples. This work sought to determine the optimal swab type for the collection and analysis of microorganisms. A bacterium (Proteus mirabilis) was deposited by pipette onto four swab types (cotton, flocked, dental applicators, and dissolvable), and extraction and real-time PCR quantitation of the bacterial DNA were performed, which allowed for absolute microbial DNA recovery and comparison of yields across the four sampling substrates. Flocked swabs had the highest yield (~1240 ng) compared to the cotton swabs (~184 ng), dental applicators (~533 ng), and dissolvable swabs (~430 ng). The collection efficiency was further evaluated for cotton and flocked swabs using dried microbial samples spotted onto non-porous surfaces (treated wood, glass, plastic, and tile). Flocked swabs performed consistently better across wood, glass, and tile, but showed decreased recovery from plastic. The cotton swabs failed in the recovery of P. mirabilis DNA across all surfaces. Knowing the appropriate sampling substrate will be useful as others continue to investigate the use of the microbiome as a forensics tool.
Collapse
Affiliation(s)
- Natalie M. Wise
- Ohio Attorney General’s Center for The Future of Forensic ScienceBowling Green State UniversityBowling GreenOhioUSA
| | - Sarah J. Wagner
- Ohio Attorney General’s Center for The Future of Forensic ScienceBowling Green State UniversityBowling GreenOhioUSA
| | - Travis J. Worst
- Ohio Attorney General’s Center for The Future of Forensic ScienceBowling Green State UniversityBowling GreenOhioUSA
| | - Jon E. Sprague
- Ohio Attorney General’s Center for The Future of Forensic ScienceBowling Green State UniversityBowling GreenOhioUSA
| | - Crystal M. Oechsle
- Ohio Attorney General’s Center for The Future of Forensic ScienceBowling Green State UniversityBowling GreenOhioUSA
| |
Collapse
|
15
|
Greulich F, Mechtidou A, Horn T, Uhlenhaut NH. Protocol for using heterologous spike-ins to normalize for technical variation in chromatin immunoprecipitation. STAR Protoc 2021; 2:100609. [PMID: 34189474 PMCID: PMC8220248 DOI: 10.1016/j.xpro.2021.100609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Quantifying differential genome occupancy by chromatin immunoprecipitation (ChIP) remains challenging due to variation in chromatin fragmentation, immunoprecipitation efficiencies, and intertube variability. In this protocol, we add heterologous spike-ins from Drosophila chromatin as an internal control to the mice chromatin before immunoprecipitation to normalize for technical variation in ChIP-qPCR or ChIP-seq. The choice of spike-in depends on the evolutionary conservation of the protein of interest and the antibody used. For complete details on the use and execution of this protocol, please refer to Greulich et al. (2021).
Collapse
Affiliation(s)
- Franziska Greulich
- Metabolic Programming, School of Life Sciences Weihenstephan, ZIEL-Institute for Food & Health, Technische Universitaet Muenchen (TUM), 85354 Freising, Germany
| | - Aikaterini Mechtidou
- Institute for Diabetes and Obesity (IDO) & Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich (HMGU) and German Center for Diabetes Research (DZD), 85764 Neuherberg (Munich), Germany
| | - Teresa Horn
- Institute for Diabetes and Obesity (IDO) & Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich (HMGU) and German Center for Diabetes Research (DZD), 85764 Neuherberg (Munich), Germany
| | - Nina Henriette Uhlenhaut
- Metabolic Programming, School of Life Sciences Weihenstephan, ZIEL-Institute for Food & Health, Technische Universitaet Muenchen (TUM), 85354 Freising, Germany.,Institute for Diabetes and Obesity (IDO) & Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich (HMGU) and German Center for Diabetes Research (DZD), 85764 Neuherberg (Munich), Germany
| |
Collapse
|
16
|
Zhang H, Rombouts K, Raes L, Xiong R, De Smedt SC, Braeckmans K, Remaut K. Fluorescence-Based Quantification of Messenger RNA and Plasmid DNA Decay Kinetics in Extracellular Biological Fluids and Cell Extracts. ACTA ACUST UNITED AC 2020; 4:e2000057. [PMID: 32402121 DOI: 10.1002/adbi.202000057] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 02/26/2020] [Indexed: 12/22/2022]
Abstract
Extracellular and intracellular degradation of nucleic acids remains an issue in non-viral gene therapy. Understanding biodegradation is critical for the rational design of gene therapeutics in order to maintain stability and functionality at the target site. However, there are only limited methods available that allow determining the stability of genetic materials in biological environments. In this context, the decay kinetics of fluorescently labeled plasmid DNA (pDNA) and messenger RNA (mRNA) in undiluted biological samples (i.e., human serum, human ascites, bovine vitreous) and cell extracts is studied using fluorescence correlation spectroscopy (FCS) and single particle tracking (SPT). It is demonstrated that FCS is suitable to follow mRNA degradation, while SPT is better suited to investigate pDNA integrity. The half-life of mRNA and pDNA is ≈1-2 min and 1-4 h in biological samples, respectively. The resistance against biodegradation drastically improves by complexation with lipid-based carriers. Taken together, FCS and SPT are able to quantify the integrity of mRNA and pDNA, respectively, as a function of time, both in the extracellular biological fluids and cell extracts. This in turn allows to focus on the important but less understood issue of nucleic acids degradation in more detail and to rationally optimize gene delivery system as therapeutics.
Collapse
Affiliation(s)
- Heyang Zhang
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, 9000, Belgium
| | - Koen Rombouts
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, 9000, Belgium
| | - Laurens Raes
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, 9000, Belgium
| | - Ranhua Xiong
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, 9000, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, 9000, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, 9000, Belgium
| | - Katrien Remaut
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, 9000, Belgium
| |
Collapse
|
17
|
Dierig L, Schmidt M, Wiegand P. Looking for the pinpoint: Optimizing identification, recovery and DNA extraction of micro traces in forensic casework. Forensic Sci Int Genet 2020; 44:102191. [DOI: 10.1016/j.fsigen.2019.102191] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/08/2019] [Accepted: 10/17/2019] [Indexed: 12/17/2022]
|
18
|
Codony F, Dinh-Thanh M, Agustí G. Key Factors for Removing Bias in Viability PCR-Based Methods: A Review. Curr Microbiol 2019; 77:682-687. [DOI: 10.1007/s00284-019-01829-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/29/2019] [Indexed: 11/24/2022]
|
19
|
Selective hybridization and capture of KRAS DNA from plasma and blood using ion-tagged oligonucleotide probes coupled to magnetic ionic liquids. Anal Chim Acta 2019; 1094:1-10. [PMID: 31761034 DOI: 10.1016/j.aca.2019.10.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 12/22/2022]
Abstract
Detection of circulating tumor DNA (ctDNA) presents several challenges due to single-nucleotide polymorphisms and large amounts of background DNA. Previously, we reported a sequence-specific DNA extraction procedure utilizing functionalized oligonucleotides called ion-tagged oligonucleotides (ITOs) and disubstituted ion-tagged oligonucleotides (DTOs). ITOs and DTOs are capable of hybridizing to complementary DNA for subsequent capture by a magnetic ionic liquid (MIL) through hydrophobic interactions, π-π stacking, and fluorophilic interactions. However, the performance of the ITOs and DTOs in complex sample matrices has not yet been evaluated. In this study, we compare the amount of KRAS DNA extracted using ITO and DTOs from saline, 2-fold diluted plasma, 10-fold diluted plasma, and 10-fold diluted blood. We demonstrate that ITO/DTO-MIL extraction is capable of selectively preconcentrating DNA from diluted plasma and blood without additional sample preparation steps. In comparison, streptavidin-coated magnetic beads were unable to selectively extract DNA from 10-fold diluted plasma and 10-fold diluted blood without additional sample clean-up steps. Significantly more DNA could be extracted from 2-fold diluted plasma and 10-fold diluted blood matrices using the DTO probes compared to the ITO probes, likely due to stronger interactions between the probe and MIL. The ability of the DTO-MIL method to selectively preconcentrate small concentrations of DNA from complex biological matrices suggests that this method could be beneficial for ctDNA analysis.
Collapse
|
20
|
Samie L, Champod C, Glutz V, Garcia M, Castella V, Taroni F. The efficiency of DNA extraction kit and the efficiency of recovery techniques to release DNA using flow cytometry. Sci Justice 2019; 59:405-410. [PMID: 31256811 DOI: 10.1016/j.scijus.2019.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/22/2018] [Accepted: 02/17/2019] [Indexed: 10/27/2022]
Affiliation(s)
- Lydie Samie
- Faculty of Law, Criminal Justice and Public Administration, School of Criminal Justice, University of Lausanne, Switzerland.
| | - Christophe Champod
- Faculty of Law, Criminal Justice and Public Administration, School of Criminal Justice, University of Lausanne, Switzerland
| | - Valérie Glutz
- Plateforme technologique de cytométrie en flux, Ecole Polytechnique Fédérale de Lausanne, Switzerland
| | - Miguel Garcia
- Plateforme technologique de cytométrie en flux, Ecole Polytechnique Fédérale de Lausanne, Switzerland
| | - Vincent Castella
- Forensic Genetics Unit, University Center of Legal Medicine Lausanne and Geneva, Lausanne, Switzerland
| | - Franco Taroni
- Faculty of Law, Criminal Justice and Public Administration, School of Criminal Justice, University of Lausanne, Switzerland
| |
Collapse
|
21
|
Machado MC, Vimbela GV, Nilsson M, Dallaire S, Wu R, Tripathi A. Rapid electrophoretic recovery of DNA from dried blood spots. Electrophoresis 2019; 40:1812-1819. [PMID: 31095765 DOI: 10.1002/elps.201800363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 03/31/2019] [Accepted: 04/23/2019] [Indexed: 11/09/2022]
Abstract
Large-scale genetic screening of neonatal dried blood spots for episomal DNA has a great potential to lower patient mortality and morbidity through early diagnosis of primary immunodeficiencies. However, DNA extraction from the surface of dried blood spots remains one of the most time consuming, costly, and labor-intensive parts of DNA analysis. In the present study, we developed and optimized a rapid methodology using only 50 V and heat to extract episomal DNA from dried blood spots prepared from diagnostic cord blood samples. This electric field DNA extraction is the first methodology to use an electric field to extract episomal DNA from a dried blood spot. This 25-minute procedure has one of the lowest times for the extraction of episomal DNA found within the literature and this novel procedure not only negates the need for costly treatment and wash steps, but reduces the time of manual procedures by more than 30 min while retaining the 75-80% of the yield. Combined with real-time PCR, this novel method of electric field extraction not only provides an effective tool for the large scale genetic analysis of neonates, but a key step forward in the simplification and standardization of diagnostic testing.
Collapse
Affiliation(s)
- Mary C Machado
- Center for Biomedical Engineering, School of Engineering Brown University, Providence, RI
| | - Gina V Vimbela
- Center for Biomedical Engineering, School of Engineering Brown University, Providence, RI
| | | | | | - Rongcong Wu
- PerkinElmer, 940 Winter Street, Waltham, Massachusetts, USA
| | - Anubhav Tripathi
- Center for Biomedical Engineering, School of Engineering Brown University, Providence, RI
| |
Collapse
|
22
|
Lynch C, Fleming R. A review of direct polymerase chain reaction of DNA and RNA for forensic purposes. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/wfs2.1335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Courtney Lynch
- Forensic Research and Development Team, Institute of Environmental Science and Research Ltd Auckland New Zealand
- School of Chemical Sciences University of Auckland Auckland New Zealand
| | - Rachel Fleming
- Forensic Research and Development Team, Institute of Environmental Science and Research Ltd Auckland New Zealand
| |
Collapse
|
23
|
Maksimov P, Isaksson M, Schares G, Romig T, Conraths FJ. Validation of PCR-based protocols for the detection of Echinococcus multilocularis DNA in the final host using the Intestinal Scraping Technique as a reference. Food Waterborne Parasitol 2019; 15:e00044. [PMID: 32095616 PMCID: PMC7034050 DOI: 10.1016/j.fawpar.2019.e00044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 12/28/2022] Open
Abstract
Oral uptake of infectious Echinococcus multilocularis eggs shed by canids with their faeces may lead to development of alveolar echinococcosis in humans, which is clinically similar to a malignant infiltrative tumor and may be fatal if left untreated. E. multilocularis is therefore regarded as one of the most important and neglected metazoan parasites in the Northern hemisphere. The diagnosis of this tapeworm in the final host plays a key role in the epidemiology of E. multilocularis. The diagnostic performance of a magnetic-capture (MC) DNA extraction protocol in combination with a minor groove-binder real time PCR (MC-MGBqPCR) for the detection of E. multilocularis eggs was determined relative to a highly sensitive variant of the Intestinal Scraping Technique (IST) using faecal samples of foxes. In addition, we compared results obtained by MC-MGBqPCR with those of a previously validated protocol (QIAamp Fast DNA Stool Mini Kit (QT) combined with a TaqMan qPCR). Furthermore, a workflow using the NucleoMagVet DNA extraction kit (NM) in combination with MGBqPCR and TaqMan-qPCR was also included in the comparisons. To estimate the analytical sensitivity, phosphate-buffered saline and fox faecal samples were spiked with different numbers of eggs and tested in defined combinations of DNA extraction and PCR protocols. To assess the diagnostic sensitivity of the different workflows, samples were used that had been collected from the ampulla recti or the rectum of 120 foxes hunted in Brandenburg, Germany. The samples represented five IST categories formed according to the E. multilocularis worm burden of the foxes. For DNA extraction by MC or using two other commercial extraction kits, the supernatants obtained from 3 g of bead-beaten faecal samples were used. The extracted DNAs were then processed in the respective PCR protocols. The MC-MGBqPCR showed the highest diagnostic sensitivity (93%; 95% Confidence Interval (CI): 86–97%) relative to IST. The QT extraction protocol in combination with TaqMan-qPCR had the second highest sensitivity (89%; 95% CI: 80–94%), followed by NM with MGBqPCR (86%; 95% CI: 77–93%) in comparison to IST. The lowest diagnostic sensitivity was found for the NM combined with the TaqMan-qPCR protocol (72%; 95% CI: 62–82%). In conclusion, the MC-MGBqPCR seems to represent a suitable alternative to IST. However, applied to 3 g faecal samples, the less costly QT-TaqMan-qPCR workflow yielded a similar diagnostic sensitivity relative to IST. However, differences between these two workflows were not statistically significant. PCR based protocols can be used for the detection of E. multilocularis in faeces of final hosts after careful validation A DNA capture method seems to represent a suitable alternative to the Intestinal Scraping Technique The QT-TaqMan-qPCR workflow yielded also a similar diagnostic sensitivity relative to the Intestinal Scraping Technique None of the DNA extraction kits was able to remove faecal PCR inhibitors completely
Collapse
Affiliation(s)
- P Maksimov
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - M Isaksson
- Department of Virology Immunobiology and Parasitology, National Veterinary Institute, Uppsala, Sweden
| | - G Schares
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - T Romig
- FG Parasitologie 220B, Universität Hohenheim, 70593 Stuttgart, Germany
| | - F J Conraths
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
24
|
One-step DNA purification and amplification on an integrated plastic microdevice for on-site identification of foodborne pathogens. Anal Chim Acta 2018; 1040:63-73. [DOI: 10.1016/j.aca.2018.06.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/06/2018] [Accepted: 06/18/2018] [Indexed: 11/16/2022]
|
25
|
Fettke H, Kwan EM, Azad AA. Cell-free DNA in cancer: current insights. Cell Oncol (Dordr) 2018; 42:13-28. [PMID: 30367445 DOI: 10.1007/s13402-018-0413-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The field of liquid biopsies in oncology is rapidly expanding, with the application of cell-free circulating tumour DNA (ctDNA) showing promise in this era of precision medicine. Compared with traditional clinical and radiographic tumour monitoring methods, the analysis of ctDNA provides a minimally-invasive and technically feasible approach to assess temporal and spatial molecular evolutions of the tumour landscape. The constantly advancing technological platforms available for ctDNA extraction and analysis allow greater analytical sensitivities than ever before. The potential translational impact of ctDNA as a blood-based biomarker for the identification, characterization and monitoring of cancer has been demonstrated in numerous proof-of-concept studies, with ctDNA analysis beginning to be applied clinically across multiple facets of oncology. CONCLUSIONS In this review we discuss the biology, recent advancements, technical considerations and clinical implications of ctDNA in the context of cancer, and highlight important challenges and future directions for the integration of ctDNA into standardised patient care.
Collapse
Affiliation(s)
- Heidi Fettke
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia.
| | - Edmond M Kwan
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia.,Department of Medical Oncology, Monash Health, Melbourne, Australia
| | - Arun A Azad
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia.,Department of Medical Oncology, Monash Health, Melbourne, Australia
| |
Collapse
|
26
|
Varona M, Ding X, Clark KD, Anderson JL. Solid-Phase Microextraction of DNA from Mycobacteria in Artificial Sputum Samples To Enable Visual Detection Using Isothermal Amplification. Anal Chem 2018; 90:6922-6928. [PMID: 29757616 DOI: 10.1021/acs.analchem.8b01160] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Point-of-care (POC) technologies for the detection of pathogens in clinical samples are highly valued due to their speed, ease of use, and cost-effectiveness. Furthermore, they are ideally suited for resource-limited settings where expensive and sophisticated laboratory equipment may not be readily available. In this study, a rapid method based on solid-phase microextraction (SPME) of mycobacterial DNA with subsequent isothermal amplification and visual detection was developed. Direct coupling of the SPME desorption solution (1 M NaCl) to the isothermal reaction system was achieved to circumvent dilution steps and improve detection limits. Using this method, DNA was preconcentrated from lysed mycobacteria in just 2 min, subjected to isothermal multiple-self-matching-initiated amplification (IMSA), and the amplicons were detected visually. With a total analysis times of less than 2 h, the optimized method was capable of extracting and visually detecting mycobacterial DNA from artificial sputum samples containing clinically relevant concentrations of mycobacteria (107 colony forming units/mL), demonstrating its potential for future POC applications.
Collapse
Affiliation(s)
- Marcelino Varona
- Department of Chemistry , Iowa State University , Ames , Iowa 50011 , United States
| | - Xiong Ding
- Department of Chemistry , Iowa State University , Ames , Iowa 50011 , United States
| | - Kevin D Clark
- Department of Chemistry , Iowa State University , Ames , Iowa 50011 , United States
| | - Jared L Anderson
- Department of Chemistry , Iowa State University , Ames , Iowa 50011 , United States
| |
Collapse
|
27
|
Glebova KV, Veiko NN, Nikonov AA, Porokhovnik LN, Kostuyk SV. Cell-free DNA as a biomarker in stroke: Current status, problems and perspectives. Crit Rev Clin Lab Sci 2018; 55:55-70. [PMID: 29303618 DOI: 10.1080/10408363.2017.1420032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There is currently no proposed stroke biomarker with consistent application in clinical practice. A number of studies have examined cell-free DNA (cfDNA), which circulates in biological fluids during stroke, as a potential biomarker of this disease. The data available suggest that dynamically-determined levels of blood cfDNA may provide new prognostic information for assessment of stroke severity and outcome. However, such an approach has its own difficulties and limitations. This review covers the potential role of cfDNA as a biomarker in stroke, and includes evidence from both animal models and clinical studies, protocols used to analyze cfDNA, and hypotheses on the origin of cfDNA.
Collapse
Affiliation(s)
- Kristina V Glebova
- a Laboratory of Molecular Biology , Federal State Budgetary Institution "Research Centre for Medical Genetics" , Moscow , Russia
| | - Natalya N Veiko
- a Laboratory of Molecular Biology , Federal State Budgetary Institution "Research Centre for Medical Genetics" , Moscow , Russia
| | - Aleksey A Nikonov
- b Department of Neurology, Neurosurgery and Medical Genetics , Pirogov Russian National Research Medical University , Moscow , Russia
| | - Lev N Porokhovnik
- a Laboratory of Molecular Biology , Federal State Budgetary Institution "Research Centre for Medical Genetics" , Moscow , Russia
| | - Svetlana V Kostuyk
- a Laboratory of Molecular Biology , Federal State Budgetary Institution "Research Centre for Medical Genetics" , Moscow , Russia
| |
Collapse
|
28
|
Cavanaugh SE, Bathrick AS. Direct PCR amplification of forensic touch and other challenging DNA samples: A review. Forensic Sci Int Genet 2018; 32:40-49. [DOI: 10.1016/j.fsigen.2017.10.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/11/2017] [Accepted: 10/16/2017] [Indexed: 01/08/2023]
|
29
|
Lin YZ, Ou DL, Chang HY, Lin WY, Hsu C, Chang PL. Simultaneous visualization of the subfemtomolar expression of microRNA and microRNA target gene using HILO microscopy. Chem Sci 2017; 8:6670-6678. [PMID: 28989695 PMCID: PMC5625256 DOI: 10.1039/c7sc02701j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 07/27/2017] [Indexed: 12/15/2022] Open
Abstract
In this study, we propose a sensitive imaging method for the direct probing of miR-10b and its target in fixed cells.
The family of microRNAs (miRNAs) not only plays an important role in gene regulation but is also useful for the diagnosis of diseases. A reliable method with high sensitivity may allow researchers to detect slight fluctuations in ultra-trace amounts of miRNA. In this study, we propose a sensitive imaging method for the direct probing of miR-10b (miR-10b-3p, also called miR-10b*) and its target (HOXD10 mRNA) in fixed cells based on the specific recognition of molecular beacons combined with highly inclined and laminated optical sheet (HILO) fluorescence microscopy. The designed dye-quencher-labelled molecular beacons offer excellent efficiencies of fluorescence resonance energy transfer that allow us to detect miRNA and the target mRNA simultaneously in hepatocellular carcinoma cells using HILO fluorescence microscopy. Not only can the basal trace amount of miRNA be observed in each individual cell, but the obtained images also indicate that this method is useful for monitoring the fluctuations in ultra-trace amounts of miRNA when the cells are transfected with a miRNA precursor or a miRNA inhibitor (anti-miR). Furthermore, a reasonable causal relation between the miR-10b and HOXD10 expression levels was observed in miR-10b* precursor-transfected cells and miR-10b* inhibitor-transfected cells. The trends of the miRNA alterations obtained using HILO microscopy completely matched the RT-qPCR data and showed remarkable reproducibility (the coefficient of variation [CV] = 0.86%) and sensitivity (<1.0 fM). This proposed imaging method appears to be useful for the simultaneous visualisation of ultra-trace amounts of miRNA and target mRNA and excludes the procedures for RNA extraction and amplification. Therefore, the visualisation of miRNA and the target mRNA should facilitate the exploration of the functions of ultra-trace amounts of miRNA in fixed cells in biological studies and may serve as a powerful tool for diagnoses based on circulating cancer cells.
Collapse
Affiliation(s)
- Yi-Zhen Lin
- Department of Chemistry , Tunghai University , Taichung 407 , Taiwan .
| | - Da-Liang Ou
- Graduate Institute of Oncology , College of Medicine , National Taiwan University , Taipei 100 , Taiwan
| | - Hsin-Yuan Chang
- Department of Chemistry , Tunghai University , Taichung 407 , Taiwan .
| | - Wei-Yu Lin
- Department of Chemistry , Tunghai University , Taichung 407 , Taiwan .
| | - Chiun Hsu
- Department of Internal Medicine , National Taiwan University Hospital , Taipei 100 , Taiwan.,Department of Oncology , National Taiwan University Hospital , Taipei 100 , Taiwan
| | - Po-Ling Chang
- Department of Chemistry , Tunghai University , Taichung 407 , Taiwan .
| |
Collapse
|
30
|
Methods to maximise recovery of environmental DNA from water samples. PLoS One 2017; 12:e0179251. [PMID: 28604830 PMCID: PMC5467897 DOI: 10.1371/journal.pone.0179251] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/27/2017] [Indexed: 12/27/2022] Open
Abstract
The environmental DNA (eDNA) method is a detection technique that is rapidly gaining credibility as a sensitive tool useful in the surveillance and monitoring of invasive and threatened species. Because eDNA analysis often deals with small quantities of short and degraded DNA fragments, methods that maximize eDNA recovery are required to increase detectability. In this study, we performed experiments at different stages of the eDNA analysis to show which combinations of methods give the best recovery rate for eDNA. Using Oriental weatherloach (Misgurnus anguillicaudatus) as a study species, we show that various combinations of DNA capture, preservation and extraction methods can significantly affect DNA yield. Filtration using cellulose nitrate filter paper preserved in ethanol or stored in a -20°C freezer and extracted with the Qiagen DNeasy kit outperformed other combinations in terms of cost and efficiency of DNA recovery. Our results support the recommendation to filter water samples within 24hours but if this is not possible, our results suggest that refrigeration may be a better option than freezing for short-term storage (i.e., 3–5 days). This information is useful in designing eDNA detection of low-density invasive or threatened species, where small variations in DNA recovery can signify the difference between detection success or failure.
Collapse
|
31
|
False-Positive Viability PCR Results: An Association with Microtubes. Curr Microbiol 2017; 74:377-380. [DOI: 10.1007/s00284-016-1189-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 12/22/2016] [Indexed: 10/20/2022]
|
32
|
Spens J, Evans AR, Halfmaerten D, Knudsen SW, Sengupta ME, Mak SST, Sigsgaard EE, Hellström M. Comparison of capture and storage methods for aqueous macrobial
eDNA
using an optimized extraction protocol: advantage of enclosed filter. Methods Ecol Evol 2016. [DOI: 10.1111/2041-210x.12683] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Johan Spens
- Centre for GeoGenetics Natural History Museum of Denmark Øster Voldgade 5‐7 1350 Copenhagen K Denmark
- Wildlife, Fish and Environmental Studies Swedish University of Agricultural Sciences Skogsmarksgränd 90183 Umeå Sweden
| | - Alice R. Evans
- Centre for GeoGenetics Natural History Museum of Denmark Øster Voldgade 5‐7 1350 Copenhagen K Denmark
| | - David Halfmaerten
- Research Institute for Nature and Forest Gaverstraat 4 9500 Geraardsbergen Belgium
| | - Steen W. Knudsen
- Centre for GeoGenetics Natural History Museum of Denmark Øster Voldgade 5‐7 1350 Copenhagen K Denmark
| | - Mita E. Sengupta
- Department of Veterinary Disease Biology Parasitology and Aquatic Diseases Dyrlægevej 100 1870 Frederiksberg C Copenhagen Denmark
| | - Sarah S. T. Mak
- Centre for GeoGenetics Natural History Museum of Denmark Øster Voldgade 5‐7 1350 Copenhagen K Denmark
| | - Eva E. Sigsgaard
- Centre for GeoGenetics Natural History Museum of Denmark Øster Voldgade 5‐7 1350 Copenhagen K Denmark
| | - Micaela Hellström
- Centre for GeoGenetics Natural History Museum of Denmark Øster Voldgade 5‐7 1350 Copenhagen K Denmark
- Department of Ecology, Environment and Plant Sciences Stockholm University 10691 Stockholm Sweden
| |
Collapse
|
33
|
Hazards in chromatographic bioanalysis method development and applications. Biomed Chromatogr 2016; 31. [DOI: 10.1002/bmc.3859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/23/2016] [Accepted: 09/28/2016] [Indexed: 01/15/2023]
|
34
|
Guckenberger DJ, Pezzi HM, Regier MC, Berry SM, Fawcett K, Barrett K, Beebe DJ. Magnetic System for Automated Manipulation of Paramagnetic Particles. Anal Chem 2016; 88:9902-9907. [PMID: 27598856 DOI: 10.1021/acs.analchem.6b02257] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The simple, rapid magnetic manipulation of paramagnetic particles (PMPs) paired with the wide range of available surface chemistries has strongly positioned PMPs in the field of analyte isolation. One recent technology, sliding lid for immobilized droplet extractions (SLIDE), presents a simple, rapid alternative to traditional PMP isolation protocols. Rather than remove fluid from PMP-bound analyte, SLIDE directly removes the PMPs from the fluid. SLIDE collects the PMPs on a hydrophobic, removable surface, which allows PMPs to be captured from one well and then transferred and released into a second well. Despite several key advantages, SLIDE remains limited by its passive magnetic manipulation that only allows for a one-time capture-and-release of PMPs, preventing wash steps and limiting purity. Furthermore, the strategy employed by SLIDE constrains the position of the wells, thereby limiting throughput and integration into automated systems. Here, we introduce a new, mechanically and operationally simplistic magnetic manipulation system for integration with the SLIDE technology to overcome the previously stated limitations. This magnetic system is compatible with nearly any plate design, can be integrated into automated workflows, enables high-throughput formats, simplifies mechanical requirements, and is amenable to a range of analytes. Using this magnetic system, PMPs can be collected, released, and resuspended throughout multiple wells regardless of proximity. We demonstrate this system's capabilities to isolate whole cells, mRNA, and DNA, demonstrating up to a 28-fold improvement of purity via the multiwash protocols enabled by this magnetic technology.
Collapse
Affiliation(s)
- David J Guckenberger
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison , 1111 Highland Avenue, Madison, Wisconsin 53705, United States.,Salus Discovery, LLC , 110 East Main Street, Madison, Wisconsin 53703, United States
| | - Hannah M Pezzi
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison , 1111 Highland Avenue, Madison, Wisconsin 53705, United States.,Salus Discovery, LLC , 110 East Main Street, Madison, Wisconsin 53703, United States
| | - Mary C Regier
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison , 1111 Highland Avenue, Madison, Wisconsin 53705, United States.,Gilson, Inc. , 3000 Parmenter Street, Middleton, Wisconsin 53562, United States
| | - Scott M Berry
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison , 1111 Highland Avenue, Madison, Wisconsin 53705, United States.,Salus Discovery, LLC , 110 East Main Street, Madison, Wisconsin 53703, United States
| | - Kevin Fawcett
- Gilson, Inc. , 3000 Parmenter Street, Middleton, Wisconsin 53562, United States
| | - Kevin Barrett
- Gilson, Inc. , 3000 Parmenter Street, Middleton, Wisconsin 53562, United States
| | - David J Beebe
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison , 1111 Highland Avenue, Madison, Wisconsin 53705, United States.,Salus Discovery, LLC , 110 East Main Street, Madison, Wisconsin 53703, United States
| |
Collapse
|
35
|
Schaeck M, De Spiegelaere W, De Craene J, Van den Broeck W, De Spiegeleer B, Burvenich C, Haesebrouck F, Decostere A. Laser capture microdissection of intestinal tissue from sea bass larvae using an optimized RNA integrity assay and validated reference genes. Sci Rep 2016; 6:21092. [PMID: 26883391 PMCID: PMC4756658 DOI: 10.1038/srep21092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/11/2016] [Indexed: 12/28/2022] Open
Abstract
The increasing demand for a sustainable larviculture has promoted research regarding environmental parameters, diseases and nutrition, intersecting at the mucosal surface of the gastrointestinal tract of fish larvae. The combination of laser capture microdissection (LCM) and gene expression experiments allows cell specific expression profiling. This study aimed at optimizing an LCM protocol for intestinal tissue of sea bass larvae. Furthermore, a 3′/5′ integrity assay was developed for LCM samples of fish tissue, comprising low RNA concentrations. Furthermore, reliable reference genes for performing qPCR in larval sea bass gene expression studies were identified, as data normalization is critical in gene expression experiments using RT-qPCR. We demonstrate that a careful optimization of the LCM procedure allows recovery of high quality mRNA from defined cell populations in complex intestinal tissues. According to the geNorm and Normfinder algorithms, ef1a, rpl13a, rps18 and faua were the most stable genes to be implemented as reference genes for an appropriate normalization of intestinal tissue from sea bass across a range of experimental settings. The methodology developed here, offers a rapid and valuable approach to characterize cells/tissues in the intestinal tissue of fish larvae and their changes following pathogen exposure, nutritional/environmental changes, probiotic supplementation or a combination thereof.
Collapse
Affiliation(s)
- M Schaeck
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - W De Spiegelaere
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - J De Craene
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - W Van den Broeck
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - B De Spiegeleer
- Department of Pharmaceutical Analysis, Laboratory of Drug Quality &Registration, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - C Burvenich
- Department of Comparative Physiology and Biometrics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - F Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - A Decostere
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
36
|
Eichmiller JJ, Miller LM, Sorensen PW. Optimizing techniques to capture and extract environmental DNA for detection and quantification of fish. Mol Ecol Resour 2015; 16:56-68. [DOI: 10.1111/1755-0998.12421] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Jessica J. Eichmiller
- Department of Fisheries Wildlife and Conservation Biology; Minnesota Aquatic Invasive Species Research Center; University of Minnesota; Twin Cities Saint Paul MN 55108 USA
| | - Loren M. Miller
- Department of Fisheries Wildlife and Conservation Biology; Minnesota Aquatic Invasive Species Research Center; University of Minnesota; Twin Cities Saint Paul MN 55108 USA
- Minnesota Department of Natural Resources; Saint Paul MN 55155 USA
| | - Peter W. Sorensen
- Department of Fisheries Wildlife and Conservation Biology; Minnesota Aquatic Invasive Species Research Center; University of Minnesota; Twin Cities Saint Paul MN 55108 USA
| |
Collapse
|
37
|
Remillard EM, Taylor LK, Layshock J, Van Cuyk S, Omberg KM. Detecting laboratory DNA contamination using polyester-rayon wipes: a method validation study. J Microbiol Methods 2013; 92:358-65. [PMID: 23318551 DOI: 10.1016/j.mimet.2013.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/03/2013] [Accepted: 01/03/2013] [Indexed: 11/28/2022]
Abstract
Due to the high sensitivity of many PCR assays, extraneous target DNA in a laboratory setting can lead to false positive results. To assess the presence of extraneous DNA, many laboratories use gauze wipes to sample laboratory surfaces. The accuracy, precision, limits of detection, linearity, and robustness of a wipe test method and each associated wipe processing step were evaluated using E. coli genomic DNA. The method demonstrated a limit of detection of 108 copies of DNA, which equates to detectable surface concentration of 4.5×10(5) copies of DNA per area sampled. Recovery efficiency or accuracy is 22±10% resulting from a >58% loss of DNA occurring at the wipe wash step. The method is robust, performing consistently despite deliberate modifications of the protocol.
Collapse
|