1
|
Eastham G, Fausnacht D, Becker MH, Gillen A, Moore W. Praziquantel resistance in schistosomes: a brief report. FRONTIERS IN PARASITOLOGY 2024; 3:1471451. [PMID: 39817170 PMCID: PMC11732111 DOI: 10.3389/fpara.2024.1471451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/10/2024] [Indexed: 01/18/2025]
Abstract
Schistosomiasis is a group of both acute and chronic parasitic trematode infections of the genus Schistosoma. Research into schistosomiasis has been minimal, leading to its classification as a neglected tropical disease, yet more than 140 million people are infected with schistosomes globally. There are no treatments available for early-stage infections, schistosomal dermatitis, or Katayama syndrome, other than symptomatic control with steroids and antihistamines, as the maturing organisms seem to be mostly resistant to typical antiparasitics. However, praziquantel (PZQ) has been the drug of choice for schistosomiasis for decades in the latter stages of the disease. Though it is effective against all three clinically relevant species, heavy reliance on PZQ has led to concerns of schistosome resistance, especially in areas that have implemented this drug in mass drug administration (MDA) programs. This article summarizes the available literature concerning the available evidence for and against a warranted concern for PZQ resistance, genomic studies in schistosomes, proposed mechanisms of resistance, and future research in alternative methods of schistosomiasis treatment.
Collapse
Affiliation(s)
- Gabriela Eastham
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA, United States
| | - Dane Fausnacht
- Department of Biology, School of Sciences and Agriculture, Ferrum College, Ferrum, VA, United States
| | - Matthew H. Becker
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA, United States
| | - Alan Gillen
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA, United States
| | - William Moore
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA, United States
| |
Collapse
|
2
|
Mogahed NMFH, El-Temsahy MM, Abou-El-Naga IF, Makled S, Sheta E, Ibrahim EI. Loading praziquantel within solid lipid nanoparticles improved its schistosomicidal efficacy against the juvenile stage. Exp Parasitol 2023; 251:108552. [PMID: 37285898 DOI: 10.1016/j.exppara.2023.108552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/30/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023]
Affiliation(s)
| | | | | | - Shimaa Makled
- Pharmaceutics Department, Faculty of Pharmacy, Alexandria University, Egypt.
| | - Eman Sheta
- Pathology Department, Faculty of Medicine, Alexandria University, Egypt.
| | - Eman Ibrahim Ibrahim
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Egypt.
| |
Collapse
|
3
|
Structure-based virtual screening and molecular dynamics of potential inhibitors targeting sodium-bile acid co-transporter of carcinogenic liver fluke Clonorchis sinensis. PLoS Negl Trop Dis 2022; 16:e0010909. [DOI: 10.1371/journal.pntd.0010909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Background
Clonorchis sinensis requires bile acid transporters as this fluke inhabits bile juice-filled biliary ducts, which provide an extreme environment. Clonorchis sinensis sodium-bile acid co-transporter (CsSBAT) is indispensable for the fluke’s survival in the final host, as it circulates taurocholate and prevents bile toxicity in the fluke; hence, it is recognized as a useful drug target.
Methodology and principal findings
In the present study, using structure-based virtual screening approach, we presented inhibitor candidates targeting a bile acid-binding pocket of CsSBAT. CsSBAT models were built using tertiary structure modeling based on a bile acid transporter template (PDB ID: 3zuy and 4n7x) and were applied into AutoDock Vina for competitive docking simulation. First, potential compounds were identified from PubChem (holding more than 100,000 compounds) by applying three criteria: i) interacting more favorably with CsSBAT than with a human homolog, ii) intimate interaction to the inward- and outward-facing conformational states, iii) binding with CsSBAT preferably to natural bile acids. Second, two compounds were identified following the Lipinski’s rule of five. Third, other two compounds of molecular weight higher than 500 Da (Mr > 500 Da) were presumed to efficiently block the transporter via a feasible rational screening strategy. Of these candidates, compound 9806452 exhibited the least hepatotoxicity that may enhance drug-likeness properties.
Conclusions
It is proposed that compound 9806452 act as a potential inhibitor toward CsSBAT and further studies are warranted for drug development process against clonorchiasis.
Collapse
|
4
|
Summers S, Bhattacharyya T, Allan F, Stothard JR, Edielu A, Webster BL, Miles MA, Bustinduy AL. A review of the genetic determinants of praziquantel resistance in Schistosoma mansoni: Is praziquantel and intestinal schistosomiasis a perfect match? FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.933097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Schistosomiasis is a neglected tropical disease (NTD) caused by parasitic trematodes belonging to the Schistosoma genus. The mainstay of schistosomiasis control is the delivery of a single dose of praziquantel (PZQ) through mass drug administration (MDA) programs. These programs have been successful in reducing the prevalence and intensity of infections. Due to the success of MDA programs, the disease has recently been targeted for elimination as a public health problem in some endemic settings. The new World Health Organization (WHO) treatment guidelines aim to provide equitable access to PZQ for individuals above two years old in targeted areas. The scale up of MDA programs may heighten the drug selection pressures on Schistosoma parasites, which could lead to the emergence of PZQ resistant schistosomes. The reliance on a single drug to treat a disease of this magnitude is worrying should drug resistance develop. Therefore, there is a need to detect and track resistant schistosomes to counteract the threat of drug resistance to the WHO 2030 NTD roadmap targets. Until recently, drug resistance studies have been hindered by the lack of molecular markers associated with PZQ resistance. This review discusses recent significant advances in understanding the molecular basis of PZQ action in S. mansoni and proposes additional genetic determinants associated with PZQ resistance. PZQ resistance will also be analyzed in the context of alternative factors that may decrease efficacy within endemic field settings, and the most recent treatment guidelines recommended by the WHO.
Collapse
|
5
|
Sabra ANA, Salem MB, William S, Hammam OA, El-Lakkany NM. Itraconazole, a cytochrome P450 inhibitor, enhanced the efficacy of praziquantel against Schistosoma mansoni infection and alleviated liver injury in mice. Exp Parasitol 2022; 239:108293. [PMID: 35667394 DOI: 10.1016/j.exppara.2022.108293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/20/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022]
Abstract
Treatment of schistosomiasis is heavily reliant on the single antischistosomal drug praziquantel (PZQ). The use of synergistic drug-drug interactions is one possible solution, which could be used to mitigate PZQ's poor and variable bioavailability. Itraconazole (ITZ), a triazole antifungal agent, is a potent CYP3A inhibitor that can cause significant drug-drug interactions when used with CYP3A substrates. This study investigates the effect of ITZ as adjuvant therapy with PZQ on worm load, egg deposition and maturation, and the consequent histopathology and biochemical abnormalities in the liver during the immature and mature stages of Schistosoma mansoni (S. mansoni) infection. S. mansoni-infected mice were divided into five groups of eight-ten mice each: (I) infected untreated, (II) infected and treated with PZQ 3 weeks PI, (III) infected and treated with both ITZ and PZQ 3 weeks PI, (IV) infected and treated with PZQ 7 weeks PI, and (V) infected and treated with both ITZ and PZQ 7 weeks PI. All mice were killed by rapid decapitation 9 weeks PI. Data revealed that ITZ in combination with PZQ at both immature and mature stages improved the parasitological criteria of cure, and greatly reduced inflammation, granuloma and fibrotic tissue formation, and apoptosis versus PZQ alone. Furthermore, it showed the greatest impact on improving liver injury and oxidative stress markers. Notably, the effect was considerably stronger at the mature stage of S. mansoni infection. These findings support the notion that ITZ increased PZQ's antischistosomal activity by inhibiting CYP450 expression, potentially reducing PZQ metabolism and increasing systemic exposure.
Collapse
Affiliation(s)
| | - Maha B Salem
- Lecturer of Pharmacology, Theodor Bilharz Research Institute, Giza, Egypt.
| | - Samia William
- Professor of Parasitology, Theodor Bilharz Research Institute, Giza, Egypt.
| | - Olfat A Hammam
- Professor of Pathology, Theodor Bilharz Research Institute, Giza, Egypt.
| | | |
Collapse
|
6
|
Lam HYP, Liang TR, Peng SY. Ameliorative effects of Schisandrin B on Schistosoma mansoni-induced hepatic fibrosis in vivo. PLoS Negl Trop Dis 2021; 15:e0009554. [PMID: 34161342 PMCID: PMC8259995 DOI: 10.1371/journal.pntd.0009554] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/06/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023] Open
Abstract
Schistosomiasis is second only to malaria as the most devastating parasitic disease in the world. It is caused by the helminths Schistosoma mansoni (S. mansoni), S. haematobium, or S. japonicum. Typically, patients with schistosomiasis suffer from symptoms of liver fibrosis and hepatosplenomegaly. Currently, patients were treated with praziquantel. Although praziquantel effectively kills the worm, it cannot prevent re-infection or resolve liver fibrosis. Also, current treatment options are not ample to completely cure liver fibrosis and splenic damages. Moreover, resistance of praziquantel has been reported in vivo and in vitro studies. Therefore, finding new effective treatment agents is urgently needed. Schisandrin B (Sch B) of Schisandra chinensis has been shown to protect against different liver injuries including fatty liver disease, hepatotoxicity, fibrosis, and hepatoma. We herein investigate the potential of using Sch B to treat S. mansoni-induced liver fibrosis. Results from the present study demonstrate that Sch B is beneficial in treating S. mansoni-induced liver fibrosis and splenic damages, through inhibition of inflammasome activation and apoptosis; and aside from that regulates host immune responses. Besides, Sch B treatment damages male adult worm in the mice, consequently helps to reduce egg production and lessen the parasite burden.
Collapse
Affiliation(s)
- Ho Yin Pekkle Lam
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ting-Ruei Liang
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
- Ph.D. Program in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Shih-Yi Peng
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
- Ph.D. Program in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, Taiwan
- * E-mail:
| |
Collapse
|
7
|
da Costa JMC, Gouveia MJ, Rinaldi G, Brindley PJ, Santos J, Santos LL. Control Strategies for Carcinogenic-Associated Helminthiases: An Integrated Overview. Front Cell Infect Microbiol 2021; 11:626672. [PMID: 33842386 PMCID: PMC8025785 DOI: 10.3389/fcimb.2021.626672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/26/2021] [Indexed: 12/20/2022] Open
Abstract
Helminthiases are extremely prevalent in the developing world. In addition, the chronic infection with some parasitic worms are classified as carcinogenic. Therefore, it is utmost importance to understand the parasite-host interactions, the mechanisms underlay carcinogenesis and how they could be counteracted. This knowledge may ultimately guide novel control strategies that include chemotherapy-based approaches targeting these pathogens and associated pathologies caused by their infections. Little is known on how some helminthiases are associated with cancer; however, it has been hypothesized that chemical carcinogenesis may be involved in the process. Here, we summarize the current knowledge on chemical carcinogenesis associated with helminthiases, along with available therapeutic options and potential therapeutic alternatives including chemotherapy and/or immunotherapy. Ideally, the treatment of the carcinogenic helminthiases should target both the parasite and associated pathologies. The success of any chemotherapeutic regimen often depends on the host immune response during the infection and nutritional status among other factors. The close association between chemotherapy and cell-mediated immunity suggests that a dual therapeutic approach would be advantageous. In addition, there is a pressing need for complementary drugs that antagonize the carcinogenesis process associated with the helminth infections.
Collapse
Affiliation(s)
- José Manuel Correia da Costa
- Centre for the Study in Animal Science (CECA/ICETA), University of Porto, Porto, Portugal
- Centre for Parasite Immunology and Biology, Department of Infectious Diseases, National Institute for Health Dr Ricardo Jorge, Porto, Portugal
| | - Maria João Gouveia
- Centre for the Study in Animal Science (CECA/ICETA), University of Porto, Porto, Portugal
- Centre for Parasite Immunology and Biology, Department of Infectious Diseases, National Institute for Health Dr Ricardo Jorge, Porto, Portugal
- REQUIMTE, Department of Chemical Sciences, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | | | - Paul J. Brindley
- Department of Microbiology, Immunology & Tropical Medicine, and Research Centre for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, United States
| | - Júlio Santos
- Deparment of Urology, Clínica da Sagrada Esperança, Luanda, Angola
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Research Center of Instituto Português de Oncologia, Porto, Portugal
| |
Collapse
|
8
|
Akumadu BO, Pandian R, Olfsen J, Worth R, Thulo M, Mentor T, Fanucchi S, Sayed Y, Dirr HW, Achilonu I. Molecular basis of inhibition of Schistosoma japonicum glutathione transferase by ellagic acid: Insights into biophysical and structural studies. Mol Biochem Parasitol 2020; 240:111319. [PMID: 32961204 DOI: 10.1016/j.molbiopara.2020.111319] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023]
Abstract
Schistosoma japonicum glutathione transferase (Sj26GST), an enzyme central to detoxification of electrophilic compounds in the parasite, is upregulated in response to drug treatment. Therefore, Sj26GST may serve as a potential therapeutic target for the treatment of schistosomiasis. Herewith, we describe the structural basis of inhibition of Sj26GST by ellagic acid (EA). Using 1-chloro-2,4-dinitrobenzene and reduced glutathione (GSH) as Sj26GST substrates, EA was shown to inhibit Sj26GST activity by 66 % with an IC50 of 2.4 μM. Fluorescence spectroscopy showed that EA altered the polarity of the environment of intrinsic tryptophan and that EA decreased (in a dose-dependent manner) the interaction between Sj26GST and 8-Anilino-1-naphthalenesulfonate (ANS), which is a known GST H-site ligand. Thermodynamic studies indicated that the interaction between Sj26GST and EA is spontaneous (ΔG = -29.88 ± 0.07 kJ/mol), enthalpically-driven (ΔH = -9.48 ± 0.42 kJ/mol) with a favourable entropic change (ΔS = 20.40 ± 0.08 kJ/mol/K), and with a stoichiometry of four EA molecules bound per Sj26GST dimer. The 1.53 Å-resolution Sj26GST crystal structure (P 21 21 21 space group) complexed with GSH and EA shows that EA binds primarily at the dimer interface, stabilised largely by Van der Waal forces and H-bonding. Besides, EA bound near the H-site and less than 3.5 Å from the ε-NH2 of the γ-glutamyl moiety of GSH, in each subunit.
Collapse
Affiliation(s)
- Blessing O Akumadu
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Ramesh Pandian
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Jessica Olfsen
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Roland Worth
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Monare Thulo
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Tshireletso Mentor
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Sylvia Fanucchi
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Yasien Sayed
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Heini W Dirr
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Ikechukwu Achilonu
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
9
|
Vale N, Gouveia MJ, Gärtner F. Current and Novel Therapies Against Helminthic Infections: The Potential of Antioxidants Combined with Drugs. Biomolecules 2020; 10:E350. [PMID: 32106428 PMCID: PMC7175190 DOI: 10.3390/biom10030350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/02/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Infections caused by Schistosoma haematobium and Opisthorchisviverrini are classified as Group 1 biological carcinogen and it has been postulated that parasites produce oxysterol and estrogen-like metabolites that might be considered as initiators of infection-associated carcinogenesis. Chemotherapy for these helminthic infections relies on a single drug, praziquantel, (PZQ) that mainly targets the parasite. Additionally, PZQ has some major drawbacks as inefficacy against juvenile form and alone it is not capable to counteract pathologies associated to infections or prevent carcinogenesis. There is an urgent need to develop novel therapeutic approaches that not only target the parasite but also improve the pathologies associated to infection, and ultimately, counteract or/and prevent the carcinogenesis processes. Repurposing the drug in combination of compounds with different modes of action is a promising strategy to find novel therapeutics approaches against these helminthic infections and its pathologies. Here, we emphasized that using antioxidants either alone or combined with anthelmintic drugs could ameliorate tissue damage, infection-associated complications, moreover, could prevent the development of cancer associated to infections. Hence, antioxidants represent a potential adjuvant approach during treatment to reduce morbidity and mortality. Despite the success of some strategies, there is a long way to go to implement novel therapies for schistosomiasis.
Collapse
Affiliation(s)
- Nuno Vale
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal;
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
| | - Maria João Gouveia
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Center for the Study in Animal Science (CECA/ICETA), University of Porto, Rua de D. Manuel II, Apt 55142, 4051-401 Porto, Portugal
| | - Fátima Gärtner
- i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal;
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
| |
Collapse
|
10
|
Gouveia MJ, Nogueira V, Araújo B, Gärtner F, Vale N. Inhibition of the Formation In Vitro of Putatively Carcinogenic Metabolites Derived from S. haematobium and O. viverrini by Combination of Drugs with Antioxidants. Molecules 2019; 24:E3842. [PMID: 31731402 PMCID: PMC6864706 DOI: 10.3390/molecules24213842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 11/24/2022] Open
Abstract
Infections caused by Schistosoma haematobium and Opisthorchis viverrini are classified as carcinogenic. Although carcinogenesis might be a multifactorial process, it has been postulated that these helminth produce/excrete oxysterols and estrogen-like metabolites that might act as initiators of their infection-associated carcinogenesis. Current treatment and control of these infections rely on a single drug, praziquantel, that mainly targets the parasites and not the pathologies related to the infection including cancer. Thus, there is a need to search for novel therapeutic alternatives that might include combinations of drugs and drug repurposing. Based on these concepts, we propose a novel therapeutic strategy that combines drugs with molecule antioxidants. We evaluate the efficacy of a novel therapeutic strategy to prevent the formation of putative carcinogenic metabolites precursors and DNA adducts. Firstly, we used a methodology previously established to synthesize metabolites precursors and DNA adducts in the presence of CYP450. Then, we evaluated the inhibition of their formation induced by drugs and antioxidants alone or in combination. Drugs and resveratrol alone did not show a significant inhibitory effect while N-acetylcysteine inhibited the formation of most metabolite precursors and DNA adducts. Moreover, the combinations of classical drugs with antioxidants were more effective rather than compounds alone. This strategy might be a valuable tool to prevent the initiation of helminth infection-associated carcinogenesis.
Collapse
Affiliation(s)
- Maria João Gouveia
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (M.J.G.); (V.N.); (B.A.)
- Department of Molecular Pathology and Immnunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira Apartado 55142, 4051-401 Porto, Portugal
| | - Verónica Nogueira
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (M.J.G.); (V.N.); (B.A.)
- Department of Molecular Pathology and Immnunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
| | - Bruno Araújo
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (M.J.G.); (V.N.); (B.A.)
- Department of Molecular Pathology and Immnunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
| | - Fátima Gärtner
- Department of Molecular Pathology and Immnunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, university of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Nuno Vale
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (M.J.G.); (V.N.); (B.A.)
- Department of Molecular Pathology and Immnunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, university of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| |
Collapse
|
11
|
Radwan A, El-Lakkany NM, William S, El-Feky GS, Al-Shorbagy MY, Saleh S, Botros S. A novel praziquantel solid lipid nanoparticle formulation shows enhanced bioavailability and antischistosomal efficacy against murine S. mansoni infection. Parasit Vectors 2019; 12:304. [PMID: 31208446 PMCID: PMC6580642 DOI: 10.1186/s13071-019-3563-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/12/2019] [Indexed: 11/24/2022] Open
Abstract
Background Schistosomiasis is responsible for a considerable global disease burden. This work aimed to improve the therapeutic outcome of the only available antischistosomal drug worldwide, praziquantel (PZQ), by incorporating it into a novel carrier, “solid lipid nanoparticles (SLNs)”, to enhance its solubility, bioavailability and efficacy. A simple, cost-effective method was used to prepare SLN-PZQ. Results Compared to market PZQ (M-PZQ), SLN-PZQ was more bioavailable, as denoted by higher serum concentrations in both normal and infected mice where elevated Ka, AUC0–24, Cmax, and t1/2e with a decrease in kel were demonstrated. The AUC0–24 for SLN-PZQ in normal and Schistosoma mansoni-infected groups was almost nine- and eight-fold higher, respectively, than that for M-PZQ in corresponding groups. In normal and S. mansoni-infected mice, SLN-PZQ was detectable in serum at 24 h, while M-PZQ completely vanished 8 h post-treatment. Additionally, enhanced absorption with extended residence time was recorded for SLN-PZQ. Compared to M-PZQ, SLN-PZQ revealed superior antischistosomal activity coupled with enhanced bioavailability in all treated groups where higher percentages of worm reduction were recorded with all dosages tested. This effect was especially evident at the lower dose levels. The ED95 of SLN-PZQ was 5.29-fold lower than that of M-PZQ, with a significantly higher reduction in both the hepatic and intestinal tissue egg loads of all treated groups and almost complete disappearance of immature deposited eggs (clearly evident at the low dose levels). Conclusions SLN-PZQ demonstrated enhanced PZQ bioavailability and antischistosomal efficacy with a safe profile despite the prolonged residence in the systemic circulation.
Collapse
Affiliation(s)
- Amr Radwan
- Research Department, Academy of Scientific Research and Technology, Cairo, Egypt.
| | - Naglaa M El-Lakkany
- Pharmacology Department, Theodor Bilharz Research Institute, Imbaba, Giza, Egypt
| | - Samia William
- Parasitology Department, Theodor Bilharz Research Institute, Imbaba, Giza, Egypt
| | - Gina S El-Feky
- Pharmaceutical Technology Department, National Research Center, Giza, Egypt
| | - Muhammad Y Al-Shorbagy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt.,School of Pharmacy, Newgiza University, Giza, Egypt
| | - Samira Saleh
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Sanaa Botros
- Pharmacology Department, Theodor Bilharz Research Institute, Imbaba, Giza, Egypt
| |
Collapse
|
12
|
Gouveia MJ, Brindley PJ, Gärtner F, Costa JMCD, Vale N. Drug Repurposing for Schistosomiasis: Combinations of Drugs or Biomolecules. Pharmaceuticals (Basel) 2018; 11:E15. [PMID: 29401734 PMCID: PMC5874711 DOI: 10.3390/ph11010015] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/19/2018] [Accepted: 01/31/2018] [Indexed: 12/17/2022] Open
Abstract
Schistosomiasis is a major neglected tropical disease. Control of schistosomiasis currently relies on a single drug, praziquantel, and despite its efficacy against the all schistosome species that parasitize humans, it displays some problematic drawbacks and alone is ineffective in counteracting adverse pathologies associated with infection. Moreover, due to the development of the potential emergence of PZQ-resistant strains, the search for additional or alternative antischistosomal drugs have become a public health priority. The current drug discovery for schistosomiasis has been slow and uninspiring. By contrast, repurposing of existing approved drugs may offer a safe, rapid and cost-effective alternative. Combined treatment with PZQ and other drugs with different mode of action, i.e., antimalarials, shows promise results. In addition, a combination of anthelminthic drugs with antioxidant might be advantageous for modulating oxidative processes associated with schistosomiasis. Herein, we review studies dealing with combination therapies that involve PZQ and other anthelminthic drugs and/or antioxidant agents in treatment of schistosomiasis. Whereas PZQ combined with antioxidant agents might or might not interfere with anthelminthic efficacy, combinations may nonetheless ameliorate tissue damage and infection-associated complications. In fact, alone or combine with other drugs, antioxidants might be a valuable adjuvant to reduce morbidity and mortality of schistosomiasis. Therefore, attempting new combinations of anthelmintic drugs with other biomolecules such as antioxidants provides new avenues for discovery of alternatives to PZQ.
Collapse
Affiliation(s)
- Maria João Gouveia
- UCBIO/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo, 228, 4050-313 Porto, Portugal.
- Center for the Study of Animal Science, ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4031-401 Porto, Portugal.
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Paul J Brindley
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA.
| | - Fátima Gärtner
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal.
- Institute of Investigation and Innovation in Health (i3s), Rua Alfredo Allen, 4200-135 Porto, Portugal.
| | - José M Correia da Costa
- Center for the Study of Animal Science, ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4031-401 Porto, Portugal.
- Department of Infectious Diseases, INSA-National Health Institute Dr. Ricardo Jorge, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal.
| | - Nuno Vale
- UCBIO/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
13
|
Molecular characterization of transport lectin vesicular integral membrane protein 36 kDa (VIP36) in the life cycle of Schistosoma mansoni. Parasitol Res 2017; 116:2765-2773. [PMID: 28840376 DOI: 10.1007/s00436-017-5587-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/08/2017] [Indexed: 10/19/2022]
Abstract
VIP36 is a protein described as an L-type lectin in animals, responsible for the intracellular transport of glycoproteins within the secretory pathway, and also localized on the plasma membrane. Schistosoma mansoni has a complex system of vesicles and protein transport machinery to the cell surface. The excreted/secreted products of the larvae and eggs are known to be exposed to the host immune system. Hence, characterizing the role and action of SmVIP36 in the S. mansoni life cycle is important for a better understanding of the parasite-host relationship. To this purpose, we firstly performed in silico analysis. Analysis of SmVIP36 in silico revealed that it contains a lectin leg-like domain with a jellyroll fold as seen by its putative 3D tertiary structure. Additionally, it was also observed that its CRD contains calcium ion-binding amino acids, suggesting that the binding of SmVIP36 to glycoproteins is calcium-dependent. Finally, we observed that the SmVIP36 predicted amino acid sequence relative to its orthologs was conserved. However, phylogenetic analysis revealed that SmVIP36 follows species evolution, forming a further cluster with its definitive host Homo sapiens. Moreover, q-PCR analysis in the S. mansoni life cycle points to a significant increase in gene expression in the eggs, schistosomulae, and female adult stages. Similarly, protein expression increased in eggs, cercariae, schistosomulae, and adult worm stages. These results suggest that SmVIP36 might participate in the complex secretory activity within the egg envelope and tegument proteins, both important for the stages of the parasite that interact with the host.
Collapse
|
14
|
da Silva VBR, Campos BRKL, de Oliveira JF, Decout JL, do Carmo Alves de Lima M. Medicinal chemistry of antischistosomal drugs: Praziquantel and oxamniquine. Bioorg Med Chem 2017; 25:3259-3277. [DOI: 10.1016/j.bmc.2017.04.031] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/21/2017] [Accepted: 04/26/2017] [Indexed: 12/20/2022]
|
15
|
Praziquantel for Schistosomiasis: Single-Drug Metabolism Revisited, Mode of Action, and Resistance. Antimicrob Agents Chemother 2017; 61:AAC.02582-16. [PMID: 28264841 DOI: 10.1128/aac.02582-16] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Schistosomiasis, a major neglected tropical disease, affects more than 250 million people worldwide. Treatment of schistosomiasis has relied on the anthelmintic drug praziquantel (PZQ) for more than a generation. PZQ is the drug of choice for the treatment of schistosomiasis; it is effective against all major forms of schistosomiasis, although it is less active against juvenile than mature parasites. A pyrazino-isoquinoline derivative, PZQ is not considered to be toxic and generally causes few or transient, mild side effects. Increasingly, mass drug administration targeting populations in sub-Saharan Africa where schistosomiasis is endemic has led to the appearance of reduced efficacy of PZQ, which portends the selection of drug-resistant forms of these pathogens. The synthesis of improved derivatives of PZQ is attracting attention, e.g., in the (i) synthesis of drug analogues, (ii) rational design of pharmacophores, and (iii) discovery of new compounds from large-scale screening programs. This article reviews reports from the 1970s to the present on the metabolism and mechanism of action of PZQ and its derivatives against schistosomes.
Collapse
|
16
|
Anthelmintic Effect of Bacillus thuringiensis Strains against the Gill Fish Trematode Centrocestus formosanus. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8272407. [PMID: 27294137 PMCID: PMC4886050 DOI: 10.1155/2016/8272407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/19/2016] [Indexed: 12/13/2022]
Abstract
Parasitic agents, such as helminths, are the most important biotic factors affecting aquaculture, and the fluke Centrocestus formosanus is considered to be highly pathogenic in various fish species. There have been efforts to control this parasite with chemical helminthicides, but these efforts have had unsuccessful results. We evaluated the anthelmintic effect of 37 strains of Bacillus thuringiensis against C. formosanus metacercariae in vitro using two concentrations of total protein, and only six strains produced high mortality. The virulence (CL50) on matacercariae of three strains was obtained: the GP308, GP526, and ME1 strains exhibited a LC50 of 146.2 μg/mL, 289.2 μg/mL, and 1721.9 μg/mL, respectively. Additionally, these six B. thuringiensis strains were evaluated against the cercariae of C. formosanus; the LC50 obtained from the GP526 strain with solubilized protein was 83.8 μg/mL, and it could be considered as an alternative control of the metacercariae and cercariae of this parasite in the productivity systems of ornamental fishes.
Collapse
|
17
|
Pereira AC, Esperandim VR, Ferreira da Silva D, Magalhães LG, Lima TC, Nanayakkara DNP, Cunha WR, Bastos JK, Andrade e Silva ML. Furofuran lignans display schistosomicidal and trypanocidal activities. PHYTOCHEMISTRY 2014; 107:119-125. [PMID: 25200100 DOI: 10.1016/j.phytochem.2014.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/11/2014] [Accepted: 06/13/2014] [Indexed: 06/03/2023]
Abstract
Parasitic diseases continue to be a major worldwide health problem, and there is an urgent need for development of therapeutic drugs. This paper describes synthesis of dehydrodiferulic acid dilactone 1 and dehydrodisinapic acid dilactone 2 furofuran lignans by oxidative coupling of ferulic and sinapic acids, respectively. Their schistosomicidal, trypanocidal, and leishmanicidal activities were evaluated in vitro against Schistosoma mansoni adult worms, trypomastigote and amastigotes forms of Trypanosoma cruzi, and promastigote forms of Leishmania amazonensis. Compound 1 did not display significant schistosomicidal activity, but it presented potent trypanocidal activity, since it induced death of trypomastigotes and amastigotes with IC50/24h of 9.3μM and 7.3μM, respectively. Compound 2 had slight trypanocidal and schistosomicidal activities. None of the compounds were active against L. amazonensis. These results demonstrated that furofuran lignans are potentially useful for anti-parasitic drugs development and should be further investigated.
Collapse
Affiliation(s)
- Ana Carolina Pereira
- Grupo de Pesquisas em Produtos Naturais, Núcleo de Ciências Exatas e Tecnológicas, Universidade de Franca, Avenida Dr. Armando Salles de Oliveira, 2001, 14404-600 Franca, SP, Brazil
| | - Viviane Rodrigues Esperandim
- Grupo de Pesquisas em Produtos Naturais, Núcleo de Ciências Exatas e Tecnológicas, Universidade de Franca, Avenida Dr. Armando Salles de Oliveira, 2001, 14404-600 Franca, SP, Brazil
| | | | - Lizandra Guidi Magalhães
- Grupo de Pesquisas em Produtos Naturais, Núcleo de Ciências Exatas e Tecnológicas, Universidade de Franca, Avenida Dr. Armando Salles de Oliveira, 2001, 14404-600 Franca, SP, Brazil
| | - Thais Coelho Lima
- Grupo de Pesquisas em Produtos Naturais, Núcleo de Ciências Exatas e Tecnológicas, Universidade de Franca, Avenida Dr. Armando Salles de Oliveira, 2001, 14404-600 Franca, SP, Brazil
| | - Dhammika N P Nanayakkara
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | | | - Jairo Kenupp Bastos
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
18
|
Liu YX, Wu W, Liang YJ, Jie ZL, Wang H, Wang W, Huang YX. New uses for old drugs: the tale of artemisinin derivatives in the elimination of schistosomiasis japonica in China. Molecules 2014; 19:15058-15074. [PMID: 25244286 PMCID: PMC6271675 DOI: 10.3390/molecules190915058] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 11/16/2022] Open
Abstract
Artemisinin (qinghaosu), extracted from the Chinese herb Artemisia annua L. in 1972, and its three major derivatives--artemether, artesunate and dihydroartemisinin--were firstly identified as antimalarials and found active against all species of the malaria parasite. Since the early 1980s, artemisinin and its derivatives have been found efficacious against Schistosoma spp., notably larval parasites, and artemisinin derivatives have played a critical role in the prevention and treatment of human schistosomiasis in China. Currently, China is moving towards the progress of schistosomiasis elimination. However, the potential development of praziquantel resistance may pose a great threat to the progress of elimination of schistosomiasis japonica in China. Fortunately, these three major artemisinin derivatives also exhibit actions against adult parasites, and reduced sensitivity to artemether, artesunate and dihydroartemisinin has been detected in praziquantel-resistant S. japonicum. In this review, we describe the application of artemisinin derivatives in the prevention and treatment of schistosomiasis japonica in China, so as to provide tools for the global agenda of schistosomiasis elimination. In addition to antimalarial and antischistosomal actions, they also show activities against other parasites and multiple cancers. Artemisinin derivatives, as old drugs identified firstly as antimalarials, continue to create new stories.
Collapse
Affiliation(s)
- Yi-Xin Liu
- Jiangsu Institute of Parasitic Diseases, 117 Yangxiang, Meiyuan, Wuxi 214064, China.
| | - Wei Wu
- Jiangsu Institute of Parasitic Diseases, 117 Yangxiang, Meiyuan, Wuxi 214064, China.
| | - Yue-Jin Liang
- Department of Microbiology and Immunology, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Zu-Liang Jie
- Department of Microbiology and Immunology, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Hui Wang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX 77030, USA.
| | - Wei Wang
- Jiangsu Institute of Parasitic Diseases, 117 Yangxiang, Meiyuan, Wuxi 214064, China.
| | - Yi-Xin Huang
- Jiangsu Institute of Parasitic Diseases, 117 Yangxiang, Meiyuan, Wuxi 214064, China.
| |
Collapse
|
19
|
Molecular characterization of voltage-gated calcium channel β-subunits of Clonorchis sinensis. Parasitol Res 2013; 113:121-9. [PMID: 24221884 DOI: 10.1007/s00436-013-3634-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 10/01/2013] [Indexed: 01/09/2023]
Abstract
The voltage-gated Ca(2+) channel β-subunit is a member of the membrane-associated guanylate kinase family and modulates kinetic properties of the Ca(2+) channels, such as their voltage-dependent activation and inactivation rates. Two cDNA clones were identified to encode each β-subunit isotype of the voltage-gated Ca(2+) channel of Clonorchis sinensis, CsCavβ1 and CsCavβ2, which consist of 606 and 887 amino acids, respectively. CsCavβ1 was found to be similar to the β-subunit containing two conserved serine residues that constitute the consensus protein kinase C phosphorylation site in the β-interaction domain (BID). CsCavβ2 had cysteine and alanine residues instead of the two serine residues conserved in BID and was homologous to variant β-subunit of Schistosoma mansoni and Schistosoma japonicum. CsCavβ1 and CsCavβ2 were almost equally expressed in the adults and metacercariae, but were more expressed in adult C. sinensis than in metacercariae. Collectively, our findings suggest that substitution of the two serine residues in BID of CsCavβ2 may render C. sinensis sensitive to praziquantel.
Collapse
|
20
|
Anthelminthic activity of the cyclotides (kalata B1 and B2) against schistosome parasites. Biopolymers 2013; 100:461-70. [DOI: 10.1002/bip.22229] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 02/15/2013] [Accepted: 02/18/2013] [Indexed: 11/07/2022]
|
21
|
Abstract
Schistosomes are parasitic flatworms that cause schistosomiasis, a neglected tropical disease that affects hundreds of millions worldwide. Treatment and control of schistosomiasis relies almost entirely on the single drug praziquantel (PZQ), making the prospect of emerging drug resistance particularly worrisome. This review will survey reports of PZQ (and other drug) resistance in schistosomes and other platyhelminths, and explore mechanisms by which drug resistance might develop. Newer genomic and post-genomic strategies that offer the promise of better understanding of how drug resistance might arise in these organisms will be discussed. These approaches could also lead to insights into the mode of action of these drugs and potentially provide markers for monitoring the emergence of resistance.
Collapse
|
22
|
Ultrastructural analysis of miltefosine-induced surface membrane damage in adult Schistosoma mansoni BH strain worms. Parasitol Res 2012; 110:2465-73. [DOI: 10.1007/s00436-011-2786-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/13/2011] [Indexed: 02/07/2023]
|
23
|
Liu R, Dong HF, Guo Y, Zhao QP, Jiang MS. Efficacy of praziquantel and artemisinin derivatives for the treatment and prevention of human schistosomiasis: a systematic review and meta-analysis. Parasit Vectors 2011; 4:201. [PMID: 22004571 PMCID: PMC3207908 DOI: 10.1186/1756-3305-4-201] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Accepted: 10/17/2011] [Indexed: 01/08/2023] Open
Abstract
Background Praziquantel has been used as first-line drug for chemotherapy of schistosomiasis since 1984. Besides praziquantel, artemether and artesunate have also been used for the control of this infectious disease since late 1990s. In this article, we conducted a systematic review and meta-analysis to evaluate the antischistosomal efficacy of different medication strategies including monotherapy or combination therapies of these drugs. Results A number of 52 trials from 38 articles published in peer-reviewed journals before July 2011 were selected for analysis after searching the following literature databases: the Cochrane Library, PubMed/Medline, ISI Web of Science, Chinese Biomedicine Literature Database, and China National Knowledge Infrastructure. Our meta-analyses showed that a dosage of 30-60 mg/kg praziquantel compared with placebo produced a protection rate of about 76% (95% CI: 67%-83%) for treating human schistosomiasis, which varied from 70% to 76% with no significant differences among the subspecies S. haematobium, S. japonicum or S. mansoni. Protection rates were higher when praziquantel doses were elevated, as concluded from the nRCTs results: the protection rate of praziquantel at 40 mg/kg was 52% (95% CI: 49%-55%), and it increased to 91% (95% CI: 88%-92%) when the dosages were elevated to 60/80/100 mg/kg divided two or more doses. Multiple doses of artemether or artesunate over 1- or 2-week intervals resulted in protection rates of 65% to 97% for preventing schistosomiasis, and increased doses and shorter medication intervals improved their efficacies. Praziquantel and artemisinin derivatives (artemether or artesunate) in combination resulted in a higher protection rate of 84% (95% CI: 64%-91%) than praziquantel monotherapy for treatment. praziquantel and artesunate in combination had a great protection rate of 96% (95% CI: 78%-99%) for preventing schistosomes infection. Conclusions According to the results, praziquantel remains effective in schistosomiasis treatment, and multiple doses would improve its efficacy; meanwhile, praziquantel is also a good drug for preventing acute schistosomiasis morbidity. It's better to use multiple doses of artemether or artesunate with 1- or 2-week intervals for prevention against schistosome infection. Praziquantel and artemether or artesunate in combination perform better in treatment than praziquantel monotherapy, and they are especially suitable for treating the patients with repeated exposure to infected water.
Collapse
Affiliation(s)
- Rong Liu
- Department of Medical Parasitology, School of Basic Medical Science, Wuhan University, Wuhan 430071, People's Republic of China.
| | | | | | | | | |
Collapse
|
24
|
Pereira AC, Magalhães LG, Gonçalves UO, Luz PP, Moraes ACG, Rodrigues V, da Matta Guedes PM, da Silva Filho AA, Cunha WR, Bastos JK, Nanayakkara NPD, e Silva MLA. Schistosomicidal and trypanocidal structure-activity relationships for (±)-licarin A and its (-)- and (+)-enantiomers. PHYTOCHEMISTRY 2011; 72:1424-1430. [PMID: 21570099 DOI: 10.1016/j.phytochem.2011.04.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 04/08/2011] [Accepted: 04/13/2011] [Indexed: 05/30/2023]
Abstract
(±)-Licarin A (1) was obtained by oxidative coupling, and its enantiomers, (-)-licarin A (2) and (+)-licarin A (3), were resolved by chiral HPLC. Schistosomicidal and trypanocidal activities of these compounds were evaluated in vitro against Schistosoma mansoni adult worms and trypomastigote forms of Trypanosoma cruzi. The racemic mixture (1) displayed significant schistosomicidal activity with an LC₅₀ value of 53.57 μM and moderate trypanocidal activity with an IC₅₀ value of 127.17 μM. On the other hand, the (-)-enantiomer (2), displaying a LC₅₀ value of 91.71 μM, was more active against S. mansoni than the (+)-enantiomer (3), which did not show activity. For the trypanocidal assay, enantiomer 2 showed more significant activity (IC₅₀ of 23.46 μM) than enantiomer 3, which showed an IC₅₀ value of 87.73 μM. Therefore, these results suggest that (±)-licarin A (1) and (-)-licarin A (2) are promising compounds that could be used for the development of schistosomicidal and trypanocidal agents.
Collapse
Affiliation(s)
- A C Pereira
- Grupo de Pesquisas em Produtos Naturais, Núcleo de Ciências Exatas e Tecnológicas, Universidade de Franca, Avenida Dr. Armando Salles de Oliveira 2001, 14404-600 Franca, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sanderson L, Bartlett A, Whitfield PJ. In vitro and in vivo studies on the bioactivity of a ginger (Zingiber officinale) extract towards adult schistosomes and their egg production. J Helminthol 2002; 76:241-7. [PMID: 12363378 DOI: 10.1079/joh2002116] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The bioactivity of an ethyl acetate extract of ginger (Zingiber officinale) towards Schistosoma mansoni adult pairs, both cultured in vitro and in vivo in laboratory mice, was investigated by monitoring worm mortality and fecundity. In vitro, a concentration of 200 mg l(-1) of extract killed almost all worms within 24 h. Male worms seemed more susceptible than female under these conditions. Cumulative egg output of surviving worm pairs in vitro was considerably reduced when exposed to the extract. For example, after 4 days of exposure to 50 mg l(-1), cumulative egg output was only 0.38 eggs per worm pair compared with 36.35 for untreated worms. In vivo efficacy of the extract was tested by oral and subcutaneous delivery of 150 mg kg(-1) followed by assessment of worm survival and fecundity. Neither delivery route produced any significant reduction in worm numbers compared with untreated controls. Worm fecundity was assessed in vivo by cumulative egg counts per liver at 55 days post infection with mice treated subcutaneously. Such infections showed egg levels in the liver of about 2000 eggs per worm pair in 55 days, in both treated and control mice, with no significant difference between the two groups. To ensure that density-dependent effects did not confound this analysis, a separate experiment demonstrated no such influence on egg output per worm pair, at intensities between 1 and 23 worms per mouse.
Collapse
Affiliation(s)
- L Sanderson
- Division of Life Sciences, King's College London, Franklin Wilkins Building, 150 Stamford Street, London, SE1 9NN, UK
| | | | | |
Collapse
|