1
|
Wang M, Li C, Wang J, Li Y, Zhang Y, Yang L, Zhang Y, Zhang J, Zhang Z, Yan W, Zuo Y, Zhao Q, Li L, Mao X, Jing R. A Raf-Like MAPKKK Gene TaHT1 Controls Drought Tolerance and Primary Root Length in Wheat. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40390392 DOI: 10.1111/pce.15624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/21/2025]
Abstract
Wheat (Triticum aestivum L.) is one of the world's staple food crops, but it often suffers from water shortages during the growing season. Mitogen-activated protein kinase kinase kinases (MAPKKKs) are the critical signaling modules in plant drought response signaling pathways. However, the molecular mechanism of its involvement in wheat drought tolerance has not been fully elucidated. In the present study, we identified a novel wheat Raf-like MAPKKK high leaf temperature 1 (TaHT1) that interacts with sucrose non-fermenting 1-related protein kinase 2.10 (TaSnRK2.10), which plays a signaling hub role in drought stress response. TaHT1 is downregulated by polyethylene glycol (PEG) and abscisic acid (ABA) treatments. Ectopic expression of TaHT1 in rice (Oryza sativa) conferred short-root and drought-sensitive phenotype, the latter was manifested by increased malondialdehyde (MDA) accumulation, decreased cell membrane stability and plant survival rates under drought stress. TaHT1 regulates the expression of multiple genes involved in drought response and reactive oxygen species (ROS) scavenging pathways. In addition, sequence polymorphism and association analysis revealed that TaHT1-5B was significantly correlated with seedling primary root length. The superior haplotype Hap-5B-3 of TaHT1-5B with long primary root has been positively selected in the main wheat production zones in China wheat breeding history. Our study demonstrates that TaHT1 negatively regulates drought tolerance via its interaction with TaSnRK2.10, and its superior allele Hap-5B-3 and functional marker will provide valuable tools for wheat breeding.
Collapse
Affiliation(s)
- Min Wang
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Chaonan Li
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Jingyi Wang
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yuying Li
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yanfei Zhang
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Lili Yang
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yining Zhang
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Jie Zhang
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Zihui Zhang
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Wen Yan
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yuang Zuo
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Qiancheng Zhao
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Long Li
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xinguo Mao
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ruilian Jing
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
2
|
Li M, Gao H, Zhou M, Zhang Y, Jiang H, Li Y. The Apple Mitogen-Activated Protein Kinase MdMAPK6 Increases Drought, Salt, and Disease Resistance in Plants. Int J Mol Sci 2025; 26:3245. [PMID: 40244102 PMCID: PMC11989477 DOI: 10.3390/ijms26073245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
As sessile organisms, plants are exposed to a variety of environmental stresses caused by biotic and abiotic factors during their life cycle; as a result, plants have evolved complex defense mechanisms to cope with these stresses, among which the mitogen-activated protein kinase cascade signaling pathway is particularly critical. This study focused on MdMAPK6, a specific mitogen-activated protein kinase gene in Malus domestica, to illuminate its functions in stress responses. MdMAPK6 was successfully cloned from apple and shown to respond to various stressors, including drought, salt, and abscisic acid. Overexpressing MdMAPK6 in apple calli resulted in enhanced resistance to drought, salt, and Botryosphaeria dothidea. Ectopic expression of MdMAPK6 in Arabidopsis thaliana enhanced the resistance to drought, salt, and Pseudomonas syringae pathovar tomato DC3000. These results indicated that MdMAPK6 in apples is a traditional mitogen-activated protein kinase, which plays an important role in both biotic and abiotic stresses.
Collapse
Affiliation(s)
| | | | | | | | - Han Jiang
- State Key Laboratory of Wheat Improvement, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, National Research, Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China; (M.L.); (H.G.); (M.Z.); (Y.Z.)
| | - Yuanyuan Li
- State Key Laboratory of Wheat Improvement, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, National Research, Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China; (M.L.); (H.G.); (M.Z.); (Y.Z.)
| |
Collapse
|
3
|
Lin H, Yao R, Wei S, Zhang W, Wang H, Wei B, Ye Y, Liao Z, Yan X, Wang W, Guo B. Physiological analysis and transcriptome sequencing revealed that HSPA1 was involved in response to heat stress in thick-shell mussels, Mytilus coruscus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101449. [PMID: 40056693 DOI: 10.1016/j.cbd.2025.101449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/19/2025] [Accepted: 02/16/2025] [Indexed: 03/10/2025]
Abstract
Mytilus coruscus, being sensitive to temperature variations, has developed a protective mechanism against heat stress through the upregulation of genes encoding heat shock proteins. Past research indicates that exposure to heat stress can activate HSPA1 expression for protection, yet the underlying regulatory mechanisms governing this response are not fully clear. Therefore, the emphasis of this study lies on regulating the expression of HSPA1 in mussels under high temperature stress. This study showed that high temperature could cause tissue damage and induce apoptosis in M. coruscus. Overexpression of HSPA1 at high temperature can mitigate damage. Enzyme activity assays also found that after the overexpression of HSPA1 at high temperature, the enzyme activity of SOD, CAT and GSH-PX increased to cope with the stimulation brought by high temperature, which suggests that the HSPA1 gene plays a critical role in the antioxidant response. Transcriptome analysis showed that under high-temperature stress, key genes including HSPA1S, HSP90, HSPA5, DnaJA1, and JUN showed increased expression in HSPA1-knockdown treatments, with differential gene expression enriched in pathways associated with MAPK signaling, endoplasmic reticulum protein processing, TNF signaling, apoptosis, and cell apoptosis pathways. Based on this, we suggested that M. coruscus may counteract damage induced by high-temperature stress via the above key genes and biology processes, highlighting the crucial role of HSPA1 in mitigating cell damage and apoptosis due to high temperature. Overall, our results revealed HSPA1 regulatory relationship in M. coruscus treated with high temperature, and provided new insights for the conservation and environmental adaptive evolution of bivalve species.
Collapse
Affiliation(s)
- Huajian Lin
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Ronghui Yao
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Sisi Wei
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Wanliang Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Hao Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Bingqi Wei
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Yingying Ye
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Zhi Liao
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Xiaojun Yan
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, PR China; National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Weifeng Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Baoying Guo
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, PR China; National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
4
|
Shi Y, Zhang Z, Yan Z, Chu H, Luo C. Tomato mitogen-activated protein kinase: mechanisms of adaptation in response to biotic and abiotic stresses. FRONTIERS IN PLANT SCIENCE 2025; 16:1533248. [PMID: 39963529 PMCID: PMC11830615 DOI: 10.3389/fpls.2025.1533248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/20/2025] [Indexed: 02/20/2025]
Abstract
Plants live under various biotic and abiotic stress conditions, and to cope with the adversity and severity of these conditions, they have developed well-established resistance mechanisms. These mechanisms begin with the perception of stimuli, followed by molecular, biochemical, and physiological adaptive measures. Tomato (Solanum lycopersicum) is a globally significant vegetable crop that experiences several biotic and abiotic stress events that can adversely impact its quality and production. Mitogen-activated protein kinases (MAPKs) in tomato plants have crucial functions of mediating responses to environmental cues, internal signals, defense mechanisms, cellular processes, and plant development and growth. MAPK cascades respond to various environmental stress factors by modulating associated gene expression, influencing plant hormone synthesis, and facilitating interactions with other environmental stressors. Here, we review the evolutionary relationships of 16 tomato SlMAPK family members and emphasize on recent studies describing the regulatory functions of tomato SlMAPKs in both abiotic and biotic stress conditions. This review could enhance our comprehension of the MAPK regulatory network in biotic and abiotic stress conditions and provide theoretical support for breeding tomatoes with agronomic traits of excellent stress resistance.
Collapse
Affiliation(s)
| | | | | | | | - Changxin Luo
- College of Biological and Food Engineering, Qujing Normal University, Qujing, Yunnan, China
| |
Collapse
|
5
|
Li H, Liu Y, Gao W, Zhu J, Zhang H, Wang Z, Liu C, Li X. Genome-wide Characterization of Small Secreted Peptides in Nicotiana tabacum and Functional Assessment of NtLTP25 in Plant Immunity. PHYSIOLOGIA PLANTARUM 2024; 176:e14436. [PMID: 39019771 DOI: 10.1111/ppl.14436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/12/2024] [Accepted: 06/29/2024] [Indexed: 07/19/2024]
Abstract
Small secreted peptides (SSPs), serving as signaling molecules for intercellular communication, play significant regulatory roles in plant growth, development, pathogen immunity, and responses to abiotic stress. Despite several SSPs, such as PIP, PSK, and PSY having been identified to participate in plant immunity, the majority of SSPs remain understudied, necessitating the exploration and identification of SSPs regulating plant immunity from vast genomic resources. Here we systematically characterized 756 putative SSPs across the genome of Nicotiana tabacum. 173 SSPs were further annotated as established SSPs, such as nsLTP, CAPE, and CEP. Furthermore, we detected the expression of 484 putative SSP genes in five tissues, with 83 SSPs displaying tissue-specific expression. Transcriptomic analysis of tobacco roots under plant defense hormones revealed that 46 SSPs exhibited specific responsiveness to salicylic acid (SA), and such response was antagonistically regulated by methyl jasmonate. It's worth noting that among these 46 SSPs, 16 members belong to nsLTP family, and one of them, NtLTP25, was discovered to enhance tobacco's resistance against Phytophthora nicotianae. Overexpression of NtLTP25 in tobacco enhanced the expression of ICS1, subsequently stimulating the biosynthesis of SA and the expression of NPR1 and pathogenesis-related genes. Concurrently, NtLTP25 overexpression activated genes associated with ROS scavenging, consequently mitigating the accumulation of ROS during the subsequent phases of pathogenesis. These discoveries indicate that these 46 SSPs, especially the 16 nsLTPs, might have a vital role in governing plant immunity that relies on SA signaling. This offers a valuable source for pinpointing SSPs involved in regulating plant immunity.
Collapse
Affiliation(s)
- Han Li
- Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, Guizhou Academy of Tobacco Science, Guiyang, P. R. China
| | - Yanxia Liu
- Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, Guizhou Academy of Tobacco Science, Guiyang, P. R. China
| | - Weichang Gao
- Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, Guizhou Academy of Tobacco Science, Guiyang, P. R. China
| | - Jingwei Zhu
- Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, Guizhou Academy of Tobacco Science, Guiyang, P. R. China
| | - Heng Zhang
- Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, Guizhou Academy of Tobacco Science, Guiyang, P. R. China
| | - Zhiyao Wang
- College of Tobacco Science, Guizhou University, Guiyang, P. R. China
| | - Changying Liu
- School of Food and Biological Engineering, Chengdu University, Chengdu, P.R. China
| | - Xiang Li
- Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, Guizhou Academy of Tobacco Science, Guiyang, P. R. China
- Guizhou Branch Company of China Tobacco Corporation, Guiyang, P. R. China
| |
Collapse
|
6
|
Hawk TE, Piya S, Sultana MS, Zadegan SB, Shipp S, Coffey N, McBride NB, Rice JH, Hewezi T. Soybean MKK2 establishes intricate signalling pathways to regulate soybean response to cyst nematode infection. MOLECULAR PLANT PATHOLOGY 2024; 25:e13461. [PMID: 38695657 PMCID: PMC11064803 DOI: 10.1111/mpp.13461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024]
Abstract
Mitogen-activated protein kinase (MPK) cascades play central signalling roles in plant immunity and stress response. The soybean orthologue of MPK kinase2 (GmMKK2) was recently identified as a potential signalling node whose expression is upregulated in the feeding site induced by soybean cyst nematode (SCN, Heterodera glycines). To investigate the role of GmMKK2 in soybean-SCN interactions, we overexpressed a catabolically inactive variant referred to as kinase-dead variant (KD-GmMKK2) using transgenic hairy roots. KD-GmMKK2 overexpression caused significant reduction in soybean susceptibility to SCN, while overexpression of the wild-type variant (WT-GmMKK2) exhibited no effect on susceptibility. Transcriptome analysis indicated that KD-GmMKK2 overexpressing plants are primed for SCN resistance via constitutive activation of defence signalling, particularly those related to chitin, respiratory burst, hydrogen peroxide and salicylic acid. Phosphoproteomic profiling of the WT-GmMKK2 and KD-GmMKK2 root samples upon SCN infection resulted in the identification of 391 potential targets of GmMKK2. These targets are involved in a broad range of biological processes, including defence signalling, vesicle fusion, chromatin remodelling and nuclear organization among others. Furthermore, GmMKK2 mediates phosphorylation of numerous transcriptional and translational regulators, pointing to the presence of signalling shortcuts besides the canonical MAPK cascades to initiate downstream signalling that eventually regulates gene expression and translation initiation. Finally, the functional requirement of specific phosphorylation sites for soybean response to SCN infection was validated by overexpressing phospho-mimic and phospho-dead variants of two differentially phosphorylated proteins SUN1 and IDD4. Together, our analyses identify GmMKK2 impacts on signalling modules that regulate soybean response to SCN infection.
Collapse
Affiliation(s)
- Tracy E. Hawk
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Sarbottam Piya
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | | | | | - Sarah Shipp
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Nicole Coffey
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Natalie B. McBride
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - John H. Rice
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Tarek Hewezi
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| |
Collapse
|
7
|
Zhang N, Gan J, Carneal L, González-Tobón J, Filiatrault M, Martin GB. Helper NLRs Nrc2 and Nrc3 act codependently with Prf/Pto and activate MAPK signaling to induce immunity in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:7-22. [PMID: 37844152 DOI: 10.1111/tpj.16502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023]
Abstract
Plant intracellular immune receptors, primarily nucleotide-binding, leucine-rich repeat proteins (NLRs), detect pathogen effector proteins and activate NLR-triggered immunity (NTI). Recently, 'sensor' NLRs have been reported to function with 'helper' NLRs to activate immunity. We investigated the role of two helper NLRs, Nrc2 and Nrc3, on immunity in tomato to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) mediated by the sensor NLR Prf and the Pto kinase. An nrc2/nrc3 mutant no longer activated Prf/Pto-mediated NTI to Pst containing the effectors AvrPto and AvrPtoB. An nrc3 mutant showed intermediate susceptibility between wild-type plants and a Prf mutant, while an nrc2 mutant developed only mild disease. These observations indicate that Nrc2 and Nrc3 act additively in Prf-/Pto-mediated immunity. We examined at what point Nrc2 and Nrc3 act in the Prf/Pto-mediated immune response. In the nrc2/3 mutant, programmed cell death (PCD) normally induced by constitutively active variants of AvrPtoB, Pto, or Prf was abolished, but that induced by M3Kα or Mkk2 was not. PCD induced by a constitutively active Nrc3 was also abolished in a Nicotiana benthamiana line with reduced expression of Prf. MAPK activation triggered by expression of AvrPto in the wild-type tomato plants was completely abolished in the nrc2/3 mutant. These results indicate that Nrc2 and Nrc3 act with Prf/Pto and upstream of MAPK signaling. Nrc2 and Nrc3 were not required for PCD triggered by Ptr1, another sensor NLR-mediating Pst resistance, although these helper NLRs do appear to be involved in resistance to certain Pst race 1 strains.
Collapse
Affiliation(s)
- Ning Zhang
- Boyce Thompson Institute for Plant Research, Ithaca, New York, 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA
| | - Joyce Gan
- Boyce Thompson Institute for Plant Research, Ithaca, New York, 14853, USA
| | - Lauren Carneal
- Boyce Thompson Institute for Plant Research, Ithaca, New York, 14853, USA
| | - Juliana González-Tobón
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA
| | - Melanie Filiatrault
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA
- United States Department of Agriculture-Agricultural Research Service, Ithaca, New York, 14853, USA
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, Ithaca, New York, 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA
| |
Collapse
|
8
|
Zhang L, Ma C, Kang X, Pei ZQ, Bai X, Wang J, Zheng S, Zhang TG. Identification and expression analysis of MAPK cascade gene family in foxtail millet ( Setaria italica). PLANT SIGNALING & BEHAVIOR 2023; 18:2246228. [PMID: 37585594 PMCID: PMC10435010 DOI: 10.1080/15592324.2023.2246228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
The mitogen-activated protein kinase (MAPK) cascade pathway is a highly conserved plant cell signaling pathway that plays an important role in plant growth and development and stress response. Currently, MAPK cascade genes have been identified and reported in a variety of plants including Arabidopsis thaliana, Oryza sativa, and Triticum aestivum, but have not been identified in foxtail millet (Setaria italica). In this study, a total of 93 MAPK cascade genes, including 15 SiMAPKs, 10 SiMAPKKs and 68 SiMAPKKKs genes, were identified by genome-wide analysis of foxtail millet, and these genes were distributed on nine chromosomes of foxtail millet. Using phylogenetic analysis, we divided the SiMAPKs and SiMAPKKs into four subgroups, respectively, and the SiMAPKKKs into three subgroups (Raf, ZIK, and MEKK). Whole-genome duplication analysis revealed that there are 14 duplication pairs in the MAPK cascade family in foxtail millet, and they are expanded by segmental replication events. Results from quantitative real-time PCR (qRT-PCR) revealed that the expression levels of most SiMAPKs and SiMAPKKs were changed under both exogenous hormone and abiotic stress treatments, with SiMAPK3 and SiMAPKK4-2 being induced under almost all treatments, while the expression of SiMAPKK5 was repressed. In a nutshell, this study will shed some light on the evolution of MAPK cascade genes and the functional mechanisms underlying MAPK cascade genes in response to hormonal and abiotic stress signaling pathways in foxtail millet (Setaria italica).
Collapse
Affiliation(s)
- Lu Zhang
- Laboratory of plant molecular physiology, College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Cheng Ma
- Laboratory of plant molecular physiology, College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Xin Kang
- Laboratory of plant molecular physiology, College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Zi-Qi Pei
- Laboratory of plant molecular physiology, College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Xue Bai
- Laboratory of plant molecular physiology, College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Juan Wang
- Laboratory of plant molecular physiology, College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Sheng Zheng
- Laboratory of plant molecular physiology, College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Teng-Guo Zhang
- Laboratory of plant molecular physiology, College of Life Sciences, Northwest Normal University, Lanzhou, China
| |
Collapse
|
9
|
Sun ZM, Zhang Q, Feng YX, Zhang SX, Bai BX, Ouyang X, Xiao ZL, Meng H, Wang XT, He JM, An YY, Zhang MX. The Ralstonia solanacearum Type III Effector RipAW Targets the Immune Receptor Complex to Suppress PAMP-Triggered Immunity. Int J Mol Sci 2023; 25:183. [PMID: 38203354 PMCID: PMC10779406 DOI: 10.3390/ijms25010183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Bacterial wilt, caused by Ralstonia solanacearum, one of the most destructive phytopathogens, leads to significant annual crop yield losses. Type III effectors (T3Es) mainly contribute to the virulence of R. solanacearum, usually by targeting immune-related proteins. Here, we clarified the effect of a novel E3 ubiquitin ligase (NEL) T3E, RipAW, from R. solanacearum on pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and further explored its action mechanism. In the susceptible host Arabidopsis thaliana, we monitored the expression of PTI marker genes, flg22-induced ROS burst, and callose deposition in RipAW- and RipAWC177A-transgenic plants. Our results demonstrated that RipAW suppressed host PTI in an NEL-dependent manner. By Split-Luciferase Complementation, Bimolecular Fluorescent Complimentary, and Co-Immunoprecipitation assays, we further showed that RipAW associated with three crucial components of the immune receptor complex, namely FLS2, XLG2, and BIK1. Furthermore, RipAW elevated the ubiquitination levels of FLS2, XLG2, and BIK1, accelerating their degradation via the 26S proteasome pathway. Additionally, co-expression of FLS2, XLG2, or BIK1 with RipAW partially but significantly restored the RipAW-suppressed ROS burst, confirming the involvement of the immune receptor complex in RipAW-regulated PTI. Overall, our results indicate that RipAW impairs host PTI by disrupting the immune receptor complex. Our findings provide new insights into the virulence mechanism of R. solanacearum.
Collapse
Affiliation(s)
- Zhi-Mao Sun
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (Z.-M.S.); (Q.Z.); (Y.-X.F.); (S.-X.Z.); (B.-X.B.); (X.O.); (X.-T.W.); (J.-M.H.)
| | - Qi Zhang
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (Z.-M.S.); (Q.Z.); (Y.-X.F.); (S.-X.Z.); (B.-X.B.); (X.O.); (X.-T.W.); (J.-M.H.)
| | - Yu-Xin Feng
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (Z.-M.S.); (Q.Z.); (Y.-X.F.); (S.-X.Z.); (B.-X.B.); (X.O.); (X.-T.W.); (J.-M.H.)
| | - Shuang-Xi Zhang
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (Z.-M.S.); (Q.Z.); (Y.-X.F.); (S.-X.Z.); (B.-X.B.); (X.O.); (X.-T.W.); (J.-M.H.)
| | - Bi-Xin Bai
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (Z.-M.S.); (Q.Z.); (Y.-X.F.); (S.-X.Z.); (B.-X.B.); (X.O.); (X.-T.W.); (J.-M.H.)
| | - Xue Ouyang
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (Z.-M.S.); (Q.Z.); (Y.-X.F.); (S.-X.Z.); (B.-X.B.); (X.O.); (X.-T.W.); (J.-M.H.)
| | - Zhi-Liang Xiao
- Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (Z.-L.X.); (H.M.)
| | - He Meng
- Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (Z.-L.X.); (H.M.)
| | - Xiao-Ting Wang
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (Z.-M.S.); (Q.Z.); (Y.-X.F.); (S.-X.Z.); (B.-X.B.); (X.O.); (X.-T.W.); (J.-M.H.)
| | - Jun-Min He
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (Z.-M.S.); (Q.Z.); (Y.-X.F.); (S.-X.Z.); (B.-X.B.); (X.O.); (X.-T.W.); (J.-M.H.)
| | - Yu-Yan An
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (Z.-M.S.); (Q.Z.); (Y.-X.F.); (S.-X.Z.); (B.-X.B.); (X.O.); (X.-T.W.); (J.-M.H.)
| | - Mei-Xiang Zhang
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (Z.-M.S.); (Q.Z.); (Y.-X.F.); (S.-X.Z.); (B.-X.B.); (X.O.); (X.-T.W.); (J.-M.H.)
| |
Collapse
|
10
|
Chen X, Li Q, Ding L, Zhang S, Shan S, Xiong X, Jiang W, Zhao B, Zhang L, Luo Y, Lian Y, Kong X, Ding X, Zhang J, Li C, Soppe WJJ, Xiang Y. The MKK3-MPK7 cascade phosphorylates ERF4 and promotes its rapid degradation to release seed dormancy in Arabidopsis. MOLECULAR PLANT 2023; 16:1743-1758. [PMID: 37710960 DOI: 10.1016/j.molp.2023.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/18/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Seeds establish dormancy to delay germination until the arrival of a favorable growing season. In this study, we identify a fate switch comprised of the MKK3-MPK7 kinase cascade and the ethylene response factor ERF4 that is responsible for the seed state transition from dormancy to germination. We show that dormancy-breaking factors activate the MKK3-MPK7 module, which affects the expression of some α-EXPANSIN (EXPA) genes to control seed dormancy. Furthermore, we identify a direct downstream substrate of this module, ERF4, which suppresses the expression of these EXPAs by directly binding to the GCC boxes in their exon regions. The activated MKK3-MPK7 module phosphorylates ERF4, leading to its rapid degradation and thereby releasing its inhibitory effect on the expression of these EXPAs. Collectively, our work identifies a signaling chain consisting of protein phosphorylation, degradation, and gene transcription , by which the germination promoters within the embryo sense and are activated by germination signals from ambient conditions.
Collapse
Affiliation(s)
- Xi Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qiujia Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Ling Ding
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shengnan Zhang
- Center for Crop Science, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Siyao Shan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiong Xiong
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Wenhui Jiang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Bo Zhao
- Hou Ji Laboratory in Shanxi Province, Academy of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China
| | - Liying Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Ying Luo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Yiming Lian
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xiuqin Kong
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xiali Ding
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jun Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Chunli Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | | | - Yong Xiang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
11
|
Vetoshkina D, Borisova-Mubarakshina M. Reversible protein phosphorylation in higher plants: focus on state transitions. Biophys Rev 2023; 15:1079-1093. [PMID: 37974979 PMCID: PMC10643769 DOI: 10.1007/s12551-023-01116-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/10/2023] [Indexed: 11/19/2023] Open
Abstract
Reversible protein phosphorylation is one of the comprehensive mechanisms of cell metabolism regulation in eukaryotic organisms. The review describes the impact of the reversible protein phosphorylation on the regulation of growth and development as well as in adaptation pathways and signaling network in higher plant cells. The main part of the review is devoted to the role of the reversible phosphorylation of light-harvesting proteins of photosystem II and the state transition process in fine-tuning the photosynthetic activity of chloroplasts. A separate section of the review is dedicated to comparing the mechanisms and functional significance of state transitions in higher plants, algae, and cyanobacteria that allows the evolution aspects of state transitions meaning in various organisms to be discussed. Environmental factors affecting the state transitions are also considered. Additionally, we gain insight into the possible influence of STN7-dependent phosphorylation of the target proteins on the global network of reversible protein phosphorylation in plant cells as well as into the probable effect of the STN7 kinase inhibition on long-term acclimation pathways in higher plants.
Collapse
Affiliation(s)
- D.V. Vetoshkina
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya st., 2, Pushchino, Russia
| | - M.M. Borisova-Mubarakshina
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya st., 2, Pushchino, Russia
| |
Collapse
|
12
|
Tan X, Chen J, Zhang J, Guo G, Zhang H, Zhao X, Lv S, Xu H, Hou D. Gene Expression and Interaction Analysis of FsWRKY4 and FsMAPK3 in Forsythia suspensa. PLANTS (BASEL, SWITZERLAND) 2023; 12:3415. [PMID: 37836156 PMCID: PMC10574466 DOI: 10.3390/plants12193415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
Forsythia suspensa is a deciduous shrub that belongs to the family Myrtaceae, and its dried fruits are used as medicine. F. suspensa contains several secondary metabolites, which exert pharmacological effects. One of the main active components is forsythin, which exhibits free radical scavenging, antioxidant, anti-inflammatory, and anti-cancer effects. Mitogen-activated protein kinase (MAPKs) can increase the activity of WRKY family transcription factors in a phosphorylated manner, thereby increasing the content of secondary metabolites. However, the mechanism of interaction between MAPKs and WRKYs in F. suspensa remains unclear. In this study, we cloned the genes of FsWRKY4 and FsMAPK3, and performed a bioinformatics analysis. The expression patterns of FsWRKY4 and FsMAPK3 were analyzed in the different developmental stages of leaf and fruit from F. suspensa using real-time fluorescence quantitative PCR (qRT-PCR). Subcellular localization analysis of FsWRKY4 and FsMAPK3 proteins was performed using a laser scanning confocal microscope. The existence of interactions between FsWRKY4 and FsMPAK3 in vitro was verified by yeast two-hybridization. Results showed that the cDNA of FsWRKY4 (GenBank number: OR566682) and FsMAPK3 (GenBank number: OR566683) were 1587 and 522 bp, respectively. The expression of FsWRKY4 was higher in the leaves than in fruits, and the expression of FsMAPK3 was higher in fruits but lower in leaves. The subcellular localization results indicated that FsWRKY4 was localized in the nucleus and FsMAPK3 in the cytoplasm and nucleus. The prey vector pGADT7-FsWRKY4 and bait vector pGBKT7-FsMAPK3 were constructed and co-transferred into Y2H Glod yeast receptor cells. The results indicated that FsWRKY4 and FsMAPK3 proteins interact with each other in vitro. The preliminary study may provide a basis for more precise elucidation of the synthesis of secondary metabolites in F. suspensa.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dianyun Hou
- College of Agriculture, Henan University of Science and Technology, Luoyang 471032, China
| |
Collapse
|
13
|
Gosavi G, Jade D, Ponnambalam S, Harrison MA, Zhou H. In-silico prediction, characterization, molecular docking and dynamic simulation studies for screening potential fungicides against leaf rust of Triticum aestivum. J Biomol Struct Dyn 2023; 42:9993-10005. [PMID: 37668008 DOI: 10.1080/07391102.2023.2254410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023]
Abstract
Triticum aestivum is an important crop worldwide, which is a large source of food grain. T.aestivum demands on developed countries will grow every year, this increase in the demand is profoundly serious especially in the light climate change which would lead to a 29% reduction in final productivity. Rust fungus attacks the T.aestivum, specifically newly planted T.aestivum plants, which block the vascular system, stun, and finally damage grain and tillers. In present study we predict the 3D structure then find the binding pocket and conserved domains for MAPkinase-1 of Puccinia triticina. After that, screen the FungiPAD, PubChem, NPAtlas databases by physicochemical properties, docking, clustering, ADME (Absorption, distribution, metabolism, and excretion) and PAINS (pan assay interference compounds) filter analysis. Through this screening process screen the nine compounds, which are benzovindiflupyr, furametpyr, isopyrazam, fenaminstrobin, and flumorph from Fungicide database: zoxamide, vinclozolin, pentachloronitrobenzene, and dithianon from PubChem database, based on the binding energy, clustering, ADME and PAINS analysis. All these nine compounds bind in the same pocket and show the same pattern of interaction. Among these nine compounds, select the two compounds (PubChem:122087 (-6.96 kcal/mol) and FDBD02904 (-8.62 kcal/mol)) based on binding energy for 100 ns MD simulation and free energy calculation. MD simulation shows stability throughout the simulation, and it shows the sable interaction when compounds bind to the MAPKinase 1 protein which may help to protein kinase pathways in plant defense response. This result helps to design alternative fungicide against the wheat rust disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gokul Gosavi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dhananjay Jade
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | | | - Michael A Harrison
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Huanbin Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
14
|
Wei Y, Liu Z, Lv T, Xu Y, Wei Y, Liu W, Liu L, Wang A, Li T. Ethylene enhances MdMAPK3-mediated phosphorylation of MdNAC72 to promote apple fruit softening. THE PLANT CELL 2023; 35:2887-2909. [PMID: 37132483 PMCID: PMC10396387 DOI: 10.1093/plcell/koad122] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/21/2023] [Accepted: 04/10/2023] [Indexed: 05/04/2023]
Abstract
The phytohormone ethylene plays an important role in promoting the softening of climacteric fruits, such as apples (Malus domestica); however, important aspects of the underlying regulatory mechanisms are not well understood. In this study, we identified apple MITOGEN-ACTIVATED PROTEIN KINASE 3 (MdMAPK3) as an important positive regulator of ethylene-induced apple fruit softening during storage. Specifically, we show that MdMAPK3 interacts with and phosphorylates the transcription factor NAM-ATAF1/2-CUC2 72 (MdNAC72), which functions as a transcriptional repressor of the cell wall degradation-related gene POLYGALACTURONASE1 (MdPG1). The increase in MdMAPK3 kinase activity was induced by ethylene, which promoted the phosphorylation of MdNAC72 by MdMAPK3. Additionally, MdPUB24 functions as an E3 ubiquitin ligase to ubiquitinate MdNAC72, resulting in its degradation via the 26S proteasome pathway, which was enhanced by ethylene-induced phosphorylation of MdNAC72 by MdMAPK3. The degradation of MdNAC72 increased the expression of MdPG1, which in turn promoted apple fruit softening. Notably, using variants of MdNAC72 that were mutated at specific phosphorylation sites, we observed that the phosphorylation state of MdNAC72 affected apple fruit softening during storage. This study thus reveals that the ethylene-MdMAPK3-MdNAC72-MdPUB24 module is involved in ethylene-induced apple fruit softening, providing insights into climacteric fruit softening.
Collapse
Affiliation(s)
- Yun Wei
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang Agricultural University, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhi Liu
- Liaoning Institute of Pomology, Xiongyue 115009, China
| | - Tianxing Lv
- Liaoning Institute of Pomology, Xiongyue 115009, China
| | - Yaxiu Xu
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang Agricultural University, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yajing Wei
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang Agricultural University, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Weiting Liu
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang Agricultural University, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Li Liu
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang Agricultural University, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Aide Wang
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang Agricultural University, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Tong Li
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang Agricultural University, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
15
|
Cabral AL, Ruan Y, Cuthbert RD, Li L, Zhang W, Boyle K, Berraies S, Henriquez MA, Burt A, Kumar S, Fobert P, Piche I, Bokore FE, Meyer B, Sangha J, Knox RE. Multi-locus genome-wide association study of fusarium head blight in relation to days to anthesis and plant height in a spring wheat association panel. FRONTIERS IN PLANT SCIENCE 2023; 14:1166282. [PMID: 37457352 PMCID: PMC10346453 DOI: 10.3389/fpls.2023.1166282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/03/2023] [Indexed: 07/18/2023]
Abstract
Fusarium head blight (FHB) is a highly destructive fungal disease of wheat to which host resistance is quantitatively inherited and largely influenced by the environment. Resistance to FHB has been associated with taller height and later maturity; however, a further understanding of these relationships is needed. An association mapping panel (AMP) of 192 predominantly Canadian spring wheat was genotyped with the wheat 90K single-nucleotide polymorphism (SNP) array. The AMP was assessed for FHB incidence (INC), severity (SEV) and index (IND), days to anthesis (DTA), and plant height (PLHT) between 2015 and 2017 at three Canadian FHB-inoculated nurseries. Seven multi-environment trial (MET) datasets were deployed in a genome-wide association study (GWAS) using a single-locus mixed linear model (MLM) and a multi-locus random SNP-effect mixed linear model (mrMLM). MLM detected four quantitative trait nucleotides (QTNs) for INC on chromosomes 2D and 3D and for SEV and IND on chromosome 3B. Further, mrMLM identified 291 QTNs: 50 (INC), 72 (SEV), 90 (IND), 41 (DTA), and 38 (PLHT). At two or more environments, 17 QTNs for FHB, DTA, and PLHT were detected. Of these 17, 12 QTNs were pleiotropic for FHB traits, DTA, and PLHT on chromosomes 1A, 1D, 2D, 3B, 5A, 6B, 7A, and 7B; two QTNs for DTA were detected on chromosomes 1B and 7A; and three PLHT QTNs were located on chromosomes 4B and 6B. The 1B DTA QTN and the three pleiotropic QTNs on chromosomes 1A, 3B, and 6B are potentially identical to corresponding quantitative trait loci (QTLs) in durum wheat. Further, the 3B pleiotropic QTN for FHB INC, SEV, and IND co-locates with TraesCS3B02G024900 within the Fhb1 region on chromosome 3B and is ~3 Mb from a cloned Fhb1 candidate gene TaHRC. While the PLHT QTN on chromosome 6B is putatively novel, the 1B DTA QTN co-locates with a disease resistance protein located ~10 Mb from a Flowering Locus T1-like gene TaFT3-B1, and the 7A DTA QTN is ~5 Mb away from a maturity QTL QMat.dms-7A.3 of another study. GWAS and QTN candidate genes enabled the characterization of FHB resistance in relation to DTA and PLHT. This approach should eventually generate additional and reliable trait-specific markers for breeding selection, in addition to providing useful information for FHB trait discovery.
Collapse
Affiliation(s)
- Adrian L. Cabral
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Yuefeng Ruan
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Richard D. Cuthbert
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Lin Li
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Wentao Zhang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, SK, Canada
| | - Kerry Boyle
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, SK, Canada
| | - Samia Berraies
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Maria Antonia Henriquez
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Andrew Burt
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Santosh Kumar
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| | - Pierre Fobert
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Isabelle Piche
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Firdissa E. Bokore
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Brad Meyer
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Jatinder Sangha
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Ron E. Knox
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| |
Collapse
|
16
|
Wu X, Zhou C, Li X, Lin J, Aguila LCR, Wen F, Wang L. Genome-wide identification and immune response analysis of mitogen-activated protein kinase cascades in tea geometrid, Ectropis grisescens Warren (Geometridae, Lepidoptera). BMC Genomics 2023; 24:344. [PMID: 37349677 DOI: 10.1186/s12864-023-09446-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Tea geometrid Ectropis grisescens (Geometridae: Lepidoptera), is one of the most destructive defoliators in tea plantations in China. The MAPK cascade is known to be an evolutionarily conserved signaling module, acting as pivotal cores of host-pathogen interactions. Although the chromosome-level reference genome of E. grisescens was published, the whole MAPK cascade gene family has not been fully identified yet, especially the expression patterns of MAPK cascade gene family members upon an ecological biopesticide, Metarhizium anisopliae, remains to be understood. RESULTS In this study, we have identified 19 MAPK cascade gene family members in E. grisescens, including 5 MAPKs, 4 MAP2Ks, 8 MAP3Ks, and 2 MAP4Ks. The molecular evolution characteristics of the whole Eg-MAPK cascade gene family, including gene structures, protein structural organization, chromosomal localization, orthologs construction and gene duplication, were systematically investigated. Our results showed that the members of Eg-MAPK cascade gene family were unevenly distributed in 13 chromosomes, and the clustered members in each group shared similar structures of the genes and proteins. Gene expression data revealed that MAPK cascade genes were expressed in all four developmental stages of E. grisescens and were fairly and evenly distributed in four different larva tissues. Importantly, most of the MAPK cascade genes were induced or constitutively expressed upon M. anisopliae infection. CONCLUSIONS In summary, the present study was one of few studies on MAPK cascade gene in E. grisescens. The characterization and expression profiles of Eg-MAPK cascades genes might help develop new ecofriendly biological insecticides to protect tea trees.
Collapse
Affiliation(s)
- Xiaozhu Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, 239099, China
| | - Chenghua Zhou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaofang Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingyi Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Luis Carlos Ramos Aguila
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Feng Wen
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, 332000, China.
| | - Liande Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
17
|
Wen Z, Li M, Meng J, Miao R, Liu X, Fan D, Lv W, Cheng T, Zhang Q, Sun L. Genome-Wide Identification of the MAPK and MAPKK Gene Families in Response to Cold Stress in Prunus mume. Int J Mol Sci 2023; 24:ijms24108829. [PMID: 37240174 DOI: 10.3390/ijms24108829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 05/28/2023] Open
Abstract
Protein kinases of the MAPK cascade family (MAPKKK-MAPKK-MAPK) play an essential role in plant stress response and hormone signal transduction. However, their role in the cold hardiness of Prunus mume (Mei), a class of ornamental woody plant, remains unclear. In this study, we use bioinformatic approaches to assess and analyze two related protein kinase families, namely, MAP kinases (MPKs) and MAPK kinases (MKKs), in wild P. mume and its variety P. mume var. tortuosa. We identify 11 PmMPK and 7 PmMKK genes in the former species and 12 PmvMPK and 7 PmvMKK genes in the latter species, and we investigate whether and how these gene families contribute to cold stress responses. Members of the MPK and MKK gene families located on seven and four chromosomes of both species are free of tandem duplication. Four, three, and one segment duplication events are exhibited in PmMPK, PmvMPK, and PmMKK, respectively, suggesting that segment duplications play an essential role in the expansion and evolution of P. mume and its gene variety. Moreover, synteny analysis suggests that most MPK and MKK genes have similar origins and involved similar evolutionary processes in P. mume and its variety. A cis-acting regulatory element analysis shows that MPK and MKK genes may function in P. mume and its variety's development, modulating processes such as light response, anaerobic induction, and abscisic acid response as well as responses to a variety of stresses, such as low temperature and drought. Most PmMPKs and PmMKKs exhibited tissue-specifific expression patterns, as well as time-specific expression patterns that protect them through cold. In a low-temperature treatment experiment with the cold-tolerant cultivar P. mume 'Songchun' and the cold-sensitive cultivar 'Lve', we find that almost all PmMPK and PmMKK genes, especially PmMPK3/5/6/20 and PmMKK2/3/6, dramatically respond to cold stress as treatment duration increases. This study introduces the possibility that these family members contribute to P. mume's cold stress response. Further investigation is warranted to understand the mechanistic functions of MAPK and MAPKK proteins in P. mume development and response to cold stress.
Collapse
Affiliation(s)
- Zhenying Wen
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Mingyu Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Juan Meng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Runtian Miao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Xu Liu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Dongqing Fan
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Wenjuan Lv
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Lidan Sun
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
18
|
Ejaz U, Khan SM, Khalid N, Ahmad Z, Jehangir S, Fatima Rizvi Z, Lho LH, Han H, Raposo A. Detoxifying the heavy metals: a multipronged study of tolerance strategies against heavy metals toxicity in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1154571. [PMID: 37251771 PMCID: PMC10215007 DOI: 10.3389/fpls.2023.1154571] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/06/2023] [Indexed: 05/31/2023]
Abstract
Heavy metal concentrations exceeding permissible limits threaten human life, plant life, and all other life forms. Different natural and anthropogenic activities emit toxic heavy metals in the soil, air, and water. Plants consume toxic heavy metals from their roots and foliar part inside the plant. Heavy metals may interfere with various aspects of the plants, such as biochemistry, bio-molecules, and physiological processes, which usually translate into morphological and anatomical changes. They use various strategies to deal with the toxic effects of heavy metal contamination. Some of these strategies include restricting heavy metals to the cell wall, vascular sequestration, and synthesis of various biochemical compounds, such as phyto-chelators and organic acids, to bind the free moving heavy metal ions so that the toxic effects are minimized. This review focuses on several aspects of genetics, molecular, and cell signaling levels, which integrate to produce a coordinated response to heavy metal toxicity and interpret the exact strategies behind the tolerance of heavy metals stress. It is suggested that various aspects of some model plant species must be thoroughly studied to comprehend the approaches of heavy metal tolerance to put that knowledge into practical use.
Collapse
Affiliation(s)
- Ujala Ejaz
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shujaul Mulk Khan
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Member Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Noreen Khalid
- Department of Botany, Government College Women University, Sialkot, Pakistan
| | - Zeeshan Ahmad
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sadia Jehangir
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Zarrin Fatima Rizvi
- Department of Botany, Government College Women University, Sialkot, Pakistan
| | - Linda Heejung Lho
- College of Business, Division of Tourism and Hotel Management, Cheongju University, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Heesup Han
- College of Hospitality and Tourism Management, Sejong University, Seoul, Republic of Korea
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| |
Collapse
|
19
|
Tziros GT, Karaoglanidis GS. Identification of Fusarium oxysporum f. sp. lactucae Race 1 as the Causal Agent of Lettuce Fusarium Wilt in Greece, Commercial Cultivars' Susceptibility, and Temporal Expression of Defense-Related Genes. Microorganisms 2023; 11:microorganisms11041082. [PMID: 37110505 PMCID: PMC10142136 DOI: 10.3390/microorganisms11041082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Fusarium wilt of lettuce is found throughout the world, causing significant yield losses. Lettuce is the most-cultivated leafy vegetable in Greece, affected by a large number of foliar and soil-borne pathogens. In this study, 84 isolates of Fusarium oxysporum, obtained from soil-grown lettuce plants exhibiting wilt symptoms, were characterized as belonging to race 1 of F. oxysporum f. sp. lactucae based on sequence analysis of the translation elongation factor 1-alpha (TEF1-α) gene and the rDNA intergenic spacer (rDNA-IGS) region. The isolates were also assigned to one single race through PCR assays with specific primers targeting race 1 and race 4 of the pathogen. In addition, four representative isolates were confirmed to be associated with race 1 based on the pathogenicity tests with a set of differential lettuce cultivars. Artificial inoculations on the most commonly cultivated lettuce cultivars in Greece revealed that the tested cultivars varied regarding their susceptibility to F. oxysporum f. sp. lactucae race 1. Cultivars (cvs.) "Cencibel" and "Lugano" were found to be highly susceptible, while cvs. "Sandalina" and "Starfighter" were the most resistant ones. Expression analysis of 10 defense-related genes (PRB1, HPL1, LTC1, SOD, ERF1, PAL1, LOX, MPK, BG, and GST) was carried out on artificially inoculated lettuce plants of the four above cultivars at different time points after inoculation. In resistant cultivars, a higher induction rate was observed for all the tested genes in comparison with the susceptible ones. Moreover, in resistant cultivars, all genes except LTC1, MPK, and GST showed their highest induction levels in their earliest stages of infection. The results of this study are expected to contribute to the implementation of an integrated management program to control Fusarium wilt of lettuce, based mainly on the use of resistant cultivars.
Collapse
Affiliation(s)
- George T Tziros
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 269, 54124 Thessaloniki, Greece
| | - George S Karaoglanidis
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 269, 54124 Thessaloniki, Greece
| |
Collapse
|
20
|
Ishimoto K, Nosaka-Takahashi M, Kishi-Kaboshi M, Watanabe T, Abe K, Shimizu-Sato S, Takahashi H, Nakazono M, Hirochika H, Sato Y. Post-embryonic function of GLOBULAR EMBRYO 4 (GLE4)/OsMPK6 in rice development. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:9-13. [PMID: 38213919 PMCID: PMC10777123 DOI: 10.5511/plantbiotechnology.22.1117a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/17/2022] [Indexed: 01/13/2024]
Abstract
In plants, mitogen activated protein kinases (MPKs) are involved in various signaling pathways that lead to biotic and abiotic responses as well as that regulate developmental processes. Among them, MPK6 and its closely related homologue, MPK3, act redundantly and are known to be involved in asymmetric cell divisions of meristemoid mother cells in stomata development and of zygotes in Arabidopsis. Loss-of-function mutants of GLE4/OsMPK6, which is an orthologue of MPK6 in rice, showed a defect in polarity establishment in early stage of embryogenesis. However, because of the embryo lethality of the mutations, the function of GLE4/OsMPK6 in post-embryonic development is not clarified. Here, we report the analysis of post embryonic function of GLE4/OsMPK6 in vegetative stage of rice using regenerated gle4/osmpk6 homozygous plants from tissue culture. The regenerated plants are dwarf and produce multiple shoots with small leaves. These shoots never develop into reproductive stage, instead, proliferate vegetative shoots repeatedly. Leaves of gle4/osmpk6 have small leaf blade at the tip and blade-sheath boundary become obscure. Stomata arrangement is also disturbed in gle4/osmpk6 leaf blade. The shape of shoot apical meristem of gle4/osmpk6 become disorganized. Thus, GLE4/OsMPK6 functions in shoot organization and stomata patterning in the post embryonic development in rice.
Collapse
Affiliation(s)
- Kiyoe Ishimoto
- Department of Plant Production Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | | | - Mitsuko Kishi-Kaboshi
- Molecular Genetics Department, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Tsuneaki Watanabe
- Molecular Genetics Department, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Kiyomi Abe
- Molecular Genetics Department, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Sae Shimizu-Sato
- National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Hirokazu Takahashi
- Department of Plant Production Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Mikio Nakazono
- Department of Plant Production Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Hirohiko Hirochika
- Molecular Genetics Department, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Yutaka Sato
- National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
21
|
Boro P, Chattopadhyay S. Crosstalk between MAPKs and GSH under stress: A critical review. J Biosci 2022. [DOI: 10.1007/s12038-022-00315-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Identification and Expression Analysis of MPK and MKK Gene Families in Pecan ( Carya illinoinensis). Int J Mol Sci 2022; 23:ijms232315190. [PMID: 36499523 PMCID: PMC9737717 DOI: 10.3390/ijms232315190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Mitogen-activated protein kinases consist of three kinase modules composed of MPKs, MKKs, and MPKKKs. As members of the protein kinase (PK) superfamily, they are involved in various processes, such as developmental programs, cell division, hormonal progression, and signaling responses to biotic and abiotic stresses. In this study, a total of 18 MPKs and 10 MKKs were annotated on the pecan genome, all of which could be classified into four subgroups, respectively. The gene structures and conserved sequences of family members in the same branch were relatively similar. All MPK proteins had a conserved motif TxY, and D(L/I/V)K and VGTxxYMSPER existed in all MKK proteins. Duplication events contributed largely to the expansion of the pecan MPK and MKK gene families. Phylogenetic analysis of protein sequences from six plants indicated that species evolution occurred in pecan. Organ-specific expression profiles of MPK and MKK showed functional diversity. Ka/Ks values indicated that all genes with duplicated events underwent strong negative selection. Seven CiPawMPK and four CiPawMKK genes with high expression levels were screened by transcriptomic data from different organs, and these candidates were validated by qRT-PCR analysis of hormone-treated and stressed samples.
Collapse
|
23
|
Developing Genetic Engineering Techniques for Control of Seed Size and Yield. Int J Mol Sci 2022; 23:ijms232113256. [PMID: 36362043 PMCID: PMC9655546 DOI: 10.3390/ijms232113256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/15/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022] Open
Abstract
Many signaling pathways regulate seed size through the development of endosperm and maternal tissues, which ultimately results in a range of variations in seed size or weight. Seed size can be determined through the development of zygotic tissues (endosperm and embryo) and maternal ovules. In addition, in some species such as rice, seed size is largely determined by husk growth. Transcription regulator factors are responsible for enhancing cell growth in the maternal ovule, resulting in seed growth. Phytohormones induce significant effects on entire features of growth and development of plants and also regulate seed size. Moreover, the vegetative parts are the major source of nutrients, including the majority of carbon and nitrogen-containing molecules for the reproductive part to control seed size. There is a need to increase the size of seeds without affecting the number of seeds in plants through conventional breeding programs to improve grain yield. In the past decades, many important genetic factors affecting seed size and yield have been identified and studied. These important factors constitute dynamic regulatory networks governing the seed size in response to environmental stimuli. In this review, we summarized recent advances regarding the molecular factors regulating seed size in Arabidopsis and other crops, followed by discussions on strategies to comprehend crops' genetic and molecular aspects in balancing seed size and yield.
Collapse
|
24
|
Effects and Mechanism of Enhanced UV-B Radiation on the Flag Leaf Angle of Rice. Int J Mol Sci 2022; 23:ijms232112776. [PMID: 36361567 PMCID: PMC9654109 DOI: 10.3390/ijms232112776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022] Open
Abstract
Leaf angle is an influential agricultural trait that influences rice (Oryza sativa L.) plant type and yield, which results from the leaf bending from the vertical axis to the abaxial axis. UV-B radiation affects plant morphology, but the effects of varying UV-B intensities on rice flag leaves and the underlying molecular, cellular, and physiological mechanisms remain unknown. This experiment aims to examine the effect of natural light and field-enhanced UV-B radiation (2.5, 5.0, 7.5 kJ·m−2) on the leaf angle of the traditional rice variety Baijiaolaojing on Yuanyang terraces. In comparison with natural light, the content of brassinolide and gibberellin in rice flag leaves increased by 29.94% and 60.1%, respectively. The auxin content decreased by 17.3%. Compared with the natural light treatment, the cellulose content in the pulvini was reduced by 13.8% and hemicellulose content by 25.7% under 7.5 kJ·m−2 radiation intensity. The thick-walled cell area and vascular bundle area of the leaf pulvini decreased with increasing radiation intensity, and the growth of mechanical tissue in the rice leaf pulvini was inhibited. The flag leaf angle of rice was greatest at 7.5 kJ·m−2 radiation intensity, with an increase of 50.2%. There are two pathways by which the angle of rice flag leaves is controlled under high-intensity UV-B radiation. The leaf angle regulation genes OsBUL1, OsGSR1, and OsARF19 control hormone levels, whereas the ILA1 gene controls fiber levels. Therefore, as cellulose, hemicellulose, sclerenchyma, and vascular bundles weaken the mechanical support of the pulvini, the angle of the flag leaf increases.
Collapse
|
25
|
Transcriptional Analysis on Resistant and Susceptible Kiwifruit Genotypes Activating Different Plant-Immunity Processes against Pseudomonas syringae pv. actinidiae. Int J Mol Sci 2022; 23:ijms23147643. [PMID: 35886990 PMCID: PMC9322148 DOI: 10.3390/ijms23147643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/03/2022] [Accepted: 07/09/2022] [Indexed: 02/01/2023] Open
Abstract
Pseudomonas syringae pv. actinidiae (Psa), a bacterial pathogen, is a severe threat to kiwifruit production. To elucidate the species-specific interaction between Psa and kiwifruit, transcriptomic-profiles analyses were conducted, under Psa-infected treatment and mock-inoculated control, on shoots of resistant Maohua (MH) and susceptible Hongyang (HY) kiwifruit varieties. The plant hormone-signal transduction and plant–pathogen interaction were significantly enriched in HY compared with MH. However, the starch and sucrose metabolism, antigen processing and presentation, phagosome, and galactose metabolism were significantly enriched in MH compared with HY. Interestingly, the MAP2 in the pathogen/microbe-associated molecular patterns (PAMPs)-triggered immunity (PTI) was significantly up-regulated in MH. The genes RAR1, SUGT1, and HSP90A in the effector-triggered immunity (ETI), and the NPR1 and TGA genes involved in the salicylic acid signaling pathway as regulatory roles of ETI, were significantly up-regulated in HY. Other important genes, such as the CCRs involved in phenylpropanoid biosynthesis, were highly expressed in MH, but some genes in the Ca2+ internal flow or involved in the reactive oxygen metabolism were obviously expressed in HY. These results suggested that the PTI and cell walls involved in defense mechanisms were significant in MH against Psa infection, while the ETI was notable in HY against Psa infection. This study will help to understand kiwifruit bacterial canker disease and provide important theoretical support in kiwifruit breeding.
Collapse
|
26
|
Gao H, Jiang L, Du B, Ning B, Ding X, Zhang C, Song B, Liu S, Zhao M, Zhao Y, Rong T, Liu D, Wu J, Xu P, Zhang S. GmMKK4-activated GmMPK6 stimulates GmERF113 to trigger resistance to Phytophthora sojae in soybean. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:473-495. [PMID: 35562858 DOI: 10.1111/tpj.15809] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Phytophthora root and stem rot is a worldwide soybean (Glycine max) disease caused by the soil-borne pathogen Phytophthora sojae. This disease is devastating to soybean production, so improvement of resistance to P. sojae is a major target in soybean breeding. Mitogen-activated protein kinase (MAPK) cascades are important signaling modules that convert environmental stimuli into cellular responses. Compared with extensive studies in Arabidopsis, the molecular mechanism of MAPK cascades in soybean disease resistance is barely elucidated. In this work, we found that the gene expression of mitogen-activated protein kinase 6 (GmMPK6) was potently induced by P. sojae infection in the disease-resistant soybean cultivar 'Suinong 10'. Overexpression of GmMPK6 in soybean resulted in enhanced resistance to P. sojae and silencing of GmMPK6 led to the opposite phenotype. In our attempt to dissect the role of GmMPK6 in soybean resistance to phytophthora disease, we found that MAPK kinase 4 (GmMKK4) and the ERF transcription factor GmERF113 physically interact with GmMPK6, and we determined that GmMKK4 could phosphorylate and activate GmMPK6, which could subsequently phosphorylate GmERF113 upon P. sojae infection, suggesting that P. sojae can stimulate the GmMKK4-GmMPK6-GmERF113 signaling pathway in soybean. Moreover, phosphorylation of GmERF113 by the GmMKK4-GmMPK6 module promoted GmERF113 stability, nuclear localization and transcriptional activity, which significantly enhanced expression of the defense-related genes GmPR1 and GmPR10-1 and hence improved disease resistance of the transgenic soybean seedlings. In all, our data reveal that the GmMKK4-GmMPK6-GmERF113 cascade triggers resistance to P. sojae in soybean and shed light on functions of MAPK kinases in plant disease resistance.
Collapse
Affiliation(s)
- Hong Gao
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Liangyu Jiang
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
- Jilin Agricultural University, Changchun, 130118, China
| | - Banghan Du
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Bin Ning
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Xiaodong Ding
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Chuanzhong Zhang
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Bo Song
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Shanshan Liu
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Ming Zhao
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Yuxin Zhao
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Tianyu Rong
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Dongxue Liu
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Junjiang Wu
- Soybean Research Institute of Heilongjiang Academy of Agricultural Sciences/Key Laboratory of Soybean Cultivation of Ministry of Agriculture P. R. China, Harbin, 150086, China
| | - Pengfei Xu
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Shuzhen Zhang
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| |
Collapse
|
27
|
Sun Y, Yang H, Li J. Transcriptome Analysis Reveals the Response Mechanism of Frl-Mediated Resistance to Fusarium oxysporum f. sp. radicis-lycopersici (FORL) Infection in Tomato. Int J Mol Sci 2022; 23:ijms23137078. [PMID: 35806084 PMCID: PMC9267026 DOI: 10.3390/ijms23137078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 12/10/2022] Open
Abstract
Tomato Fusarium crown and root rot (FCRR) is an extremely destructive soil-borne disease. To date, studies have shown that only plants with tomato mosaic virus (TMV) resistance exhibit similar resistance to tomato Fusarium oxysporum f. sp. radicis-lycopersici (FORL) and have identified a single relevant gene, Frl, in Peruvian tomato. Due to the relative lack of research on FCRR disease-resistance genes in China and elsewhere, transcriptome data for FORL-resistant (cv. ‘19912’) and FORL-susceptible (cv. ‘Moneymaker’) tomato cultivars were analysed for the first time in this study. The number of differentially expressed genes (DEGs) was higher in Moneymaker than in 19912, and 189 DEGs in the ‘plant–pathogen interaction’ pathway were subjected to GO and KEGG enrichment analyses. MAPK and WRKY genes were enriched in major metabolic pathways related to plant disease resistance; thus, we focused on these two gene families. In the early stage of tomato infection, the content of JA and SA increased, but the change in JA was more obvious. Fourteen genes were selected for confirmation of their differential expression levels by qRT-PCR. This study provides a series of novel disease resistance resources for tomato breeding and genetic resources for screening and cloning FORL resistance genes.
Collapse
|
28
|
Shi H, Li Q, Luo M, Yan H, Xie B, Li X, Zhong G, Chen D, Tang D. BRASSINOSTEROID-SIGNALING KINASE1 modulates MAP KINASE15 phosphorylation to confer powdery mildew resistance in Arabidopsis. THE PLANT CELL 2022; 34:1768-1783. [PMID: 35099562 PMCID: PMC9048930 DOI: 10.1093/plcell/koac027] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/24/2022] [Indexed: 05/10/2023]
Abstract
Perception of pathogen-associated molecular patterns (PAMPs) by plant cell surface-localized pattern-recognition receptors (PRRs) triggers the first line of plant innate immunity. In Arabidopsis thaliana, the receptor-like cytoplasmic kinase BRASSINOSTEROID-SIGNALING KINASE1 (BSK1) physically associates with PRR FLAGELLIN SENSING2 and plays an important role in defense against multiple pathogens. However, how BSK1 transduces signals to activate downstream immune responses remains elusive. Previously, through whole-genome phosphorylation analysis using mass spectrometry, we showed that phosphorylation of the mitogen-activated protein kinase (MAPK) MPK15 was affected in the bsk1 mutant compared with the wild-type plants. Here, we demonstrated that MPK15 is important for powdery mildew fungal resistance. PAMPs and fungal pathogens significantly induced the phosphorylation of MPK15 Ser-511, a key phosphorylation site critical for the functions of MPK15 in powdery mildew resistance. BSK1 physically associates with MPK15 and is required for basal and pathogen-induced MPK15 Ser-511 phosphorylation, which contributes to BSK1-mediated fungal resistance. Taken together, our data identified MPK15 as a player in plant defense against powdery mildew fungi and showed that BSK1 promotes fungal resistance in part by enhancing MPK15 Ser-511 phosphorylation. These results uncovered a mechanism of BSK1-mediated disease resistance and provided new insight into the role of MAPK phosphorylation in plant immunity.
Collapse
Affiliation(s)
- Hua Shi
- Author for correspondence: (D.T.), (H.S.)
| | - Qiuyi Li
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingyu Luo
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haojie Yan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bao Xie
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiang Li
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guitao Zhong
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Desheng Chen
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | | |
Collapse
|
29
|
Wang J, Li M, Zhuo S, Liu Y, Yu X, Mukhtar S, Ali M, Lu G. Mitogen-activated protein kinase 4 is obligatory for late pollen and early fruit development in tomato. HORTICULTURE RESEARCH 2022; 9:uhac048. [PMID: 35591931 PMCID: PMC9113226 DOI: 10.1093/hr/uhac048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/14/2022] [Indexed: 06/09/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules regulating vegetative and reproductive development of plants. However, the molecular mechanisms of the SlMPK4 gene in tomato pollen and fruit development remain elusive. SlMPK4 is preferentially and highly expressed in tomato stamens and its mRNA levels increase during early flower development, peaking at the mature pollen stage. Either up- or downregulation of SlMPK4 expression had no significant effect on tomato vegetative growth. However, RNAi-mediated suppression of SlMPK4 caused defects in pollen development, resulting in pollen abortion. The aborted pollen grains were either malformed or collapsed and completely lacked viability, resulting in a predominantly reduced fruit set rate in RNAi lines compared with control and overexpressing transgenic plants. Interestingly, seed development was inhibited in RNAi lines. Moreover, >12% of emasculated RNAi flowers developed seedless fruits without pollination. Anthers can produce typical microspore mother cells as well as uninucleate microspores, according to cytological investigations, while binucleate pollen ceased to produce typical mature pollen. Pollen abortion was further confirmed by transmission electron microscopy analysis at the binucleate stage in RNAi plants. The exine layer in aberrant pollen had a normal structure, while the intine layer appeared thicker. Suppression of SlMPK4 affects the transcript level of genes related to cell wall formation and modification, cell signal transduction, and metabolic and biosynthetic processes. A subset of genes that may be putative substrates of plant MAPKs were also differentially changed in RNAi transgenic flowers. Taken together, these results suggest that SlMPK4 plays a critical role in regulating pollen development and fruit development in tomato plants.
Collapse
Affiliation(s)
- Jie Wang
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Ningbo Academy of Agricultural Sciences, Ningbo 315000, Zhejiang, China
| | - Mengzhuo Li
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Shibin Zhuo
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Yue Liu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Xiaolin Yu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Sidra Mukhtar
- Directorate of Agriculture Research, Agricultural Research Institute Tarnab, Peshawar, Pakistan
| | - Muhammad Ali
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Gang Lu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agricultural, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
30
|
Zhou M, Zhao B, Li H, Ren W, Zhang Q, Liu Y, Zhao J. Comprehensive analysis of MAPK cascade genes in sorghum (Sorghum bicolor L.) reveals SbMPK14 as a potential target for drought sensitivity regulation. Genomics 2022; 114:110311. [PMID: 35176445 DOI: 10.1016/j.ygeno.2022.110311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/04/2022] [Accepted: 02/06/2022] [Indexed: 11/16/2022]
Abstract
The mitogen-activated protein kinase (MAPK) cascade plays a crucial role in regulating many important biological processes in plants. Here, we identified and characterized eight MAPKK and 49 MAPKKK genes in sorghum and analyzed their differential expression under drought treatment; we also characterized 16 sorghum MAPK genes. RNA-seq analysis revealed that 10 MAPK cascade genes were involved in drought stress response at the transcriptome level in sorghum. Overexpression of SbMPK14 in Arabidopsis and maize resulted in hypersensitivity to drought by promoting water loss, indicating that SbMPK14 functions as a negative regulator of the drought response. Subsequent transcriptome analysis and qRT-PCR verification of maize SbMPK14 overexpression lines revealed that SbMPK14 likely increases plant drought sensitivity by suppressing the activity of specific ERF and WRKY transcription factors. This comprehensive study provides valuable insight into the mechanistic basis of MAPK cascade gene function and their responses to drought in sorghum.
Collapse
Affiliation(s)
- Miaoyi Zhou
- Maize Research Institute, Beijing Academy of Agriculture & Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097, China
| | - Bingbing Zhao
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330046, China
| | - Hanshuai Li
- Maize Research Institute, Beijing Academy of Agriculture & Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097, China
| | - Wen Ren
- Maize Research Institute, Beijing Academy of Agriculture & Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097, China
| | - Qian Zhang
- Maize Research Institute, Beijing Academy of Agriculture & Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097, China; College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China
| | - Ya Liu
- Maize Research Institute, Beijing Academy of Agriculture & Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097, China.
| | - Jiuran Zhao
- Maize Research Institute, Beijing Academy of Agriculture & Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097, China.
| |
Collapse
|
31
|
Zhang A, Ji Y, Sun M, Lin C, Zhou P, Ren J, Luo D, Wang X, Ma C, Zhang X, Feng G, Nie G, Huang L. Research on the drought tolerance mechanism of Pennisetum glaucum (L.) in the root during the seedling stage. BMC Genomics 2021; 22:568. [PMID: 34301177 PMCID: PMC8305952 DOI: 10.1186/s12864-021-07888-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 07/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Drought is one of the major environmental stresses resulting in a huge reduction in crop growth and biomass production. Pearl millet (Pennisetum glaucum L.) has excellent drought tolerance, and it could be used as a model plant to study drought resistance. The root is a very crucial part of plant that plays important roles in plant growth and development, which makes it a focus of research. RESULTS In this study, we explored the mechanism of drought tolerance of pearl millet by comparing physiological and transcriptomic data under normal condition and drought treatment at three time points (1 h, 3 h and 7 h) in the root during the seedling stage. The relative electrical conductivity went up from 1 h to 7 h in both control and drought treatment groups while the content of malondialdehyde decreased. A total of 2004, 1538 and 605 differentially expressed genes were found at 1 h, 3 h and 7 h respectively and 12 genes showed up-regulation at all time points. Some of these differentially expressed genes were significantly enriched into 'metabolic processes', 'MAPK signaling pathway' and 'plant hormone signal transduction' such as the ABA signal transduction pathway in GO and KEGG enrichment analysis. CONCLUSIONS Pearl millet was found to have a quick drought response, which may occur before 1 h that contributes to its tolerance against drought stress. These results can provide a theoretical basis to enhance the drought resistance in other plant species.
Collapse
Affiliation(s)
- Ailing Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Ji
- Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Min Sun
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chuang Lin
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Puding Zhou
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Juncai Ren
- College of Animal Science and Technology, Southwest University, Rongchang Campus, Chongqing, 402460, China
| | - Dan Luo
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoshan Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Congyu Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
32
|
Ponce-Pineda IG, Carmona-Salazar L, Saucedo-García M, Cano-Ramírez D, Morales-Cedillo F, Peña-Moral A, Guevara-García ÁA, Sánchez-Nieto S, Gavilanes-Ruíz M. MPK6 Kinase Regulates Plasma Membrane H +-ATPase Activity in Cold Acclimation. Int J Mol Sci 2021; 22:6338. [PMID: 34199294 PMCID: PMC8232009 DOI: 10.3390/ijms22126338] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Cold and freezing stresses severely affect plant growth, development, and survival rate. Some plant species have evolved a process known as cold acclimation, in which plants exposed to temperatures above 0 °C trigger biochemical and physiological changes to survive freezing. During this response, several signaling events are mediated by transducers, such as mitogen activated protein kinase (MAPK) cascades. Plasma membrane H+-ATPase is a key enzyme for the plant cell life under regular and stress conditions. Using wild type and mpk3 and mpk6 knock out mutants in Arabidopsis thaliana, we explored the transcriptional, translational, and 14-3-3 protein regulation of the plasma membrane H+-ATPase activity under the acclimation process. The kinetic analysis revealed a differential profiling of the H+-ATPase activity depending on the presence or absence of MPK3 or MPK6 under non-acclimated or acclimated conditions. Negative regulation of the plasma membrane H+-ATPase activity was found to be exerted by MPK3 in non-acclimated conditions and by MPK6 in acclimated conditions, describing a novel form of regulation of this master ATPase. The MPK6 regulation involved changes in plasma membrane fluidity. Moreover, our results indicated that MPK6 is a critical regulator in the process of cold acclimation that leads to freezing tolerance and further survival.
Collapse
Affiliation(s)
- Ilian Giordano Ponce-Pineda
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (I.G.P.-P.); (L.C.-S.); (D.C.-R.); (F.M.-C.); (A.P.-M.); (S.S.-N.)
| | - Laura Carmona-Salazar
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (I.G.P.-P.); (L.C.-S.); (D.C.-R.); (F.M.-C.); (A.P.-M.); (S.S.-N.)
| | - Mariana Saucedo-García
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Avenida Universidad Km. 1, Rancho Universitario, Tulancingo-Santiago Tulantepec, Tulancingo, Hidalgo 43600, Mexico;
| | - Dora Cano-Ramírez
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (I.G.P.-P.); (L.C.-S.); (D.C.-R.); (F.M.-C.); (A.P.-M.); (S.S.-N.)
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Francisco Morales-Cedillo
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (I.G.P.-P.); (L.C.-S.); (D.C.-R.); (F.M.-C.); (A.P.-M.); (S.S.-N.)
| | - Araceli Peña-Moral
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (I.G.P.-P.); (L.C.-S.); (D.C.-R.); (F.M.-C.); (A.P.-M.); (S.S.-N.)
| | - Ángel Arturo Guevara-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico;
| | - Sobeida Sánchez-Nieto
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (I.G.P.-P.); (L.C.-S.); (D.C.-R.); (F.M.-C.); (A.P.-M.); (S.S.-N.)
| | - Marina Gavilanes-Ruíz
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (I.G.P.-P.); (L.C.-S.); (D.C.-R.); (F.M.-C.); (A.P.-M.); (S.S.-N.)
| |
Collapse
|
33
|
Wang D, Wang H, Liu Q, Tu R, Zhou X, Zhang Y, Wu W, Yu P, Chen D, Zhan X, Cao L, Cheng S, Shen X. Reduction of OsMPK6 activity by a R89K mutation induces cell death and bacterial blight resistance in rice. PLANT CELL REPORTS 2021; 40:835-850. [PMID: 33730215 DOI: 10.1007/s00299-021-02679-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
The R89 is essential for the kinase activity of OsMPK6 which negatively regulates cell death and defense response in rice. Mitogen-activated protein kinase cascade plays critical roles in various vital activities, including the plant immune response, but the mechanisms remain elusive. Here, we identified and characterized a rice lesion mimic mutant osmpk6 which displayed hypersensitive response-like lesions in company with cell death and hydrogen peroxide hyperaccumulation. Map-based cloning and complementation demonstrated that a G702A single-base substitution in the second exon of OsMPK6 led to the lesion mimic phenotype of the osmpk6 mutant. OsMPK6 encodes a cytoplasm and nucleus-targeted mitogen-activated protein kinase and is expressed in the various organs. Compared with wild type, the osmpk6 mutant exhibited high resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo), likely due to the increased ROS production induced by flg22 and chitin and up-regulated expression of genes involved in pathogenesis, as well as activation of SA and JA signaling pathways after inoculation. By contrast, the OsMPK6-overexpression line (OE-1) was found to be susceptible to the bacterial pathogens, indicating that OsMPK6 negatively regulated Xoo resistance. Furthermore, the G702A single-base substitution caused a R89K mutation at both polypeptide substrate-binding site and active site of OsMPK6, and kinase activity assay revealed that the R89K mutation led to reduction of OsMPK6 activity, suggesting that the R89 is essential for the function of OsMPK6. Our findings provide insight into a vital role of the R89 of OsMPK6 in regulating cell death and defense response in rice.
Collapse
Affiliation(s)
- Dongfei Wang
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Hong Wang
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Qunen Liu
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Ranran Tu
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Xingpeng Zhou
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Yingxin Zhang
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Weixun Wu
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Ping Yu
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Daibo Chen
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Xiaodeng Zhan
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Liyong Cao
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China.
| | - Shihua Cheng
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China.
| | - Xihong Shen
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China.
| |
Collapse
|
34
|
Lesharadevi K, Parthasarathi T, Muneer S. Silicon biology in crops under abiotic stress: A paradigm shift and cross-talk between genomics and proteomics. J Biotechnol 2021; 333:21-38. [PMID: 33933485 DOI: 10.1016/j.jbiotec.2021.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 01/26/2023]
Abstract
Silicon is a beneficial element to improve the biological process, growth, development, and crop productivity. The review mainly focuses on the advantage of crops supplemented with silicon, how Si alleviate abiotic stress as well as regulate the genes and proteins involved in metabolic and biological functions in plants. Abiotic stress causes damage to the proteins, nucleic acids, affect transpiration rate, stomatal conductance, alter the nutrient balance, and cell desiccation which could reduce the growth and development of the plants. To overcome from this problem researchers, focus on beneficial element like silicon to protect the plants against various abiotic stresses. The previous review reports are based on the application of silicon on salinity and drought stress, plant defense mechanism, the elevation of plant metabolism, enhancement of the biochemical and physiological properties, regulation of secondary metabolites and plant hormone. Here, we discuss about the silicon uptake and accumulation in plants, and silicon regulates the reactive oxygen species under abiotic stress, further we mainly focus on the genes and proteins which play a vital role in plants with silicon supplementation. The study can help the researchers to focus further on plants to improve the advancement in them under abiotic stress.
Collapse
Affiliation(s)
- Kuppan Lesharadevi
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Tamil Nadu, India; School of Bioscience and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India; Plant Genomics and Biochemistry Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Tamil-Nadu, India
| | - Theivasigamani Parthasarathi
- Plant Genomics and Biochemistry Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Tamil-Nadu, India.
| | - Sowbiya Muneer
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Tamil Nadu, India.
| |
Collapse
|
35
|
González-Coronel JM, Rodríguez-Alonso G, Guevara-García ÁA. A phylogenetic study of the members of the MAPK and MEK families across Viridiplantae. PLoS One 2021; 16:e0250584. [PMID: 33891654 PMCID: PMC8064577 DOI: 10.1371/journal.pone.0250584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/09/2021] [Indexed: 11/18/2022] Open
Abstract
Protein phosphorylation is regulated by the activity of enzymes generically known as kinases. One of those kinases is Mitogen-Activated Protein Kinases (MAPK), which operate through a phosphorylation cascade conformed by members from three related protein kinase families namely MAPK kinase kinase (MEKK), MAPK kinase (MEK), and MAPK; these three acts hierarchically. Establishing the evolution of these proteins in the plant kingdom is an interesting but complicated task because the current MAPK, MAPKK, and MAPKKK subfamilies arose from duplications and subsequent sub-functionalization during the early stage of the emergence of Viridiplantae. Here, an in silico genomic analysis was performed on 18 different plant species, which resulted in the identification of 96 genes not previously annotated as components of the MAPK (70) and MEK (26) families. Interestingly, a deeper analysis of the sequences encoded by such genes revealed the existence of putative domains not previously described as signatures of MAPK and MEK kinases. Additionally, our analysis also suggests the presence of conserved activation motifs besides the canonical TEY and TDY domains, which characterize the MAPK family.
Collapse
Affiliation(s)
- José Manuel González-Coronel
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Gustavo Rodríguez-Alonso
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Ángel Arturo Guevara-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
36
|
Kumar RR, Dubey K, Arora K, Dalal M, Rai GK, Mishra D, Chaturvedi KK, Rai A, Kumar SN, Singh B, Chinnusamy V, Praveen S. Characterizing the putative mitogen-activated protein kinase ( MAPK) and their protective role in oxidative stress tolerance and carbon assimilation in wheat under terminal heat stress. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 29:e00597. [PMID: 33659194 PMCID: PMC7890154 DOI: 10.1016/j.btre.2021.e00597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/28/2021] [Accepted: 02/03/2021] [Indexed: 12/18/2022]
Abstract
Wheat, being sensitive to terminal heat, causes drastic reduction in grain quality and yield. MAPK cascade regulates the network of defense mechanism operated inside plant system. Here, we have identified 21 novel MAPKs through gel-based proteomics and RNA-seq data analysis. Based on digital gene expression, two transcripts (transcript_2834 and transcript_8242) showing homology with MAPK were cloned and characterized from wheat (acc. nos. MK854806 and KT835664). Transcript_2834 was cloned in pET28a vector and recombinant MAPK protein of ∼40.3 kDa was isolated and characterized to have very high in-vitro kinase activity under HS. Native MAPK showed positive correlation with the expression of TFs, HSPs, genes linked with antioxidant enzyme (SOD, CAT, GPX), photosynthesis and starch biosynthesis pathways in wheat under HS. Wheat cv. HD3086 (thermotolerant) having higher expression and activity of MAPK under HS showed significant increase in accumulation of proline, H2O2, starch, and granule integrity, compared with BT-Schomburgk (thermosusceptible).
Collapse
Affiliation(s)
- Ranjeet R Kumar
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Kavita Dubey
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Kirti Arora
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Monika Dalal
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Gyanendra K Rai
- Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu, 180009, India
| | - Dwijesh Mishra
- CABin, Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Krishna K Chaturvedi
- CABin, Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Anil Rai
- CABin, Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Soora Naresh Kumar
- Centre for Environment Science and Climate Resilient Agriculture (CESCRA), Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Bhupinder Singh
- Centre for Environment Science and Climate Resilient Agriculture (CESCRA), Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Shelly Praveen
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
37
|
Wang Y, Sang Z, Xu S, Xu Q, Zeng X, Jabu D, Yuan H. Comparative proteomics analysis of Tibetan hull-less barley under osmotic stress via data-independent acquisition mass spectrometry. Gigascience 2021; 9:5775614. [PMID: 32126136 PMCID: PMC7053489 DOI: 10.1093/gigascience/giaa019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/18/2020] [Accepted: 02/12/2020] [Indexed: 12/25/2022] Open
Abstract
Background Tibetan hull-less barley (Hordeum vulgare L. var. nudum) is one of the primary crops cultivated in the mountains of Tibet and encounters low temperature, high salinity, and drought. Specifically, drought is one of the major abiotic stresses that affect and limit Tibetan barley growth. Osmotic stress is often simultaneously accompanied by drought conditions. Thus, to improve crop yield, it is critical to explore the molecular mechanism governing the responses of hull-less barley to osmotic/drought stress conditions. Findings In this study, we used quantitative proteomics by data-independent acquisition mass spectrometry to investigate protein abundance changes in tolerant (XL) and sensitive (DQ) cultivars. A total of 6,921 proteins were identified and quantified in all samples. Two distinct strategies based on pairwise and time-course comparisons were utilized in the comprehensive analysis of differentially abundant proteins. Further functional analysis of differentially abundant proteins revealed that some hormone metabolism–associated and phytohormone abscisic acid–induced genes are primarily affected by osmotic stress. Enhanced regulation of reactive oxygen species (may promote the tolerance of hull-less barley under osmotic stress. Moreover, we found that some regulators, such as GRF, PR10, MAPK, and AMPK, were centrally positioned in the gene regulatory network, suggesting that they may have a dominant role in the osmotic stress response of Tibetan barley. Conclusions Our findings highlight a subset of proteins and processes that are involved in the alleviation of osmotic stress. In addition, this study provides a large-scale and multidimensional proteomic data resource for the further investigation and improvement of osmotic/drought stress tolerance in hull-less barley or other plant species.
Collapse
Affiliation(s)
- Yulin Wang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China.,Institute of Agricultural Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China
| | - Zha Sang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China.,Institute of Agricultural Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China
| | - Shaohang Xu
- Deepxomics Co., Ltd, No.2082 Shenyan Road, Yantian District., Shenzhen 518000, Guangdong, China
| | - Qijun Xu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China.,Institute of Agricultural Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China
| | - Xingquan Zeng
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China.,Institute of Agricultural Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China
| | - Dunzhu Jabu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China.,Institute of Agricultural Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China
| | - Hongjun Yuan
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China.,Institute of Agricultural Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China
| |
Collapse
|
38
|
Genome-Wide Identification and Analysis of MKK and MAPK Gene Families in Brassica Species and Response to Stress in Brassica napus. Int J Mol Sci 2021; 22:ijms22020544. [PMID: 33430412 PMCID: PMC7827818 DOI: 10.3390/ijms22020544] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/25/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are common and conserved signal transduction pathways and play important roles in various biotic and abiotic stress responses and growth and developmental processes in plants. With the advancement of sequencing technology, more systematic genetic information is being explored. The work presented here focuses on two protein families in Brassica species: MAPK kinases (MKKs) and their phosphorylation substrates MAPKs. Forty-seven MKKs and ninety-two MAPKs were identified and extensively analyzed from two tetraploid (B. juncea and B. napus) and three diploid (B. nigra, B. oleracea, and B. rapa) Brassica species. Phylogenetic relationships clearly distinguished both MKK and MAPK families into four groups, labeled A–D, which were also supported by gene structure and conserved protein motif analysis. Furthermore, their spatial and temporal expression patterns and response to stresses (cold, drought, heat, and shading) were analyzed, indicating that BnaMKK and BnaMAPK transcript levels were generally modulated by growth, development, and stress signals. In addition, several protein interaction pairs between BnaMKKs and C group BnaMAPKs were detected by yeast two-hybrid assays, in which BnaMKK3 and BnaMKK9 showed strong interactions with BnaMAPK1/2/7, suggesting that interaction between BnaMKKs and C group BnaMAPKs play key roles in the crosstalk between growth and development processes and abiotic stresses. Taken together, our data provide a deeper foundation for the evolutionary and functional characterization of MKK and MAPK gene families in Brassica species, paving the way for unraveling the biological roles of these important signaling molecules in plants.
Collapse
|
39
|
Abstract
Protoplasts are a versatile and powerful cell-based system to study different plant processes in vivo, due to their ability to maintain cell identity and carry out reactions and metabolic processes similar to intact plants. In rice, despite numerous reports, difficulties are encountered in protoplast isolation and transfection. These include insufficient numbers of protoplasts isolated and inefficient transfection. Such difficulties limit the use of this simple yet useful technology. The need to use protoplasts is particularly important when similar experiments may not work in yeast or Pichia, due to differences in functionally essential protein post-translation modifications. In this chapter, we describe a rice protoplast isolation and transfection method.
Collapse
|
40
|
Chen X, Ding Y, Yang Y, Song C, Wang B, Yang S, Guo Y, Gong Z. Protein kinases in plant responses to drought, salt, and cold stress. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:53-78. [PMID: 33399265 DOI: 10.1111/jipb.13061] [Citation(s) in RCA: 308] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/19/2020] [Indexed: 05/20/2023]
Abstract
Protein kinases are major players in various signal transduction pathways. Understanding the molecular mechanisms behind plant responses to biotic and abiotic stresses has become critical for developing and breeding climate-resilient crops. In this review, we summarize recent progress on understanding plant drought, salt, and cold stress responses, with a focus on signal perception and transduction by different protein kinases, especially sucrose nonfermenting1 (SNF1)-related protein kinases (SnRKs), mitogen-activated protein kinase (MAPK) cascades, calcium-dependent protein kinases (CDPKs/CPKs), and receptor-like kinases (RLKs). We also discuss future challenges in these research fields.
Collapse
Affiliation(s)
- Xuexue Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chunpeng Song
- Collaborative Innovation Center of Crop Stress Biology, Henan Province, Institute of Plant Stress Biology, Henan University, Kaifeng, 475001, China
| | - Baoshan Wang
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Ji'nan, 250000, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Institute of Life Science and Green Development, School of Life Sciences, Hebei University, Baoding, 071001, China
| |
Collapse
|
41
|
Wang W, Shao A, Amombo E, Fan S, Xu X, Fu J. Transcriptome-wide identification of MAPKKK genes in bermudagrass ( Cynodon dactylon L.) and their potential roles in low temperature stress responses. PeerJ 2020; 8:e10159. [PMID: 33194398 PMCID: PMC7602684 DOI: 10.7717/peerj.10159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 09/21/2020] [Indexed: 11/20/2022] Open
Abstract
As upstream components of MAPK cascades, mitogen-activated protein kinase kinase kinases (MAPKKKs) act as adaptors linking upstream signaling steps to the core MAPK cascades. MAPK cascades are universal modules of signal transduction in eukaryotic organisms and play crucial roles in plant development processes and in responses to biotic and abiotic stress and signal transduction. Members of the MAPKKK gene family have been identified in several plants,however, MAPKKKs have not been systematically studied in bermudagrass (Cynodon dactylon L.). In this study, 55 potential CdMAPKKKs were produced from bermudagrass transcriptome data, of which 13 belonged to the MEKK, 38 to the Raf, and 4 to the ZIK subfamily. Multiple alignment and conserved motif analysis of CdMAPKKKs supported the evolutionary relationships inferred from phylogenetic analyses. Moreover, the distribution pattern in Poaceae species indicated that members of the MAPKKK family were conserved among almost all diploid species, and species-specific polyploidy or higher duplication ratios resulted in an expansion of the MAPKKK family. In addition, 714 co-functional links which were significantly enriched in signal transduction, responses to temperature stimuli, and other important biological processes of 55 CdMAPKKKs were identified using co-functional gene networks analysis; 30 and 19 co-functional genes involved in response to cold or heat stress, respectively, were also identified. Results of promoter analyses, and interaction network investigation of all CdMAPKKKs based on the rice homologs suggested that CdMAPKKKs are commonly associated with regulation of numerous biological processes. Furthermore, 12 and 13 CdMAPKKKs were significantly up- and downregulated, respectively, in response to low temperature stress; among them, six CdMAPKKKs were significantly induced by low temperature stress, at least at one point in time. This is the first study to conduct identification and functional analysis of the MAPKKK gene family in bermudagrass, and our results provide a foundation for further research on the functions of CdMAPKKKs in response to low temperature stress.
Collapse
Affiliation(s)
- Wei Wang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - An Shao
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - Erick Amombo
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - Shugao Fan
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - Xiao Xu
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - Jinmin Fu
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| |
Collapse
|
42
|
Shi M, Wang Z, Ma Z, Song W, Lu W, Xiao K. Characterization on TaMPK14, an MAPK family gene of wheat, in modulating N-starvation response through regulating N uptake and ROS homeostasis. PLANT CELL REPORTS 2020; 39:1285-1299. [PMID: 32648010 DOI: 10.1007/s00299-020-02564-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/01/2020] [Indexed: 05/28/2023]
Abstract
Wheat MAPK gene TaMPK14 is N starvation response and is crucial in modulating plant low-N stress tolerance. Improving plant N use efficiency (NUE) contributes largely to the sustainable crop production worldwide. In this study, TaMPK14, a mitogen-activated protein kinase (MAPK) family gene in T. aestivum, was characterized for the role in mediating N starvation response. TaMPK14 harbors conserved domain/motifs specified by the plant MAPK proteins. In vitro assay for kinase activity of TaMPK14 validated its phosphorylation nature. TaMPK14 transcripts were upregulated in both roots and leaves under low-N treatment; moreover, the expression levels induced by N starvation were gradually restored following the N recovery progression. These results suggested transcriptional response of TaMPK14 upon the low-N stress. Compared with wild type (WT), the TaMPK14 overexpressing lines in N. tabacum displayed improved growth and N accumulation traits under deficient-N treatment, which indicated the crucial roles of the MAPK gene in mediating N starvation response. Additionally, the lines treated by N starvation were shown to be improved on cellular ROS homeostasis, displaying higher antioxidant enzymes (AE) activities and less ROS accumulative amount than WT. The transcripts of nitrate transporter gene NtNRT2.1 and those of AE genes NtSOD1, NtCAT1;2, and NtPOD4 were significantly upregulated in N-deprived TaMPK14 lines; overexpression of them conferred plants enhanced N uptake capacity and AE activities, respectively. Moreover, RNA-seq datasets generated from N-deprived transgenic lines contained numerous differential genes involving modulating various biological process, cellular component, and molecular function. Together, our investigation suggested that TaMPK14 improves plant N starvation response through transcriptional regulation of distinct NRT and AE genes as well as modulation of associated biological processes.
Collapse
Affiliation(s)
- Meihua Shi
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
- Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, 071001, China
| | - Zhuo Wang
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Zifei Ma
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
- Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, 071001, China
| | - Wenteng Song
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
- Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, 071001, China
| | - Wenjing Lu
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China.
- Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, 071001, China.
| | - Kai Xiao
- College of Agronomy, Hebei Agricultural University, Baoding, 071001, China.
- Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, 071001, China.
| |
Collapse
|
43
|
MAPK cascade gene family in Camellia sinensis: In-silico identification, expression profiles and regulatory network analysis. BMC Genomics 2020; 21:613. [PMID: 32894062 PMCID: PMC7487466 DOI: 10.1186/s12864-020-07030-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/27/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Mitogen Activated Protein Kinase (MAPK) cascade is a fundamental pathway in organisms for signal transduction. Though it is well characterized in various plants, there is no systematic study of this cascade in tea. RESULT In this study, 5 genes of Mitogen Activated Protein Kinase Kinase (MKK) and 16 genes of Mitogen Activated Protein Kinase (MPK) in Camellia sinensis were found through a genome-wide search taking Arabidopsis thaliana as the reference genome. Also, phylogenetic relationships along with structural analysis which includes gene structure, location as well as protein conserved motifs and domains, were systematically examined and further, predictions were validated by the results. The plant species taken for comparative study clearly displayed segmental duplication, which was a significant candidate for MAPK cascade expansion. Also, functional interaction was carried out in C. sinensis based on the orthologous genes in Arabidopsis. The expression profiles linked to various stress treatments revealed wide involvement of MAPK and MAPKK genes from Tea in response to various abiotic factors. In addition, the expression of these genes was analysed in various tissues. CONCLUSION This study provides the targets for further comprehensive identification, functional study, and also contributed for a better understanding of the MAPK cascade regulatory network in C. sinensis.
Collapse
|
44
|
Kumar RR, Arora K, Goswami S, Sakhare A, Singh B, Chinnusamy V, Praveen S. MAPK Enzymes: a ROS Activated Signaling Sensors Involved in Modulating Heat Stress Response, Tolerance and Grain Stability of Wheat under Heat Stress. 3 Biotech 2020; 10:380. [PMID: 32802722 DOI: 10.1007/s13205-020-02377-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/31/2020] [Indexed: 01/21/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) signaling cascade is highly conserved across the species triggering the self-adjustment of the cells by transmitting the external signals to the nucleus. The cascade consists of MAPK kinase kinases (MAPKKKs), MAPK kinases (MAPKKs) and MAPKs. These kinases are functionally interrelated through activation by sequential phosphorylation. MAPK cascade is involved in modulating the tolerance and regulating the growth and developmental processes in plants through transcriptional programming. The cascade has been well characterized in Arabidopsis, Tobacco and rice, but limited information is available in wheat due to complexity of genome. MAPK-based sensors have been reported to be highly specific for the external or intracellular stimuli activating specific TF, stress-associated genes (SAGs) and stress-associated proteins (SAPs) linked with heat-stress tolerance and other biological functions especially size, number and quality of grains. Even, MAPKs have been reported to influence the activity of ATP-binding cassette (ABC) transporter superfamily involved in stabilizing the quality of the grains under adverse conditions. Wheat has also diverse network of MAPKs involved in transcriptional reprogramming upon sensing the terminal HS and in turn protect the plants. Current review mainly focuses on the role of MAPKs as signaling sensor and modulator of defense mechanism for mitigating the effect of heat on plants with focus on wheat. It also indirectly protects the nutrient depletion from the grains under heat stress. MAPKs, lying at pivotal positions, can be utilized for manipulating the heat-stress response (HSR) of wheat to develop plant for future (P4F).
Collapse
Affiliation(s)
- Ranjeet R Kumar
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Kirti Arora
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Suneha Goswami
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Akshay Sakhare
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Bhupinder Singh
- Centre for Environment Science and Climate Resilient Agriculture (CESCRA), Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Shelly Praveen
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
45
|
Bai Z, Zhang J, Ning X, Guo H, Xu X, Huang X, Wang Y, Hu Z, Lu C, Zhang L, Chi W. A Kinase-Phosphatase-Transcription Factor Module Regulates Adventitious Root Emergence in Arabidopsis Root-Hypocotyl Junctions. MOLECULAR PLANT 2020; 13:1162-1177. [PMID: 32534220 DOI: 10.1016/j.molp.2020.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/05/2019] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Adventitious roots form from non-root tissues as part of normal development or in response to stress or wounding. The root primordia form in the source tissue, and during emergence the adventitious roots penetrate the inner cell layers and the epidermis; however, the mechanisms underlying this emergence remain largely unexplored. Here, we report that a regulatory module composed of the AP2/ERF transcription factor ABSCISIC ACID INSENSITIVE 4 (ABI4), the MAP kinases MPK3 and MPK6, and the phosphatase PP2C12 plays an important role in the emergence of junction adventitious roots (J-ARs) from the root-hypocotyl junctions in Arabidopsis thaliana. ABI4 negatively regulates J-AR emergence, preventing the accumulation of reactive oxygen species and death of epidermal cells, which would otherwise facilitate J-AR emergence. Phosphorylation by MPK3/MPK6 activates ABI4 and dephosphorylation by PP2C12 inactivates ABI4. MPK3/MPK6 also directly phosphorylate and inactivate PP2C12 during J-AR emergence. We propose that this "double-check" mechanism increases the robustness of MAP kinase signaling and finely regulates the local programmed cell death required for J-AR emergence.
Collapse
Affiliation(s)
- Zechen Bai
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Ning
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailong Guo
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China
| | - Xiumei Xu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhubing Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Congming Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Lixin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
46
|
Liu J, Wang X, Yang L, Nan W, Ruan M, Bi Y. Involvement of active MKK9-MAPK3/MAPK6 in increasing respiration in salt-treated Arabidopsis callus. PROTOPLASMA 2020; 257:965-977. [PMID: 32008084 DOI: 10.1007/s00709-020-01483-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
Mitogen-activated protein kinase kinase 9 (MKK9) is an upstream activator of mitogen-activated protein kinase 3 (MAPK3) and MAPK6 in planta. To investigate MKK9 roles in mitochondrial respiration in Arabidopsis, MKK9DD, the active allele with mutations of Thr-201 and Ser-205 to Asp, and MKK9KR, the allele lacking MKK9 activity with a mutation of Lys-76 to Arg, were used. Results showed that the total respiratory rate (Vt), alternative pathway capacity (Valt) and cytochrome pathway capacity (Vcyt) increased under 0-100 mM NaCl treatments but decreased under 150-300 mM NaCl treatments in Col-0 callus. However, the activation of MKK9 by dexamethasone (DEX) increased Vt, Valt and Vcyt under 200 mM NaCl treatment; moreover, Valt showed more increase than Vcyt. The activation of MKK9 in MKK9DD callus sharply increased AOX protein expression under normal and NaCl conditions, but the increase was not observed in MKK9KR callus. Further results indicated that MAPK3 and MAPK6 were involved in the MKK9-induced increase of AOX protein levels. qRT-PCR results showed that MKK9-MAPK3/MAPK6 was involved in the NaCl-induced AOX1b and AOX1d expression, but only MKK9-MAPK3 was necessary for AOX2 expression; in addition, MAPK3 regulated the AOX1a transcription in an MKK9-independent manner. MKK9 positively regulated SOD and CAT activities by affecting MAPK3 and MAPK6 and negatively regulated APX and POD activities by affecting MAPK3. Moreover, MKK9 functions as a positive factor in H2O2 accumulation under salt stress. The regulation of ethylene on alternative respiration was also associated with MKK9 under salt stress. Taken together, the MKK9-MAPK3/MAPK6 pathway plays a pivotal role in increasing alternative respiration in the salt-treated Arabidopsis callus.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Key Laboratory of Plant Physiology and Developmental Regulation, Guizhou Normal University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Xiaomin Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| | - Lei Yang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Wenbin Nan
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Mengjiao Ruan
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yurong Bi
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
47
|
Poplar PdPTP1 Gene Negatively Regulates Salt Tolerance by Affecting Ion and ROS Homeostasis in Populus. Int J Mol Sci 2020; 21:ijms21031065. [PMID: 32033494 PMCID: PMC7037657 DOI: 10.3390/ijms21031065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
High concentrations of Na+ in saline soil impair plant growth and agricultural production. Protein tyrosine phosphorylation is crucial in many cellular regulatory mechanisms. However, regulatory mechanisms of plant protein tyrosine phosphatases (PTPs) in controlling responses to abiotic stress remain limited. We report here the identification of a Tyrosine (Tyr)-specific phosphatase, PdPTP1, from NE19 (Populus nigra × (P. deltoides × P. nigra). Transcript levels of PdPTP1 were upregulated significantly by NaCl treatment and oxidative stress. PdPTP1 was found both in the nucleus and cytoplasm. Under NaCl treatment, transgenic plants overexpressing PdPTP1 (OxPdPTP1) accumulated more Na+ and less K+. In addition, OxPdPTP1 poplars accumulated more H2O2 and O2·-, which is consistent with the downregulation of enzymatic ROS-scavengers activity. Furthermore, PdPTP1 interacted with PdMAPK3/6 in vivo and in vitro. In conclusion, our findings demonstrate that PdPTP1 functions as a negative regulator of salt tolerance via a mechanism of affecting Na+/K+ and ROS homeostasis.
Collapse
|
48
|
Mapping proteome-wide targets of protein kinases in plant stress responses. Proc Natl Acad Sci U S A 2020; 117:3270-3280. [PMID: 31992638 DOI: 10.1073/pnas.1919901117] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Protein kinases are major regulatory components in almost all cellular processes in eukaryotic cells. By adding phosphate groups, protein kinases regulate the activity, localization, protein-protein interactions, and other features of their target proteins. It is known that protein kinases are central components in plant responses to environmental stresses such as drought, high salinity, cold, and pathogen attack. However, only a few targets of these protein kinases have been identified. Moreover, how these protein kinases regulate downstream biological processes and mediate stress responses is still largely unknown. In this study, we introduce a strategy based on isotope-labeled in vitro phosphorylation reactions using in vivo phosphorylated peptides as substrate pools and apply this strategy to identify putative substrates of nine protein kinases that function in plant abiotic and biotic stress responses. As a result, we identified more than 5,000 putative target sites of osmotic stress-activated SnRK2.4 and SnRK2.6, abscisic acid-activated protein kinases SnRK2.6 and casein kinase 1-like 2 (CKL2), elicitor-activated protein kinase CDPK11 and MPK6, cold-activated protein kinase MPK6, H2O2-activated protein kinase OXI1 and MPK6, and salt-induced protein kinase SOS1 and MPK6, as well as the low-potassium-activated protein kinase CIPK23. These results provide comprehensive information on the role of these protein kinases in the control of cellular activities and could be a valuable resource for further studies on the mechanisms underlying plant responses to environmental stresses.
Collapse
|
49
|
Zhang D, Bao Y, Sun Y, Yang H, Zhao T, Li H, Du C, Jiang J, Li J, Xie L, Xu X. Comparative transcriptome analysis reveals the response mechanism of Cf-16-mediated resistance to Cladosporium fulvum infection in tomato. BMC PLANT BIOLOGY 2020; 20:33. [PMID: 31959099 PMCID: PMC6971981 DOI: 10.1186/s12870-020-2245-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/13/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Leaf mold disease caused by Cladosporium fulvum is a serious threat affecting the global production of tomato. Cf genes are associated with leaf mold resistance, including Cf-16, which confers effective resistance to leaf mold in tomato. However, the molecular mechanism of the Cf-16-mediated resistance response is largely unknown. RESULTS We performed a comparative transcriptome analysis of C. fulvum-resistant (cv. Ontario7816) and C. fulvum-susceptible (cv. Moneymaker) tomato cultivars to identify differentially expressed genes (DEGs) at 4 and 8 days post inoculation (dpi) with C. fulvum. In total, 1588 and 939 more DEGs were found in Cf-16 tomato than in Moneymaker at 4 and 8 dpi, respectively. Additionally, 1350 DEGs were shared between the 4- and 8-dpi Cf-16 groups, suggesting the existence of common core DEGs in response to C. fulvum infection. The up-regulated DEGs in Cf-16 tomato were primarily associated with defense processes and phytohormone signaling, including salicylic acid (SA) and jasmonic acid (JA). Moreover, SA and JA levels were significantly increased in Cf-16 tomato at the early stages of C. fulvum infection. Contrary to the previous study, the number of up-regulated genes in Cf-16 compared to Cf-10 and Cf-12 tomatoes was significantly higher at the early stages of C. fulvum infection. CONCLUSION Our results provide new insight into the Cf-mediated mechanism of resistance to C. fulvum, especially the unique characteristics of Cf-16 tomato in response to this fungus.
Collapse
Affiliation(s)
- Dongye Zhang
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Yufang Bao
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Yaoguang Sun
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Huanhuan Yang
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Tingting Zhao
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Huijia Li
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Chong Du
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Jingbin Jiang
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Jingfu Li
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Libo Xie
- Horticultural Sub-Academy, Heilongjiang Academy of Agricultural Sciences, Harbin, 150069 China
| | - Xiangyang Xu
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| |
Collapse
|
50
|
Jeong S, Lim CW, Lee SC. The Pepper MAP Kinase CaAIMK1 Positively Regulates ABA and Drought Stress Responses. FRONTIERS IN PLANT SCIENCE 2020; 11:720. [PMID: 32528517 PMCID: PMC7264397 DOI: 10.3389/fpls.2020.00720] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/06/2020] [Indexed: 05/08/2023]
Abstract
Protein phosphorylation and dephosphorylation are important mechanisms that regulate many cellular processes. Protein kinases usually function in the regulation of the stress responses by adjusting activity via phosphorylation of target proteins. Here, we isolated CaAIMK1 (Capsicum annuum ABA Induced MAP Kinase 1) from the pepper leaves that had been subjected to drought stress. CaAIMK1 transcripts were induced by drought, abscisic acid (ABA), high salinity, and H2O2; further, the CaAIMK1-Green fluorescent protein localized in the nucleus and cytoplasm. We performed genetic studies using CaAIMK1-silenced pepper plants and CaAIMK1-overexpressing (OX) Arabidopsis plants. CaAIMK1-silenced pepper plants showed a drought-sensitive phenotype characterized by altered ABA signaling, including low leaf temperatures, and large stomatal apertures. CaAIMK1-OX plants exhibited a contrasting drought-tolerant phenotype characterized by decreased levels of transpirational water loss and increased expression levels of Arabidopsis stress-related genes. In CaAIMK1 K32N-OX transgenic Arabidopsis plants, sensitivity to ABA and drought was restored. Collectively, these results demonstrate that CaAIMK1 positively regulates the drought stress responses via an ABA-dependent pathway.
Collapse
|