1
|
You HJ, Zhao R, Choi YM, Kang IJ, Lee S. Genome-Wide Association Study for Resistance to Phytophthora sojae in Soybean [ Glycine max (L.) Merr.]. PLANTS (BASEL, SWITZERLAND) 2024; 13:3501. [PMID: 39771199 PMCID: PMC11676158 DOI: 10.3390/plants13243501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
Phytophthora sojae (Kauffman and Gerdemann) is an oomycete pathogen that threatens soybean (Glycine max L.) production worldwide. The development of soybean cultivars with resistance to this pathogen is of paramount importance for the sustainable management of the disease. The objective of this study was to identify genomic regions associated with resistance to P. sojae isolate 40468 through genome-wide association analyses of 983 soybean germplasms. To elucidate the genetic basis of resistance, three statistical models were employed: the compressed mixed linear model (CMLM), Bayesian-information and linkage disequilibrium iteratively nested keyway (BLINK), and fixed and random model circulating probability unification (FarmCPU). The three models consistently identified a genomic region (3.8-5.3 Mbp) on chromosome 3, which has been previously identified as an Rps cluster. A total of 18 single nucleotide polymorphisms demonstrated high statistical significance across all three models, which were distributed in eight linkage disequilibrium (LD) blocks within the aforementioned interval. Of the eight, LD3-2 exhibited the discernible segregation of phenotypic reactions by haplotype. Specifically, over 93% of accessions with haplotypes LD3-2-F or LD3-2-G displayed resistance, whereas over 91% with LD3-2-A, LD3-2-C, or LD3-2-D exhibited susceptibility. Furthermore, the BLINK and FarmCPU models identified new genomic variations significantly associated with the resistance on several other chromosomes, indicating that the resistance observed in this panel was due to the presence of different alleles of multiple Rps genes. These findings underscore the necessity for robust statistical models to accurately detect true marker-trait associations and provide valuable insights into soybean genetics and breeding.
Collapse
Affiliation(s)
- Hee Jin You
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea; (H.J.Y.)
| | - Ruihua Zhao
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea; (H.J.Y.)
| | - Yu-Mi Choi
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - In-Jeong Kang
- Division of Crop Cultivation and Environment Research, Department of Central Area Crop Science, National Institute of Crop Science, Suwon 16613, Republic of Korea
| | - Sungwoo Lee
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea; (H.J.Y.)
| |
Collapse
|
2
|
Guan W, Jian J, Niu B, Zhang X, Yu J, Xu X. Germplasm Resources Evaluation of Cultured Largemouth Bass ( Micropterus salmoides) in China Based on Whole Genome Resequencing. Genes (Basel) 2024; 15:1307. [PMID: 39457431 PMCID: PMC11508010 DOI: 10.3390/genes15101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Largemouth bass (Micropterus salmoides), a valuable freshwater fish species, has experienced significant genetic decline in China due to prolonged domestic breeding and limited introduction of new genetic material. It is necessary to have a comprehensive understanding of the genetic status of largemouth bass populations in China. Method: In this study, we conducted population genetic analyses on nine cultured largemouth bass populations using whole genome resequencing. Results: A total of 3.23 Tb of clean bases were generated, with average Q20 and Q30 values of 98.17% and 94.25%, respectively, and 2,140,534 high-quality SNPs were obtained. Relatively high genetic diversity was observed across all populations. Combined with linkage disequilibrium (LD) patterns, the Wanlu (WL) population possessed the highest genetic diversity, and the Longyou (LY) population possessed the lowest genetic diversity. Additionally, population structure analyses, including pairwise F-statistics, phylogenetic trees, PCA, and admixture analysis, revealed significant genetic differentiation, particularly between the WL, LY, and other 7 populations, while also indicating the occurrence of a common admixture event. Finally, TreeMix inferred migration events from the WL to the Chuanlu (CL) population and from the Taiwan breeding population (TWL) to the Guanglu (GL) population. Conclusions: These findings provide a critical foundation for developing conservation and breeding strategies for largemouth bass in China.
Collapse
Affiliation(s)
- Wenzhi Guan
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (W.G.); (J.J.); (B.N.)
| | - Jieliang Jian
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (W.G.); (J.J.); (B.N.)
| | - Baolong Niu
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (W.G.); (J.J.); (B.N.)
| | - Xinhui Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China;
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen 518081, China
| | - Jiongying Yu
- School of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Xiaojun Xu
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (W.G.); (J.J.); (B.N.)
| |
Collapse
|
3
|
Mathiang EA, Park H, Jang SJ, Cho J, Heo TH, Lee JK. Uncovering microsatellite markers associated with agronomic traits of South Sudan landrace maize. Genes Genomics 2023; 45:1587-1598. [PMID: 37831405 DOI: 10.1007/s13258-023-01465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Maize has great importance in South Sudan as the most cultivated cereal after sorghum; however, numerous challenges are encountered in its production. To raise maize production, it is critical to exploit the wealth of its genetic variation for grain yield enhancement. OBJECTIVE This study aimed to conduct association analysis to identify specific simple sequence repeat (SSR) markers associated with quantitative agronomic traits. METHODS Genetic variation and population structure were investigated among 31 maize accessions by association analysis using 50 SSR markers and seven quantitative agronomic traits. RESULTS The genotypes exhibited abundant genetic variation, and 418 alleles were detected with an average of 8.4 alleles per locus. The average genetic diversity, major allele frequency, and polymorphic information content were 0.754, 0.373, and 0.725, respectively. The population structure based on 50 SSR markers divided the maize accessions into two main groups and an admixed group without considering their descent. Association analysis was performed using a general linear model (Q GLM) and a mixed linear model (Q + K MLM). Q GLM detected 44 trait-marker associations involving 23 SSR markers. Q + K MLM detected four marker-trait associations involving three SSR markers (umc2286, umc1303, umc1429) associated with days to tasseling, days to silking, leaf length, and leaf width. CONCLUSIONS The detected significant SSR markers related to agronomic traits could be useful for future genetic studies. Additionally, markers affecting several agronomic traits and overlapped SSR markers require further testing on a wide range of genotypes prior to their consideration as candidate markers for marker assisted selection for South Sudan maize improvement.
Collapse
Affiliation(s)
- Emmanuel Andrea Mathiang
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, 24341, Chuncheon, Korea
| | - Hyeon Park
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, 24341, Chuncheon, Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, 24341, Chuncheon, Korea
| | - So Jung Jang
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, 24341, Chuncheon, Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, 24341, Chuncheon, Korea
| | - Jungeun Cho
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, 24341, Chuncheon, Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, 24341, Chuncheon, Korea
| | - Tae Hyeon Heo
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, 24341, Chuncheon, Korea
| | - Ju Kyong Lee
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, 24341, Chuncheon, Korea.
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, 24341, Chuncheon, Korea.
| |
Collapse
|
4
|
Kaur R, Vasistha NK, Ravat VK, Mishra VK, Sharma S, Joshi AK, Dhariwal R. Genome-Wide Association Study Reveals Novel Powdery Mildew Resistance Loci in Bread Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:3864. [PMID: 38005757 PMCID: PMC10675159 DOI: 10.3390/plants12223864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023]
Abstract
Powdery mildew (PM), caused by the fungal pathogen Blumeria graminis f. sp. tritici (Bgt), significantly threatens global bread wheat production. Although the use of resistant cultivars is an effective strategy for managing PM, currently available wheat cultivars lack sufficient levels of resistance. To tackle this challenge, we conducted a comprehensive genome-wide association study (GWAS) using a diverse panel of 286 bread wheat genotypes. Over three consecutive years (2020-2021, 2021-2022, and 2022-2023), these genotypes were extensively evaluated for PM severity under field conditions following inoculation with virulent Bgt isolates. The panel was previously genotyped using the Illumina 90K Infinium iSelect assay to obtain genome-wide single-nucleotide polymorphism (SNP) marker coverage. By applying FarmCPU, a multilocus mixed model, we identified a total of 113 marker-trait associations (MTAs) located on chromosomes 1A, 1B, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 6B, 7A, and 7B at a significance level of p ≤ 0.001. Notably, four novel MTAs on chromosome 6B were consistently detected in 2020-2021 and 2021-2022. Furthermore, within the confidence intervals of the identified SNPs, we identified 96 candidate genes belonging to different proteins including 12 disease resistance/host-pathogen interaction-related protein families. Among these, protein kinases, leucine-rich repeats, and zinc finger proteins were of particular interest due to their potential roles in PM resistance. These identified loci can serve as targets for breeding programs aimed at developing disease-resistant wheat cultivars.
Collapse
Affiliation(s)
- Ramandeep Kaur
- Department of Genetics-Plant Breeding and Biotechnology, Dr. Khem Sigh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour 173101, India
| | - Neeraj Kumar Vasistha
- Department of Genetics-Plant Breeding and Biotechnology, Dr. Khem Sigh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour 173101, India
- Department of Genetics and Plant Breeding, Rajiv Gandhi University, Rono Hills, Itanagar 791112, India
| | - Vikas Kumar Ravat
- Department of Plant Pathology, Rajiv Gandhi University, Rono Hills, Itanagar 791112, India
| | - Vinod Kumar Mishra
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Sandeep Sharma
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Arun Kumar Joshi
- Borlaug Institute for South Asia (BISA), NASC Complex, DPS Marg, New Delhi 110012, India
- International Maize and Wheat Improvement Center (CIMMYT) Regional Office, NASC Complex, DPS Marg, New Delhi 110012, India
| | - Raman Dhariwal
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403 1 Avenue South, Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
5
|
Poonam, Sharma R, Sharma P, Sharma NC, Kumar K, Singh KN, Bhardwaj V, Negi N, Chauhan N. Exploring genetic diversity and ascertaining genetic loci associated with important fruit quality traits in apple ( Malus × domestica Borkh.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1693-1716. [PMID: 38162921 PMCID: PMC10754789 DOI: 10.1007/s12298-023-01382-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 01/03/2024]
Abstract
Genetic diversity is the primary source of variability in any crop improvement program, and the diverse germplasm of any crop species represents an important genetic resource for gene or allele mining to meet future needs. Huge genetic and phenotypic diversity is present in the apple gene pool, even though, breeding programs have been mainly focused on a few traits of interests, which have resulted in the reduction of the diversity in the cultivated lines of apple. Therefore, the present study was carried out on 70 diverse apple genotypes with the objective of analyzing the genetic diversity and to identify the genetic loci associated with important fruit quality traits. A total of 140 SSR primers were used to characterize the 70 genotypes of apples, out of which only 88 SSRs were found to be polymorphic. The PIC values varied from 0.03 to 0.75. The value of MI, EMR, and RP varied from 0.03 to 3.5, 0.5 to 5.0, and 1.89 to 6.74, respectively. The dendrogram and structure analysis divided all the genotypes into two main groups. In addition to this, large phenotypic variability was observed for the fruit quality traits under study indicated the suitability of the genotypes for association studies. Altogether 71 novel MTAs were identified for 10 fruit quality traits, of which 15 for fruit length, 15 for fruit diameter, 12 for fruit weight, 2 for total sugar, 2 for TSS, 4 for reducing sugar, 5 for non-reducing sugar, 5 for fruit firmness, 5 for fruit acidity and 6 for anthocyanin, respectively. Consistent with the physicochemical evaluation of traits, there was a significant correlation coefficient among different fruit quality characters, and many common markers were found to be associated with these traits (fruit diameter, length, TSS, total sugar, acidity and anthocyanin, respectively) by using the different modeling techniques (GLM, MLM). The inferred genetic structure, diversity pattern and the identified MTAs will be serving as resourceful grounds for better predictions and understanding of apple genome towards efficient conservation and utilization of apple germplasm for facilitating genetic improvement of fruit quality traits. Furthermore, these findings also suggested that association mapping could be a viable alternative to the conventional QTL mapping approach in apple. Graphic abstract Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01382-w.
Collapse
Affiliation(s)
- Poonam
- Department of Biotechnology, Dr YS Parmar University of Horticulture & Forestry, Solan, HP 173 230 India
- School of Bioengineering & Food Technology, Shoolini University, Solan, HP, 173 229, India
| | - Rajnish Sharma
- Department of Biotechnology, Dr YS Parmar University of Horticulture & Forestry, Solan, HP 173 230 India
| | - Parul Sharma
- Department of Biotechnology, Dr YS Parmar University of Horticulture & Forestry, Solan, HP 173 230 India
| | - Naveen C. Sharma
- Department of Fruit Science, Dr YS Parmar University of Horticulture & Forestry, Solan, HP 173 230 India
| | - Kuldeep Kumar
- ICAR-Indian Institute of Pulses Research, Kanpur, UP 208 024 India
| | - Krishna Nand Singh
- Department of Botany, University of Delhi, North Campus, New Delhi, India
| | - Vinay Bhardwaj
- ICAR-Central Potato Research Institute, Shimla, HP 171 004 India
| | - Narender Negi
- ICAR-NBPGR Regional Station, Phagli, Shimla, HP 171 004 India
| | - Neena Chauhan
- RHR&TS, Dr YS Parmar University of Horticulture & Forestry, Mashobra, Shimla, HP, 171 007 India
| |
Collapse
|
6
|
Xu L, Zhao C, Pang J, Niu Y, Liu H, Zhang W, Zhou M. Genome-wide association study reveals quantitative trait loci for waterlogging-triggered adventitious roots and aerenchyma formation in common wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:1066752. [PMID: 36507408 PMCID: PMC9727299 DOI: 10.3389/fpls.2022.1066752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Waterlogging severely affects wheat growth and development. Limited availability of oxygen in the root zone negatively affects the metabolism of plants. The formation of adventitious roots (ARs) and root cortical aerenchyma (RCA) are the most important adaptive trait contributing to plants' ability to survive in waterlogged soil conditions. This study used a genome-wide association study (GWAS) approach with 90K single nucleotide polymorphisms (SNPs) in a panel of 329 wheat genotypes, to reveal quantitative trait loci (QTL) conferring ARs and RCA. The wheat genotypes exposed to waterlogging were evaluated for ARs and RCA in both field and glasshouse over two consecutive years. Six and five significant marker-trait associations (MTAs) were identified for ARs and RCA formation under waterlogging, respectively. The most significant MTA for AR and RCA was found on chromosome 4B. Two wheat cultivars with contrasting waterlogging tolerance (tolerant: H-242, sensitive: H-195) were chosen to compare the development and regulation of aerenchyma in waterlogged conditions using staining methods. Results showed that under waterlogging conditions, H2O2 signal generated before aerenchyma formation in both sensitive and tolerant varieties with the tolerant variety accumulating more H2O2 and in a quicker manner compared to the sensitive one. Several genotypes which performed consistently well under different conditions can be used in breeding programs to develop waterlogging-tolerant wheat varieties.
Collapse
Affiliation(s)
- Le Xu
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS, Australia
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS, Australia
| | - Jiayin Pang
- The UWA Institute of Agriculture and School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Yanan Niu
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS, Australia
| | - Huaqiong Liu
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| | - Wenying Zhang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS, Australia
| |
Collapse
|
7
|
McMillen MS, Mahama AA, Sibiya J, Lübberstedt T, Suza WP. Improving drought tolerance in maize: Tools and techniques. Front Genet 2022; 13:1001001. [PMID: 36386797 PMCID: PMC9651916 DOI: 10.3389/fgene.2022.1001001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/14/2022] [Indexed: 05/01/2024] Open
Abstract
Drought is an important constraint to agricultural productivity worldwide and is expected to worsen with climate change. To assist farmers, especially in sub-Saharan Africa (SSA), to adapt to climate change, continuous generation of stress-tolerant and farmer-preferred crop varieties, and their adoption by farmers, is critical to curb food insecurity. Maize is the most widely grown staple crop in SSA and plays a significant role in food security. The aim of this review is to present an overview of a broad range of tools and techniques used to improve drought tolerance in maize. We also present a summary of progress in breeding for maize drought tolerance, while incorporating research findings from disciplines such as physiology, molecular biology, and systems modeling. The review is expected to complement existing knowledge about breeding maize for climate resilience. Collaborative maize drought tolerance breeding projects in SSA emphasize the value of public-private partnerships in increasing access to genomic techniques and useful transgenes. To sustain the impact of maize drought tolerance projects in SSA, there must be complementary efforts to train the next generation of plant breeders and crop scientists.
Collapse
Affiliation(s)
| | - Anthony A. Mahama
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Julia Sibiya
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | | | - Walter P. Suza
- Department of Agronomy, Iowa State University, Ames, IA, United States
| |
Collapse
|
8
|
Zhang X, Zhu T, Li Z, Jia Z, Wang Y, Liu R, Yang M, Chen QB, Wang Z, Guo S, Li P. Natural variation and domestication selection of ZmSULTR3;4 is associated with maize lateral root length in response to salt stress. FRONTIERS IN PLANT SCIENCE 2022; 13:992799. [PMID: 36388478 PMCID: PMC9644038 DOI: 10.3389/fpls.2022.992799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Soil salinity is a major constraint that restricts crop productivity worldwide. Lateral roots (LRs) are important for water and nutrient acquisition, therefore understanding the genetic basis of natural variation in lateral root length (LRL) is of great agronomic relevance to improve salt tolerance in cultivated germplasms. Here, using a genome-wide association study, we showed that the genetic variation in ZmSULTR3;4, which encodes a plasma membrane-localized sulfate transporter, is associated with natural variation in maize LRL under salt stress. The transcript of ZmSULTR3;4 was found preferentially in the epidermal and vascular tissues of root and increased by salt stress, supporting its essential role in the LR formation under salt stress. Further candidate gene association analysis showed that DNA polymorphisms in the promoter region differentiate the expression of ZmSULTR3;4 among maize inbred lines that may contribute to the natural variation of LRL under salt stress. Nucleotide diversity and neutrality tests revealed that ZmSULTR3;4 has undergone selection during maize domestication and improvement. Overall, our results revealed a regulatory role of ZmSULTR3;4 in salt regulated LR growth and uncovered favorable alleles of ZmSULTR3;4, providing an important selection target for breeding salt-tolerant maize cultivar.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Sanya Institute, Henan University, Sanya, Hainan, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Tianze Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Zhi Li
- Sanya Institute, Henan University, Sanya, Hainan, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhongtao Jia
- Key Laboratory of Plant-Soil Interactions, Ministry of Education (MOE), College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | - Yunyun Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Runxiao Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Mengling Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Qing-Bin Chen
- Sanya Institute, Henan University, Sanya, Hainan, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhenjie Wang
- Sanya Institute, Henan University, Sanya, Hainan, China
| | - Siyi Guo
- Sanya Institute, Henan University, Sanya, Hainan, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Pengcheng Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
9
|
Murad Leite Andrade MH, Acharya JP, Benevenuto J, de Bem Oliveira I, Lopez Y, Munoz P, Resende MFR, Rios EF. Genomic prediction for canopy height and dry matter yield in alfalfa using family bulks. THE PLANT GENOME 2022; 15:e20235. [PMID: 35818699 DOI: 10.1002/tpg2.20235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
Genomic selection (GS) has proven to be an effective method to increase genetic gain rates and accelerate breeding cycles in many crop species. However, its implementation requires large investments to phenotype of the training population and for routine genotyping. Alfalfa (Medicago sativa L.) is one of the major cultivated forage legumes, showing high-quality nutritional value. Alfalfa breeding is usually carried out by phenotypic recurrent selection and is commonly done at the family level. The application of GS in alfalfa could be simplified and less costly by genotyping and phenotyping families in bulks. For this study, an alfalfa reference population composed of 142 full-sib and 35 half-sib families was bulk-genotyped using target enrichment sequencing and phenotyped for dry matter yield (DMY) and canopy height (CH) in Florida, USA. Genotyping of the family bulks with 17,707 targeted probes resulted in 114,945 single-nucleotide polymorphisms. The markers revealed a population structure that matched the mating design, and the linkage disequilibrium slowly decayed in this breeding population. After exploring multiple prediction scenarios, a strategy was proposed including data from multiple harvests and accounting for the G×E in the training population, which led to a higher predictive ability of up to 38 and 24% for DMY and CH, respectively. Although this study focused on the implementation of GS in alfalfa families, the bulk methodology and the prediction schemes used herein could guide future studies in alfalfa and other crops bred in bulks.
Collapse
Affiliation(s)
| | - Janam P Acharya
- Agronomy Dep., Univ. of Florida, Gainesville, FL, 32611, USA
| | - Juliana Benevenuto
- Horticultural Sciences Dep., Univ. of Florida, Gainesville, FL, 32611, USA
| | | | - Yolanda Lopez
- Agronomy Dep., Univ. of Florida, Gainesville, FL, 32611, USA
| | - Patricio Munoz
- Horticultural Sciences Dep., Univ. of Florida, Gainesville, FL, 32611, USA
| | - Marcio F R Resende
- Horticultural Sciences Dep., Univ. of Florida, Gainesville, FL, 32611, USA
| | - Esteban F Rios
- Agronomy Dep., Univ. of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
10
|
Li Z, Fu D, Wang X, Zeng R, Zhang X, Tian J, Zhang S, Yang X, Tian F, Lai J, Shi Y, Yang S. The transcription factor bZIP68 negatively regulates cold tolerance in maize. THE PLANT CELL 2022; 34:2833-2851. [PMID: 35543494 PMCID: PMC9338793 DOI: 10.1093/plcell/koac137] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/22/2022] [Indexed: 05/09/2023]
Abstract
Maize (Zea mays) originated in tropical areas and is thus susceptible to low temperatures, which pose a major threat to maize production. Our understanding of the molecular basis of cold tolerance in maize is limited. Here, we identified bZIP68, a basic leucine zipper (bZIP) transcription factor, as a negative regulator of cold tolerance in maize. Transcriptome analysis revealed that bZIP68 represses the cold-induced expression of DREB1 transcription factor genes. The stability and transcriptional activity of bZIP68 are controlled by its phosphorylation at the conserved Ser250 residue under cold stress. Furthermore, we demonstrated that the bZIP68 locus was a target of selection during early domestication. A 358-bp insertion/deletion (Indel-972) polymorphism in the bZIP68 promoter has a significant effect on the differential expression of bZIP68 between maize and its wild ancestor teosinte. This study thus uncovers an evolutionary cis-regulatory variant that could be used to improve cold tolerance in maize.
Collapse
Affiliation(s)
- Zhuoyang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Diyi Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Xi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Rong Zeng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Xuan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Jinge Tian
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Shuaisong Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Xiaohong Yang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Feng Tian
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yiting Shi
- Author for correspondence: (Y.S.), (S.Y.)
| | | |
Collapse
|
11
|
Senthilkumar S, Vinod KK, Parthiban S, Thirugnanasambandam P, Lakshmi Pathy T, Banerjee N, Sarath Padmanabhan TS, Govindaraj P. Identification of potential MTAs and candidate genes for juice quality- and yield-related traits in Saccharum clones: a genome-wide association and comparative genomic study. Mol Genet Genomics 2022; 297:635-654. [PMID: 35257240 DOI: 10.1007/s00438-022-01870-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 02/06/2022] [Indexed: 11/30/2022]
Abstract
Sugarcane is an economically important commercial crop which provides raw material for the production of sugar, jaggery, bioethanol, biomass and other by-products. Sugarcane breeding till today heavily relies on conventional breeding approaches which is time consuming, laborious and costly. Integration of marker-assisted selection (MAS) in sugarcane genetic improvement programs for difficult to select traits like sucrose content, resistance to pests and diseases and tolerance to abiotic stresses will accelerate varietal development. In the present study, association mapping approach was used to identify QTLs and genes associated with sucrose and other important yield-contributing traits. A mapping panel of 110 diverse sugarcane genotypes and 148 microsatellite primers were used for structured association mapping study. An optimal subpopulation number (ΔK) of 5 was identified by structure analysis. GWAS analysis using TASSEL identified a total of 110 MTAs which were localized into 27 QTLs by GLM and MLM (Q + K, PC + K) approaches. Among the 24 QTLs sequenced, 12 were able to identify potential candidate genes, viz., starch branching enzyme, starch synthase 4, sugar transporters and G3P-DH related to carbohydrate metabolism and hormone pathway-related genes ethylene insensitive 3-like 1, reversion to ethylene sensitive1-like, and auxin response factor associated to juice quality- and yield-related traits. Six markers, NKS 5_185, SCB 270_144, SCB 370_256, NKS 46_176 and UGSM 648_245, associated with juice quality traits and marker SMC31CUQ_304 associated with NMC were validated and identified as significantly associated to the traits by one-way ANOVA analysis. In conclusion, 24 potential QTLs identified in the present study could be used in sugarcane breeding programs after further validation in larger population. The candidate genes from carbohydrate and hormone response pathway presented in this study could be manipulated with genome editing approaches to further improve sugarcane crop.
Collapse
Affiliation(s)
- Shanmugavel Senthilkumar
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India
| | - K K Vinod
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Selvaraj Parthiban
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India
| | | | - Thalambedu Lakshmi Pathy
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India
| | - Nandita Banerjee
- Division of Crop Improvement, ICAR-Indian Institute of Sugarcane Research, Lucknow, Uttar Pradesh, 226002, India
| | | | - P Govindaraj
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India.
| |
Collapse
|
12
|
Shaibu AS, Ibrahim H, Miko ZL, Mohammed IB, Mohammed SG, Yusuf HL, Kamara AY, Omoigui LO, Karikari B. Assessment of the Genetic Structure and Diversity of Soybean ( Glycine max L.) Germplasm Using Diversity Array Technology and Single Nucleotide Polymorphism Markers. PLANTS (BASEL, SWITZERLAND) 2021; 11:68. [PMID: 35009071 PMCID: PMC8747349 DOI: 10.3390/plants11010068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 11/20/2022]
Abstract
Knowledge of the genetic structure and diversity of germplasm collections is crucial for sustainable genetic improvement through hybridization programs and rapid adaptation to changing breeding objectives. The objective of this study was to determine the genetic diversity and population structure of 281 International Institute of Tropical Agriculture (IITA) soybean accessions using diversity array technology (DArT) and single nucleotide polymorphism (SNP) markers for the efficient utilization of these accessions. From the results, the SNP and DArT markers were well distributed across the 20 soybean chromosomes. The cluster and principal component analyses revealed the genetic diversity among the 281 accessions by grouping them into two stratifications, a grouping that was also evident from the population structure analysis, which divided the 281 accessions into two distinct groups. The analysis of molecular variance revealed that 97% and 98% of the genetic variances using SNP and DArT markers, respectively, were within the population. Genetic diversity indices such as Shannon's diversity index, diversity and unbiased diversity revealed the diversity among the different populations of the soybean accessions. The SNP and DArT markers used provided similar information on the structure, diversity and polymorphism of the accessions, which indicates the applicability of the DArT marker in genetic diversity studies. Our study provides information about the genetic structure and diversity of the IITA soybean accessions that will allow for the efficient utilization of these accessions in soybean improvement programs, especially in Africa.
Collapse
Affiliation(s)
- Abdulwahab S. Shaibu
- Department of Agronomy, Bayero University Kano, Kano 700001, Nigeria; (H.I.); (Z.L.M.); (I.B.M.)
| | - Hassan Ibrahim
- Department of Agronomy, Bayero University Kano, Kano 700001, Nigeria; (H.I.); (Z.L.M.); (I.B.M.)
| | - Zainab L. Miko
- Department of Agronomy, Bayero University Kano, Kano 700001, Nigeria; (H.I.); (Z.L.M.); (I.B.M.)
| | - Ibrahim B. Mohammed
- Department of Agronomy, Bayero University Kano, Kano 700001, Nigeria; (H.I.); (Z.L.M.); (I.B.M.)
| | - Sanusi G. Mohammed
- Centre for Dryland Agriculture, Bayero University Kano, Kano 700001, Nigeria;
| | - Hauwa L. Yusuf
- Department of Food Science and Technology, Bayero University Kano, Kano 700001, Nigeria;
| | - Alpha Y. Kamara
- International Institute of Tropical Agriculture, Ibadan 200211, Nigeria; (A.Y.K.); (L.O.O.)
| | - Lucky O. Omoigui
- International Institute of Tropical Agriculture, Ibadan 200211, Nigeria; (A.Y.K.); (L.O.O.)
| | - Benjamin Karikari
- Department of Crop Science, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, P.O. Box TL 1882, Tamale 00233, Ghana;
| |
Collapse
|
13
|
Hanif U, Alipour H, Gul A, Jing L, Darvishzadeh R, Amir R, Munir F, Ilyas MK, Ghafoor A, Siddiqui SU, St Amand P, Bernado A, Bai G, Sonder K, Rasheed A, He Z, Li H. Characterization of the genetic basis of local adaptation of wheat landraces from Iran and Pakistan using genome-wide association study. THE PLANT GENOME 2021; 14:e20096. [PMID: 34275212 DOI: 10.1002/tpg2.20096] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/31/2021] [Indexed: 05/21/2023]
Abstract
Characterization of genomic regions underlying adaptation of landraces can reveal a quantitative genetics framework for local wheat (Triticum aestivum L.) adaptability. A collection of 512 wheat landraces from the eastern edge of the Fertile Crescent in Iran and Pakistan were genotyped using genome-wide single nucleotide polymorphism markers generated by genotyping-by-sequencing. The minor allele frequency (MAF) and the heterozygosity (H) of Pakistani wheat landraces (MAF = 0.19, H = 0.008) were slightly higher than the Iranian wheat landraces (MAF = 0.17, H = 0.005), indicating that Pakistani landraces were slightly more genetically diverse. Population structure analysis clearly separated the Pakistani landraces from Iranian landraces, which indicates two separate adaptability trajectories. The large-scale agro-climatic data of seven variables were quite dissimilar between Iran and Pakistan as revealed by the correlation coefficients. Genome-wide association study identified 91 and 58 loci using agroclimatic data, which likely underpin local adaptability of the wheat landraces from Iran and Pakistan, respectively. Selective sweep analysis identified significant hits on chromosomes 4A, 4B, 6B, 7B, 2D, and 6D, which were colocalized with the loci associated with local adaptability and with some known genes related to flowering time and grain size. This study provides insight into the genetic diversity with emphasis on the genetic architecture of loci involved in adaptation to local environments, which has breeding implications.
Collapse
Affiliation(s)
- Uzma Hanif
- Atta-ur-Rahman School of Applied Biosciences, National Univ. of Sciences and Technology, Islamabad, Pakistan
| | - Hadi Alipour
- Dep. of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia Univ., Urmia, Iran
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National Univ. of Sciences and Technology, Islamabad, Pakistan
| | - Li Jing
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), & CIMMYT-China office, 12 Zhongguancun South St., Beijing, 100081, China
| | - Reza Darvishzadeh
- Dep. of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia Univ., Urmia, Iran
| | - Rabia Amir
- Atta-ur-Rahman School of Applied Biosciences, National Univ. of Sciences and Technology, Islamabad, Pakistan
| | - Faiza Munir
- Atta-ur-Rahman School of Applied Biosciences, National Univ. of Sciences and Technology, Islamabad, Pakistan
| | - Muhammad Kashif Ilyas
- Plant Genetic Resource Program, Bioresource Conservation Institute, National Agricultural Research Center, Islamabad, 44000, Pakistan
| | - Abdul Ghafoor
- Plant Genetic Resource Program, Bioresource Conservation Institute, National Agricultural Research Center, Islamabad, 44000, Pakistan
| | - Sadar Uddin Siddiqui
- Plant Genetic Resource Program, Bioresource Conservation Institute, National Agricultural Research Center, Islamabad, 44000, Pakistan
| | - Paul St Amand
- USDA Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA
| | - Amy Bernado
- USDA Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA
| | - Guihua Bai
- USDA Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA
| | - Kai Sonder
- International Wheat and Maize Improvement Center (CIMMYT), Texcoco, Mexico
| | - Awais Rasheed
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), & CIMMYT-China office, 12 Zhongguancun South St., Beijing, 100081, China
- Dep. of Plant Sciences, Quaid-i-Azam Univ., Islamabad, 45320, Pakistan
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), & CIMMYT-China office, 12 Zhongguancun South St., Beijing, 100081, China
| | - Huihui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), & CIMMYT-China office, 12 Zhongguancun South St., Beijing, 100081, China
| |
Collapse
|
14
|
Lai R, Ikram M, Li R, Xia Y, Yuan Q, Zhao W, Zhang Z, Siddique KHM, Guo P. Identification of Novel Quantitative Trait Nucleotides and Candidate Genes for Bacterial Wilt Resistance in Tobacco ( Nicotiana tabacum L.) Using Genotyping-by-Sequencing and Multi-Locus Genome-Wide Association Studies. FRONTIERS IN PLANT SCIENCE 2021; 12:744175. [PMID: 34745174 PMCID: PMC8566715 DOI: 10.3389/fpls.2021.744175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/22/2021] [Indexed: 05/17/2023]
Abstract
Tobacco bacterial wilt (TBW) is a devastating soil-borne disease threatening the yield and quality of tobacco. However, its genetic foundations are not fully understood. In this study, we identified 126,602 high-quality single-nucleotide polymorphisms (SNPs) in 94 tobacco accessions using genotyping-by-sequencing (GBS) and a 94.56 KB linkage disequilibrium (LD) decay rate for candidate gene selection. The population structure analysis revealed two subpopulations with 37 and 57 tobacco accessions. Four multi-locus genome-wide association study (ML-GWAS) approaches identified 142 quantitative trait nucleotides (QTNs) in E1-E4 and the best linear unbiased prediction (BLUP), explaining 0.49-22.52% phenotypic variance. Of these, 38 novel stable QTNs were identified across at least two environments/methods, and their alleles showed significant TBW-DI differences. The number of superior alleles associated with TBW resistance for each accession ranged from 4 to 24; eight accessions had more than 18 superior alleles. Based on TBW-resistant alleles, the five best cross combinations were predicted, including MC133 × Ruyuan No. 1 and CO258 × ROX28. We identified 52 candidate genes around 38 QTNs related to TBW resistance based on homologous functional annotation and KEGG enrichment analysis, e.g., CYCD3;2, BSK1, Nitab4.5_0000641g0050, Nitab4.5_0000929g0030. To the best of our knowledge, this is the first comprehensive study to identify QTNs, superior alleles, and their candidate genes for breeding TBW-resistant tobacco varieties. The results provide further insight into the genetic architecture, marker-assisted selection, and functional genomics of TBW resistance, improving future breeding efforts to increase crop productivity.
Collapse
Affiliation(s)
- Ruiqiang Lai
- International Crop Research Center for Stress Resistance, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Muhammad Ikram
- International Crop Research Center for Stress Resistance, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Ronghua Li
- International Crop Research Center for Stress Resistance, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yanshi Xia
- International Crop Research Center for Stress Resistance, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Qinghua Yuan
- Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Weicai Zhao
- Nanxiong Research Institute of Guangdong Tobacco Co., Ltd., Nanxiong, China
| | - Zhenchen Zhang
- Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Peiguo Guo
- International Crop Research Center for Stress Resistance, School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
15
|
Genetic Structure and Geographical Differentiation of Traditional Rice ( Oryza sativa L.) from Northern Vietnam. PLANTS 2021; 10:plants10102094. [PMID: 34685903 PMCID: PMC8540186 DOI: 10.3390/plants10102094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 11/24/2022]
Abstract
Northern Vietnam is one of the most important centers of genetic diversity for cultivated rice. Over thousands of years of cultivation, natural and artificial selection has preserved many traditional rice landraces in northern Vietnam due to its geographic situation, climatic conditions, and many ethnic groups. These local landraces serve as a rich source of genetic variation—an important resource for future crop improvement. In this study, we determined the genetic diversity and population structure of 79 rice landraces collected from northern Vietnam and 19 rice accessions collected from different countries. In total, 98 rice accessions could be differentiated into japonica and indica with moderate genetic diversity and a polymorphism information content of 0.382. Moreover, we found that genetic differentiation was related to geographical regions with an overall PhiPT (analog of fixation index FST) value of 0.130. We also detected subspecies-specific markers to classify rice (Oryza sativa L.) into indica and japonica. Additionally, we detected five marker-trait associations and rare alleles that can be applied in future breeding programs. Our results suggest that rice landraces in northern Vietnam have a dynamic genetic system that can create different levels of genetic differentiation among regions, but also maintain a balanced genetic diversity between regions.
Collapse
|
16
|
Ibrahim Bio Yerima AR, Issoufou KA, Adje CA, Mamadou A, Oselebe H, Gueye MC, Billot C, Achigan-Dako EG. Genome-Wide Scanning Enabled SNP Discovery, Linkage Disequilibrium Patterns and Population Structure in a Panel of Fonio (Digitaria exilis [Kippist] Stapf) Germplasm. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.699549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
White fonio (Digitaria exilis) is a staple food for millions of people in arid and semi-arid areas of West Africa. Knowledge about nutritional and health benefits, insights into morphological diversity, and the recent development of genomic resources call for a better understanding of the genetic structure of the extant germplasm gathered throughout the region in order to set up a robust breeding program. We assessed the genetic diversity and population structure of 259 fonio individuals collected from six countries from West Africa (Nigeria, Benin, Guinea, Mali, Burkina Faso and Niger) in this study using 688 putative out of 21,324 DArTseq-derived SNP markers. Due to the inbreeding and small population size, the results revealed a substantial level of genetic variability. Furthermore, two clusters were found irrespective of the geographic origins of accessions. Moreover, the high level of linkage disequilibrium (LD) between loci observed resulted from the mating system of the crop, which is often associated with a low recombination rate. These findings fill the gaps about the molecular diversity and genetic structure of the white fonio germplasm in West Africa. This was required for the application of genomic tools that can potentially speed up the genetic gain in fonio millet breeding for complex traits such as yield, and other nutrient contents.
Collapse
|
17
|
Nabi RBS, Cho KS, Tayade R, Oh KW, Lee MH, Kim JI, Kim S, Pae SB, Oh E. Genetic diversity analysis of Korean peanut germplasm using 48 K SNPs 'Axiom_Arachis' Array and its application for cultivar differentiation. Sci Rep 2021; 11:16630. [PMID: 34404839 PMCID: PMC8371136 DOI: 10.1038/s41598-021-96074-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
Cultivated peanut (Arachis hypogaea) is one of the important legume oilseed crops. Cultivated peanut has a narrow genetic base. Therefore, it is necessary to widen its genetic base and diversity for additional use. The objective of the present study was to assess the genetic diversity and population structure of 96 peanut genotypes with 9478 high-resolution SNPs identified from a 48 K 'Axiom_Arachis' SNP array. Korean set genotypes were also compared with a mini-core of US genotypes. These sets of genotypes were used for genetic diversity analysis. Model-based structure analysis at K = 2 indicated the presence of two subpopulations in both sets of genotypes. Phylogenetic and PCA analysis clustered these genotypes into two major groups. However, clear genotype distribution was not observed for categories of subspecies, botanical variety, or origin. The analysis also revealed that current Korean genetic resources lacked variability compared to US mini-core genotypes. These results suggest that Korean genetic resources need to be expanded by creating new allele combinations and widening the genetic pool to offer new genetic variations for Korean peanut improvement programs. High-quality SNP data generated in this study could be used for identifying varietal contaminant, QTL, and genes associated with desirable traits by performing mapping, genome-wide association studies.
Collapse
Affiliation(s)
- Rizwana Begum Syed Nabi
- grid.420186.90000 0004 0636 2782Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, 50424 Republic of Korea
| | - Kwang-Soo Cho
- grid.420186.90000 0004 0636 2782Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, 50424 Republic of Korea
| | - Rupesh Tayade
- grid.258803.40000 0001 0661 1556Laboratory of Plant Breeding, School of Applied Biosciences, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Ki Won Oh
- grid.420186.90000 0004 0636 2782Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, 50424 Republic of Korea
| | - Myoung Hee Lee
- grid.420186.90000 0004 0636 2782Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, 50424 Republic of Korea
| | - Jung In Kim
- grid.420186.90000 0004 0636 2782Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, 50424 Republic of Korea
| | - Sungup Kim
- grid.420186.90000 0004 0636 2782Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, 50424 Republic of Korea
| | - Suk-Bok Pae
- grid.420186.90000 0004 0636 2782Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, 50424 Republic of Korea
| | - Eunyoung Oh
- grid.420186.90000 0004 0636 2782Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, 50424 Republic of Korea
| |
Collapse
|
18
|
Shaw RK, Shen Y, Zhao Z, Sheng X, Wang J, Yu H, Gu H. Molecular Breeding Strategy and Challenges Towards Improvement of Downy Mildew Resistance in Cauliflower ( Brassica oleracea var. botrytis L.). FRONTIERS IN PLANT SCIENCE 2021; 12:667757. [PMID: 34354719 PMCID: PMC8329456 DOI: 10.3389/fpls.2021.667757] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
Cauliflower (Brassica oleracea var. botrytis L.) is one of the important, nutritious and healthy vegetable crops grown and consumed worldwide. But its production is constrained by several destructive fungal diseases and most importantly, downy mildew leading to severe yield and quality losses. For sustainable cauliflower production, developing resistant varieties/hybrids with durable resistance against broad-spectrum of pathogens is the best strategy for a long term and reliable solution. Identification of novel resistant resources, knowledge of the genetics of resistance, mapping and cloning of resistance QTLs and identification of candidate genes would facilitate molecular breeding for disease resistance in cauliflower. Advent of next-generation sequencing technologies (NGS) and publishing of draft genome sequence of cauliflower has opened the flood gate for new possibilities to develop enormous amount of genomic resources leading to mapping and cloning of resistance QTLs. In cauliflower, several molecular breeding approaches such as QTL mapping, marker-assisted backcrossing, gene pyramiding have been carried out to develop new resistant cultivars. Marker-assisted selection (MAS) would be beneficial in improving the precision in the selection of improved cultivars against multiple pathogens. This comprehensive review emphasizes the fascinating recent advances made in the application of molecular breeding approach for resistance against an important pathogen; Downy Mildew (Hyaloperonospora parasitica) affecting cauliflower and Brassica oleracea crops and highlights the QTLs identified imparting resistance against this pathogen. We have also emphasized the critical research areas as future perspectives to bridge the gap between availability of genomic resources and its utility in identifying resistance genes/QTLs to breed downy mildew resistant cultivars. Additionally, we have also discussed the challenges and the way forward to realize the full potential of molecular breeding for downy mildew resistance by integrating marker technology with conventional breeding in the post-genomics era. All this information will undoubtedly provide new insights to the researchers in formulating future breeding strategies in cauliflower to develop durable resistant cultivars against the major pathogens in general and downy mildew in particular.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Honghui Gu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
19
|
Canales FJ, Montilla-Bascón G, Bekele WA, Howarth CJ, Langdon T, Rispail N, Tinker NA, Prats E. Population genomics of Mediterranean oat (A. sativa) reveals high genetic diversity and three loci for heading date. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2063-2077. [PMID: 33770189 DOI: 10.5061/dryad.0gb5mkm0g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/24/2021] [Indexed: 05/19/2023]
Abstract
Genomic analysis of Mediterranean oats reveals high genetic diversity and three loci for adaptation to this environment. This information together with phenotyping and passport data, gathered in an interactive map, will be a vital resource for oat genetic improvement. During the twentieth century, oat landraces have increasingly been replaced by modern cultivars, resulting in loss of genetic diversity. However, landraces have considerable potential to improve disease and abiotic stress tolerance and may outperform cultivars under low input systems. In this work, we assembled a panel of 669 oat landraces from Mediterranean rim and 40 cultivated oat varieties and performed the first large-scale population genetic analysis of both red and white oat types of Mediterranean origin. We created a public database associated with an interactive map to visualize information for each accession. The oat collection was genotyped with 17,288 single-nucleotide polymorphism (SNP) loci to evaluate population structure and linkage disequilibrium (LD); to perform a genome-wide association study (GWAs) for heading date, a key character closely correlated with performance in this drought-prone area. Population genetic analysis using both structure and PCA distinguished two main groups composed of the red and white oats, respectively. The white oat group was further divided into two subgroups. LD decay was slower within white lines in linkage groups Mrg01, 02, 04, 12, 13, 15, 23, 33, whereas it was slower within red lines in Mrg03, 05, 06, 11, 21, 24, and 28. Association analysis showed several significant markers associated with heading date on linkage group Mrg13 in white oats and on Mrg01 and Mrg08 in red oats.
Collapse
Affiliation(s)
- F J Canales
- Institute for Sustainable Agriculture, CSIC, Avenida Menéndez Pidal, 14004, Córdoba, Spain
| | - G Montilla-Bascón
- Institute for Sustainable Agriculture, CSIC, Avenida Menéndez Pidal, 14004, Córdoba, Spain
| | - W A Bekele
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - C J Howarth
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth Univ, Aberystwyth, UK
| | - T Langdon
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth Univ, Aberystwyth, UK
| | - N Rispail
- Institute for Sustainable Agriculture, CSIC, Avenida Menéndez Pidal, 14004, Córdoba, Spain
| | - N A Tinker
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - E Prats
- Institute for Sustainable Agriculture, CSIC, Avenida Menéndez Pidal, 14004, Córdoba, Spain.
| |
Collapse
|
20
|
Canales FJ, Montilla-Bascón G, Bekele WA, Howarth CJ, Langdon T, Rispail N, Tinker NA, Prats E. Population genomics of Mediterranean oat (A. sativa) reveals high genetic diversity and three loci for heading date. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2063-2077. [PMID: 33770189 PMCID: PMC8263550 DOI: 10.1007/s00122-021-03805-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/24/2021] [Indexed: 05/03/2023]
Abstract
KEY MESSAGE Genomic analysis of Mediterranean oats reveals high genetic diversity and three loci for adaptation to this environment. This information together with phenotyping and passport data, gathered in an interactive map, will be a vital resource for oat genetic improvement. During the twentieth century, oat landraces have increasingly been replaced by modern cultivars, resulting in loss of genetic diversity. However, landraces have considerable potential to improve disease and abiotic stress tolerance and may outperform cultivars under low input systems. In this work, we assembled a panel of 669 oat landraces from Mediterranean rim and 40 cultivated oat varieties and performed the first large-scale population genetic analysis of both red and white oat types of Mediterranean origin. We created a public database associated with an interactive map to visualize information for each accession. The oat collection was genotyped with 17,288 single-nucleotide polymorphism (SNP) loci to evaluate population structure and linkage disequilibrium (LD); to perform a genome-wide association study (GWAs) for heading date, a key character closely correlated with performance in this drought-prone area. Population genetic analysis using both structure and PCA distinguished two main groups composed of the red and white oats, respectively. The white oat group was further divided into two subgroups. LD decay was slower within white lines in linkage groups Mrg01, 02, 04, 12, 13, 15, 23, 33, whereas it was slower within red lines in Mrg03, 05, 06, 11, 21, 24, and 28. Association analysis showed several significant markers associated with heading date on linkage group Mrg13 in white oats and on Mrg01 and Mrg08 in red oats.
Collapse
Affiliation(s)
- F J Canales
- Institute for Sustainable Agriculture, CSIC, Avenida Menéndez Pidal, 14004, Córdoba, Spain
| | - G Montilla-Bascón
- Institute for Sustainable Agriculture, CSIC, Avenida Menéndez Pidal, 14004, Córdoba, Spain
| | - W A Bekele
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - C J Howarth
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth Univ, Aberystwyth, UK
| | - T Langdon
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth Univ, Aberystwyth, UK
| | - N Rispail
- Institute for Sustainable Agriculture, CSIC, Avenida Menéndez Pidal, 14004, Córdoba, Spain
| | - N A Tinker
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - E Prats
- Institute for Sustainable Agriculture, CSIC, Avenida Menéndez Pidal, 14004, Córdoba, Spain.
| |
Collapse
|
21
|
Schulz D, Linde M, Debener T. Detection of Reproducible Major Effect QTL for Petal Traits in Garden Roses. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10050897. [PMID: 33946713 PMCID: PMC8145204 DOI: 10.3390/plants10050897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
The detection of QTL by association genetics depends on the genetic architecture of the trait under study, the size and structure of the investigated population and the availability of phenotypic and marker data of sufficient quality and quantity. In roses, we previously demonstrated that major QTL could already be detected in small association panels. In this study, we analyzed petal number, petal size and fragrance in a small panel of 95 mostly tetraploid garden rose genotypes. After genotyping the panel with the 68 K Axiom WagRhSNP chip we detected major QTL for all three traits. Each trait was significantly influenced by several genomic regions. Some of the QTL span genomic regions that comprise several candidate genes. Selected markers from some of these regions were converted into KASP markers and were validated in independent populations of up to 282 garden rose genotypes. These markers demonstrate the robustness of the detected effects independent of the set of genotypes analyzed. Furthermore, the markers can serve as tools for marker-assisted breeding in garden roses. Over an extended timeframe, they may be used as a starting point for the isolation of the genes underlying the QTL.
Collapse
|
22
|
Longmei N, Gill GK, Zaidi PH, Kumar R, Nair SK, Hindu V, Vinayan MT, Vikal Y. Genome wide association mapping for heat tolerance in sub-tropical maize. BMC Genomics 2021; 22:154. [PMID: 33663389 PMCID: PMC7934507 DOI: 10.1186/s12864-021-07463-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/22/2021] [Indexed: 01/06/2023] Open
Abstract
Background Heat tolerance is becoming increasingly important where maize is grown under spring season in India which coincide with grain filling stage of crop resulting in tassel blast, reduced pollen viability, pollination failure and barren ears that causes devastating yield losses. So, there is need to identify the genomic regions associated with heat tolerance component traits which could be further employed in maize breeding program. Results An association mapping panel, consisting of 662 doubled haploid (DH) lines, was evaluated for yield contributing traits under normal and natural heat stress conditions. Genome wide association studies (GWAS) carried out using 187,000 SNPs and 130 SNPs significantly associated for grain yield (GY), days to 50% anthesis (AD), days to 50% silking (SD), anthesis-silking interval (ASI), plant height (PH), ear height (EH) and ear position (EPO) were identified under normal conditions. A total of 46 SNPs strongly associated with GY, ASI, EH and EPO were detected under heat stress conditions. Fifteen of the SNPs was found to have common association with more than one trait such as two SNPs viz. S10_1,905,273 and S10_1,905,274 showed colocalization with GY, PH and EH whereas S10_7,132,845 SNP associated with GY, AD and SD under normal conditions. No such colocalization of SNP markers with multiple traits was observed under heat stress conditions. Haplotypes trend regression analysis revealed 122 and 85 haplotype blocks, out of which, 20 and 6 haplotype blocks were associated with more than one trait under normal and heat stress conditions, respectively. Based on SNP association and haplotype mapping, nine and seven candidate genes were identified respectively, which belongs to different gene models having different biological functions in stress biology. Conclusions The present study identified significant SNPs and haplotype blocks associated with yield contributing traits that help in selection of donor lines with favorable alleles for multiple traits. These results provided insights of genetics of heat stress tolerance. The genomic regions detected in the present study need further validation before being applied in the breeding pipelines. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07463-y.
Collapse
Affiliation(s)
- Ningthaipuilu Longmei
- Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Gurjit Kaur Gill
- Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Pervez Haider Zaidi
- International Maize and Wheat Improvement Centre (CIMMYT), Asia Regional Office, Hyderabad, India
| | - Ramesh Kumar
- Indian Institutes of Maize, Ludhiana, Punjab, India
| | - Sudha Krishnan Nair
- International Maize and Wheat Improvement Centre (CIMMYT), Asia Regional Office, Hyderabad, India
| | - Vermuri Hindu
- International Maize and Wheat Improvement Centre (CIMMYT), Asia Regional Office, Hyderabad, India
| | - Madhumal Thayil Vinayan
- International Maize and Wheat Improvement Centre (CIMMYT), Asia Regional Office, Hyderabad, India
| | - Yogesh Vikal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India.
| |
Collapse
|
23
|
Saremirad A, Bihamta MR, Malihipour A, Mostafavi K, Alipour H. Genome-wide association study in diverse Iranian wheat germplasms detected several putative genomic regions associated with stem rust resistance. Food Sci Nutr 2021; 9:1357-1374. [PMID: 33747451 PMCID: PMC7958564 DOI: 10.1002/fsn3.2082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/26/2020] [Accepted: 12/11/2020] [Indexed: 11/07/2022] Open
Abstract
Stem rust is one of the most important diseases, threatening global wheat production. Identifying genomic regions associated with resistance to stem rust at the seedling stage may contribute wheat breeders to introduce durably resistant varieties. Genome-wide association study (GWAS) approach was applied to detect stem rust (Sr) resistance genes/QTLs in a set of 282 Iranian bread wheat varieties and landraces. Germplasms evaluated for infection type and latent period in four races of Puccinia graminis f. sp. tritici (Pgt). A total of 3 QTLs for infection type (R2 values from 9.54% to 10.76%) and 4 QTLs for the latent period (R2 values from 8.97% to 12.24%) of studied Pgt races were identified in the original dataset. However, using the imputed SNPs dataset, the number of QTLs for infection type increased to 10 QTLs (R2 values from 8.12% to 11.19%), and for the latent period increased to 44 QTLs (R2 values from 9.47% to 26.70%). According to the results, the Iranian wheat germplasms are a valuable source of resistance to stem rust which can be used in wheat breeding programs. Furthermore, new information for the selection of resistant genotypes against the disease through improving marker-assisted selection efficiency has been suggested.
Collapse
Affiliation(s)
- Ali Saremirad
- Plant breeding Ph. D. studentDepartment of Agronomy and Plant BreedingYoung Researchers and Elite ClubKaraj BranchIslamic Azad UniversityKarajIran
| | - Mohammad Reza Bihamta
- Department of Agronomy and Plant BreedingFaculty of AgricultureUniversity of TehranKarajIran
| | - Ali Malihipour
- Cereal Research Department, Seed and Plant Improvement Institute (SPII)AREEOKarajAlborzIran
| | - Khodadad Mostafavi
- Associate ProfessorDepartment of Agronomy and Plant BreedingKaraj BranchIslamic Azad UniversityKarajIran
| | - Hadi Alipour
- Department of Plant Breeding and BiotechnologyFaculty of AgricultureUrmia UniversityUrmiaIran
| |
Collapse
|
24
|
Identification, Association of Natural Variation and Expression Analysis of ZmNAC9 Gene Response to Low Phosphorus in Maize Seedling Stage. PLANTS 2020; 9:plants9111447. [PMID: 33120937 PMCID: PMC7716212 DOI: 10.3390/plants9111447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 11/17/2022]
Abstract
Phosphorus (P) is an essential macroelement supporting maize productivity and low-P stress is a limiting factor of maize growth and yield. Improving maize plant tolerance to low P through molecular breeding is an effective alternative to increase crop productivity. In this study, a total of 111 diverse maize inbred lines were used to identify the favorable alleles and nucleotide diversity of candidate ZmNAC9, which plays an important role in response to low P and regulation in root architecture. A significant difference was found under low- and sufficient-P conditions for each of the 22 seedling traits, and a total of 41 polymorphic sites including 32 single nucleotide polymorphisms (SNPs) and 9 insertion and deletions (InDels) were detected in ZmNAC9 among 111 inbred lines. Among the 41 polymorphic studied sites, a total of 39 polymorphic sites were associated with 20 traits except for the dry weight of shoots and forks, of which six sites were highly significantly associated with a diverse number of low-P tolerant root trait index values by using a mixed linear model (MLM) at −log10 P = 3.61. In addition, 29 polymorphic sites under P-sufficient and 32 polymorphic sites under P-deficient conditions were significantly associated with a diverse number of seedling traits, of which five polymorphic sites (position S327, S513, S514, S520, and S827) were strongly significantly associated with multiple seedling traits under low-P and normal-P conditions. Among highly significant sites, most of the sites were associated with root traits under low-P, normal-P, and low-P trait index values. Linkage disequilibrium (LD) was strong at (r2 > 1.0) in 111 inbred lines. Furthermore, the effect of five significant sites was verified for haplotypes in 111 lines and the favorable allele S520 showed a positive effect on the dry weight of roots under the low-P condition. Furthermore, the expression pattern confirmed that ZmNAC9 was highly induced by low P in the roots of the P-tolerant 178 inbred line. Moreover, the subcellular localization of ZmNAC9 encoded by protein was located in the cytoplasm and nucleus. Haplotypes carrying more favorable alleles exhibited superior effects on phenotypic variation and could be helpful in developing molecular markers in maize molecular breeding programs. Taken together, the finding of this study might lead to further functions of ZmNAC9 and genes that might be involved in responses to low-P stress in maize.
Collapse
|
25
|
Filippi CV, Zubrzycki JE, Di Rienzo JA, Quiroz FJ, Puebla AF, Alvarez D, Maringolo CA, Escande AR, Hopp HE, Heinz RA, Paniego NB, Lia VV. Unveiling the genetic basis of Sclerotinia head rot resistance in sunflower. BMC PLANT BIOLOGY 2020; 20:322. [PMID: 32641108 PMCID: PMC7346337 DOI: 10.1186/s12870-020-02529-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 06/26/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Sclerotinia sclerotiorum is a necrotrophic fungus that causes Sclerotinia head rot (SHR) in sunflower, with epidemics leading to severe yield losses. In this work, we present an association mapping (AM) approach to investigate the genetic basis of natural resistance to SHR in cultivated sunflower, the fourth most widely grown oilseed crop in the world. RESULTS Our association mapping population (AMP), which comprises 135 inbred breeding lines (ILs), was genotyped using 27 candidate genes, a panel of 9 Simple Sequence Repeat (SSR) markers previously associated with SHR resistance via bi-parental mapping, and a set of 384 SNPs located in genes with molecular functions related to stress responses. Moreover, given the complexity of the trait, we evaluated four disease descriptors (i.e, disease incidence, disease severity, area under the disease progress curve for disease incidence, and incubation period). As a result, this work constitutes the most exhaustive AM study of disease resistance in sunflower performed to date. Mixed linear models accounting for population structure and kinship relatedness were used for the statistical analysis of phenotype-genotype associations, allowing the identification of 13 markers associated with disease reduction. The number of favourable alleles was negatively correlated to disease incidence, disease severity and area under the disease progress curve for disease incidence, whereas it was positevily correlated to the incubation period. CONCLUSIONS Four of the markers identified here as associated with SHR resistance (HA1848, HaCOI_1, G33 and G34) validate previous research, while other four novel markers (SNP117, SNP136, SNP44, SNP128) were consistently associated with SHR resistance, emerging as promising candidates for marker-assisted breeding. From the germplasm point of view, the five ILs carrying the largest combination of resistance alleles provide a valuable resource for sunflower breeding programs worldwide.
Collapse
Affiliation(s)
- C V Filippi
- Instituto de Biotecnología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA); Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET Nicolas Repetto y Los Reseros s/n (1686), Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - J E Zubrzycki
- Instituto de Biotecnología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA); Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET Nicolas Repetto y Los Reseros s/n (1686), Hurlingham, Buenos Aires, Argentina
- Present address: Biocódices, San Martín, Buenos Aires, Argentina
| | - J A Di Rienzo
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Ing Agr. Felix Aldo Marrone 746 (5000), Córdoba, Argentina
| | - F J Quiroz
- Estación Experimental Agropecuaria INTA Balcarce, Ruta 226 Km 73.5 (7620), Balcarce, Buenos Aires, Argentina
| | - A F Puebla
- Instituto de Biotecnología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA); Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET Nicolas Repetto y Los Reseros s/n (1686), Hurlingham, Buenos Aires, Argentina
| | - D Alvarez
- Estación Experimental Agropecuaria INTA Manfredi, Ruta 9 Km 636 (5988), Manfredi, Córdoba, Argentina
| | - C A Maringolo
- Estación Experimental Agropecuaria INTA Balcarce, Ruta 226 Km 73.5 (7620), Balcarce, Buenos Aires, Argentina
| | - A R Escande
- Estación Experimental Agropecuaria INTA Balcarce, Ruta 226 Km 73.5 (7620), Balcarce, Buenos Aires, Argentina
| | - H E Hopp
- Instituto de Biotecnología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA); Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET Nicolas Repetto y Los Reseros s/n (1686), Hurlingham, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Intendente Güiraldes 2160, (1428), Ciudad Autónoma de Buenos Aires, Argentina
| | - R A Heinz
- Instituto de Biotecnología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA); Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET Nicolas Repetto y Los Reseros s/n (1686), Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Intendente Güiraldes 2160, (1428), Ciudad Autónoma de Buenos Aires, Argentina
| | - N B Paniego
- Instituto de Biotecnología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA); Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET Nicolas Repetto y Los Reseros s/n (1686), Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - V V Lia
- Instituto de Biotecnología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA); Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET Nicolas Repetto y Los Reseros s/n (1686), Hurlingham, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas-CONICET, Ciudad Autónoma de Buenos Aires, Argentina.
- Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Intendente Güiraldes 2160, (1428), Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
26
|
Niu S, Koiwa H, Song Q, Qiao D, Chen J, Zhao D, Chen Z, Wang Y, Zhang T. Development of core-collections for Guizhou tea genetic resources and GWAS of leaf size using SNP developed by genotyping-by-sequencing. PeerJ 2020; 8:e8572. [PMID: 32206447 PMCID: PMC7075365 DOI: 10.7717/peerj.8572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/15/2020] [Indexed: 11/20/2022] Open
Abstract
An accurate depiction of the genetic relationship, the development of core collection, and genome-wide association analysis (GWAS) are key for the effective exploitation and utilization of genetic resources. Here, genotyping-by-sequencing (GBS) was used to characterize 415 tea accessions mostly collected from the Guizhou region in China. A total of 30,282 high-quality SNPs was used to estimate the genetic relationships, develop core collections, and perform GWAS. We suggest 198 and 148 accessions to represent the core set and mini-core set, which consist of 47% and 37% of the whole collection, respectively, and contain 93–95% of the total SNPs. Furthermore, the frequencies of all alleles and genotypes in the whole set were very well retained in the core set and mini-core set. The 415 accessions were clustered into 14 groups and the core and the mini-core collections contain accessions from each group, species, cultivation status and growth habit. By analyzing the significant SNP markers associated with multiple traits, nine SNPs were found to be significantly associated with four leaf size traits, namely MLL, MLW, MLA and MLSI (P < 1.655E−06). This study characterized the genetic distance and relationship of tea collections, suggested the core collections, and established an efficient GWAS analysis of GBS result.
Collapse
Affiliation(s)
- Suzhen Niu
- Guiyang Station for DUS Testing Center of New Plant Varteties (MOA) / Institute of Tea, Guizhou Academy of Agricultural Sciences, Guiyang, China.,The Key Laboratory of Plant Resources Conservation and Germplasm Innovationin Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering / College of Tea Science, Guizhou University, Guiyang, China
| | - Hisashi Koiwa
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Molecular and Environmental Plant Sciences Program, Texas A&M University, College Station, Texas, USA
| | - Qinfei Song
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovationin Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering / College of Tea Science, Guizhou University, Guiyang, China
| | - Dahe Qiao
- Guiyang Station for DUS Testing Center of New Plant Varteties (MOA) / Institute of Tea, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Juan Chen
- Guiyang Station for DUS Testing Center of New Plant Varteties (MOA) / Institute of Tea, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Degang Zhao
- Guiyang Station for DUS Testing Center of New Plant Varteties (MOA) / Institute of Tea, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Zhengwu Chen
- Guiyang Station for DUS Testing Center of New Plant Varteties (MOA) / Institute of Tea, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Ying Wang
- Wuhan Benagen Tech Solutions Company Limited, Wuhan, China
| | - Tianyuan Zhang
- Wuhan Benagen Tech Solutions Company Limited, Wuhan, China
| |
Collapse
|
27
|
Astorkia M, Hernández M, Bocs S, Ponce K, León O, Morales S, Quezada N, Orellana F, Wendra F, Sembiring Z, Asmono D, Ritter E. Detection of significant SNP associated with production and oil quality traits in interspecific oil palm hybrids using RARSeq. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110366. [PMID: 31928673 DOI: 10.1016/j.plantsci.2019.110366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
A RARSeq based Association mapping study was performed in a population of 104 Elaeis oleifera x E. guineensis hybrids of five origins with the aim of finding functional markers associated to six productive and 19 oil quality traits. For this purpose mRNA of each genotype was isolated and double stranded cDNA was synthesized. Following digestion with two restriction enzymes and adapter ligation, a size selected pool of barcoded amplicons was produced and sequenced using Illumina MiSeq. The obtained sequences were processed with a "snakemake" pipeline, filtered and missing values were imputed. For all traits except two significant effects of the origin was observed. Genetic diversity analyses revealed high variability within origins and an excess of heterozygosity in the population. Two GLM models with Q matrix or PCA matrix as covariates and two MLM models incorporating in addition a Kinship matrix were tested for genotype-phenotype associations using GAPIT software. Using unadjusted p values (< 0.01) 78 potential associations were detected involving 25 SNP and 20 traits. When applying FDR multiple testing with p < 0.05, 25 significant associations remained involving eight SNP and six quality traits. Four SNP were located in genes with a potential relevant biological meaning.
Collapse
Affiliation(s)
- Maider Astorkia
- NEIKER Tecnalia, Campus Agroalimentario De Arkaute, Apdo 46. 01080 Vitoria-Gasteiz, Spain.
| | - Mónica Hernández
- NEIKER Tecnalia, Campus Agroalimentario De Arkaute, Apdo 46. 01080 Vitoria-Gasteiz, Spain
| | - Stéphanie Bocs
- CIRAD, UMR AGAP, F-34398, Montpellier, France; AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France; South Green Bioinformatics Platform, Bioversity, CIRAD, INRA, IRD, Montpellier, France
| | - Kevin Ponce
- La Fabril SA, Km 5.5 via Manta, Montecristi, Avenida 113, 130902, Manta, Ecuador
| | - Olga León
- Energy & Palma SA, Av. Atahualpa E3-49 y Juan Gonzales, Ed. Fundación Pérez Pallarez, Officina 4ª, 170507, Quito, Ecuador
| | - Shone Morales
- La Fabril SA, Km 5.5 via Manta, Montecristi, Avenida 113, 130902, Manta, Ecuador
| | - Nathalie Quezada
- La Fabril SA, Km 5.5 via Manta, Montecristi, Avenida 113, 130902, Manta, Ecuador
| | - Francisco Orellana
- Energy & Palma SA, Av. Atahualpa E3-49 y Juan Gonzales, Ed. Fundación Pérez Pallarez, Officina 4ª, 170507, Quito, Ecuador
| | - Fahmi Wendra
- Department of Research & Development, PT Sampoerna Agro Tbk., Jl. Basuki Rahmat No. 788, Palembang, 30127, Indonesia
| | - Zulhermana Sembiring
- Department of Research & Development, PT Sampoerna Agro Tbk., Jl. Basuki Rahmat No. 788, Palembang, 30127, Indonesia
| | - Dwi Asmono
- Department of Research & Development, PT Sampoerna Agro Tbk., Jl. Basuki Rahmat No. 788, Palembang, 30127, Indonesia
| | - Enrique Ritter
- NEIKER Tecnalia, Campus Agroalimentario De Arkaute, Apdo 46. 01080 Vitoria-Gasteiz, Spain
| |
Collapse
|
28
|
Phuke RM, He X, Juliana P, Bishnoi SK, Singh GP, Kabir MR, Roy KK, Joshi AK, Singh RP, Singh PK. Association Mapping of Seedling Resistance to Tan Spot ( Pyrenophora tritici-repentis Race 1) in CIMMYT and South Asian Wheat Germplasm. FRONTIERS IN PLANT SCIENCE 2020; 11:1309. [PMID: 32983199 PMCID: PMC7483578 DOI: 10.3389/fpls.2020.01309] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/11/2020] [Indexed: 05/08/2023]
Abstract
Tan spot caused by Pyrenophora tritici-repentis (Ptr) is an important disease of wheat in many wheat producing areas of the world. A genome wide association study (GWAS) was conducted using 11,401 SNP markers of the Illumina Infinium 15K Bead Chip with whole genome coverage to identify genomic regions associated with resistance to tan spot in a diverse panel of 184 wheat genotypes originating from South Asia and CIMMYT. The GWAS panel was phenotyped for seedling resistance to tan spot with Ptr race 1 in two greenhouse experiments. Besides CIMMYT germplasm, several lines from South Asia (India, Bangladesh and Nepal) showed good degree of resistance to tan spot. Association mapping was conducted separately for individual experiments and for pooled data using mixed linear model (MLM) and Fixed and random model Circulating Probability Unification (FarmCPU) model; no significant MTAs were recorded through the MLM model, whereas FarmCPU model reported nine significant MTAs located on chromosomes 1B, 2A, 2B, 3B, 4A, 5A, 5B, 6A, and 7D. The long arms of chromosomes 5A and 5B were consistent across both environments, in which the Vrn-A1 locus was found in identified region of chromosome 5A, and MTA at IACX9261 on 5BL appears to represent the resistance gene tsn 1. MTAs observed on chromosomes 1B, 2A, 2B, 3B, 4A, 6A, and 7D have not been reported previously and are likely novel.
Collapse
Affiliation(s)
| | - Xinyao He
- International Maize and Wheat Improvement Centre, Texcoco, Mexico
| | - Philomin Juliana
- International Maize and Wheat Improvement Centre, Texcoco, Mexico
| | | | | | | | | | - Arun Kumar Joshi
- CIMMYT-India, New Delhi, India
- Borlaug Institute for South Asia, New Delhi, India
| | | | - Pawan Kumar Singh
- International Maize and Wheat Improvement Centre, Texcoco, Mexico
- *Correspondence: Pawan Kumar Singh,
| |
Collapse
|
29
|
Genome-wide association mapping for adult resistance to powdery mildew in common wheat. Mol Biol Rep 2019; 47:1241-1256. [PMID: 31813131 DOI: 10.1007/s11033-019-05225-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/04/2019] [Indexed: 12/23/2022]
Abstract
Blumeria graminis f. sp. tritici, the causal agent of wheat powdery mildew disease, can occur at all stages of the crop and constantly threatens wheat production. To identify candidate resistance genes for powdery mildew, we performed GWAS (genome-wide association studies) on a total set of 329 wheat varieties obtained from different origins. These wheat materials were genotyped using wheat 90K SNP array and evaluated for their resistance in either field or glasshouse condition from 2016 to 2018. Using a mixed linear model, 33 SNP markers of which 14 QTL (quantitative trait loci) were later defined were observed to associate with powdery mildew resistance. Among these, QTL on chromosome 3A, 3B, 6D and 7D were concluded as potentially new QTL. Exploration of candidate genes for new QTL suggested roles of these genes involved in encoding disease resistance and defence-related proteins, and regulating early immune response to the pathogen. Overall, the results reveal that GWAS can be an effective means of identifying marker-trait associations, though further functional validation and fine-mapping of gene candidates are required before creating opportunities for developing new resistant genotypes.
Collapse
|
30
|
Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice. Nat Commun 2019; 10:5279. [PMID: 31754193 PMCID: PMC6872725 DOI: 10.1038/s41467-019-13187-1] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/24/2019] [Indexed: 11/17/2022] Open
Abstract
Over-application of nitrogen fertilizer in fields has had a negative impact on both environment and human health. Domesticated rice varieties with high nitrogen use efficiency (NUE) reduce fertilizer for sustainable agriculture. Here, we perform genome-wide association analysis of a diverse rice population displaying extreme nitrogen-related phenotypes over three successive years in the field, and identify an elite haplotype of nitrate transporter OsNPF6.1HapB that enhances nitrate uptake and confers high NUE by increasing yield under low nitrogen supply. OsNPF6.1HapB differs in both the protein and promoter element with natural variations, which are differentially trans-activated by OsNAC42, a NUE-related transcription factor. The rare natural allele OsNPF6.1HapB, derived from variation in wild rice and selected for enhancing both NUE and yield, has been lost in 90.3% of rice varieties due to the increased application of fertilizer. Our discovery highlights this NAC42-NPF6.1 signaling cascade as a strategy for high NUE and yield breeding in rice. Improving crop nitrogen use efficiency can facilitate sustainable production, however, the genetic mechanisms have not been fully revealed. Here, the authors discover the NAC42-NPF6.1 signaling cascade mainly derives from indica and wild rice and demonstrate the potential of using the allele for cultivar improvement.
Collapse
|
31
|
Characterization of genetic diversity and population structure in wheat using array based SNP markers. Mol Biol Rep 2019; 47:293-306. [PMID: 31630318 DOI: 10.1007/s11033-019-05132-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/09/2019] [Indexed: 01/09/2023]
Abstract
Genetic diversity is crucial for successful adaptation and sustained improvement in crops. India is bestowed with diverse agro-climatic conditions which makes it rich in wheat germplasm adapted to various niches. Germplasm repository consists of local landraces, trait specific genetic stocks including introgressions from wild relatives, exotic collections, released varieties, and improved germplasm. Characterization of genetic diversity is done using morpho-physiological characters as well as by analyzing variations at DNA level. However, there are not many reports on array based high throughput SNP markers having characteristics of genome wide coverage employed in Indian spring wheat germplasm. Amongst wheat SNP arrays, 35K Axiom Wheat Breeder's Array has the highest SNP polymorphism efficiency suitable for genetic mapping and genetic diversity characterization. Therefore, genotyping was done using 35K in 483 wheat genotypes resulting in 14,650 quality filtered SNPs, that were distributed across the B (~ 50%), A (~ 39%), and D (~ 10%) genomes. The total genetic distance coverage was 4477.85 cM with 3.27 SNP/cM and 0.49 cM/SNP as average marker density and average inter-marker distance, respectively. The PIC ranged from 0.09 to 0.38 with an average of 0.29 across genomes. Population structure and Principal Coordinate Analysis resulted in two subpopulations (SP1 and SP2). The analysis of molecular variance revealed the genetic variation of 2% among and 98% within subpopulations indicating high gene flow between SP1 and SP2. The subpopulation SP2 showed high level of genetic diversity based on genetic diversity indices viz. Shannon's information index (I) = 0.648, expected heterozygosity (He) = 0.456 and unbiased expected heterozygosity (uHe) = 0.456. To the best of our knowledge, this study is the first to include the largest set of Indian wheat genotypes studied exclusively for genetic diversity. These findings may serve as a potential source for the identification of uncharacterized QTL/gene using genome wide association studies and marker assisted selection in wheat breeding programs.
Collapse
|
32
|
Sood S, Joshi DC, Chandra AK, Kumar A. Phenomics and genomics of finger millet: current status and future prospects. PLANTA 2019; 250:731-751. [PMID: 30968267 DOI: 10.1007/s00425-019-03159-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Diverse gene pool, advanced plant phenomics and genomics methods enhanced genetic gain and understanding of important agronomic, adaptation and nutritional traits in finger millet. Finger millet (Eleusine coracana L. Gaertn) is an important minor millet for food and nutritional security in semi-arid regions of the world. The crop has wide adaptability and can be grown right from high hills in Himalayan region to coastal plains. It provides food grain as well as palatable straw for cattle, and is fairly climate resilient. The crop has large gene pool with distinct features of both Indian and African germplasm types. Interspecific hybridization between Indian and African germplasm has resulted in greater yield enhancement and disease resistance. The crop has shown numerous advantages over major cereals in terms of stress adaptation, nutritional quality and health benefits. It has indispensable repository of novel genes for the benefits of mankind. Although rapid strides have been made in allele mining in model crops and major cereals, the progress in finger millet genomics is lacking. Comparative genomics have paved the way for the marker-assisted selection, where resistance gene homologues of rice for blast and sequence variants for nutritional traits from other cereals have been invariably used. Transcriptomics studies have provided preliminary understanding of the nutritional variation, drought and salinity tolerance. However, the genetics of many important traits in finger millet is poorly understood and need systematic efforts from biologists across disciplines. Recently, deciphered finger millet genome will enable identification of candidate genes for agronomically and nutritionally important traits. Further, improvement in genome assembly and application of genomic selection as well as genome editing in near future will provide plethora of information and opportunity to understand the genetics of complex traits.
Collapse
Affiliation(s)
- Salej Sood
- ICAR-Central Potato Research Institute, Shimla, HP, India.
| | - Dinesh C Joshi
- ICAR-Vivekananda Institute of Hill Agriculture, Almora, Uttarakhand, India
| | - Ajay Kumar Chandra
- GB Pant University of Agricultural Sciences and Technology, Pantnagar, Uttarakhand, India
| | - Anil Kumar
- GB Pant University of Agricultural Sciences and Technology, Pantnagar, Uttarakhand, India.
- Rani Lakshmi Bai Central Agricultural University, Jhanshi, UP, India.
| |
Collapse
|
33
|
Ramakrishnan SM, Sidhu JS, Ali S, Kaur N, Wu J, Sehgal SK. Molecular characterization of bacterial leaf streak resistance in hard winter wheat. PeerJ 2019; 7:e7276. [PMID: 31341737 PMCID: PMC6637926 DOI: 10.7717/peerj.7276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/07/2019] [Indexed: 11/20/2022] Open
Abstract
Bacterial leaf streak (BLS) caused by Xanthomonas campestris pv. translucens is one of the major bacterial diseases threatening wheat production in the United States Northern Great Plains (NGP) region. It is a sporadic but widespread wheat disease that can cause significant loss in grain yield and quality. Identification and characterization of genomic regions in wheat that confer resistance to BLS will help track resistance genes/QTLs in future wheat breeding. In this study, we evaluated a hard winter wheat association mapping panel (HWWAMP) containing 299 hard winter wheat lines from the US hard winter wheat growing region for their reactions to BLS. We observed a range of BLS responses among the lines, importantly, we identified ten genotypes that showed a resistant reaction both in greenhouse and field evaluation. -Genome-wide association analysis with 15,990 SNPs was conducted using an exponentially compressed mixed linear model. Five genomic regions (p < 0.001) that regulate the resistance to BLS were identified on chromosomes 1AL, 1BS, 3AL, 4AL, and 7AS. The QTLs Q.bls.sdsu-1AL, Q.bls.sdsu-1BS, Q.bls.sdsu-3AL, Q.bls.sdsu-4AL, and Q.bls.sdsu-7AS explain a total of 42% of the variation. In silico analysis of sequences in the candidate regions on chromosomes 1AL, 1BS, 3AL, 4AL, and 7AS identified 10, 25, 22, eight, and nine genes, respectively with known plant defense-related functions. Comparative analysis with rice showed two syntenic regions in rice that harbor genes for bacterial leaf streak resistance. The ten BLS resistant genotypes and SNP markers linked to the QTLs identified in our study could facilitate breeding for BLS resistance in winter wheat.
Collapse
Affiliation(s)
- Sai Mukund Ramakrishnan
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Jagdeep Singh Sidhu
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Shaukat Ali
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Navjot Kaur
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Jixiang Wu
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Sunish K. Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
34
|
Genome Wide Association Study of Karnal Bunt Resistance in a Wheat Germplasm Collection from Afghanistan. Int J Mol Sci 2019; 20:ijms20133124. [PMID: 31247965 PMCID: PMC6651844 DOI: 10.3390/ijms20133124] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/23/2019] [Accepted: 06/25/2019] [Indexed: 01/22/2023] Open
Abstract
Karnal bunt disease of wheat, caused by the fungus Neovossia indica, is one of the most important challenges to the grain industry as it affects the grain quality and also restricts the international movement of infected grain. It is a seed-, soil- and airborne disease with limited effect of chemical control. Currently, this disease is contained through the deployment of host resistance but further improvement is limited as only a few genotypes have been found to carry partial resistance. To identify genomic regions responsible for resistance in a set of 339 wheat accessions, genome-wide association study (GWAS) was undertaken using the DArTSeq® technology, in which 18 genomic regions for Karnal bunt resistance were identified, explaining 5–20% of the phenotypic variation. The identified quantitative trait loci (QTL) on chromosome 2BL showed consistently significant effects across all four experiments, whereas another QTL on 5BL was significant in three experiments. Additional QTLs were mapped on chromosomes 1DL, 2DL, 4AL, 5AS, 6BL, 6BS, 7BS and 7DL that have not been mapped previously, and on chromosomes 4B, 5AL, 5BL and 6BS, which have been reported in previous studies. Germplasm with less than 1% Karnal bunt infection have been identified and can be used for resistance breeding. The SNP markers linked to the genomic regions conferring resistance to Karnal bunt could be used to improve Karnal bunt resistance through marker-assisted selection.
Collapse
|
35
|
Sudha GS, Ramesh P, Sekhar AC, Krishna TS, Bramhachari P, Riazunnisa K. Genetic diversity analysis of selected Onion (Allium cepa L.) germplasm using specific RAPD and ISSR polymorphism markers. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2018.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Takenaka S, Nitta M, Nasuda S. Population structure and association analyses of the core collection of hexaploid accessions conserved ex situ in the Japanese gene bank NBRP-Wheat. Genes Genet Syst 2018; 93:237-254. [PMID: 30555105 DOI: 10.1266/ggs.18-00041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In this study, we investigated the genetic diversity and population structure of the core collection of hexaploid wheat accessions in the Japanese wheat gene bank NBRP-Wheat. The core collection, consisting of 188 accessions of Triticum aestivum, T. spelta, T. compactum, T. sphaerococcum, T. macha and T. vavilovii, was intensively genotyped by DArTseq markers and consisted of 20,186 SNPs and 60,077 present and absent variations (PAVs). Polymorphic markers were distributed in all chromosomes, with a tendency for smaller numbers on the D-genome chromosomes. We examined the population structure by Bayesian clustering and principal component analysis with a general linear model. Overall, the core collection was divided into seven clusters. Non-admixture accessions in each cluster indicated that the clusters reflect the geographic distribution of the accessions. Both structure analyses strongly suggested that the cluster consisting of T. spelta and T. macha is out-grouped from other hexaploid wheat accessions. We performed genome-wide association analysis pilot studies for nine quantitative and seven qualitative traits and found marker-trait associations for all traits but one, indicating that the current core collection will be useful for detecting uncharacterized QTLs associated with phenotypes of interest.
Collapse
Affiliation(s)
- Shotaro Takenaka
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University.,Department of Plant Life Science, Faculty of Agriculture, Ryukoku University
| | - Miyuki Nitta
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University
| | - Shuhei Nasuda
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
37
|
Chaves CL, Blanc-Jolivet C, Sebbenn AM, Mader M, Meyer-Sand BRV, Paredes-Villanueva K, Honorio Coronado EN, Garcia-Davila C, Tysklind N, Troispoux V, Massot M, Degen B. Nuclear and chloroplastic SNP markers for genetic studies of timber origin for Hymenaea trees. CONSERV GENET RESOUR 2018. [DOI: 10.1007/s12686-018-1077-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Eltaher S, Sallam A, Belamkar V, Emara HA, Nower AA, Salem KFM, Poland J, Baenziger PS. Genetic Diversity and Population Structure of F 3:6 Nebraska Winter Wheat Genotypes Using Genotyping-By-Sequencing. Front Genet 2018; 9:76. [PMID: 29593779 PMCID: PMC5857551 DOI: 10.3389/fgene.2018.00076] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/19/2018] [Indexed: 12/21/2022] Open
Abstract
The availability of information on the genetic diversity and population structure in wheat (Triticum aestivum L.) breeding lines will help wheat breeders to better use their genetic resources and manage genetic variation in their breeding program. The recent advances in sequencing technology provide the opportunity to identify tens or hundreds of thousands of single nucleotide polymorphism (SNPs) in large genome species (e.g., wheat). These SNPs can be utilized for understanding genetic diversity and performing genome wide association studies (GWAS) for complex traits. In this study, the genetic diversity and population structure were investigated in a set of 230 genotypes (F3:6) derived from various crosses as a prerequisite for GWAS and genomic selection. Genotyping-by-sequencing provided 25,566 high-quality SNPs. The polymorphism information content (PIC) across chromosomes ranged from 0.09 to 0.37 with an average of 0.23. The distribution of SNPs markers on the 21 chromosomes ranged from 319 on chromosome 3D to 2,370 on chromosome 3B. The analysis of population structure revealed three subpopulations (G1, G2, and G3). Analysis of molecular variance identified 8% variance among and 92% within subpopulations. Of the three subpopulations, G2 had the highest level of genetic diversity based on three genetic diversity indices: Shannon’s information index (I) = 0.494, diversity index (h) = 0.328 and unbiased diversity index (uh) = 0.331, while G3 had lowest level of genetic diversity (I = 0.348, h = 0.226 and uh = 0.236). This high genetic diversity identified among the subpopulations can be used to develop new wheat cultivars.
Collapse
Affiliation(s)
- Shamseldeen Eltaher
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States.,Department of Plant Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat, Egypt
| | - Ahmed Sallam
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States.,Department of Genetics, Faculty of Agriculture, Assiut University, Assuit, Egypt
| | - Vikas Belamkar
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Hamdy A Emara
- Department of Plant Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat, Egypt
| | - Ahmed A Nower
- Department of Plant Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat, Egypt
| | - Khaled F M Salem
- Department of Plant Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat, Egypt.,Department of Biology, College of Science and Humanitarian Studies, Shaqra University, Qwaieah, Saudi Arabia
| | - Jesse Poland
- Hard Winter Wheat Genetics Research Unit, Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Peter S Baenziger
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
39
|
Ando K, Rynearson S, Muleta KT, Gedamu J, Girma B, Bosque-Pérez NA, Chen MS, Pumphrey MO. Genome-wide associations for multiple pest resistances in a Northwestern United States elite spring wheat panel. PLoS One 2018; 13:e0191305. [PMID: 29415008 PMCID: PMC5802848 DOI: 10.1371/journal.pone.0191305] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/01/2018] [Indexed: 12/01/2022] Open
Abstract
Northern areas of the western United States are one of the most productive wheat growing regions in the United States. Increasing productivity through breeding is hindered by several biotic stresses which slow and constrain targeted yield improvement. In order to understand genetic variation for stripe rust (Puccinia striiformis f. sp. tritici), Septoria tritici blotch (Mycosphaerella graminicola), and Hessian fly (Mayetiola destructor) in regional germplasm, a panel of 408 elite spring wheat lines was characterized and genotyped with an Illumina 9K wheat single nucleotide polymorphism (SNP) chip to enable genome-wide association study (GWAS) analyses. Significant marker-trait associations were identified for stripe rust (38 loci), Septoria tritici blotch (8) and Hessian fly (9) resistance. Many of the QTL corresponded with previously reported gene locations or QTL, but we also discovered new resistance loci for each trait. We validated one of the stripe rust resistance loci detected by GWAS in a bi-parental mapping population, which confirmed the detection of Yr15 in the panel. This study elucidated well-defined chromosome regions for multiple pest resistances in elite Northwest germplasm. Newly identified resistance loci, along with SNPs more tightly linked to previously reported genes or QTL will help future breeding and marker assisted selection efforts.
Collapse
Affiliation(s)
- Kaori Ando
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America
| | - Sheri Rynearson
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America
| | - Kebede T. Muleta
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America
| | - Jhonatan Gedamu
- Ethiopian Institute of Agricultural Research, Holeta Agricultural Research Center, Holeta, Ethiopia
| | - Bedada Girma
- Ethiopian Institute of Agricultural Research, Kulumsa Agricultural Research Center, Assela, Ethiopia
| | - Nilsa A. Bosque-Pérez
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, Idaho, United States of America
| | - Ming-Shun Chen
- United States Department of Agriculture–Agricultural Research Service and Department of Entomology, Kansas State University, Manhattan, Kansas, United States of America
| | - Mike O. Pumphrey
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
40
|
Tagliotti ME, Deperi SI, Bedogni MC, Zhang R, Manrique Carpintero NC, Coombs J, Douches D, Huarte MA. Use of easy measurable phenotypic traits as a complementary approach to evaluate the population structure and diversity in a high heterozygous panel of tetraploid clones and cultivars. BMC Genet 2018; 19:8. [PMID: 29338687 PMCID: PMC5771038 DOI: 10.1186/s12863-017-0556-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 10/03/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Diversity in crops is fundamental for plant breeding efforts. An accurate assessment of genetic diversity, using molecular markers, such as single nucleotide polymorphism (SNP), must be able to reveal the structure of the population under study. A characterization of population structure using easy measurable phenotypic traits could be a preliminary and low-cost approach to elucidate the genetic structure of a population. A potato population of 183 genotypes was evaluated using 4859 high-quality SNPs and 19 phenotypic traits commonly recorded in potato breeding programs. A Bayesian approach, Minimum Spanning Tree (MST) and diversity estimator, as well as multivariate analysis based on phenotypic traits, were adopted to assess the population structure. RESULTS Analysis based on molecular markers showed groups linked to the phylogenetic relationship among the germplasm as well as the link with the breeding program that provided the material. Diversity estimators consistently structured the population according to a priori group estimation. The phenotypic traits only discriminated main groups with contrasting characteristics, as different subspecies, ploidy level or membership in a breeding program, but were not able to discriminate within groups. A joint molecular and phenotypic characterization analysis discriminated groups based on phenotypic classification, taxonomic category, provenance source of genotypes and genetic background. CONCLUSIONS This paper shows the significant level of diversity existing in a parental population of potato as well as the putative phylogenetic relationships among the genotypes. The use of easily measurable phenotypic traits among highly contrasting genotypes could be a reasonable approach to estimate population structure in the initial phases of a potato breeding program.
Collapse
Affiliation(s)
- Martin E Tagliotti
- Potato Research Group, Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta 226 km 73.5, Balcarce, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas-CONICET, Saavedra 15, C1083ACA, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Sofia I Deperi
- Potato Research Group, Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta 226 km 73.5, Balcarce, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas-CONICET, Saavedra 15, C1083ACA, Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria C Bedogni
- Potato Research Group, Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta 226 km 73.5, Balcarce, Buenos Aires, Argentina
| | - Ruofang Zhang
- Potato Engineering and Technology Research Centre, Inner Mongolia University, 235 West College Road, Hohhot, China
| | - Norma C Manrique Carpintero
- Department of Plant, Molecular Plant Sciences Bldg., Michigan State University, 612 Wilson Road #S148, East Lansing, Michigan, MI 48824, USA
| | - Joseph Coombs
- Department of Plant, Molecular Plant Sciences Bldg., Michigan State University, 612 Wilson Road #S148, East Lansing, Michigan, MI 48824, USA
| | - David Douches
- Department of Plant, Molecular Plant Sciences Bldg., Michigan State University, 612 Wilson Road #S148, East Lansing, Michigan, MI 48824, USA
| | - Marcelo A Huarte
- Potato Research Group, Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta 226 km 73.5, Balcarce, Buenos Aires, Argentina
| |
Collapse
|
41
|
Zhai S, Liu J, Xu D, Wen W, Yan J, Zhang P, Wan Y, Cao S, Hao Y, Xia X, Ma W, He Z. A Genome-Wide Association Study Reveals a Rich Genetic Architecture of Flour Color-Related Traits in Bread Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:1136. [PMID: 30123234 PMCID: PMC6085589 DOI: 10.3389/fpls.2018.01136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 07/13/2018] [Indexed: 05/18/2023]
Abstract
Flour color-related traits, including brightness (L*), redness (a*), yellowness (b*) and yellow pigment content (YPC), are very important for end-use quality of wheat. Uncovering the genetic architecture of these traits is necessary for improving wheat quality by marker-assisted selection (MAS). In the present study, a genome-wide association study (GWAS) was performed on a collection of 166 bread wheat cultivars to better understand the genetic architecture of flour color-related traits using the wheat 90 and 660 K SNP arrays, and 10 allele-specific markers for known genes influencing these traits. Fifteen, 28, 25, and 32 marker-trait associations (MTAs) for L*, a*, b*, and YPC, respectively, were detected, explaining 6.5-20.9% phenotypic variation. Seventy-eight loci were consistent across all four environments. Compared with previous studies, Psy-A1, Psy-B1, Pinb-D1, and the 1B•1R translocation controlling flour color-related traits were confirmed, and four loci were novel. Two and 11 loci explained much more phenotypic variation of a* and YPC than phytoene synthase 1 gene (Psy1), respectively. Sixteen candidate genes were predicted based on biochemical information and bioinformatics analyses, mainly related to carotenoid biosynthesis and degradation, terpenoid backbone biosynthesis and glycolysis/gluconeogenesis. The results largely enrich our knowledge of the genetic basis of flour color-related traits in bread wheat and provide valuable markers for wheat quality improvement. The study also indicated that GWAS was a powerful strategy for dissecting flour color-related traits and identifying candidate genes based on diverse genotypes and high-throughput SNP arrays.
Collapse
Affiliation(s)
- Shengnan Zhai
- Crop Research Institute, National Engineering Laboratory for Wheat and Maize, Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, China
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jindong Liu
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dengan Xu
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weie Wen
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Yan
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Pingzhi Zhang
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yingxiu Wan
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Shuanghe Cao
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuanfeng Hao
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianchun Xia
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wujun Ma
- School of Veterinary and Life Sciences, Murdoch University and Australian Export Grains Innovation Centre, Perth, WA, Australia
| | - Zhonghu He
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- International Maize and Wheat Improvement Center, Beijing, China
- *Correspondence: Zhonghu He
| |
Collapse
|
42
|
|
43
|
Liu N, Bai G, Lin M, Xu X, Zheng W. Genome-wide Association Analysis of Powdery Mildew Resistance in U.S. Winter Wheat. Sci Rep 2017; 7:11743. [PMID: 28924158 PMCID: PMC5603590 DOI: 10.1038/s41598-017-11230-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/21/2017] [Indexed: 01/23/2023] Open
Abstract
Wheat powdery mildew (PM), caused by Blumeria graminis f. sp. tritici, is a major fungal disease of wheat worldwide. It can cause considerable yield losses when epidemics occur. Use of genetic resistance is the most effective approach to control the disease. To determine the genomic regions responsible for PM resistance in a set of U.S. winter wheat and identify DNA markers in these regions, we conducted a genome-wide association study on a set of 185 U.S. winter wheat accessions using single nucleotide polymorphism (SNP) markers from 90 K wheat SNP arrays. We identified significant SNP markers linked to nine quantitative trait loci (QTLs) and simple sequence repeats (SSR) markers linked to three QTLs for PM resistance. Most of the QTLs in the US winter wheat population have been reported previously, but some such as these on chromosomes 1A, 6A and 1B have not been reported previously, and are likely new QTLs for PM resistance in U.S. winter wheat. The germplasm with immunity to PM are good sources of resistance for PM resistance breeding and the markers closely linked to the QTLs can be used in marker-assisted selection to improve wheat PM resistance after further validation.
Collapse
Affiliation(s)
- Na Liu
- College of Life Science, Henan Agricultural University, Zhengzhou, Henan, 450002, China.
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA.
| | - Guihua Bai
- USDA-ARS Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA
| | - Meng Lin
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Xiangyang Xu
- Wheat, Peanut and Other Field Crops Research Unit, USDA-ARS, Stillwater, OK, 74075, USA
| | - Wenming Zheng
- College of Life Science, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| |
Collapse
|
44
|
N’Diaye A, Haile JK, Cory AT, Clarke FR, Clarke JM, Knox RE, Pozniak CJ. Single Marker and Haplotype-Based Association Analysis of Semolina and Pasta Colour in Elite Durum Wheat Breeding Lines Using a High-Density Consensus Map. PLoS One 2017; 12:e0170941. [PMID: 28135299 PMCID: PMC5279799 DOI: 10.1371/journal.pone.0170941] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/12/2017] [Indexed: 12/30/2022] Open
Abstract
Association mapping is usually performed by testing the correlation between a single marker and phenotypes. However, because patterns of variation within genomes are inherited as blocks, clustering markers into haplotypes for genome-wide scans could be a worthwhile approach to improve statistical power to detect associations. The availability of high-density molecular data allows the possibility to assess the potential of both approaches to identify marker-trait associations in durum wheat. In the present study, we used single marker- and haplotype-based approaches to identify loci associated with semolina and pasta colour in durum wheat, the main objective being to evaluate the potential benefits of haplotype-based analysis for identifying quantitative trait loci. One hundred sixty-nine durum lines were genotyped using the Illumina 90K Infinium iSelect assay, and 12,234 polymorphic single nucleotide polymorphism (SNP) markers were generated and used to assess the population structure and the linkage disequilibrium (LD) patterns. A total of 8,581 SNPs previously localized to a high-density consensus map were clustered into 406 haplotype blocks based on the average LD distance of 5.3 cM. Combining multiple SNPs into haplotype blocks increased the average polymorphism information content (PIC) from 0.27 per SNP to 0.50 per haplotype. The haplotype-based analysis identified 12 loci associated with grain pigment colour traits, including the five loci identified by the single marker-based analysis. Furthermore, the haplotype-based analysis resulted in an increase of the phenotypic variance explained (50.4% on average) and the allelic effect (33.7% on average) when compared to single marker analysis. The presence of multiple allelic combinations within each haplotype locus offers potential for screening the most favorable haplotype series and may facilitate marker-assisted selection of grain pigment colour in durum wheat. These results suggest a benefit of haplotype-based analysis over single marker analysis to detect loci associated with colour traits in durum wheat.
Collapse
Affiliation(s)
- Amidou N’Diaye
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jemanesh K. Haile
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Aron T. Cory
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Fran R. Clarke
- Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food Canada, Swift Current, Saskatchewan, Canada
| | - John M. Clarke
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ron E. Knox
- Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food Canada, Swift Current, Saskatchewan, Canada
| | - Curtis J. Pozniak
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
45
|
Motilal LA, Zhang D, Mischke S, Meinhardt LW, Boccara M, Fouet O, Lanaud C, Umaharan P. Association mapping of seed and disease resistance traits in Theobroma cacao L. PLANTA 2016; 244:1265-1276. [PMID: 27534964 DOI: 10.1007/s00425-016-2582-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 08/08/2016] [Indexed: 05/08/2023]
Abstract
Microsatellite and single nucleotide polymorphism markers that could be used in marker assisted breeding of cacao were identified for number of filled seeds, black pod resistance and witches' broom disease resistance. An association mapping approach was employed to identify markers for seed number and resistance to black pod and witches' broom disease (WBD) in cacao (Theobroma cacao L.). Ninety-five microsatellites (SSRs) and 775 single nucleotide polymorphisms (SNPs) were assessed on 483 unique trees in the International Cocoa Genebank Trinidad (ICGT). Linkage disequilibrium (LD) and association mapping studies were conducted to identify markers to tag the phenotypic traits. Decay of LD occurred over an average 9.3 cM for chromosomes 1-9 and 2.5 cM for chromosome 10. Marker/trait associations were generally identified based on general linear models (GLMs) that incorporated principal components from molecular information on relatedness factor. Seven markers (mTcCIR 8, 66, 126, 212; TcSNP368, 697, 1370) on chromosomes 1 and 9 were identified for number of filled seeds (NSEED). A single marker was found for black pod resistance (mTcCIR280) on chromosome 3, whereas six markers on chromosomes 4, 5, 6, 8, and 10 were detected for WBD (mTcCIR91, 183; TcSNP375, 720, 1230 and 1374). It is expected that this association mapping study in cacao would contribute to the knowledge of the genetic determinism of cocoa traits and that the markers identified herein would prove useful in marker assisted breeding of cacao.
Collapse
Affiliation(s)
- Lambert A Motilal
- Cocoa Research Centre, The University of the West Indies, Sir Frank Stockdale Bldg., St. Augustine, Trinidad, 330912, Trinidad and Tobago.
| | - Dapeng Zhang
- USDA/ARS, Beltsville Agricultural Research Center, PSI, SPCL, 10300 Baltimore Avenue, Bldg. 001, Rm. 223, BARC-W, Beltsville, MD, 20705, USA
| | - Sue Mischke
- USDA/ARS, Beltsville Agricultural Research Center, PSI, SPCL, 10300 Baltimore Avenue, Bldg. 001, Rm. 223, BARC-W, Beltsville, MD, 20705, USA
| | - Lyndel W Meinhardt
- USDA/ARS, Beltsville Agricultural Research Center, PSI, SPCL, 10300 Baltimore Avenue, Bldg. 001, Rm. 223, BARC-W, Beltsville, MD, 20705, USA
| | - Michel Boccara
- Cocoa Research Centre, The University of the West Indies, Sir Frank Stockdale Bldg., St. Augustine, Trinidad, 330912, Trinidad and Tobago
- CIRAD-UMR AGAP (Centre de coopération internationale en recherche agronomique pour le développement), Montpellier Cedex 5, France
| | - Olivier Fouet
- CIRAD-UMR AGAP (Centre de coopération internationale en recherche agronomique pour le développement), Montpellier Cedex 5, France
| | - Claire Lanaud
- CIRAD-UMR AGAP (Centre de coopération internationale en recherche agronomique pour le développement), Montpellier Cedex 5, France
| | - Pathmanathan Umaharan
- Cocoa Research Centre, The University of the West Indies, Sir Frank Stockdale Bldg., St. Augustine, Trinidad, 330912, Trinidad and Tobago
| |
Collapse
|
46
|
Zaidi PH, Seetharam K, Krishna G, Krishnamurthy L, Gajanan S, Babu R, Zerka M, Vinayan MT, Vivek BS. Genomic Regions Associated with Root Traits under Drought Stress in Tropical Maize (Zea mays L.). PLoS One 2016; 11:e0164340. [PMID: 27768702 PMCID: PMC5074786 DOI: 10.1371/journal.pone.0164340] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/24/2016] [Indexed: 12/30/2022] Open
Abstract
An association mapping panel, named as CIMMYT Asia association mapping (CAAM) panel, involving 396 diverse tropical maize lines were phenotyped for various structural and functional traits of roots under drought and well-watered conditions. The experiment was conducted during Kharif (summer-rainy) season of 2012 and 2013 in root phenotyping facility at CIMMYT-Hyderabad, India. The CAAM panel was genotyped to generate 955, 690 SNPs through GBS v2.7 using Illumina Hi-seq 2000/2500 at Institute for Genomic Diversity, Cornell University, Ithaca, NY, USA. GWAS analysis was carried out using 331,390 SNPs filtered from the entire set of SNPs revealed a total of 50 and 67 SNPs significantly associated for root functional (transpiration efficiency, flowering period water use) and structural traits (rooting depth, root dry weight, root length, root volume, root surface area and root length density), respectively. In addition to this, 37 SNPs were identified for grain yield and shoot biomass under well-watered and drought stress. Though many SNPs were found to have significant association with the traits under study, SNPs that were common for more than one trait were discussed in detail. A total 18 SNPs were found to have common association with more than one trait, out of which 12 SNPs were found within or near the various gene functional regions. In this study we attempted to identify the trait specific maize lines based on the presence of favorable alleles for the SNPs associated with multiple traits. Two SNPs S3_128533512 and S7_151238865 were associated with transpiration efficiency, shoot biomass and grain yield under well-watered condition. Based on favorable allele for these SNPs seven inbred lines were identified. Similarly, four lines were identified for transpiration efficiency and shoot biomass under drought stress based on the presence of favorable allele for the common SNPs S1_211520521, S2_20017716, S3_57210184 and S7_130878458 and three lines were identified for flowering period water-use, transpiration efficiency, root dry weight and root volume based on the presence of favorable allele for the common SNPs S3_162065732 and S3_225760139.
Collapse
Affiliation(s)
- P. H. Zaidi
- International Maize and Wheat Improvement Centre (CIMMYT), Asia regional office, Hyderabad, India
- * E-mail:
| | - K. Seetharam
- International Maize and Wheat Improvement Centre (CIMMYT), Asia regional office, Hyderabad, India
| | - Girish Krishna
- International Maize and Wheat Improvement Centre (CIMMYT), Asia regional office, Hyderabad, India
| | - L. Krishnamurthy
- International Crops research institute for semi-arid tropics (ICRISAT), Hyderabad, India
| | - S. Gajanan
- International Maize and Wheat Improvement Centre (CIMMYT), Asia regional office, Hyderabad, India
| | - Raman Babu
- International Maize and Wheat Improvement Centre (CIMMYT), Asia regional office, Hyderabad, India
| | - M. Zerka
- International Maize and Wheat Improvement Centre (CIMMYT), Asia regional office, Hyderabad, India
| | - M. T. Vinayan
- International Maize and Wheat Improvement Centre (CIMMYT), Asia regional office, Hyderabad, India
| | - B. S. Vivek
- International Maize and Wheat Improvement Centre (CIMMYT), Asia regional office, Hyderabad, India
| |
Collapse
|
47
|
Molecular response and association analysis of Megalobrama amblycephala fih-1 with hypoxia. Mol Genet Genomics 2016; 291:1615-24. [PMID: 27112926 DOI: 10.1007/s00438-016-1208-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 04/13/2016] [Indexed: 12/19/2022]
Abstract
Hypoxia is one of the most important environmental factors which affect fish growth, development and survival, but regulation mechanisms of hypoxia in fish remain unclear. Therefore, to further understand molecular functions of factor inhibiting HIF-1 (Fih-1), an essential hypoxia sensor, the full-length cDNA of fih-1 was cloned from Megalobrama amblycephala, a hypoxia-sensitive cyprinid fish. The deduced amino acid sequence showed high homology with that of other vertebrates, and all structural and functional domains were highly conserved. The mRNA level in different tissues and developmental stages indicated that M. amblycephala fih-1 expression was higher in liver and muscle, followed by gill, intestine and spleen. During embryogenesis, the fih-1 mRNA was highly expressed in the early embryonic development, then decreased to a very low level, and maintained a relative high level of expression after hatching. In most tissues, the fih-1 mRNA was down-regulated at 2 h but up-regulated at 4 h after hypoxia treatment. In addition, the promoter sequence of M. amblycephala fih-1 was obtained using thermal asymmetric interlaced PCR. Three single nucleotide polymorphism (SNP) sites were found in the cDNA and promoter sequences, and identified significant association with hypoxia trait by correlation analysis in hypoxia-sensitive group and hypoxia-tolerant group. These results demonstrated that M. amblycephala fih-1 plays important roles in embryo development and hypoxia response, which will contribute to systematic understanding of the molecular mechanisms of fish in response to hypoxia, and provide help for fish genetic breeding with hypoxia-tolerant strains or breeds.
Collapse
|
48
|
Zhang Y, Yan H, Jiang X, Wang X, Huang L, Xu B, Zhang X, Zhang L. Genetic variation, population structure and linkage disequilibrium in Switchgrass with ISSR, SCoT and EST-SSR markers. Hereditas 2016; 153:4. [PMID: 28096766 PMCID: PMC5226102 DOI: 10.1186/s41065-016-0007-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/29/2016] [Indexed: 11/29/2022] Open
Abstract
Background To evaluate genetic variation, population structure, and the extent of linkage disequilibrium (LD), 134 switchgrass (Panicum virgatum L.) samples were analyzed with 51 markers, including 16 ISSRs, 20 SCoTs, and 15 EST-SSRs. Results In this study, a high level of genetic variation was observed in the switchgrass samples and they had an average Nei’s gene diversity index (H) of 0.311. A total of 793 bands were obtained, of which 708 (89.28 %) were polymorphic. Using a parameter marker index (MI), the efficiency of the three types of markers (ISSR, SCoT, and EST-SSR) in the study were compared and we found that SCoT had a higher marker efficiency than the other two markers. The 134 switchgrass samples could be divided into two sub-populations based on STRUCTURE, UPGMA clustering, and principal coordinate analyses (PCA), and upland and lowland ecotypes could be separated by UPGMA clustering and PCA analyses. Linkage disequilibrium analysis revealed an average r2 of 0.035 across all 51 markers, indicating a trend of higher LD in sub-population 2 than that in sub-population 1 (P < 0.01). Conclusions The population structure revealed in this study will guide the design of future association studies using these switchgrass samples.
Collapse
Affiliation(s)
- Yu Zhang
- Grassland Science Department, Sichuan Agricultural University, Chengdu, 611130 China.,IRTA. Centre de Recerca en Agrigenòmica (CSIC-IRTA-UAB), Campus UAB - Edifici CRAG, Bellaterra - Cerdanyola del Vallès, Barcelona, 08193 Spain
| | - Haidong Yan
- Grassland Science Department, Sichuan Agricultural University, Chengdu, 611130 China
| | - Xiaomei Jiang
- Grassland Science Department, Sichuan Agricultural University, Chengdu, 611130 China
| | - Xiaoli Wang
- Guizhou Institute of Prataculture, Guiyang, 550006 PR China
| | - Linkai Huang
- Grassland Science Department, Sichuan Agricultural University, Chengdu, 611130 China
| | - Bin Xu
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xinquan Zhang
- Grassland Science Department, Sichuan Agricultural University, Chengdu, 611130 China
| | - Lexin Zhang
- Grassland Science Department, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
49
|
Tascioglu T, Metin OK, Aydin Y, Sakiroglu M, Akan K, Uncuoglu AA. Genetic Diversity, Population Structure, and Linkage Disequilibrium in Bread Wheat (Triticum aestivum L.). Biochem Genet 2016; 54:421-437. [PMID: 27048293 DOI: 10.1007/s10528-016-9729-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/18/2016] [Indexed: 11/29/2022]
Abstract
Bread wheat (Triticum aestivum L.) gene pool was analyzed with 117 microsatellite markers scattered throughout A, B, and D genomes. Ninety microsatellite markers were giving 1620 polymorphic alleles in 55 different bread wheat genotypes. These genotypes were found to be divided into three subgroups based on Bayesian model and Principal component analysis. The highest polymorphism information content value for the markers resides on A genome was estimated for wmc262 marker located on 4A chromosome with the polymorphism information content value of 0.960. The highest polymorphism information content value (0.954) among the markers known to be located on B genome was realized for wmc44 marker located on 1B chromosome. The highest polymorphism information content value for the markers specific to D genome was found in gwm174 marker located on 5D chromosome with the polymorphism information content value of 0.948. The presence of linkage disequilibrium between 81 pairwise SSR markers reside on the same chromosome was tested and very limited linkage disequilibrium was observed. The results confirmed that the most distant genotype pairs were as follows Ceyhan-99-Behoth 6, Gerek 79-Douma 40989, and Karahan-99-Douma 48114.
Collapse
Affiliation(s)
- Tulin Tascioglu
- Department of Bioengineering, Faculty of Engineering, Marmara University, 34722, Istanbul, Turkey
| | - Ozge Karakas Metin
- TÜBİTAK, Marmara Research Center, Genetic Engineering and Biotechnology Institute, 41470, Kocaeli, Turkey
| | - Yildiz Aydin
- Department of Biology, Faculty of Arts and Sciences, Marmara University, 34722, Istanbul, Turkey
| | - Muhammet Sakiroglu
- Department of Bioengineering, Faculty of Engineering and Architecture, Kafkas University, Kars, Turkey
| | - Kadir Akan
- Central Research Institute for Field Crops, Sehit Cem Ersever Cd. No. 9-11, Yenimahalle, Ankara, Turkey
| | - Ahu Altinkut Uncuoglu
- Department of Bioengineering, Faculty of Engineering, Marmara University, 34722, Istanbul, Turkey.
| |
Collapse
|
50
|
Association mapping and genetic dissection of nitrogen use efficiency-related traits in rice (Oryza sativa L.). Funct Integr Genomics 2016; 16:323-33. [PMID: 26922174 DOI: 10.1007/s10142-016-0486-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/14/2016] [Accepted: 02/18/2016] [Indexed: 10/22/2022]
Abstract
The increases in the usage of nitrogen fertilizer result in deleterious impacts on the environment; thus, there is an urgent need to improve nitrogen use efficiency (NUE) in crops including rice (Oryza sativa L.). Attentions have focused on quantitative trait loci (QTL) mapping of NUE-related traits using single experimental population, but to date, very few studies have taken advantage of association mapping to examine hundreds of lines for identifying potentially novel QTLs in rice. Here, we conducted association analysis on NUE-related traits using a population containing 184 varieties, which were genotyped with 157 genome-wide simple sequence repeat (SSR) markers. We detected eight statistically significant marker loci associating with NUE-related traits, of which two QTLs at RM5639 and RM3628 harbored known NUE-related genes GS1;2 and AspAt3, respectively. At a novel NUE-related locus RM5748, we developed Kompetitive Allele Specific PCR (KASP) single nucleotide polymorphism (SNP) markers and searched for putative NUE-related genes which are close to the associated SNP marker. Based on a transcriptional map of N stress responses constructed by our lab, we evaluated expressions of the NUE-related genes in this region and validated their effect on NUE. Meanwhile, we analyzed NUE-related alleles of the eight loci that could be utilized in marker-assisted selection. Moreover, we estimated breeding values of all the varieties through genomic prediction approach that could be beneficial for rice NUE enhancement.
Collapse
|