1
|
Pfrieme AK, Will T, Pillen K, Stahl A. The Past, Present, and Future of Wheat Dwarf Virus Management-A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:3633. [PMID: 37896096 PMCID: PMC10609771 DOI: 10.3390/plants12203633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Wheat dwarf disease (WDD) is an important disease of monocotyledonous species, including economically important cereals. The causative pathogen, wheat dwarf virus (WDV), is persistently transmitted mainly by the leafhopper Psammotettix alienus and can lead to high yield losses. Due to climate change, the periods of vector activity increased, and the vectors have spread to new habitats, leading to an increased importance of WDV in large parts of Europe. In the light of integrated pest management, cultivation practices and the use of resistant/tolerant host plants are currently the only effective methods to control WDV. However, knowledge of the pathosystem and epidemiology of WDD is limited, and the few known sources of genetic tolerance indicate that further research is needed. Considering the economic importance of WDD and its likely increasing relevance in the coming decades, this study provides a comprehensive compilation of knowledge on the most important aspects with information on the causal virus, its vector, symptoms, host range, and control strategies. In addition, the current status of genetic and breeding efforts to control and manage this disease in wheat will be discussed, as this is crucial to effectively manage the disease under changing environmental conditions and minimize impending yield losses.
Collapse
Affiliation(s)
- Anne-Kathrin Pfrieme
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 06484 Quedlinburg, Germany; (T.W.); (A.S.)
| | - Torsten Will
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 06484 Quedlinburg, Germany; (T.W.); (A.S.)
| | - Klaus Pillen
- Institute of Agricultural and Nutritional Science, Plant Breeding, Martin-Luther-University Halle-Wittenberg, 06108 Halle (Saale), Germany;
| | - Andreas Stahl
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 06484 Quedlinburg, Germany; (T.W.); (A.S.)
| |
Collapse
|
2
|
Vo TTB, Lal A, Nattanong B, Tabassum M, Qureshi MA, Troiano E, Parrella G, Kil EJ, Lee S. Coat protein is responsible for tomato leaf curl New Delhi virus pathogenicity in tomato. FRONTIERS IN PLANT SCIENCE 2023; 14:1206255. [PMID: 37492775 PMCID: PMC10364049 DOI: 10.3389/fpls.2023.1206255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/23/2023] [Indexed: 07/27/2023]
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV), a bipartite Begomovirus belonging to the family Geminiviridae, causes severe damage to many economically important crops worldwide. In the present study, pathogenicity of Asian (ToLCNDV-In from Pakistan) and Mediterranean isolates (ToLCNDV-ES from Italy) were examined using infectious clones in tomato plants. Only ToLCNDV-In could infect the three tomato cultivars, whereas ToLCNDV-ES could not. Genome-exchange of the two ToLCNDVs revealed the ToLCNDV DNA-A segment as the main factor for ToLCNDV infectivity in tomato. In addition, serial clones with chimeric ToLCNDV-In A and ToLCNDV-ES A genome segments were generated to identify the region determining viral infectivity in tomatoes. A chimeric clone carrying the ToLCNDV-In coat protein (CP) exhibited pathogenic adaptation in tomatoes, indicating that the CP of ToLCNDV is essential for its infectivity. Analyses of infectious clones carrying a single amino acid substitution revealed that amino acid at position 143 of the CP is critical for ToLCNDV infectivity in tomatoes. To better understand the molecular basis whereby CP function in pathogenicity, a yeast two-hybrid screen of a tomato cDNA library was performed using CPs as bait. The hybrid results showed different interactions between the two CPs and Ring finger protein 44-like in the tomato genome. The relative expression levels of upstream and downstream genes and Ring finger 44-like genes were measured using quantitative reverse transcription PCR (RT-qPCR) and compared to those of control plants. This is the first study to compare the biological features of the two ToLCNDV strains related to viral pathogenicity in the same host plant. Our results provide a foundation for elucidating the molecular mechanisms underlying ToLCNDV infection in tomatoes.
Collapse
Affiliation(s)
- Thuy T. B. Vo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Aamir Lal
- Agriculture Science and Technology Research Institute, Andong National University, Andong, Republic of Korea
| | - Bupi Nattanong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Marjia Tabassum
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Muhammad Amir Qureshi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Elisa Troiano
- Department of Biology, Agriculture and Food Sciences, Institute for Sustainable Plant Protection of the National Research Council (IPSP-CNR), Portici, Italy
| | - Giuseppe Parrella
- Department of Biology, Agriculture and Food Sciences, Institute for Sustainable Plant Protection of the National Research Council (IPSP-CNR), Portici, Italy
| | - Eui-Joon Kil
- Agriculture Science and Technology Research Institute, Andong National University, Andong, Republic of Korea
- Department of Plant Medicals, Andong National University, Andong, Republic of Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
3
|
Matsumura EE, Kormelink R. Small Talk: On the Possible Role of Trans-Kingdom Small RNAs during Plant-Virus-Vector Tritrophic Communication. PLANTS (BASEL, SWITZERLAND) 2023; 12:1411. [PMID: 36987098 PMCID: PMC10059270 DOI: 10.3390/plants12061411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Small RNAs (sRNAs) are the hallmark and main effectors of RNA silencing and therefore are involved in major biological processes in plants, such as regulation of gene expression, antiviral defense, and plant genome integrity. The mechanisms of sRNA amplification as well as their mobile nature and rapid generation suggest sRNAs as potential key modulators of intercellular and interspecies communication in plant-pathogen-pest interactions. Plant endogenous sRNAs can act in cis to regulate plant innate immunity against pathogens, or in trans to silence pathogens' messenger RNAs (mRNAs) and impair virulence. Likewise, pathogen-derived sRNAs can act in cis to regulate expression of their own genes and increase virulence towards a plant host, or in trans to silence plant mRNAs and interfere with host defense. In plant viral diseases, virus infection alters the composition and abundance of sRNAs in plant cells, not only by triggering and interfering with the plant RNA silencing antiviral response, which accumulates virus-derived small interfering RNAs (vsiRNAs), but also by modulating plant endogenous sRNAs. Here, we review the current knowledge on the nature and activity of virus-responsive sRNAs during virus-plant interactions and discuss their role in trans-kingdom modulation of virus vectors for the benefit of virus dissemination.
Collapse
|
4
|
Yang F, Xiao K, Pan H, Liu J. Chloroplast: The Emerging Battlefield in Plant-Microbe Interactions. FRONTIERS IN PLANT SCIENCE 2021; 12:637853. [PMID: 33747017 PMCID: PMC7966814 DOI: 10.3389/fpls.2021.637853] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/28/2021] [Indexed: 05/08/2023]
Abstract
Higher plants and some algae convert the absorbed light into chemical energy through one of the most important organelles, chloroplast, for photosynthesis and store it in the form of organic compounds to supply their life activities. However, more and more studies have shown that the role of chloroplasts is more than a factory for photosynthesis. In the process of light conversion to chemical energy, any damage to the components of chloroplast may affect the photosynthesis efficiency and promote the production of by-products, reactive oxygen species, that are mainly produced in the chloroplasts. Substantial evidence show that chloroplasts are also involved in the battle of plants and microbes. Chloroplasts are important in integrating a variety of external environmental stimuli and regulate plant immune responses by transmitting signals to the nucleus and other cell compartments through retrograde signaling pathways. Besides, chloroplasts can also regulate the biosynthesis and signal transduction of phytohormones, including salicylic acid and jasmonic acid, to affect the interaction between the plants and microbes. Since chloroplasts play such an important role in plant immunity, correspondingly, chloroplasts have become the target of pathogens. Different microbial pathogens target the chloroplast and affect its functions to promote their colonization in the host plants.
Collapse
Affiliation(s)
| | | | | | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
5
|
Tahmasebi A, Khahani B, Tavakol E, Afsharifar A, Shahid MS. Microarray analysis of Arabidopsis thaliana exposed to single and mixed infections with Cucumber mosaic virus and turnip viruses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:11-27. [PMID: 33627959 PMCID: PMC7873207 DOI: 10.1007/s12298-021-00925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/16/2020] [Accepted: 01/03/2021] [Indexed: 05/05/2023]
Abstract
UNLABELLED Cucumber mosaic virus (CMV), Turnip mosaic virus (TuMV) and Turnip crinkle virus (TCV) are important plant infecting viruses. In the present study, whole transcriptome alteration of Arabidopsis thaliana in response to CMV, TuMV and TCV, individual as well as mixed infections of CMV and TuMV/CMV and TCV were investigated using microarray data. In response to CMV, TuMV and TCV infections, a total of 2517, 3985 and 277 specific differentially expressed genes (DEGs) were up-regulated, while 2615, 3620 and 243 specific DEGs were down-regulated, respectively. The number of 1222 and 30 common DEGs were up-regulated during CMV and TuMV as well as CMV and TCV infections, while 914 and 24 common DEGs were respectively down-regulated. Genes encoding immune response mediators, signal transducer activity, signaling and stress response functions were among the most significantly upregulated genes during CMV and TuMV or CMV and TCV mixed infections. The NAC, C3H, C2H2, WRKY and bZIP were the most commonly presented transcription factor (TF) families in CMV and TuMV infection, while AP2-EREBP and C3H were the TF families involved in CMV and TCV infections. Moreover, analysis of miRNAs during CMV and TuMV and CMV and TCV infections have demonstrated the role of miRNAs in the down regulation of host genes in response to viral infections. These results identified the commonly expressed virus-responsive genes and pathways during plant-virus interaction which might develop novel antiviral strategies for improving plant resistance to mixed viral infections. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-00925-3.
Collapse
Affiliation(s)
- Aminallah Tahmasebi
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas, 7916193145 Iran
- Plant Protection Research Group, University of Hormozgan, Bandar Abbas, Iran
| | - Bahman Khahani
- Department of Plant Genetics and Production, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Elahe Tavakol
- Department of Plant Genetics and Production, College of Agriculture, Shiraz University, Shiraz, Iran
| | | | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
6
|
Lukan T, Pompe‐Novak M, Baebler Š, Tušek‐Žnidarič M, Kladnik A, Križnik M, Blejec A, Zagorščak M, Stare K, Dušak B, Coll A, Pollmann S, Morgiewicz K, Hennig J, Gruden K. Precision transcriptomics of viral foci reveals the spatial regulation of immune-signaling genes and identifies RBOHD as an important player in the incompatible interaction between potato virus Y and potato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:645-661. [PMID: 32772469 PMCID: PMC7692943 DOI: 10.1111/tpj.14953] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/21/2020] [Indexed: 05/18/2023]
Abstract
Whereas the activation of resistance (R) proteins has been intensively studied, the downstream signaling mechanisms leading to the restriction of the pathogen remain mostly unknown. We studied the immunity network response conditioned by the potato Ny-1 gene against potato virus Y. We analyzed the processes in the cell death zone and surrounding tissue on the biochemical and gene expression levels in order to reveal the spatiotemporal regulation of the immune response. We show that the transcriptional response in the cell death zone and surrounding tissue is dependent on salicylic acid (SA). For some genes the spatiotemporal regulation is completely lost in the SA-deficient line, whereas other genes show a different response, indicating multiple connections between hormonal signaling modules. The induction of NADPH oxidase RBOHD expression occurs specifically on the lesion border during the resistance response. In plants with silenced RBOHD, the functionality of the resistance response is perturbed and the spread of the virus is not arrested at the site of infection. RBOHD is required for the spatial accumulation of SA, and conversely RBOHD is under the transcriptional regulation of SA. Using spatially resolved RNA-seq, we also identified spatial regulation of an UDP-glucosyltransferase, another component in feedback activation of SA biosynthesis, thus deciphering a novel aspect of resistance signaling.
Collapse
Affiliation(s)
- Tjaša Lukan
- National Institute of BiologyVečna pot 111Ljubljana1000Slovenia
| | | | - Špela Baebler
- National Institute of BiologyVečna pot 111Ljubljana1000Slovenia
| | | | - Aleš Kladnik
- Biotechnical FacultyUniversity of LjubljanaJamnikarjeva 101Ljubljana1000Slovenia
| | - Maja Križnik
- National Institute of BiologyVečna pot 111Ljubljana1000Slovenia
| | - Andrej Blejec
- National Institute of BiologyVečna pot 111Ljubljana1000Slovenia
| | - Maja Zagorščak
- National Institute of BiologyVečna pot 111Ljubljana1000Slovenia
| | - Katja Stare
- National Institute of BiologyVečna pot 111Ljubljana1000Slovenia
| | - Barbara Dušak
- National Institute of BiologyVečna pot 111Ljubljana1000Slovenia
| | - Anna Coll
- National Institute of BiologyVečna pot 111Ljubljana1000Slovenia
| | - Stephan Pollmann
- Centre for Plant Biotechnology and GenomicsCampus de Montegancedo Crta M‐40, Km 38Pozuelo de Alarcón, Madrid28223UPM–INIA Spain
| | - Karolina Morgiewicz
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesPawińskiego 5aWarsaw02‐106Poland
| | - Jacek Hennig
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesPawińskiego 5aWarsaw02‐106Poland
| | - Kristina Gruden
- National Institute of BiologyVečna pot 111Ljubljana1000Slovenia
| |
Collapse
|
7
|
DeBlasio SL, Rebelo AR, Parks K, Gray SM, Heck MC. Disruption of Chloroplast Function Through Downregulation of Phytoene Desaturase Enhances the Systemic Accumulation of an Aphid-Borne, Phloem-Restricted Virus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1095-1110. [PMID: 29767548 DOI: 10.1094/mpmi-03-18-0057-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Chloroplasts play a central role in pathogen defense in plants. However, most studies explaining the relationship between pathogens and chloroplasts have focused on pathogens that infect mesophyll cells. In contrast, the family Luteoviridae includes RNA viruses that replicate and traffic exclusively in the phloem. Recently, our lab has shown that Potato leafroll virus (PLRV), the type species in the genus Polerovirus, forms an extensive interaction network with chloroplast-localized proteins that is partially dependent on the PLRV capsid readthrough domain (RTD). In this study, we used virus-induced gene silencing to disrupt chloroplast function and assess the effects on PLRV accumulation in two host species. Silencing of phytoene desaturase (PDS), a key enzyme in carotenoid, chlorophyll, and gibberellic acid (GA) biosynthesis, resulted in a substantial increase in the systemic accumulation of PLRV. This increased accumulation was attenuated when plants were infected with a viral mutant that does not express the RTD. Application of GA partially suppressed the increase in virus accumulation in PDS-silenced plants, suggesting that GA signaling also plays a role in limiting PLRV infection. In addition, the fecundity of the aphid vector of PLRV was increased when fed on PDS-silenced plants relative to PLRV-infected plants.
Collapse
Affiliation(s)
- Stacy L DeBlasio
- 1 USDA-Agricultural Research Service, Ithaca, NY 14853, U.S.A
- 2 Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A.; and
| | - Ana Rita Rebelo
- 2 Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A.; and
| | - Katherine Parks
- 2 Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A.; and
| | - Stewart M Gray
- 1 USDA-Agricultural Research Service, Ithaca, NY 14853, U.S.A
- 3 Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, U.S.A
| | - Michelle C Heck
- 1 USDA-Agricultural Research Service, Ithaca, NY 14853, U.S.A
- 2 Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A.; and
- 3 Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, U.S.A
| |
Collapse
|
8
|
Jupin I, Ayach M, Jomat L, Fieulaine S, Bressanelli S. A mobile loop near the active site acts as a switch between the dual activities of a viral protease/deubiquitinase. PLoS Pathog 2017; 13:e1006714. [PMID: 29117247 PMCID: PMC5695851 DOI: 10.1371/journal.ppat.1006714] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 11/20/2017] [Accepted: 10/25/2017] [Indexed: 12/21/2022] Open
Abstract
The positive-strand RNA virus Turnip yellow mosaic virus (TYMV) encodes an ovarian tumor (OTU)-like protease/deubiquitinase (PRO/DUB) protein domain involved both in proteolytic processing of the viral polyprotein through its PRO activity, and in removal of ubiquitin chains from ubiquitylated substrates through its DUB activity. Here, the crystal structures of TYMV PRO/DUB mutants and molecular dynamics simulations reveal that an idiosyncratic mobile loop participates in reversibly constricting its unusual catalytic site by adopting "open", "intermediate" or "closed" conformations. The two cis-prolines of the loop form a rigid flap that in the most closed conformation zips up against the other side of the catalytic cleft. The intermediate and closed conformations also correlate with a reordering of the TYMV PRO/DUB catalytic dyad, that then assumes a classical, yet still unusually mobile, OTU DUB alignment. Further structure-based mutants designed to interfere with the loop's mobility were assessed for enzymatic activity in vitro and in vivo, and were shown to display reduced DUB activity while retaining PRO activity. This indicates that control of the switching between the dual PRO/DUB activities resides prominently within this loop next to the active site. Introduction of mutations into the viral genome revealed that the DUB activity contributes to the extent of viral RNA accumulation both in single cells and in whole plants. In addition, the conformation of the mobile flap was also found to influence symptoms severity in planta. Such mutants now provide powerful tools with which to study the specific roles of reversible ubiquitylation in viral infection. Viruses have much smaller genomes than their hosts. Consequently, they often encode proteins which are multifunctional. For instance, some viral proteases have a dual function, being also deubiquitinases, i.e. enzymes capable of removing ubiquitin tags grafted onto proteins and that often target them for destruction. The protease and deubiquitinase activities share a single active site that is used alternately for one function or the other, but how this switch between activities may be regulated is presently unknown. To answer this question, we studied a simple plant virus that is a useful model system for these complex molecular biology phenomena, and that encodes a simplified protease/deubiquitinase. Here, thanks to a combination of structural and functional analyses, we managed to decouple the two activities, killing the deubiquitinase activity while preserving the protease one. This successful decoupling relies on our discovery that a loop inserted next to the active site is mobile, and can thus act as a switch between the two activities. This result allowed us to demonstrate the importance of the specific deubiquinase activity in viral multiplication. In addition, viral symptoms were also severely affected by mutations affecting the loop mobility. Our data provide powerful tools for further studies, that may also be relevant for more complex or medically relevant viruses.
Collapse
Affiliation(s)
- Isabelle Jupin
- Institut Jacques Monod, CNRS—Univ Paris-Diderot, Paris, France
- * E-mail: (IJ); (SB)
| | - Maya Ayach
- Institute for Integrative Biology of the Cell, CEA—CNRS—Univ Paris-Saclay, Gif sur Yvette, France
| | - Lucile Jomat
- Institut Jacques Monod, CNRS—Univ Paris-Diderot, Paris, France
| | - Sonia Fieulaine
- Institute for Integrative Biology of the Cell, CEA—CNRS—Univ Paris-Saclay, Gif sur Yvette, France
| | - Stéphane Bressanelli
- Institute for Integrative Biology of the Cell, CEA—CNRS—Univ Paris-Saclay, Gif sur Yvette, France
- * E-mail: (IJ); (SB)
| |
Collapse
|
9
|
Lacroix C, Seabloom EW, Borer ET. Environmental Nutrient Supply Directly Alters Plant Traits but Indirectly Determines Virus Growth Rate. Front Microbiol 2017; 8:2116. [PMID: 29163408 PMCID: PMC5681519 DOI: 10.3389/fmicb.2017.02116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 10/17/2017] [Indexed: 11/13/2022] Open
Abstract
Ecological stoichiometry and resource competition theory both predict that nutrient rates and ratios can alter infectious disease dynamics. Pathogens such as viruses hijack nutrient rich host metabolites to complete multiple steps of their epidemiological cycle. As the synthesis of these molecules requires nitrogen (N) and phosphorus (P), environmental supply rates, and ratios of N and P to hosts can directly limit disease dynamics. Environmental nutrient supplies also may alter virus epidemiology indirectly by changing host phenotype or the dynamics of coinfecting pathogens. We tested whether host nutrient supplies and coinfection control pathogen growth within hosts and transmission to new hosts, either directly or through modifications of plant tissue chemistry (i.e., content and stoichiometric ratios of nutrients), host phenotypic traits, or among-pathogen interactions. We examined two widespread plant viruses (BYDV-PAV and CYDV-RPV) in cultivated oats (Avena sativa) grown along a range of N and of P supply rates. N and P supply rates altered plant tissue chemistry and phenotypic traits; however, environmental nutrient supplies and plant tissue content and ratios of nutrients did not directly alter virus titer. Infection with CYDV-RPV altered plant traits and resulted in thicker plant leaves (i.e., higher leaf mass per area) and there was a positive correlation between CYDV-RPV titer and leaf mass per area. CYDV-RPV titer was reduced by the presence of a competitor, BYDV-PAV, and higher CYDV-RPV titer led to more severe chlorotic symptoms. In our experimental conditions, virus transmission was unaffected by nutrient supply rates, co-infection, plant stoichiometry, or plant traits, although nutrient supply rates have been shown to increase infection and coinfection rates. This work provides a robust test of the role of plant nutrient content and ratios in the dynamics of globally important pathogens and reveals a more complex relationship between within-host virus growth and alterations of plant traits. A deeper understanding of the differential effects of environmental nutrient supplies on virus epidemiology and ecology is particularly relevant given the rapid increase of nutrients flowing into Earth's ecosystems as a result of human activities.
Collapse
|
10
|
Moriones E, Praveen S, Chakraborty S. Tomato Leaf Curl New Delhi Virus: An Emerging Virus Complex Threatening Vegetable and Fiber Crops. Viruses 2017; 9:E264. [PMID: 28934148 PMCID: PMC5691616 DOI: 10.3390/v9100264] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/13/2017] [Accepted: 09/20/2017] [Indexed: 12/19/2022] Open
Abstract
The tomato leaf curl New Delhi virus (ToLCNDV) (genus Begomovirus, family Geminiviridae) represents an important constraint to tomato production, as it causes the most predominant and economically important disease affecting tomato in the Indian sub-continent. However, in recent years, ToLCNDV has been fast extending its host range and spreading to new geographical regions, including the Middle East and the western Mediterranean Basin. Extensive research on the genome structure, protein functions, molecular biology, and plant-virus interactions of ToLCNDV has been conducted in the last decade. Special emphasis has been given to gene silencing suppression ability in order to counteract host plant defense responses. The importance of the interaction with DNA alphasatellites and betasatellites in the biology of the virus has been demonstrated. ToLCNDV genetic variability has been analyzed, providing new insights into the taxonomy, host adaptation, and evolution of this virus. Recombination and pseudorecombination have been shown as motors of diversification and adaptive evolution. Important progress has also been made in control strategies to reduce disease damage. This review highlights these various achievements in the context of the previous knowledge of begomoviruses and their interactions with plants.
Collapse
Affiliation(s)
- Enrique Moriones
- Subtropical and Mediterranean Horticulture Institute "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, La Mayora Experimental Station, 29750 Algarrobo-Costa, Málaga, Spain.
| | - Shelly Praveen
- Advanced Center for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110 012, India.
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India.
| |
Collapse
|
11
|
Conti G, Rodriguez MC, Venturuzzi AL, Asurmendi S. Modulation of host plant immunity by Tobamovirus proteins. ANNALS OF BOTANY 2017; 119:737-747. [PMID: 27941090 PMCID: PMC5378186 DOI: 10.1093/aob/mcw216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 06/10/2016] [Accepted: 09/19/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND To establish successful infection, plant viruses produce profound alterations of host physiology, disturbing unrelated endogenous processes and contributing to the development of disease. In tobamoviruses, emerging evidence suggests that viral-encoded proteins display a great variety of functions beyond the canonical roles required for virus structure and replication. Among these, their modulation of host immunity appears to be relevant in infection progression. SCOPE In this review, some recently described effects on host plant physiology of Tobacco mosaic virus (TMV)-encoded proteins, namely replicase, movement protein (MP) and coat protein (CP), are summarized. The discussion is focused on the effects of each viral component on the modulation of host defense responses, through mechanisms involving hormonal imbalance, innate immunity modulation and antiviral RNA silencing. These effects are described taking into consideration the differential spatial distribution and temporality of viral proteins during the dynamic process of replication and spread of the virus. CONCLUSION In discussion of these mechanisms, it is shown that both individual and combined effects of viral-encoded proteins contribute to the development of the pathogenesis process, with the host plant's ability to control infection to some extent potentially advantageous to the invading virus.
Collapse
Affiliation(s)
- G. Conti
- Instituto de Biotecnologia, CICVyA, INTA, Argentina
- CONICET, Argentina
| | | | - A. L. Venturuzzi
- Instituto de Biotecnologia, CICVyA, INTA, Argentina
- CONICET, Argentina
| | - S. Asurmendi
- Instituto de Biotecnologia, CICVyA, INTA, Argentina
- CONICET, Argentina
- For correspondence. E-mail
| |
Collapse
|
12
|
Gómez-Aix C, Pascual L, Cañizares J, Sánchez-Pina MA, Aranda MA. Transcriptomic profiling of Melon necrotic spot virus-infected melon plants revealed virus strain and plant cultivar-specific alterations. BMC Genomics 2016; 17:429. [PMID: 27267368 PMCID: PMC4897865 DOI: 10.1186/s12864-016-2772-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 05/25/2016] [Indexed: 12/03/2022] Open
Abstract
Background Viruses are among the most destructive and difficult to control plant pathogens. Melon (Cucumis melo L.) has become the model species for the agriculturally important Cucurbitaceae family. Approaches that take advantage of recently developed genomic tools in melon have been extremely useful for understanding viral pathogenesis and can contribute to the identification of target genes for breeding new resistant cultivars. In this work, we have used a recently described melon microarray for transcriptome profiling of two melon cultivars infected with two strains of Melon necrotic spot virus (MNSV) that only differ on their 3′-untranslated regions. Results Melon plant tissues from the cultivars Tendral or Planters Jumbo were locally infected with either MNSV-Mα5 or MNSV-Mα5/3’264 and analysed in a time-course experiment. Principal component and hierarchical clustering analyses identified treatment (healthy vs. infected) and sampling date (3 vs. 5 dpi) as the primary and secondary variables, respectively. Out of 7566 and 7074 genes deregulated by MNSV-Mα5 and MNSV-Mα5/3’264, 1851 and 1356, respectively, were strain-specific. Likewise, MNSV-Mα5/3’264 specifically deregulated 2925 and 1618 genes in Tendral and Planters Jumbo, respectively. The GO categories that were significantly affected were clearly different for the different virus/host combinations. Grouping genes according to their patterns of expression allowed for the identification of two groups that were specifically deregulated by MNSV-Mα5/3’264 with respect to MNSV-Mα5 in Tendral, and one group that was antagonistically regulated in Planters Jumbo vs. Tendral after MNSV-Mα5/3’264 infection. Genes in these three groups belonged to diverse functional classes, and no obvious regulatory commonalities were identified. When data on MNSV-Mα5/Tendral infections were compared to equivalent data on cucumber mosaic virus or watermelon mosaic virus infections, cytokinin-O-glucosyltransferase2 was identified as the only gene that was deregulated by all three viruses, with infection dynamics correlating with the amplitude of transcriptome remodeling. Conclusions Strain-specific changes, as well as cultivar-specific changes, were identified by profiling the transcriptomes of plants from two melon cultivars infected with two MNSV strains. No obvious regulatory features shared among deregulated genes have been identified, pointing toward regulation through differential functional pathways. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2772-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cristina Gómez-Aix
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS) - CSIC, apdo. correos 164, 30100, Espinardo, Murcia, Spain
| | - Laura Pascual
- Centre for Research in Agricultural Genomics CRAG, CSIC-IRTA-UAB-UB, Campus 10 UAB Bellaterra, 08193, Barcelona, Spain
| | - Joaquín Cañizares
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV) - UPV, Camino de Vera s/n, 46022, Valencia, Spain
| | - María Amelia Sánchez-Pina
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS) - CSIC, apdo. correos 164, 30100, Espinardo, Murcia, Spain
| | - Miguel A Aranda
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS) - CSIC, apdo. correos 164, 30100, Espinardo, Murcia, Spain.
| |
Collapse
|
13
|
Kushwaha N, Singh AK, Basu S, Chakraborty S. Differential response of diverse solanaceous hosts to tomato leaf curl New Delhi virus infection indicates coordinated action of NBS-LRR and RNAi-mediated host defense. Arch Virol 2015; 160:1499-509. [PMID: 25894479 DOI: 10.1007/s00705-015-2399-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 03/13/2015] [Indexed: 10/23/2022]
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV) is a bipartite begomovirus (family Geminiviridae) that infects a wide range of plants. ToLCNDV has emerged as an important pathogen and a serious threat to tomato production in India. A comparative and molecular analysis of ToLCNDV pathogenesis was performed on diverse solanaceous hosts (Capsicum annuum, Nicotiana benthamiana, N. tabacum, and Solanum lycopersicum). N. benthamiana was found to be the most susceptible host, whereas C. annuum showed resistance against an isolate of ToLCNDV collected in New Delhi from tomato (GenBank accession no. U15015 and U15017). S. lycopersicum and N. tabacum developed conspicuous symptoms and allowed virus to accumulate to significantly high titers. The viral DNA level was concurrent with symptom severity. ToLCNDV-specific siRNA levels were directly proportional to the amount of viral DNA. To investigate the basis for the differences in response of these hosts to ToLCNDV, a comparative expression analysis of selected defense-related genes was carried out. The results indicated differences in expression levels of genes involved in the posttranscriptional gene silencing machinery (RDR6, AGO1 and SGS3) as well as basal host defense responses (nucleotide-binding site and leucine-rich repeat [NBS-LRR] proteins and lipid transfer protein [LTP]). Among these, expression of NBS-LRR genes was found to be significantly higher in C. annuum following ToLCNDV infection. Our analyses suggest that the expression of host defense responses determines the level of ToLCNDV accumulation and degree of symptom development.
Collapse
Affiliation(s)
- Nirbhay Kushwaha
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India
| | | | | | | |
Collapse
|
14
|
Viral factors involved in plant pathogenesis. Curr Opin Virol 2015; 11:21-30. [DOI: 10.1016/j.coviro.2015.01.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/06/2015] [Indexed: 12/31/2022]
|
15
|
DeBlasio SL, Johnson R, Mahoney J, Karasev A, Gray SM, MacCoss MJ, Cilia M. Insights into the polerovirus-plant interactome revealed by coimmunoprecipitation and mass spectrometry. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:467-81. [PMID: 25496593 DOI: 10.1094/mpmi-11-14-0363-r] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Identification of host proteins interacting with the aphidborne Potato leafroll virus (PLRV) from the genus Polerovirus, family Luteoviridae, is a critical step toward understanding how PLRV and related viruses infect plants. However, the tight spatial distribution of PLRV to phloem tissues poses challenges. A polyclonal antibody raised against purified PLRV virions was used to coimmunoprecipitate virus-host protein complexes from Nicotiana benthamiana tissue inoculated with an infectious PLRV cDNA clone using Agrobacterium tumefaciens. A. tumefaciens-mediated delivery of PLRV enabled infection and production of assembled, insect-transmissible virus in most leaf cells, overcoming the dynamic range constraint posed by a systemically infected host. Isolated protein complexes were characterized using high-resolution mass spectrometry and consisted of host proteins interacting directly or indirectly with virions, as well as the nonincorporated readthrough protein (RTP) and three phosphorylated positional isomers of the RTP. A bioinformatics analysis using ClueGO and STRING showed that plant proteins in the PLRV protein interaction network regulate key biochemical processes, including carbon fixation, amino acid biosynthesis, ion transport, protein folding, and trafficking.
Collapse
Affiliation(s)
- Stacy L DeBlasio
- 1 Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Potyvirus is the largest genus of plant viruses causing significant losses in a wide range of crops. Potyviruses are aphid transmitted in a nonpersistent manner and some of them are also seed transmitted. As important pathogens, potyviruses are much more studied than other plant viruses belonging to other genera and their study covers many aspects of plant virology, such as functional characterization of viral proteins, molecular interaction with hosts and vectors, structure, taxonomy, evolution, epidemiology, and diagnosis. Biotechnological applications of potyviruses are also being explored. During this last decade, substantial advances have been made in the understanding of the molecular biology of these viruses and the functions of their various proteins. After a general presentation on the family Potyviridae and the potyviral proteins, we present an update of the knowledge on potyvirus multiplication, movement, and transmission and on potyvirus/plant compatible interactions including pathogenicity and symptom determinants. We end the review providing information on biotechnological applications of potyviruses.
Collapse
|
17
|
Feng J, Liu S, Wang M, Lang Q, Jin C. Identification of microRNAs and their targets in tomato infected with Cucumber mosaic virus based on deep sequencing. PLANTA 2014; 240:1335-52. [PMID: 25204630 DOI: 10.1007/s00425-014-2158-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 08/14/2014] [Indexed: 05/22/2023]
Abstract
MicroRNAs (miRNAs) play important regulatory roles in plant development and stress responses. Tomato is an economically important vegetable crop in the world with publicly available genomic information database, but only a limited number of tomato miRNAs have been identified. In this study, two independent small RNA libraries from mock and Cucumber mosaic virus (CMV)-infected tomatoes were constructed, respectively, and sequenced with a high-throughput Illumina Solexa system. Based on sequence analysis and hairpin structure prediction, a total of 50 plant miRNAs and 273 potentially candidate miRNAs (PC-miRNAs) were firstly identified in tomato, with 12 plant miRNAs and 82 PC-miRNAs supported by both the 3p and 5p strands. Comparative analysis revealed that 79 miRNAs (including 15 new tomato miRNAs) and 40 PC-miRNAs were differentially expressed between the two libraries, and the expression patterns of some new tomato miRNAs and PC-miRNAs were further validated by qRT-PCR. Moreover, potential targets for some of the known and new tomato miRNAs were identified by the recently developed degradome sequencing approach, and target annotation indicated that they were involved in multiple biological processes, including transcriptional regulation and virus resistance. Gene ontology analysis of these target transcripts demonstrated that defense response- and photosynthesis-related genes were most affected in CMV-Fny-infected tomatoes. Because tomato is not only an important crop but also is a genetic model for basic biology research, our study contributes to the understanding of miRNAs in response to virus infection.
Collapse
Affiliation(s)
- Junli Feng
- Institute of Aquatic Products Processing, College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, 310035, China,
| | | | | | | | | |
Collapse
|
18
|
Allie F, Pierce EJ, Okoniewski MJ, Rey C. Transcriptional analysis of South African cassava mosaic virus-infected susceptible and tolerant landraces of cassava highlights differences in resistance, basal defense and cell wall associated genes during infection. BMC Genomics 2014; 15:1006. [PMID: 25412561 PMCID: PMC4253015 DOI: 10.1186/1471-2164-15-1006] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 10/23/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cassava mosaic disease is caused by several distinct geminivirus species, including South African cassava mosaic virus-[South Africa:99] (SACMV). To date, there is limited gene regulation information on viral stress responses in cassava, and global transcriptome profiling in SACMV-infected cassava represents an important step towards understanding natural host responses to plant geminiviruses. RESULTS A RNA-seq time course (12, 32 and 67 dpi) study, monitoring gene expression in SACMV-challenged susceptible (T200) and tolerant (TME3) cassava landraces, was performed using the Applied Biosystems (ABI) SOLiD next-generation sequencing platform. The multiplexed paired end sequencing run produced a total of 523 MB and 693 MB of paired-end reads for SACMV-infected susceptible and tolerant cDNA libraries, respectively. Of these, approximately 50.7% of the T200 reads and 55.06% of TME3 reads mapped to the cassava reference genome available in phytozome. Using a log2 fold cut-off (p<0.05), comparative analysis between the six normalized cDNA libraries showed that 4181 and 1008 transcripts in total were differentially expressed in T200 and TME3, respectively, across 12, 32 and 67 days post infection, compared to mock-inoculated. The number of responsive transcripts increased dramatically from 12 to 32 dpi in both cultivars, but in contrast, in T200 the levels did not change significantly at 67 dpi, while in TME3 they declined. GOslim functional groups illustrated that differentially expressed genes in T200 and TME3 were overrepresented in the cellular component category for stress-related genes, plasma membrane and nucleus. Alterations in the expression of other interesting genes such as transcription factors, resistance (R) genes, and histone/DNA methylation-associated genes, were observed. KEGG pathway analysis uncovered important altered metabolic pathways, including phenylpropanoid biosynthesis, sucrose and starch metabolism, and plant hormone signalling. CONCLUSIONS Molecular mechanisms for TME3 tolerance are proposed, and differences in patterns and levels of transcriptome profiling between T200 and TME3 with susceptible and tolerant phenotypes, respectively, support the hypothesis that viruses rearrange their molecular interactions in adapting to hosts with different genetic backgrounds.
Collapse
Affiliation(s)
- Farhahna Allie
- />School of Molecular and Cell Biology, University of the Witwatersrand, 1 Jan Smuts Ave, Braamfontein, Johannesburg, 2000 South Africa
| | - Erica J Pierce
- />School of Molecular and Cell Biology, University of the Witwatersrand, 1 Jan Smuts Ave, Braamfontein, Johannesburg, 2000 South Africa
| | - Michal J Okoniewski
- />Functional Genomics Center, Zurich, UNI ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Chrissie Rey
- />School of Molecular and Cell Biology, University of the Witwatersrand, 1 Jan Smuts Ave, Braamfontein, Johannesburg, 2000 South Africa
| |
Collapse
|
19
|
Lacroix C, Seabloom EW, Borer ET. Environmental nutrient supply alters prevalence and weakens competitive interactions among coinfecting viruses. THE NEW PHYTOLOGIST 2014; 204:424-433. [PMID: 24975238 DOI: 10.1111/nph.12909] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/25/2014] [Indexed: 06/03/2023]
Abstract
The rates and ratios of environmental nutrient supplies can determine plant community composition. However, the effect of nutrient supplies on within-host microbial interactions is poorly understood. Resource competition is a promising theory for understanding microbial interactions, because microparasites require nitrogen (N) and phosphorus (P) for synthesis of macromolecules such as nucleic acids and proteins. To better understand the effects of nutrient supplies to hosts on pathogen interactions, we singly inoculated and coinoculated Avena sativa with two virus species, barley yellow dwarf virus-PAV (BYDV-PAV) and cereal yellow dwarf virus-RPV (CYDV-RPV). Host plants were grown across a factorial combination of N and P supply rates that created a gradient of N : P supply ratios, one being replicated at low and high nutrient supply. Nutrient supply affected prevalence and the interaction strength among viruses. P addition lowered CYDV-RPV prevalence. The two viruses had a distinct competitive hierarchy: the coinoculation of BYDV-PAV lowered CYDV-RPV infection rate, but the reverse was not true. This antagonistic interaction occurred at low nutrient supply rates and disappeared at high N supply rate. Given the global scale of human alterations of N and P cycles, these results suggest that elevated nutrient supply will increase risks of virus coinfection with likely effects on virus epidemiology, virulence and evolution.
Collapse
Affiliation(s)
- Christelle Lacroix
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| | | | | |
Collapse
|
20
|
Manacorda CA, Mansilla C, Debat HJ, Zavallo D, Sánchez F, Ponz F, Asurmendi S. Salicylic acid determines differential senescence produced by two Turnip mosaic virus strains involving reactive oxygen species and early transcriptomic changes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1486-1498. [PMID: 23945002 DOI: 10.1094/mpmi-07-13-0190-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Losses produced by virus diseases depend mostly on symptom severity. Turnip mosaic virus (TuMV) is one of the most damaging and widespread potyvirus infecting members of the family Brassicaceae, including Arabidopsis thaliana. We used JPN1 and UK1 TuMV strains to characterize viral infections regarding symptom development, senescence progression, antioxidant response, reactive oxygen species (ROS) accumulation, and transcriptional profiling. Both isolates, despite accumulating similar viral titers, induced different symptomatology and strong differences in oxidative status. Early differences in several senescence-associated genes linked to the ORE1 and ORS1 regulatory networks as well as persistent divergence in key ROS production and scavenging systems of the plant were detected. However, at a later stage, both strains induced nutrient competition, indicating that senescence rates are influenced by different mechanisms upon viral infections. Analyses of ORE1 and ORS1 levels in infected Brassica juncea plants showed a similar pattern, suggesting a conserved differential response to both strains in Brassicaceae spp. Transcriptional analysis of the ORE1 and ORS1 regulons showed similarities between salicylic acid (SA) response and the early induction triggered by UK1, the most severe strain. By means of SA-defective NahG transgenic plants, we found that differential senescence progression and ROS accumulation between strains rely on an intact SA pathway.
Collapse
|
21
|
Pierce EJ, Rey MEC. Assessing Global Transcriptome Changes in Response to South African Cassava Mosaic Virus [ZA-99] Infection in Susceptible Arabidopsis thaliana. PLoS One 2013; 8:e67534. [PMID: 23826319 PMCID: PMC3694866 DOI: 10.1371/journal.pone.0067534] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 05/20/2013] [Indexed: 11/19/2022] Open
Abstract
In susceptible plant hosts, co-evolution has favoured viral strategies to evade host defenses and utilize resources to their own benefit. The degree of manipulation of host gene expression is dependent on host-virus specificity and certain abiotic factors. In order to gain insight into global transcriptome changes for a geminivirus pathosystem, South African cassava mosaic virus [ZA:99] and Arabidopsis thaliana, 4×44K Agilent microarrays were adopted. After normalization, a log2 fold change filtering of data (p<0.05) identified 1,743 differentially expressed genes in apical leaf tissue. A significant increase in differential gene expression over time correlated with an increase in SACMV accumulation, as virus copies were 5-fold higher at 24 dpi and 6-fold higher at 36 dpi than at 14 dpi. Many altered transcripts were primarily involved in stress and defense responses, phytohormone signalling pathways, cellular transport, cell-cycle regulation, transcription, oxidation-reduction, and other metabolic processes. Only forty-one genes (2.3%) were shown to be continuously expressed across the infection period, indicating that the majority of genes were transient and unique to a particular time point during infection. A significant number of pathogen-responsive genes were suppressed during the late stages of pathogenesis, while during active systemic infection (14 to 24 dpi), there was an increase in up-regulated genes in several GO functional categories. An adaptive response was initiated to divert energy from growth-related processes to defense, leading to disruption of normal biological host processes. Similarities in cell-cycle regulation correlated between SACMV and Cabbage leaf curl virus (CaLCuV), but differences were also evident. Differences in gene expression between the two geminiviruses clearly demonstrated that, while some global transcriptome responses are generally common in plant virus infections, temporal host-specific interactions are required for successful geminivirus infection. To our knowledge this is the first geminivirus microarray study identifying global differentially expressed transcripts at 3 time points.
Collapse
Affiliation(s)
- Erica J. Pierce
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - M. E. Chrissie Rey
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
- * E-mail:
| |
Collapse
|
22
|
WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis. Proc Natl Acad Sci U S A 2013; 110:E1963-71. [PMID: 23650359 DOI: 10.1073/pnas.1221347110] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
WRKY transcription factors are key players in the plant immune response, but less is known about their involvement in antiviral defense than about their roles in defense against bacterial or fungi pathogens. Here, we report that Arabidopsis thaliana WRKY DNA-binding protein 8 (WRKY8) has a role in mediating the long-distance movement of crucifer-infecting tobacco mosaic virus (TMV-cg). The expression of WRKY8 was inhibited by TMV-cg infection, and mutation of WRKY8 accelerated the accumulation of TMV-cg in systemically infected leaves. Quantitative RT-PCR analysis showed that the expression of ABA insensitive 4 (ABI4) was reduced and the expression of 1-aminocyclopropane-1-carboxylic acid synthase 6 (ACS6) and ethylene response factor 104 (ERF104) was enhanced in the systemically infected leaves of wrky8. Immunoprecipitation assays demonstrated that WRKY8 could bind selectively to putative W-boxes of the ABI4, ACS6, and ERF104 promoters. Furthermore, TMV-cg infection enhanced WRKY8 binding to the ABI4 promoter but reduced the binding of WRKY8 to the ACS6 and ERF104 promoters, indicating that regulation of ABI4, ACS6, and ERF104 by WRKY8 is at least partially dependent on TMV-cg. Exogenous applications of abscisic acid (ABA) reduced the systemic accumulation of TMV-cg. Mutations in ABA deficient 1, ABA deficient 2, ABA deficient 3, or abi4 accelerated systemic TMV-cg accumulation. In contrast, exogenous application of aminocyclopropane-1-carboxylic acid enhanced the systemic accumulation of TMV-cg, but mutations in acs6, erf104, or an octuple acs mutant inhibited systemic TMV-cg accumulation. Our results demonstrate that WRKY8 is involved in the defense response against TMV-cg through the direct regulation of the expression of ABI4, ACS6, and ERF104 and may mediate the crosstalk between ABA and ethylene signaling during the TMV-cg-Arabidopsis interaction.
Collapse
|
23
|
Dobnik D, Baebler Š, Kogovšek P, Pompe-Novak M, Štebih D, Panter G, Janež N, Morisset D, Žel J, Gruden K. β-1,3-glucanase class III promotes spread of PVY NTN and improves in planta protein production. PLANT BIOTECHNOLOGY REPORTS 2013; 7:547-555. [PMID: 24273610 PMCID: PMC3824212 DOI: 10.1007/s11816-013-0300-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/11/2013] [Indexed: 05/18/2023]
Abstract
Glucanases are enzymes regulating the size exclusion limit and permeability of plasmodesmata and play a role in biotic stress. In plant genomes, they are encoded as relatively large gene families divided into four classes. Most studies of plant virus interactions have focused on glucanases from classes I and II. In our study, we have evaluated the role of the β-1,3-glucanase class III (Glu-III) gene in the potato-potato virus YNTN (PVYNTN) interaction and implemented the findings to plant biotechnology application. Potato cultivars Désirée and Santé, which are tolerant and extremely resistant to PVYNTN, respectively, were stably transformed with Agrobacterium tumefaciens harbouring constructs for Glu-III overexpression. Localization of Glu-III protein in patches within the cell wall was determined by tagging the Glu-III protein with green fluorescent protein. Transgenic and non-transgenic plants were challenged with PVYNTN and its multiplication and spreading was followed. Differences in viral spread were observed between transgenic lines overexpressing Glu-III and non-transgenic lines, with stronger and faster viral spread in transgenic Désirée, and some multiplication in transgenic Santé. In addition, the ability of Glu-III to improve in planta protein production after agroinfiltration was tested. The results have shown that Glu-III overexpression enables faster spreading of vectors between cells and better protein production, which could be beneficial in improving in planta protein production system using viral vectors.
Collapse
Affiliation(s)
- David Dobnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Špela Baebler
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Polona Kogovšek
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Maruša Pompe-Novak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Dejan Štebih
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Gabriela Panter
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Nikolaja Janež
- Centre of Excellence for Biosensors, Instrumentation and Process Control, Velika pot 22, 5250 Solkan, Slovenia
| | - Dany Morisset
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
- Centre of Excellence for Biosensors, Instrumentation and Process Control, Velika pot 22, 5250 Solkan, Slovenia
| | - Jana Žel
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|
24
|
Arabidopsis Pumilio protein APUM5 suppresses Cucumber mosaic virus infection via direct binding of viral RNAs. Proc Natl Acad Sci U S A 2012; 110:779-84. [PMID: 23269841 DOI: 10.1073/pnas.1214287110] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Posttranscriptional/translational regulation of gene expression is mediated by diverse RNA binding proteins and plays an important role in development and defense processes. Among the RNA-binding proteins, the mammalian Pumilio RNA-binding family (Puf) acts as posttranscriptional and translational repressors. An Arabidopsis Puf mutant, apum5-D, was isolated during a T-DNA insertional mutant screen for mutants with reduced susceptibility to Cucumber mosaic virus (CMV) infection. Interestingly, CMV RNA contained putative Pumilio-homology domain binding motifs in its 3' untranslated region (UTR) and internal places in its genome. APUM5 directly bound to the 3' UTR motifs and some internal binding motifs in CMV RNAs in vitro and in vivo. We showed that APUM5 acts as a translational repressor that regulates the 3' UTR of CMV and affects CMV replication. This study uncovered a unique defense system that Arabidopsis APUM5 specifically regulates CMV infection by the direct binding of CMV RNAs.
Collapse
|
25
|
Rodríguez M, Muñoz N, Lenardon S, Lascano R. The chlorotic symptom induced by Sunflower chlorotic mottle virus is associated with changes in redox-related gene expression and metabolites. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 196:107-16. [PMID: 23017905 DOI: 10.1016/j.plantsci.2012.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 08/10/2012] [Accepted: 08/11/2012] [Indexed: 05/11/2023]
Abstract
Systemic infections are commonly associated with changes in host metabolism and gene expression. Sunflower chlorotic mottle virus (SuCMoV) causes systemic infection with sugar increase, photoinhibition and increase in antioxidant enzyme activities before chlorotic symptom appearance in sunflower leaves. The aim of this study was to determine if chlorotic symptom development induced by SuCMoV infection is accompanied by changes in different redox-related metabolites and transcripts. Symptom development was analyzed in the second pair of leaves (systemic infection) at different post-inoculation times: before symptom appearance (BS, 4 dpi), and at an early (ES, 7 dpi) and later stage (LS, 12 dpi) of symptom expression. The results showed that the virus reaches the second pair of leaves at 4 dpi. A positive correlation between chlorotic symptom and number of viral copies was also observed. Changes in hydrogen peroxide, glutathione, pyridine nucleotides and ATP content were observed since symptom appearance (ES, 7 dpi). The expression of some of the genes analyzed was also strongly affected by SuCMoV infection. Specifically, down-regulation of both chloroplast-encoded genes and chloroplast-targeted genes: psbA, rbcS, Cu/Zn sod, Fe sod, phosphoglycolate phosphatase, psbO, psaH and fnr was present, whereas the expression of cytoplasmic-targeted genes, apx1, and Cu/Zn sod was up-regulated. Mitochondrial Mn sod decreased at BS stage and aox decreased only at ES stage. Peroxisomal catalase (cat-2) was lower at BS and LS stages. All these results suggest that SuCMoV infection induces progressive changes in determinants of redox homeostasis associated with chlorotic symptom development.
Collapse
Affiliation(s)
- Marianela Rodríguez
- Instituto de Fisiología y Recursos Genéticos Vegetales-IFRGV, Centro de Investigaciones Agropecuarias-CIAP, Instituto Nacional de Tecnología Agropecuaria-INTA, Camino a 60 Cuadras Km 5 ½, X5020 ICA, Córdoba, Argentina.
| | | | | | | |
Collapse
|
26
|
Conti G, Rodriguez MC, Manacorda CA, Asurmendi S. Transgenic expression of Tobacco mosaic virus capsid and movement proteins modulate plant basal defense and biotic stress responses in Nicotiana tabacum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1370-84. [PMID: 22712510 DOI: 10.1094/mpmi-03-12-0075-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Plant viruses cause metabolic and physiological changes associated with symptomatic disease phenotypes. Symptoms involve direct and indirect effects, which result in disruption of host physiology. We used transgenic tobacco expressing a variant of Tobacco mosaic virus (TMV) coat protein (CP(T42W)) or movement protein (MP), and a hybrid line (MP×CP(T42W)) that coexpresses both proteins, to study the plant response to individual viral proteins. Findings employing microarray analysis of MP×CP(T42W) plants and silenced mp×cp(T42W)* controls revealed that altered transcripts were mostly downregulated, suggesting a persistent shut-off due to MP×CP(T42W) expression. Next, we showed that MP triggered reactive oxygen species (ROS) accumulation, reduction of total ascorbate, and expression of ROS scavenging genes. These effects were enhanced when both proteins were coexpressed. MP and MP×CP(T42W) plants showed increased levels of salicylic acid (SA) and SA-responsive gene expression. Furthermore, these effects were partially reproduced in Nicotiana benthamiana when GMP1 transcript was silenced. CP(T42W) seems to be playing a negative role in the defense response by reducing the expression of PR-1 and RDR-1. MP and MP×CP(T42W) transgenic expression promoted a recovery-like phenotype in TMV RNA infections and enhanced susceptibility to Pseudomonas syringae and Sclerotinia sclerotiorum. The individual effects of viral proteins may reflect the ability of a virus to balance its own virulence.
Collapse
Affiliation(s)
- G Conti
- Instituto de Biotecnologia, CICVyA-INTA, Hurlingham, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
27
|
Rodrigo G, Carrera J, Ruiz-Ferrer V, del Toro FJ, Llave C, Voinnet O, Elena SF. A meta-analysis reveals the commonalities and differences in Arabidopsis thaliana response to different viral pathogens. PLoS One 2012; 7:e40526. [PMID: 22808182 PMCID: PMC3395709 DOI: 10.1371/journal.pone.0040526] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 06/12/2012] [Indexed: 11/19/2022] Open
Abstract
Understanding the mechanisms by which plants trigger host defenses in response to viruses has been a challenging problem owing to the multiplicity of factors and complexity of interactions involved. The advent of genomic techniques, however, has opened the possibility to grasp a global picture of the interaction. Here, we used Arabidopsis thaliana to identify and compare genes that are differentially regulated upon infection with seven distinct (+)ssRNA and one ssDNA plant viruses. In the first approach, we established lists of genes differentially affected by each virus and compared their involvement in biological functions and metabolic processes. We found that phylogenetically related viruses significantly alter the expression of similar genes and that viruses naturally infecting Brassicaceae display a greater overlap in the plant response. In the second approach, virus-regulated genes were contextualized using models of transcriptional and protein-protein interaction networks of A. thaliana. Our results confirm that host cells undergo significant reprogramming of their transcriptome during infection, which is possibly a central requirement for the mounting of host defenses. We uncovered a general mode of action in which perturbations preferentially affect genes that are highly connected, central and organized in modules.
Collapse
Affiliation(s)
- Guillermo Rodrigo
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas - Universidad Politécnica de Valencia, València, Spain
| | - Javier Carrera
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas - Universidad Politécnica de Valencia, València, Spain
- Instituto ITACA, Universidad Politécnica de Valencia, València, Spain
| | | | | | - César Llave
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Olivier Voinnet
- Institut de Biologie Moléculaire des Plantes, CNRS, Strasbourg, France
| | - Santiago F. Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas - Universidad Politécnica de Valencia, València, Spain
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
28
|
Hillung J, Cuevas JM, Elena SF. Transcript Profiling of Different Arabidopsis thaliana Ecotypes in Response to Tobacco etch potyvirus Infection. Front Microbiol 2012; 3:229. [PMID: 22737149 PMCID: PMC3382383 DOI: 10.3389/fmicb.2012.00229] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Accepted: 06/04/2012] [Indexed: 12/22/2022] Open
Abstract
The use of high-throughput transcript profiling techniques has opened the possibility of identifying, in a single experiment, multiple host mRNAs whose levels of accumulation are altered in response to virus infection. Several studies have used this approach to analyze the response of Arabidopsis thaliana to the infection by different RNA and DNA viruses. However, the possible differences in response of genetically heterogeneous ecotypes of the plant to the same virus have never been addressed before. Here we have used a strain of Tobacco etch potyvirus (TEV) experimentally adapted to A. thaliana ecotype Ler-0 and a set of seven plant ecotypes to tackle this question. Each ecotype was inoculated with the same amount of the virus and the outcome of infection characterized phenotypically (i.e., virus infectivity, accumulation, and symptoms development). Using commercial microarrays containing probes for more than 43,000 A. thaliana transcripts, we explored the effect of viral infection on the plant transcriptome. In general, we found that ecotypes differ in the way they perceive and respond to the virus. Some ecotypes developed strong symptoms and accumulated large amounts of viral genomes, while others only developed mild symptoms and accumulated less virus. At the transcriptomic level, ecotypes could be classified into two groups according to the particular genes whose expression was altered upon infection. Moreover, a functional enrichment analyses showed that the two groups differed in the nature of the altered biological processes. For the group constituted by ecotypes developing milder symptoms and allowing for lower virus accumulation, genes involved in abiotic stresses and in the construction of new tissues tend to be up-regulated. For those ecotypes in which infection was more severe and productive, defense genes tend to be up-regulated, deviating the necessary resources from building new tissues.
Collapse
Affiliation(s)
- Julia Hillung
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de ValenciaValencia, Spain
| | - José M. Cuevas
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de ValenciaValencia, Spain
| | - Santiago F. Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de ValenciaValencia, Spain
- The Santa Fe InstituteSanta Fe, NM, USA
| |
Collapse
|
29
|
Cho SY, Cho WK, Choi HS, Kim KH. Cis-acting element (SL1) of Potato virus X controls viral movement by interacting with the NbMPB2Cb and viral proteins. Virology 2012; 427:166-76. [PMID: 22405626 DOI: 10.1016/j.virol.2012.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 01/09/2012] [Accepted: 02/04/2012] [Indexed: 01/21/2023]
Abstract
A number of candidate tobacco proteins that bind to cis-acting elements (SL1 RNAs) of Potato virus X (PVX) have been identified in previous studies. We further characterized TMV-MP30 binding protein 2C (MPB2C) homologous protein. We isolated NbMPB2Cb from Nicotiana benthamiana and confirmed the interaction of NbMPB2Cb with SL1 RNAs in vitro. The mRNA level of NbMPB2Cb was increased upon infection by PVX and Tobacco mosaic virus. The movement of PVX was reduced by overexpression of NbMPB2Cb and increased by silenced of NbMPB2Cb. In contrast, PVX RNA accumulation was not significantly altered in protoplasts. Protein-protein interaction assays showed that NbMPB2Cb interacts with PVX movement-associated proteins. PVX infection altered the subcellular localization of NbMPB2Cb from microtubules to endoplasmic reticulum. These data suggest that the NbMPB2Cb negatively affects PVX movement by interacting with SL1 RNAs and movement-associated proteins of PVX and by re-localizing in response to PVX infection.
Collapse
Affiliation(s)
- Sang-Yun Cho
- Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | | | | | | |
Collapse
|
30
|
Jia MA, Li Y, Lei L, Di D, Miao H, Fan Z. Alteration of gene expression profile in maize infected with a double-stranded RNA fijivirus associated with symptom development. MOLECULAR PLANT PATHOLOGY 2012; 13:251-62. [PMID: 21955602 PMCID: PMC6638758 DOI: 10.1111/j.1364-3703.2011.00743.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Maize rough dwarf disease caused by Rice black-streaked dwarf virus (RBSDV) is a major viral disease in China. It has been suggested that the viral infection of plants might cause distinct disease symptoms through the inhibition or activation of host gene transcription. We scanned the gene expression profile of RBSDV-infected maize through oligomer-based microarrays to reveal possible expression changes associated with symptom development. Our results demonstrate that various resistance-related maize genes and cell wall- and development-related genes, such as those for cellulose synthesis, are among the genes whose expression is dramatically altered. These results could aid in research into new strategies to protect cereal crops against viruses, and reveal the molecular mechanisms of development of specific symptoms in rough dwarf-related diseases.
Collapse
Affiliation(s)
- Meng-Ao Jia
- State Key Laboratory of Agrobiotechnology and Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | |
Collapse
|
31
|
Gonzalez-Ibeas D, Cañizares J, Aranda MA. Microarray analysis shows that recessive resistance to Watermelon mosaic virus in melon is associated with the induction of defense response genes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:107-18. [PMID: 21970693 DOI: 10.1094/mpmi-07-11-0193] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Resistance to Watermelon mosaic virus (WMV) in melon (Cucumis melo L.) accession TGR-1551 is characterized by a significant reduction in virus titer, and is inherited as a recessive, loss-of-susceptibility allele. We measured virus RNA accumulation in TGR-1551 plants and a susceptible control ('Tendral') by real-time quantitative polymerase chain reaction, and also profiled the expression of 17,443 unigenes represented on a melon microarray over a 15-day time course. The virus accumulated to higher levels in cotyledons of the resistant variety up to 9 days postinoculation (dpi) but, thereafter, levels increased in the susceptible variety while those in the resistant variety declined. Microarray experiments looking at the early response to infection (1 and 3 dpi), as well as responses after 7 and 15 dpi, revealed more profound transcriptomic changes in resistant plants than susceptible ones. The gene expression profiles revealed deep and extensive transcriptome remodeling in TGR-1551 plants, often involving genes with pathogen response functions. Overall, our data suggested that resistance to WMV in TGR-1551 melon plants is associated with a defense response, which contrasts with the recessive nature of the resistance trait.
Collapse
Affiliation(s)
- Daniel Gonzalez-Ibeas
- Departamento de Biologia del Estres y Patologia Vegetal, Centro de Edafologia y Biologia Aplicada de Segura, Spain
| | | | | |
Collapse
|
32
|
Miozzi L, Catoni M, Fiorilli V, Mullineaux PM, Accotto GP, Lanfranco L. Arbuscular mycorrhizal symbiosis limits foliar transcriptional responses to viral infection and favors long-term virus accumulation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1562-1572. [PMID: 21899386 DOI: 10.1094/mpmi-05-11-0116] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Tomato (Solanum lycopersicum) can establish symbiotic interactions with arbuscular mycorrhizal (AM) fungi, and can be infected by several pathogenic viruses. Here, we investigated the impact of mycorrhization by the fungus Glomus mosseae on the Tomato spotted wilt virus (TSWV) infection of tomato plants by transcriptomic and hormones level analyses. In TSWV-infected mycorrhizal plants, the AM fungus root colonization limited virus-induced changes in gene expression in the aerial parts. The virus-responsive upregulated genes, no longer induced in infected mycorrhizal plants, were mainly involved in defense responses and hormone signaling, while the virus-responsive downregulated genes, no longer repressed in mycorrhizal plants, were involved in primary metabolism. The presence of the AM fungus limits, in a salicylic acid-independent manner, the accumulation of abscissic acid observed in response to viral infection. At the time of the molecular analysis, no differences in virus concentration or symptom severity were detected between mycorrhizal and nonmycorrhizal plants. However, in a longer period, increase in virus titer and delay in the appearance of recovery were observed in mycorrhizal plants, thus indicating that the plant's reaction to TSWV infection is attenuated by mycorrhization.
Collapse
|
33
|
Pallas V, García JA. How do plant viruses induce disease? Interactions and interference with host components. J Gen Virol 2011; 92:2691-2705. [PMID: 21900418 DOI: 10.1099/vir.0.034603-0] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Plant viruses are biotrophic pathogens that need living tissue for their multiplication and thus, in the infection-defence equilibrium, they do not normally cause plant death. In some instances virus infection may have no apparent pathological effect or may even provide a selective advantage to the host, but in many cases it causes the symptomatic phenotypes of disease. These pathological phenotypes are the result of interference and/or competition for a substantial amount of host resources, which can disrupt host physiology to cause disease. This interference/competition affects a number of genes, which seems to be greater the more severe the symptoms that they cause. Induced or repressed genes belong to a broad range of cellular processes, such as hormonal regulation, cell cycle control and endogenous transport of macromolecules, among others. In addition, recent evidence indicates the existence of interplay between plant development and antiviral defence processes, and that interference among the common points of their signalling pathways can trigger pathological manifestations. This review provides an update on the latest advances in understanding how viruses affect substantial cellular processes, and how plant antiviral defences contribute to pathological phenotypes.
Collapse
Affiliation(s)
- Vicente Pallas
- Instituto de Biología Molecular y Celular de las Plantas, CSIC-Universidad Politécnica de Valencia, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Juan Antonio García
- Centro Nacional de Biotecnología-CSIC, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
34
|
Gutha LR, Casassa LF, Harbertson JF, Naidu RA. Modulation of flavonoid biosynthetic pathway genes and anthocyanins due to virus infection in grapevine (Vitis vinifera L.) leaves. BMC PLANT BIOLOGY 2010; 10:187. [PMID: 20731850 PMCID: PMC2956537 DOI: 10.1186/1471-2229-10-187] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 08/23/2010] [Indexed: 05/20/2023]
Abstract
BACKGROUND Symptoms of grapevine leafroll disease (GLRD) in red-fruited wine grape (Vitis vinifera L.) cultivars consist of green veins and red and reddish-purple discoloration of inter-veinal areas of leaves. The reddish-purple color of symptomatic leaves may be due to the accumulation of anthocyanins and could reflect an up-regulation of genes involved in their biosynthesis. RESULTS We examined six putative constitutively expressed genes, Ubiquitin, Actin, GAPDH, EF1-a, SAND and NAD5, for their potential as references for normalization of gene expression in reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR). Using the geNorm program, a combination of two genes (Actin and NAD5) was identified as the stable set of reference genes for normalization of gene expression data obtained from grapevine leaves. By using gene-specific RT-qPCR in combination with a reliable normalization factor, we compared relative expression of the flavonoid biosynthetic pathway genes between leaves infected with Grapevine leafroll-associated virus 3 (GLRaV-3) and exhibiting GLRD symptoms and virus-free green leaves obtained from a red-fruited wine grape cultivar (cv. Merlot). The expression levels of these different genes ranged from two- to fifty-fold increase in virus-infected leaves. Among them, CHS3, F3'5'H, F3H1, LDOX, LAR1 and MybA1 showed greater than 10-fold increase suggesting that they were expressed at significantly higher levels in virus-infected symptomatic leaves. HPLC profiling of anthocyanins extracted from leaves indicated the presence of cyanidin-3-glucoside and malvidin-3-glucoside only in virus-infected symptomatic leaves. The results also showed 24% higher levels of flavonols in virus-infected symptomatic leaves than in virus-free green leaves, with quercetin followed by myricetin being the predominant compounds. Proanthocyanidins, estimated as total tannins by protein precipitation method, were 36% higher in virus-infected symptomatic leaves when compared to virus-free green leaves. CONCLUSIONS The results, the first example to our knowledge, showed that modulation of the flavonoid biosynthetic pathway occurred in GLRaV-3-infected leaves of a red-fruited wine grape cultivar (cv. Merlot) leading to de novo synthesis of two classes of anthocyanins. These anthocyanins have contributed to the expression of reddish-purple color of virus-infected grapevine leaves exhibiting GLRD symptoms.
Collapse
Affiliation(s)
- Linga R Gutha
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350, USA
| | - Luis F Casassa
- School of Food Science, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350, USA
| | - James F Harbertson
- School of Food Science, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350, USA
| | - Rayapati A Naidu
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350, USA
| |
Collapse
|
35
|
Simple construction of chimeric hairpin RNA for virus resistance in plants. J Virol Methods 2010; 166:101-5. [PMID: 20307576 DOI: 10.1016/j.jviromet.2010.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 03/09/2010] [Accepted: 03/11/2010] [Indexed: 11/21/2022]
Abstract
RNA silencing has been adopted to develop virus-resistant plants through expression of virus-derived hairpin RNAs. Due to the high sequence specificity of RNA silencing, this technology has been limited to the targeting of single viruses. Simultaneous targeting of multiple viruses or plant genes can be achieved by using a chimeric cassette. In this study, a simple method was developed to construct chimeric hairpin RNA rapidly and efficiently. This method splices two DNA fragments from viruses or plant genes to be a chimeric sequence using Overlap Extension PCR (OE-PCR); then this chimeric sequence was assembled with an intron sequence to generate an intron-containing hairpin RNA construct in one step mediated by OE-PCR. This method is neither dependent on restriction enzymes nor requires expensive consumables, so a chimeric hairpin RNA can be constructed rapidly and costlessly. Two chimeric hairpin RNA constructs were amplified successfully using this method, with the targeting sequences from both papaya ringspot virus (PRSV) and two plant genes encoding translation initiation factors eIF4E and eIFiso4E. This novel method is a useful strategy to construct chimeric hairpin RNA for RNA silencing in plants.
Collapse
|
36
|
Hanssen IM, Thomma BPHJ. Pepino mosaic virus: a successful pathogen that rapidly evolved from emerging to endemic in tomato crops. MOLECULAR PLANT PATHOLOGY 2010; 11:179-89. [PMID: 20447268 PMCID: PMC6640333 DOI: 10.1111/j.1364-3703.2009.00600.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
TAXONOMY Pepino mosaic virus (PepMV) belongs to the Potexvirus genus of the Flexiviridae family. PHYSICAL PROPERTIES PepMV virions are nonenveloped flexuous rods that contain a monopartite, positive-sense, single-stranded RNA genome of 6.4 kb with a 3' poly-A tail. The genome contains five major open reading frames (ORFs) encoding a 164-kDa RNA-dependent RNA polymerase (RdRp), three triple gene block proteins of 26, 14 and 9 kDa, and a 25-kDa coat protein. GENOME DIVERSITY Four PepMV genotypes, with an intergenotype RNA sequence identity ranging from 78% to 95%, can be distinguished: the original Peruvian genotype (LP); the European (tomato) genotype (EU); the American genotype US1; and the Chilean genotype CH2. TRANSMISSION PepMV is very efficiently transmitted mechanically, and a low seed transmission rate has been demonstrated. In addition, bumblebees have been associated with viral transmission. HOST RANGE Similar to other Potexviruses, PepMV has a rather narrow host range that is thought to be largely restricted to species of the Solanaceae family. After originally being isolated from pepino (Solanum muricatum), PepMV has been identified in natural infections of the wild tomato species S. chilense, S. chmielewskii, S. parviflorum and S. peruvianum. PepMV is causing significant problems in the cultivation of the glasshouse tomato Solanum lycopersicum, and has been identified in weeds belonging to various plant families in the vicinity of tomato glasshouses. SYMPTOMATOLOGY PepMV symptoms can be very diverse. Fruit marbling is the most typical and economically devastating symptom. In addition, fruit discoloration, open fruit, nettle-heads, leaf blistering or bubbling, leaf chlorosis and yellow angular leaf spots, leaf mosaic and leaf or stem necrosis have been associated with PepMV. The severity of PepMV symptoms is thought to be dependent on environmental conditions, as well as on the properties of the viral isolate. Minor nucleotide sequence differences between isolates from the same genotype have been shown to lead to enhanced aggressiveness and symptomatology. CONTROL Prevention of infection through strict hygiene measures is currently the major strategy for the control of PepMV in tomato production. Cross-protection can be effective, but only under well-defined and well-controlled conditions, and the effectiveness depends strongly on the PepMV genotype.
Collapse
Affiliation(s)
- Inge M Hanssen
- Scientia Terrae Research Institute, Fortsesteenweg 30A, 2860 Sint-Katelijne-Waver, Belgium
| | | |
Collapse
|
37
|
Acosta-Leal R, Bryan BK, Smith JT, Rush CM. Breakdown of host resistance by independent evolutionary lineages of Beet necrotic yellow vein virus involves a parallel c/u mutation in its p25 gene. PHYTOPATHOLOGY 2010; 100:127-33. [PMID: 20055646 DOI: 10.1094/phyto-100-2-0127] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
ABSTRACT Breakdown of sugar beet Rz1-mediated resistance against Beet necrotic yellow vein virus (BNYVV) infection was previously found, by reverse genetics, to be caused by a single mutation in its p25 gene. The possibility of alternative breaking mutations, however, has not been discarded. To explore the natural diversity of BNYVV in the field and its effects on overcoming Rz1, wild-type (WT) and resistance-breaking (RB) p25 genes from diverse production regions of North America were characterized. The relative titer of WT p25 was inversely correlated with disease expression in Rz1 plants from Minnesota and California. In Minnesota, the predominant WT p25 encoded the A(67)C(68) amino acid signature whereas, in California, it encoded A(67)L(68). In both locations, these WT signatures were associated with asymptomatic BNYVV infections of Rz1 cultivars. Further analyses of symptomatic resistant plants revealed that, in Minnesota, WT A(67)C(68) was replaced by V(67)C(68) whereas, in California, WT A(67)L(68) was replaced by V(67)L(68). Therefore, V(67) was apparently critical in overcoming Rz1 in both pathosystems. The greater genetic distances between isolates from different geographic regions rather than between WT and RB from the same location indicate that the underlying C to U transition originated independently in both BNYVV lineages.
Collapse
|
38
|
Poulicard N, Pinel-Galzi A, Hebrard E, Fargette D. Why Rice yellow mottle virus, a rapidly evolving RNA plant virus, is not efficient at breaking rymv1-2 resistance. MOLECULAR PLANT PATHOLOGY 2010; 11:145-54. [PMID: 20078783 PMCID: PMC6640461 DOI: 10.1111/j.1364-3703.2009.00582.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Rice yellow mottle virus (RYMV) reaches a high virus content in rice, is genetically highly variable and evolves rapidly. Nevertheless, only a small proportion of isolates overcome rymv1-2 rice resistance by mutations in the VPg (viral protein genome-linked). The accumulation rates of wild-type (WT) and resistance-breaking (RB) genotypes of the E- and T-pathotypes of RYMV, with average and low virulence, respectively, were assessed. By quantitative reverse transcriptase-polymerase chain reaction, it was shown that: (i) in resistant plants, both WT genotypes reached a level of 10(5)-10(7) viral copies per milligram of fresh leaf; (ii) the accumulation of RB genotypes was variable, but was always much higher than the WT, with an RB/WT accumulation ratio of up to 10(6); (iii) in susceptible plants, the RB genotypes were counter-selected to a similar level. In competition experiments, there was a straightforward exclusion of WT by RB genotypes in resistant hosts. The mutation rate in VPg was more than 1 x 10(-3) mutations per site per year. Overall, a steady supply of highly adaptive RB genotypes was expected in resistant plants. However, the use of the few possible mutational pathways to virulence is tightly regulated by pathotype-specific genetic constraints: codon usage, mutational bias and sign epistasis. In addition, genetic drift may restrict the fixation of RB mutants. Altogether, both genetic and demographic constraints contribute to the low ability of RYMV to break rymv1-2 resistance.
Collapse
Affiliation(s)
- Nils Poulicard
- UMR 186 Résistance des Plantes aux Bioagresseurs (RPB), Institut de Recherche pour le Développement (IRD), BP 64501, 34394 Montpellier Cedex 5, France
| | | | | | | |
Collapse
|
39
|
Huang TS, Wei T, Laliberté JF, Wang A. A host RNA helicase-like protein, AtRH8, interacts with the potyviral genome-linked protein, VPg, associates with the virus accumulation complex, and is essential for infection. PLANT PHYSIOLOGY 2010; 152:255-66. [PMID: 19880609 PMCID: PMC2799361 DOI: 10.1104/pp.109.147983] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 10/27/2009] [Indexed: 05/17/2023]
Abstract
The viral genome-linked protein, VPg, of potyviruses is a multifunctional protein involved in viral genome translation and replication. Previous studies have shown that both eukaryotic translation initiation factor 4E (eIF4E) and eIF4G or their respective isoforms from the eIF4F complex, which modulates the initiation of protein translation, selectively interact with VPg and are required for potyvirus infection. Here, we report the identification of two DEAD-box RNA helicase-like proteins, PpDDXL and AtRH8 from peach (Prunus persica) and Arabidopsis (Arabidopsis thaliana), respectively, both interacting with VPg. We show that AtRH8 is dispensable for plant growth and development but necessary for potyvirus infection. In potyvirus-infected Nicotiana benthamiana leaf tissues, AtRH8 colocalizes with the chloroplast-bound virus accumulation vesicles, suggesting a possible role of AtRH8 in viral genome translation and replication. Deletion analyses of AtRH8 have identified the VPg-binding region. Comparison of this region and the corresponding region of PpDDXL suggests that they are highly conserved and share the same secondary structure. Moreover, overexpression of the VPg-binding region from either AtRH8 or PpDDXL suppresses potyvirus accumulation in infected N. benthamiana leaf tissues. Taken together, these data demonstrate that AtRH8, interacting with VPg, is a host factor required for the potyvirus infection process and that both AtRH8 and PpDDXL may be manipulated for the development of genetic resistance against potyvirus infections.
Collapse
Affiliation(s)
| | | | | | - Aiming Wang
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario N5V 4T3, Canada (T.-S.H., T.W., A.W.); Department of Biology, University of Western Ontario, London, Ontario N6A 5B7, Canada (T.-S.H., T.W., A.W.); and Institut National de la Recherche Scientifique, Institut Armand-Frappier, Laval, Quebec H7V 1B7, Canada (J.-F.L.)
| |
Collapse
|
40
|
Niehl A, Heinlein M. Impact of RNA Virus Infection on Plant Cell Function and Evolution. Ann N Y Acad Sci 2009; 1178:120-8. [DOI: 10.1111/j.1749-6632.2009.04996.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
41
|
Deep-sequencing of plant viral small RNAs reveals effective and widespread targeting of viral genomes. Virology 2009; 392:203-14. [PMID: 19665162 DOI: 10.1016/j.virol.2009.07.005] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 06/29/2009] [Accepted: 07/10/2009] [Indexed: 01/12/2023]
Abstract
Plant virus infection involves the production of viral small RNAs (vsRNAs) with the potential to associate with distinct Argonaute (AGO)-containing silencing complexes and mediate diverse silencing effects on RNA and chromatin. We used multiplexed, high-throughput pyrosequencing to profile populations of vsRNAs from plants infected with viruses from different genera. Sense and antisense vsRNAs of 20 to 24 nucleotides (nts) spread throughout the entire viral genomes in an overlapping configuration; virtually all genomic nucleotide positions were represented in the data set. We present evidence to suggest that every genomic position could be a putative cleavage site for vsRNA formation, although viral genomes contain specific regions that serve as preferential sources of vsRNA production. Hotspots for vsRNAs of 21-, 22-, and 24-nt usually coincide in the same genomic regions, indicating similar target affinities among Dicer-like (DCL) enzymes. In the light of our results, the overall contribution of perfectly base paired double-stranded RNA and imperfectly base paired structures within single-stranded RNA to vsRNA formation is discussed. Our census of vsRNAs extends the current view of the distribution and composition of vsRNAs in virus-infected plants, and contributes to a better understanding of vsRNA biogenesis.
Collapse
|
42
|
Baebler S, Krecic-Stres H, Rotter A, Kogovsek P, Cankar K, Kok EJ, Gruden K, Kovac M, Zel J, Pompe-Novak M, Ravnikar M. PVY(NTN) elicits a diverse gene expression response in different potato genotypes in the first 12 h after inoculation. MOLECULAR PLANT PATHOLOGY 2009; 10:263-75. [PMID: 19236574 PMCID: PMC6640473 DOI: 10.1111/j.1364-3703.2008.00530.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Host gene expression changes in the early response to potato virus Y(NTN) interaction were compared in two differently sensitive potato cultivars: the resistant cultivar Santé and the sensitive cultivar Igor. Hybridization of potato TIGR cDNA microarrays allowed us to monitor the expression of approximately 10,000 genes simultaneously at 0.5 and 12 h post-inoculation (hpi). Microarray data, analysed by statistics and data mining, were complemented by subtraction library construction and sequence analysis to validate the findings. The expression profiles of the two cultivars were similar and faint at 0.5 hpi, but they differed substantially at 12 hpi. Although, at 0.5 hpi, cv. Santé responded by the differential expression of a greater number of genes, at 12 hpi the number was higher in cv. Igor. The majority of genes in this cultivar were down-regulated at 12 hpi, indicating a host gene shut-off. Suites of genes that exhibited altered transcript abundance in response to the virus were identified, and included genes involved in the processes of photosynthesis, perception, signalling and defence responses. The expression of the considerable number of genes associated with photosynthesis was surprisingly up-regulated as early as 0.5 hpi and down-regulated at 12 hpi in both cultivars. The expression of genes involved in perception and signalling was increased in the sensitive cultivar at 12 hpi. By contrast, a simultaneous strong defence response at the transcriptional level was evident in the resistant cultivar, as shown by the up-regulation of genes involved in brassinosteroid, polyamine and secondary metabolite biosynthesis, and of genes coding for pathogenesis-related proteins.
Collapse
Affiliation(s)
- Spela Baebler
- Department of Plant Physiology and Biotechnology, National Institute of Biology, Vecna pot 111, 1000 Ljubljana, Slovenia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Użarowska A, Dionisio G, Sarholz B, Piepho HP, Xu M, Ingvardsen CR, Wenzel G, Lübberstedt T. Validation of candidate genes putatively associated with resistance to SCMV and MDMV in maize (Zea mays L.) by expression profiling. BMC PLANT BIOLOGY 2009; 9:15. [PMID: 19187556 PMCID: PMC2669481 DOI: 10.1186/1471-2229-9-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 02/02/2009] [Indexed: 05/23/2023]
Abstract
BACKGROUND The potyviruses sugarcane mosaic virus (SCMV) and maize dwarf mosaic virus (MDMV) are major pathogens of maize worldwide. Two loci, Scmv1 and Scmv2, have ealier been shown to confer complete resistance to SCMV. Custom-made microarrays containing previously identified SCMV resistance candidate genes and resistance gene analogs were utilised to investigate and validate gene expression and expression patterns of isogenic lines under pathogen infection in order to obtain information about the molecular mechanisms involved in maize-potyvirus interactions. RESULTS By employing time course microarray experiments we identified 68 significantly differentially expressed sequences within the different time points. The majority of differentially expressed genes differed between the near-isogenic line carrying Scmv1 resistance locus at chromosome 6 and the other isogenic lines. Most differentially expressed genes in the SCMV experiment (75%) were identified one hour after virus inoculation, and about one quarter at multiple time points. Furthermore, most of the identified mapped genes were localised outside the Scmv QTL regions. Annotation revealed differential expression of promising pathogenesis-related candidate genes, validated by qRT-PCR, coding for metallothionein-like protein, S-adenosylmethionine synthetase, germin-like protein or 26S ribosomal RNA. CONCLUSION Our study identified putative candidate genes and gene expression patterns related to resistance to SCMV. Moreover, our findings support the effectiveness and reliability of the combination of different expression profiling approaches for the identification and validation of candidate genes. Genes identified in this study represent possible future targets for manipulation of SCMV resistance in maize.
Collapse
Affiliation(s)
- Anna Użarowska
- Department of Plant Breeding, Technical University of Munich, Am Hochanger 2, 85350, Freising, Germany
| | - Giuseppe Dionisio
- Faculty of Agricultural Sciences, University of Aarhus, Department of Genetics and Biotechnology, Research Centre Flakkebjerg, Slagelse, DK-4200, Denmark
| | - Barbara Sarholz
- General Motors Powertrain Germany GmbH, 65423, Rüsselsheim, Germany
| | - Hans-Peter Piepho
- Department of Bioinformatics, University of Hohenheim, Fruwirthstrasse 23, 70593, Stuttgart, Germany
| | - Mingliang Xu
- National Maize Improvement Center of China, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100094, PR China
| | | | - Gerhard Wenzel
- Department of Plant Breeding, Technical University of Munich, Am Hochanger 2, 85350, Freising, Germany
| | - Thomas Lübberstedt
- Faculty of Agricultural Sciences, University of Aarhus, Department of Genetics and Biotechnology, Research Centre Flakkebjerg, Slagelse, DK-4200, Denmark
- Department of Agronomy, Iowa State University, 1204 Agronomy Hall, 50011 Ames, Iowa, USA
| |
Collapse
|
44
|
Agudelo-Romero P, Carbonell P, de la Iglesia F, Carrera J, Rodrigo G, Jaramillo A, Pérez-Amador MA, Elena SF. Changes in the gene expression profile of Arabidopsis thaliana after infection with Tobacco etch virus. Virol J 2008; 5:92. [PMID: 18684336 PMCID: PMC2518140 DOI: 10.1186/1743-422x-5-92] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 08/07/2008] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Tobacco etch potyvirus (TEV) has been extensively used as model system for the study of positive-sense RNA virus infecting plants. TEV ability to infect Arabidopsis thaliana varies among ecotypes. In this study, changes in gene expression of A. thaliana ecotype Ler infected with TEV have been explored using long-oligonucleotide arrays. A. thaliana Ler is a susceptible host that allows systemic movement, although the viral load is low and syndrome induced ranges from asymptomatic to mild. Gene expression profiles were monitored in whole plants 21 days post-inoculation (dpi). Microarrays contained 26,173 protein-coding genes and 87 miRNAs. RESULTS Expression analysis identified 1727 genes that displayed significant and consistent changes in expression levels either up or down, in infected plants. Identified TEV-responsive genes encode a diverse array of functional categories that include responses to biotic (such as the systemic acquired resistance pathway and hypersensitive responses) and abiotic stresses (droughtness, salinity, temperature, and wounding). The expression of many different transcription factors was also significantly affected, including members of the R2R3-MYB family and ABA-inducible TFs. In concordance with several other plant and animal viruses, the expression of heat-shock proteins (HSP) was also increased. Finally, we have associated functional GO categories with KEGG biochemical pathways, and found that many of the altered biological functions are controlled by changes in basal metabolism. CONCLUSION TEV infection significantly impacts a wide array of cellular processes, in particular, stress-response pathways, including the systemic acquired resistance and hypersensitive responses. However, many of the observed alterations may represent a global response to viral infection rather than being specific of TEV.
Collapse
Affiliation(s)
- Patricia Agudelo-Romero
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022, València, Spain
| | - Pablo Carbonell
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022, València, Spain
| | - Francisca de la Iglesia
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022, València, Spain
| | - Javier Carrera
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022, València, Spain
| | - Guillermo Rodrigo
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022, València, Spain
| | - Alfonso Jaramillo
- Laboratoire de Biochimie, École Polytechnique, 91128, Palaiseau, France
| | - Miguel A Pérez-Amador
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022, València, Spain
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022, València, Spain
| |
Collapse
|
45
|
Altered gene expression changes in Arabidopsis leaf tissues and protoplasts in response to Plum pox virus infection. BMC Genomics 2008; 9:325. [PMID: 18613973 PMCID: PMC2478689 DOI: 10.1186/1471-2164-9-325] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Accepted: 07/09/2008] [Indexed: 11/10/2022] Open
Abstract
Background Virus infection induces the activation and suppression of global gene expression in the host. Profiling gene expression changes in the host may provide insights into the molecular mechanisms that underlie host physiological and phenotypic responses to virus infection. In this study, the Arabidopsis Affymetrix ATH1 array was used to assess global gene expression changes in Arabidopsis thaliana plants infected with Plum pox virus (PPV). To identify early genes in response to PPV infection, an Arabidopsis synchronized single-cell transformation system was developed. Arabidopsis protoplasts were transfected with a PPV infectious clone and global gene expression changes in the transfected protoplasts were profiled. Results Microarray analysis of PPV-infected Arabidopsis leaf tissues identified 2013 and 1457 genes that were significantly (Q ≤ 0.05) up- (≥ 2.5 fold) and downregulated (≤ -2.5 fold), respectively. Genes associated with soluble sugar, starch and amino acid, intracellular membrane/membrane-bound organelles, chloroplast, and protein fate were upregulated, while genes related to development/storage proteins, protein synthesis and translation, and cell wall-associated components were downregulated. These gene expression changes were associated with PPV infection and symptom development. Further transcriptional profiling of protoplasts transfected with a PPV infectious clone revealed the upregulation of defence and cellular signalling genes as early as 6 hours post transfection. A cross sequence comparison analysis of genes differentially regulated by PPV-infected Arabidopsis leaves against uniEST sequences derived from PPV-infected leaves of Prunus persica, a natural host of PPV, identified orthologs related to defence, metabolism and protein synthesis. The cross comparison of genes differentially regulated by PPV infection and by the infections of other positive sense RNA viruses revealed a common set of 416 genes. These identified genes, particularly the early responsive genes, may be critical in virus infection. Conclusion Gene expression changes in PPV-infected Arabidopsis are the molecular basis of stress and defence-like responses, PPV pathogenesis and symptom development. The differentially regulated genes, particularly the early responsive genes, and a common set of genes regulated by infections of PPV and other positive sense RNA viruses identified in this study are candidates suitable for further functional characterization to shed lights on molecular virus-host interactions.
Collapse
|
46
|
Havelda Z, Várallyay E, Válóczi A, Burgyán J. Plant virus infection-induced persistent host gene downregulation in systemically infected leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:278-88. [PMID: 18397378 DOI: 10.1111/j.1365-313x.2008.03501.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Understanding of virus infection-induced alterations in host plant gene expression and metabolism leading to the development of virus disease symptoms is both scientifically and economically important. Here, we show that viruses belonging to various RNA virus families are able to induce efficient host gene mRNA downregulation (shut-off) in systemically infected leaves. We demonstrate that the host gene mRNA shut-off overlaps spatially with virus-occupied sectors, indicating the direct role of virus accumulation in this phenomenon. The establishment of shut-off was not directly connected to active viral replication or the RNA-silencing machinery. Importantly, the induced shut-off phenomenon persisted for several weeks, resulting in severe deficiency of mRNA for important housekeeping genes in the infected plants. Interestingly, we found that some other RNA viruses do not induce or only slightly induce the shut-off phenomenon for the same set of genes, implicating genetic determination in this process. Nuclear run-on experiments suggest that plant viruses, similarly to animal viruses, mediate suppression of host mRNA synthesis in the nucleus. By investigating various host-virus interactions, we revealed a correlation between the intensity of the shut-off phenomenon and the severity of disease symptoms. Our data suggest that efficient and persistent downregulation of host genes may be an important component of symptom development in certain host-virus interactions.
Collapse
Affiliation(s)
- Zoltán Havelda
- Agricultural Biotechnology Center, Plant Virology Group, Szent-Györgyi Albert út 4, Gödöllo, H-2001, Hungary.
| | | | | | | |
Collapse
|
47
|
Babu M, Gagarinova AG, Brandle JE, Wang A. Association of the transcriptional response of soybean plants with soybean mosaic virus systemic infection. J Gen Virol 2008; 89:1069-1080. [PMID: 18343851 DOI: 10.1099/vir.0.83531-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Compatible virus infection induces and suppresses host gene expression at the global level. These gene-expression changes are the molecular basis of symptom development and general stress and defence-like responses of the host. To assess transcriptional changes in soybean plants infected with soybean mosaic virus (SMV), the first soybean trifoliate leaf, immediately above the SMV-inoculated unifoliate leaf, was sampled at 7, 14 and 21 days post-inoculation (p.i.) and subjected to microarray analysis. The identified changes in gene expression in soybean leaves with SMV infection at different time points were associated with the observed symptom development. By using stringent selection criteria (>or=2- or
Collapse
Affiliation(s)
- Mohan Babu
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada (AAFC), 1391 Sandford St, London, ON N5V 4T3, Canada
| | - Alla G Gagarinova
- Department of Biology, The University of Western Ontario, Biological and Geological Building, 1151 Richmond St, London, ON N6A 5B7, Canada
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada (AAFC), 1391 Sandford St, London, ON N5V 4T3, Canada
| | - James E Brandle
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada (AAFC), 1391 Sandford St, London, ON N5V 4T3, Canada
| | - Aiming Wang
- Department of Biology, The University of Western Ontario, Biological and Geological Building, 1151 Richmond St, London, ON N6A 5B7, Canada
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada (AAFC), 1391 Sandford St, London, ON N5V 4T3, Canada
| |
Collapse
|
48
|
Ventelon-Debout M, Tranchant-Dubreuil C, Nguyen TTH, Bangratz M, Siré C, Delseny M, Brugidou C. Rice yellow mottle virus stress responsive genes from susceptible and tolerant rice genotypes. BMC PLANT BIOLOGY 2008; 8:26. [PMID: 18315879 PMCID: PMC2275266 DOI: 10.1186/1471-2229-8-26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 03/03/2008] [Indexed: 05/13/2023]
Abstract
BACKGROUND The effects of viral infection involve concomitant plant gene variations and cellular changes. A simple system is required to assess the complexity of host responses to viral infection. The genome of the Rice yellow mottle virus (RYMV) is a single-stranded RNA with a simple organisation. It is the most well-known monocotyledon virus model. Several studies on its biology, structure and phylogeography have provided a suitable background for further genetic studies. 12 rice chromosome sequences are now available and provide strong support for genomic studies, particularly physical mapping and gene identification. RESULTS The present data, obtained through the cDNA-AFLP technique, demonstrate differential responses to RYMV of two different rice cultivars, i.e. susceptible IR64 (Oryza sativa indica), and partially resistant Azucena (O. s. japonica). This RNA profiling provides a new original dataset that will enable us to gain greater insight into the RYMV/rice interaction and the specificity of the host response. Using the SIM4 subroutine, we took the intron/exon structure of the gene into account and mapped 281 RYMV stress responsive (RSR) transcripts on 12 rice chromosomes corresponding to 234 RSR genes. We also mapped previously identified deregulated proteins and genes involved in partial resistance and thus constructed the first global physical map of the RYMV/rice interaction. RSR transcripts on rice chromosomes 4 and 10 were found to be not randomly distributed. Seven genes were identified in the susceptible and partially resistant cultivars, and transcripts were colocalized for these seven genes in both cultivars. During virus infection, many concomitant plant gene expression changes may be associated with host changes caused by the infection process, general stress or defence responses. We noted that some genes (e.g. ABC transporters) were regulated throughout the kinetics of infection and differentiated susceptible and partially resistant hosts. CONCLUSION We enhanced the first RYMV/rice interaction map by combining information from the present study and previous studies on proteins and ESTs regulated during RYMV infection, thus providing a more comprehensive view on genes related to plant responses. This combined map provides a new tool for exploring molecular mechanisms underlying the RYMV/rice interaction.
Collapse
Affiliation(s)
| | | | | | - Martine Bangratz
- UMR5096, IRD 911 Avenue Agropolis, BP54501, 34394 Montpellier, France
| | - Christelle Siré
- UMR5096, IRD 911 Avenue Agropolis, BP54501, 34394 Montpellier, France
| | - Michel Delseny
- UMR5096, Université de Perpignan 52, Avenue de Villeneuve, 66860 Perpignan Cedex, France
| | | |
Collapse
|
49
|
Hofius D, Maier AT, Dietrich C, Jungkunz I, Börnke F, Maiss E, Sonnewald U. Capsid protein-mediated recruitment of host DnaJ-like proteins is required for Potato virus Y infection in tobacco plants. J Virol 2007; 81:11870-80. [PMID: 17715215 PMCID: PMC2168797 DOI: 10.1128/jvi.01525-07] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Accepted: 08/15/2007] [Indexed: 11/20/2022] Open
Abstract
The capsid protein (CP) of potyviruses is required for various steps during plant infection, such as virion assembly, cell-to-cell movement, and long-distance transport. This suggests a series of compatible interactions with putative host factors which, however, are largely unknown. By using the yeast two-hybrid system the CP from Potato virus Y (PVY) was found to interact with a novel subset of DnaJ-like proteins from tobacco, designated NtCPIPs. Mutational analysis identified the CP core region, previously shown to be essential for virion formation and plasmodesmal trafficking, as the interacting domain. The ability of NtCPIP1 and NtCPIP2a to associate with PVY CP could be confirmed in vitro and was additionally verified in planta by bimolecular fluorescence complementation. The biological significance of the interaction was assayed by PVY infection of agroinfiltrated leaves and transgenic tobacco plants that expressed either full-length or J-domain-deficient variants of NtCPIPs. Transient expression of truncated dominant-interfering NtCPIP2a but not of the functional protein resulted in strongly reduced accumulation of PVY in the inoculated leaf. Consistently, stable overexpression of J-domain-deficient variants of NtCPIP1 and NtCPIP2a dramatically increased the virus resistance of various transgenic lines, indicating a critical role of functional NtCPIPs during PVY infection. The negative effect of impaired NtCPIP function on viral pathogenicity seemed to be the consequence of delayed cell-to-cell movement, as visualized by microprojectile bombardment with green fluorescent protein-tagged PVY. Therefore, we propose that NtCPIPs act as important susceptibility factors during PVY infection, possibly by recruiting heat shock protein 70 chaperones for viral assembly and/or cellular spread.
Collapse
Affiliation(s)
- Daniel Hofius
- Copenhagen Biocenter, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark.
| | | | | | | | | | | | | |
Collapse
|
50
|
Gandía M, Conesa A, Ancillo G, Gadea J, Forment J, Pallás V, Flores R, Duran-Vila N, Moreno P, Guerri J. Transcriptional response of Citrus aurantifolia to infection by Citrus tristeza virus. Virology 2007; 367:298-306. [PMID: 17617431 DOI: 10.1016/j.virol.2007.05.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 05/15/2007] [Accepted: 05/21/2007] [Indexed: 01/17/2023]
Abstract
Changes in gene expression of Mexican lime plants in response to infection with a severe (T305) or a mild (T385) isolate of Citrus tristeza virus (CTV) were analyzed using a cDNA microarray containing 12,672 probes to 6875 different citrus genes. Statistically significant (P<0.01) expression changes of 334 genes were detected in response to infection with isolate T305, whereas infection with T385 induced no significant change. Induced genes included 145 without significant similarity with known sequences and 189 that were classified in seven functional categories. Genes related with response to stress and defense were the main category and included 28% of the genes induced. Selected transcription changes detected by microarray analysis were confirmed by quantitative real-time RT-PCR. Changes detected in the transcriptome upon infecting lime with T305 may be associated either with symptom expression, with a strain-specific defense mechanism, or with a general response to stress.
Collapse
Affiliation(s)
- Mónica Gandía
- Instituto Valenciano de Investigaciones Agrarias, Ctra. Moncada-Náquera Km 4.5, Moncada, 46113, Valencia, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|