1
|
Siziya IN, Jung JH, Seo MJ, Lim MC, Seo DH. Whole-cell bioconversion using non-Leloir transglycosylation reactions: a review. Food Sci Biotechnol 2023; 32:749-768. [PMID: 37041815 PMCID: PMC10082888 DOI: 10.1007/s10068-023-01283-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Microbial biocatalysts are evolving technological tools for glycosylation research in food, feed and pharmaceuticals. Advances in bioengineered Leloir and non-Leloir carbohydrate-active enzymes allow for whole-cell biocatalysts to curtail production costs of purified enzymes while enhancing glucan synthesis through continued enzyme expression. Unlike sugar nucleotide-dependent Leloir glycosyltransferases, non-Leloir enzymes require inexpensive sugar donors and can be designed to match the high value, yield and selectivity of the former. This review addresses the current state of bacterial cell-based production of glucans and glycoconjugates via transglycosylation, and describes how alterations made to microbial hosts to surpass purified enzymes as the preferred mode of catalysis are steadily being acquired through genetic engineering, rational design and process optimization. A comprehensive exploration of relevant literature has been summarized to describe whole-cell biocatalysis in non-Leloir glycosylation reactions with various donors and acceptors, and the characterization, application and latest developments in the optimization of their use.
Collapse
Affiliation(s)
- Inonge Noni Siziya
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896 Republic of Korea
- Division of Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
| | - Jong-Hyun Jung
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, 56212 Republic of Korea
| | - Myung-Ji Seo
- Division of Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
| | - Min-Cheol Lim
- Research Group of Consumer Safety, Korea Food Research Institute (KFRI), Jeollabuk-do, 55365 Korea
| | - Dong-Ho Seo
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896 Republic of Korea
- Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104 Republic of Korea
| |
Collapse
|
2
|
Humphreys JR, Debebe BJ, Diggle SP, Winzer K. Clostridium beijerinckii strain degeneration is driven by the loss of Spo0A activity. Front Microbiol 2023; 13:1075609. [PMID: 36704551 PMCID: PMC9871927 DOI: 10.3389/fmicb.2022.1075609] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
Solventogenic clostridia represent a diverse group of anaerobic, spore-forming bacteria capable of producing acetone, butanol and ethanol through their unique biphasic metabolism. An intrinsic problem with these organisms however is their tendency to degenerate when repeatedly subcultured or when grown continuously. This phenomenon sees cells lose their ability to produce solvents and spores, posing a significant problem for industrial applications. To investigate the mechanistic and evolutionary basis of degeneration we combined comparative genomics, ultra-deep sequencing, and concepts of sociomicrobiology using Clostridium beijerinckii NCIMB 8052 as our model organism. These approaches revealed spo0A, the master regulator gene involved in spore and solvent formation, to be key to the degeneration process in this strain. Comparative genomics of 71 degenerate variants revealed four distinct hotspot regions that contained considerably more mutations than the rest of the genome. These included spo0A as well as genes suspected to regulate its expression and activity. Ultra-deep sequencing of populations during the subculturing process showed transient increases in mutations we believe linked to the spo0A network, however, these were ultimately dominated by mutations in the master regulator itself. Through frequency-dependent fitness assays, we found that spo0A mutants gained a fitness advantage, relative to the wild type, presumably allowing for propagation throughout the culture. Combined, our data provides new insights into the phenomenon of clostridial strain degeneration and the C. beijerinckii NCIMB 8052 solvent and spore regulation network.
Collapse
Affiliation(s)
- Jonathan R. Humphreys
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham, United Kingdom
| | - Bisrat J. Debebe
- DeepSeq, Centre for Genetics and Genomics, The University of Nottingham, Nottingham, United Kingdom
| | - Stephen P. Diggle
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Klaus Winzer
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham, United Kingdom,*Correspondence: Klaus Winzer, ✉
| |
Collapse
|
3
|
Schwardmann LS, Dransfeld AK, Schäffer T, Wendisch VF. Metabolic Engineering of Corynebacterium glutamicum for Sustainable Production of the Aromatic Dicarboxylic Acid Dipicolinic Acid. Microorganisms 2022; 10:microorganisms10040730. [PMID: 35456781 PMCID: PMC9024752 DOI: 10.3390/microorganisms10040730] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/04/2023] Open
Abstract
Dipicolinic acid (DPA) is an aromatic dicarboxylic acid that mediates heat-stability and is easily biodegradable and non-toxic. Currently, the production of DPA is fossil-based, but bioproduction of DPA may help to replace fossil-based plastics as it can be used for the production of polyesters or polyamides. Moreover, it serves as a stabilizer for peroxides or organic materials. The antioxidative, antimicrobial and antifungal effects of DPA make it interesting for pharmaceutical applications. In nature, DPA is essential for sporulation of Bacillus and Clostridium species, and its biosynthesis shares the first three reactions with the L-lysine pathway. Corynebacterium glutamicum is a major host for the fermentative production of amino acids, including the million-ton per year production of L-lysine. This study revealed that DPA reduced the growth rate of C. glutamicum to half-maximal at about 1.6 g·L−1. The first de novo production of DPA by C. glutamicum was established by overexpression of dipicolinate synthase genes from Paenibacillus sonchi genomovar riograndensis SBR5 in a C. glutamicum L-lysine producer strain. Upon systems metabolic engineering, DPA production to 2.5 g·L−1 in shake-flask and 1.5 g·L−1 in fed-batch bioreactor cultivations was shown. Moreover, DPA production from the alternative carbon substrates arabinose, xylose, glycerol, and starch was established. Finally, expression of the codon-harmonized phosphite dehydrogenase gene from P. stutzeri enabled phosphite-dependent non-sterile DPA production.
Collapse
Affiliation(s)
- Lynn S. Schwardmann
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (L.S.S.); (A.K.D.)
| | - Aron K. Dransfeld
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (L.S.S.); (A.K.D.)
| | - Thomas Schäffer
- Multiscale Bioengineering, Technical Faculty and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany;
| | - Volker F. Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (L.S.S.); (A.K.D.)
- Correspondence: ; Tel.: +49-521-106-5611
| |
Collapse
|
4
|
Deatherage DE, Barrick JE. High-throughput characterization of mutations in genes that drive clonal evolution using multiplex adaptome capture sequencing. Cell Syst 2021; 12:1187-1200.e4. [PMID: 34536379 DOI: 10.1016/j.cels.2021.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/14/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022]
Abstract
Understanding how cells are likely to evolve can guide medical interventions and bioengineering efforts that must contend with unwanted mutations. The adaptome of a cell-the neighborhood of genetic changes that are most likely to drive adaptation in a given environment-can be mapped by tracking rare beneficial variants during the early stages of clonal evolution. We used multiplex adaptome capture sequencing (mAdCap-seq), a procedure that combines unique molecular identifiers and hybridization-based enrichment, to characterize mutations in eight Escherichia coli genes known to be under selection in a laboratory environment. We tracked 301 mutations at frequencies as low as 0.01% and inferred the fitness effects of 240 of these mutations. There were distinct molecular signatures of selection on protein structure and function for the three genes with the most beneficial mutations. Our results demonstrate how mAdCap-seq can be used to deeply profile a targeted portion of a cell's adaptome.
Collapse
Affiliation(s)
- Daniel E Deatherage
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
5
|
Metabolome and proteome analyses reveal transcriptional misregulation in glycolysis of engineered E. coli. Nat Commun 2021; 12:4929. [PMID: 34389727 PMCID: PMC8363753 DOI: 10.1038/s41467-021-25142-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 07/21/2021] [Indexed: 01/24/2023] Open
Abstract
Synthetic metabolic pathways are a burden for engineered bacteria, but the underlying mechanisms often remain elusive. Here we show that the misregulated activity of the transcription factor Cra is responsible for the growth burden of glycerol overproducing E. coli. Glycerol production decreases the concentration of fructose-1,6-bisphoshate (FBP), which then activates Cra resulting in the downregulation of glycolytic enzymes and upregulation of gluconeogenesis enzymes. Because cells grow on glucose, the improper activation of gluconeogenesis and the concomitant inhibition of glycolysis likely impairs growth at higher induction of the glycerol pathway. We solve this misregulation by engineering a Cra-binding site in the promoter controlling the expression of the rate limiting enzyme of the glycerol pathway to maintain FBP levels sufficiently high. We show the broad applicability of this approach by engineering Cra-dependent regulation into a set of constitutive and inducible promoters, and use one of them to overproduce carotenoids in E. coli. Synthetic pathways represent a metabolic burden on host cells. Here the authors engineer Cra-binding sites to prevent misregulation in glycerol and carotenoid overproducing E. coli strains.
Collapse
|
6
|
Short and long-read ultra-deep sequencing profiles emerging heterogeneity across five platform Escherichia coli strains. Metab Eng 2020; 65:197-206. [PMID: 33242648 DOI: 10.1016/j.ymben.2020.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/26/2020] [Accepted: 11/12/2020] [Indexed: 11/24/2022]
Abstract
Reprogramming organisms for large-scale bioproduction counters their evolutionary objectives of fast growth and often leads to mutational collapse of the engineered production pathways during cultivation. Yet, the mutational susceptibility of academic and industrial Escherichia coli bioproduction host strains are poorly understood. In this study, we apply 2nd and 3rd generation deep sequencing to profile simultaneous modes of genetic heterogeneity that decimate engineered biosynthetic production in five popular E. coli hosts BL21(DE3), TOP10, MG1655, W, and W3110 producing 2,3-butanediol and mevalonic acid. Combining short-read and long-read sequencing, we detect strain and sequence-specific mutational modes including single nucleotide polymorphism, inversion, and mobile element transposition, as well as complex structural variations that disrupt the integrity of the engineered biosynthetic pathway. Our analysis suggests that organism engineers should avoid chassis strains hosting active insertion sequence (IS) subfamilies such as IS1 and IS10 present in popular E. coli TOP10. We also recommend monitoring for increased mutagenicity in the pathway transcription initiation regions and recombinogenic repeats. Together, short and long sequencing reads identified latent low-frequency mutation events such as a short detrimental inversion within a pathway gene, driven by 8-bp short inverted repeats. This demonstrates the power of combining ultra-deep DNA sequencing technologies to profile genetic heterogeneities of engineered constructs and explore the markedly different mutational landscapes of common E. coli host strains. The observed multitude of evolving variants underlines the usefulness of early mutational profiling for new synthetic pathways designed to sustain in organisms over long cultivation scales.
Collapse
|
7
|
Schuller A, Cserjan-Puschmann M, Köppl C, Grabherr R, Wagenknecht M, Schiavinato M, Dohm JC, Himmelbauer H, Striedner G. Adaptive Evolution in Producing Microtiter Cultivations Generates Genetically Stable Escherichia coli Production Hosts for Continuous Bioprocessing. Biotechnol J 2020; 16:e2000376. [PMID: 33084246 DOI: 10.1002/biot.202000376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/06/2020] [Indexed: 01/01/2023]
Abstract
The production of recombinant proteins usually reduces cell fitness and the growth rate of producing cells. The growth disadvantage favors faster-growing non-producer mutants. Therefore, continuous bioprocessing is hardly feasible in Escherichia coli due to the high escape rate. The stability of E. coli expression systems under long-term production conditions and how metabolic load triggered by recombinant gene expression influences the characteristics of mutations are investigated. Iterated fed-batch-like microbioreactor cultivations are conducted under production conditions. The easy-to-produce green fluorescent protein (GFP) and a challenging antigen-binding fragment (Fab) are used as model proteins, and BL21(DE3) and BL21Q strains as expression hosts. In comparative whole-genome sequencing analyses, mutations that allowed cells to grow unhindered despite recombinant protein production are identified. A T7 RNA polymerase expression system is only conditionally suitable for long-term cultivation under production conditions. Mutations leading to non-producers occur in either the T7 RNA polymerase gene or the T7 promoter. The host RNA polymerase-based BL21Q expression system remains stable in the production of GFP in long-term cultivations. For the production of Fab, mutations in lacI of the BL21Q derivatives have positive effects on long-term stability. The results indicate that adaptive evolution carried out with genome-integrated E. coli expression systems in microtiter cultivations under industrial-relevant production conditions is an efficient strain development tool for production hosts.
Collapse
Affiliation(s)
- Artur Schuller
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190, Austria
| | - Monika Cserjan-Puschmann
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190, Austria
| | - Christoph Köppl
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190, Austria
| | - Reingard Grabherr
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190, Austria
| | - Martin Wagenknecht
- Boehringer Ingelheim RCV GmbH & Co KG, Dr.-Boehringer-Gasse 5-11, Vienna, A-1120, Austria
| | - Matteo Schiavinato
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190, Austria
| | - Juliane C Dohm
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190, Austria
| | - Heinz Himmelbauer
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190, Austria
| | - Gerald Striedner
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190, Austria
| |
Collapse
|
8
|
Rugbjerg P, Olsson L. The future of self-selecting and stable fermentations. J Ind Microbiol Biotechnol 2020; 47:993-1004. [PMID: 33136197 PMCID: PMC7695646 DOI: 10.1007/s10295-020-02325-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/17/2020] [Indexed: 02/08/2023]
Abstract
Unfavorable cell heterogeneity is a frequent risk during bioprocess scale-up and characterized by rising frequencies of low-producing cells. Low-producing cells emerge by both non-genetic and genetic variation and will enrich due to their higher specific growth rate during the extended number of cell divisions of large-scale bioproduction. Here, we discuss recent strategies for synthetic stabilization of fermentation populations and argue for their application to make cell factory designs that better suit industrial needs. Genotype-directed strategies leverage DNA-sequencing data to inform strain design. Self-selecting phenotype-directed strategies couple high production with cell proliferation, either by redirected metabolic pathways or synthetic product biosensing to enrich for high-performing cell variants. Evaluating production stability early in new cell factory projects will guide heterogeneity-reducing design choices. As good initial metrics, we propose production half-life from standardized serial-passage stability screens and production load, quantified as production-associated percent-wise growth rate reduction. Incorporating more stable genetic designs will greatly increase scalability of future cell factories through sustaining a high-production phenotype and enabling stable long-term production.
Collapse
Affiliation(s)
- Peter Rugbjerg
- Enduro Genetics ApS, Copenhagen, Denmark. .,Department of Biology and Biological Engineering, Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden.
| | - Lisbeth Olsson
- Department of Biology and Biological Engineering, Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
9
|
Giri S, Shitut S, Kost C. Harnessing ecological and evolutionary principles to guide the design of microbial production consortia. Curr Opin Biotechnol 2020; 62:228-238. [DOI: 10.1016/j.copbio.2019.12.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/27/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023]
|
10
|
Rugbjerg P, Sommer MOA. Overcoming genetic heterogeneity in industrial fermentations. Nat Biotechnol 2019; 37:869-876. [DOI: 10.1038/s41587-019-0171-6] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 05/28/2019] [Indexed: 12/15/2022]
|
11
|
López-González MJ, Campelo AB, Picon A, Rodríguez A, Martínez B. Resistance to bacteriocin Lcn972 improves oxygen tolerance of Lactococcus lactis IPLA947 without compromising its performance as a dairy starter. BMC Microbiol 2018; 18:76. [PMID: 30029618 PMCID: PMC6053707 DOI: 10.1186/s12866-018-1222-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022] Open
Abstract
Background Lactococcus lactis is the main component of the mesophilic starters used in cheese manufacture. The success of milk fermentation relies on the viability and metabolic activity of the starter bacteria. Therefore, robust strains able to withstand the harsh conditions encountered during cheese manufacture and starter production are demanded. In this work, we have applied adaptive evolution under cell envelope stress imposed by the cell wall active bacteriocin Lcn972 to evolve strains with more robust phenotypes. Results Consecutive exposure of the starter strain L. lactis IPLA947 to Lcn972 yielded a stable mutant, L. lactis R5, with enhanced survival when challenged with hydrogen peroxide. L. lactis R5 exhibited faster growth rates in aerobic fermentations in broth and was able to acidify milk to a lower pH in aerated milk cultures. The improved behavior of L. lactis R5 in the presence of oxygen did not translate into a better performance in the presence of heme (i.e. respiration metabolism) or into higher survival during storage at cold temperatures or after freeze-drying compared to the wild type L. lactis IPLA947. L. lactis R5 retained the same milk acidification rate and no changes in the consumption of lactose and production of organic acids were noticed. However, the profile of volatile compounds revealed a significant increase in 3-hydroxy-2-butanone (acetoin) in curds manufactured with L. lactis R5. Conclusions Based on our results, L. lactis R5 can be proposed as a suitable dairy starter with improved survival under oxidative stress and enhanced metabolic traits. The results support the notion that adaptive evolution under cell envelope stress might be useful to generate strain diversity within industrial L. lactis strains.
Collapse
Affiliation(s)
- María Jesús López-González
- Dairy Safe group, Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Paseo Río Linares, s/n 33300, Villaviciosa, Asturias, Spain
| | - Ana Belén Campelo
- Dairy Safe group, Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Paseo Río Linares, s/n 33300, Villaviciosa, Asturias, Spain
| | - Antonia Picon
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de La Coruña Km 7.5, 28040, Madrid, Spain
| | - Ana Rodríguez
- Dairy Safe group, Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Paseo Río Linares, s/n 33300, Villaviciosa, Asturias, Spain
| | - Beatriz Martínez
- Dairy Safe group, Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Paseo Río Linares, s/n 33300, Villaviciosa, Asturias, Spain.
| |
Collapse
|
12
|
Diverse genetic error modes constrain large-scale bio-based production. Nat Commun 2018; 9:787. [PMID: 29463788 PMCID: PMC5820350 DOI: 10.1038/s41467-018-03232-w] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/26/2018] [Indexed: 11/18/2022] Open
Abstract
A transition toward sustainable bio-based chemical production is important for green growth. However, productivity and yield frequently decrease as large-scale microbial fermentation progresses, commonly ascribed to phenotypic variation. Yet, given the high metabolic burden and toxicities, evolutionary processes may also constrain bio-based production. We experimentally simulate large-scale fermentation with mevalonic acid-producing Escherichia coli. By tracking growth rate and production, we uncover how populations fully sacrifice production to gain fitness within 70 generations. Using ultra-deep (>1000×) time-lapse sequencing of the pathway populations, we identify multiple recurring intra-pathway genetic error modes. This genetic heterogeneity is only detected using deep-sequencing and new population-level bioinformatics, suggesting that the problem is underestimated. A quantitative model explains the population dynamics based on enrichment of spontaneous mutant cells. We validate our model by tuning production load and escape rate of the production host and apply multiple orthogonal strategies for postponing genetically driven production declines. The declining performance of scale-up bioreactor cultures is commonly attributed to phenotypic and physical heterogeneities. Here, the authors reveal multiple recurring intra-pathway error modes that limit engineered E. coli mevalonic acid production over time- and industrial-scale fermentations.
Collapse
|
13
|
Synthetic addiction extends the productive life time of engineered Escherichia coli populations. Proc Natl Acad Sci U S A 2018; 115:2347-2352. [PMID: 29463739 PMCID: PMC5877936 DOI: 10.1073/pnas.1718622115] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Bioproduction of chemicals offers a sustainable alternative to petrochemical synthesis routes by using genetically engineered microorganisms to convert waste and simple substrates into higher-value products. However, efficient high-yield production commonly introduces a metabolic burden that selects for subpopulations of nonproducing cells in large fermentations. To postpone such detrimental evolution, we have synthetically addicted production cells to production by carefully linking signals of product presence to expression of nonconditionally essential genes. We addict Escherichia coli cells to their engineered biosynthesis of mevalonic acid by fine-tuned control of essential genes using a product-responsive transcription factor. Over the course of a long-term fermentation equivalent to industrial 200-m3 bioreactors such addicted cells remained productive, unlike the control, in which evolution fully terminated production. Bio-production of chemicals is an important driver of the societal transition toward sustainability. However, fermentations with heavily engineered production organisms can be challenging to scale to industrial volumes. Such fermentations are subject to evolutionary pressures that select for a wide range of genetic variants that disrupt the biosynthetic capacity of the engineered organism. Synthetic product addiction that couples high-yield production of a desired metabolite to expression of nonconditionally essential genes could offer a solution to this problem by selectively favoring cells with biosynthetic capacity in the population without constraining the medium. We constructed such synthetic product addiction by controlling the expression of two nonconditionally essential genes with a mevalonic acid biosensor. The product-addicted production organism retained high-yield mevalonic acid production through 95 generations of cultivation, corresponding to the number of cell generations required for >200-m3 industrial-scale production, at which time the nonaddicted strain completely abolished production. Using deep DNA sequencing, we find that the product-addicted populations do not accumulate genetic variants that compromise biosynthetic capacity, highlighting how synthetic networks can be designed to control genetic population heterogeneity. Such synthetic redesign of evolutionary forces with endogenous processes may be a promising concept for realizing complex cellular designs required for sustainable bio-manufacturing.
Collapse
|
14
|
Transient MutS-Based Hypermutation System for Adaptive Evolution of Lactobacillus casei to Low pH. Appl Environ Microbiol 2017; 83:AEM.01120-17. [PMID: 28802267 DOI: 10.1128/aem.01120-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/01/2017] [Indexed: 11/20/2022] Open
Abstract
This study explored transient inactivation of the gene encoding the DNA mismatch repair enzyme MutS as a tool for adaptive evolution of Lactobacillus casei MutS deletion derivatives of L. casei 12A and ATCC 334 were constructed and subjected to a 100-day adaptive evolution process to increase lactic acid resistance at low pH. Wild-type parental strains were also subjected to this treatment. At the end of the process, the ΔmutS lesion was repaired in representative L. casei 12A and ATCC 334 ΔmutS mutant isolates. Growth studies in broth at pH 4.0 (titrated with lactic acid) showed that all four adapted strains grew more rapidly, to higher cell densities, and produced significantly more lactic acid than untreated wild-type cells. However, the adapted ΔmutS derivative mutants showed the greatest increases in growth and lactic acid production. Further characterization of the L. casei 12A-adapted ΔmutS derivative revealed that it had a significantly smaller cell volume, a rougher cell surface, and significantly better survival at pH 2.5 than parental L. casei 12A. Genome sequence analysis confirmed that transient mutS inactivation decreased DNA replication fidelity in both L. casei strains, and it identified genetic changes that might contribute to the lactic acid-resistant phenotypes of adapted cells. Targeted inactivation of three genes that had acquired nonsense mutations in the adapted L. casei 12A ΔmutS mutant derivative showed that NADH dehydrogenase (ndh), phosphate transport ATP-binding protein PstB (pstB), and two-component signal transduction system (TCS) quorum-sensing histidine protein kinase (hpk) genes act in combination to increase lactic acid resistance in L. casei 12A.IMPORTANCE Adaptive evolution has been applied to microorganisms to increase industrially desirable phenotypes, including acid resistance. We developed a method to increase the adaptability of Lactobacillus casei 12A and ATCC 334 through transient inactivation of the DNA mismatch repair enzyme MutS. Here, we show this method was effective in increasing the resistance of L. casei to lactic acid at low pH. Additionally, we identified three genes that contribute to increased acid resistance in L. casei 12A. These results provide valuable insight on methods to enhance an organism's fitness to complex phenotypes through adaptive evolution and targeted gene inactivation.
Collapse
|
15
|
Li J, Zhu X, Chen J, Zhao D, Zhang X, Bi C. Construction of a novel anaerobic pathway in Escherichia coli for propionate production. BMC Biotechnol 2017; 17:38. [PMID: 28407739 PMCID: PMC5391575 DOI: 10.1186/s12896-017-0354-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/17/2017] [Indexed: 12/04/2022] Open
Abstract
Background Propionate is widely used as an important preservative and important chemical intermediate for synthesis of cellulose fibers, herbicides, perfumes and pharmaceuticals. Biosynthetic propionate has mainly been produced by Propionibacterium, which has various limitations for industrial application. Results In this study, we engineered E. coli by combining reduced TCA cycle with the native sleeping beauty mutase (Sbm) cycle to construct a redox balanced and energy viable fermentation pathway for anaerobic propionate production. As the cryptic Sbm operon was over-expressed in E. coli MG1655, propionate titer reached 0.24 g/L. To increase precursor supply for the Sbm cycle, genetic modification was made to convert mixed fermentation products to succinate, which slightly increased propionate production. For optimal expression of Sbm operon, different types of promoters were examined. A strong constitutive promoter Pbba led to the highest titer of 2.34 g/L. Methylmalonyl CoA mutase from Methylobacterium extorquens AM1 was added to strain T110(pbba-Sbm) to enhance this rate limiting step. With optimized expression of this additional Methylmalonyl CoA mutase, the highest production strain was obtained with a titer of 4.95 g/L and a yield of 0.49 mol/mol glucose. Conclusions With various metabolic engineering strategies, the propionate titer from fermentation achieved 4.95 g/L. This is the reported highest anaerobic production of propionate by heterologous host. Due to host advantages, such as non-strict anaerobic condition, mature engineering and fermentation techniques, and low cost minimal media, our work has built the basis for industrial propionate production with E. coli chassis. Electronic supplementary material The online version of this article (doi:10.1186/s12896-017-0354-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Xinna Zhu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Jing Chen
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Dongdong Zhao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Xueli Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.
| | - Changhao Bi
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.
| |
Collapse
|
16
|
Otte KB, Maurer E, Kirtz M, Grabs D, Althoff E, Bartsch S, Vogel A, Nestl BM, Hauer B. Synthesis of Sebacic Acid Using a De Novo Designed Retro-Aldolase as a Key Catalyst. ChemCatChem 2017. [DOI: 10.1002/cctc.201601551] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Konrad B. Otte
- Institute of Technical Biochemistry; Universitaet Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Elena Maurer
- Institute of Technical Biochemistry; Universitaet Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Marko Kirtz
- Institute of Technical Biochemistry; Universitaet Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | | | | | | | - Andreas Vogel
- c-LEcta GmbH; Perlickstrasse 5 04103 Leipzig Germany
| | - Bettina M. Nestl
- Institute of Technical Biochemistry; Universitaet Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Bernhard Hauer
- Institute of Technical Biochemistry; Universitaet Stuttgart; Allmandring 31 70569 Stuttgart Germany
| |
Collapse
|
17
|
Pérez-García F, Max Risse J, Friehs K, Wendisch VF. Fermentative production of L-pipecolic acid from glucose and alternative carbon sources. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600646] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 01/28/2017] [Accepted: 02/06/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Fernando Pérez-García
- Genetics of Prokaryotes; Faculty of Biology & Center for Biotechnology; Bielefeld University; Bielefeld Germany
| | - Joe Max Risse
- Fermentation Technology; Technical Faculty & Center for Biotechnology; Bielefeld University; Bielefeld Germany
| | - Karl Friehs
- Fermentation Technology; Technical Faculty & Center for Biotechnology; Bielefeld University; Bielefeld Germany
| | - Volker F. Wendisch
- Genetics of Prokaryotes; Faculty of Biology & Center for Biotechnology; Bielefeld University; Bielefeld Germany
| |
Collapse
|
18
|
Schewe H, Mirata MA, Schrader J. Bioprocess engineering for microbial synthesis and conversion of isoprenoids. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 148:251-86. [PMID: 25893480 DOI: 10.1007/10_2015_321] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Isoprenoids represent a natural product class essential to living organisms. Moreover, industrially relevant isoprenoid molecules cover a wide range of products such as pharmaceuticals, flavors and fragrances, or even biofuels. Their often complex structure makes chemical synthesis a difficult and expensive task and extraction from natural sources is typically low yielding. This has led to intense research for biotechnological production of isoprenoids by microbial de novo synthesis or biotransformation. Here, metabolic engineering, including synthetic biology approaches, is the key technology to develop efficient production strains in the first place. Bioprocess engineering, particularly in situ product removal (ISPR), is the second essential technology for the development of industrial-scale bioprocesses. A number of elaborate bioreactor and ISPR designs have been published to target the problems of isoprenoid synthesis and conversion, such as toxicity and product inhibition. However, despite the many exciting applications of isoprenoids, research on isoprenoid-specific bioprocesses has mostly been, and still is, limited to small-scale proof-of-concept approaches. This review presents and categorizes different ISPR solutions for biotechnological isoprenoid production and also addresses the main challenges en route towards industrial application.
Collapse
Affiliation(s)
- Hendrik Schewe
- DECHEMA Research Institute, Biochemical Engineering, Frankfurt, Germany
| | | | | |
Collapse
|
19
|
Wang Z, Gao C, Wang Q, Liang Q, Qi Q. Production of pyruvate in Saccharomyces cerevisiae through adaptive evolution and rational cofactor metabolic engineering. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2012.06.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
de Carvalho CCCR. Enzymatic and whole cell catalysis: finding new strategies for old processes. Biotechnol Adv 2010; 29:75-83. [PMID: 20837129 DOI: 10.1016/j.biotechadv.2010.09.001] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 09/06/2010] [Indexed: 10/19/2022]
Abstract
The use of enzymes and whole bacterial cells has allowed the production of a plethora of compounds that have been used for centuries in foods and beverages. However, only recently we have been able to master techniques that allow the design and development of new biocatalysts with high stability and productivity. Rational redesign and directed evolution have lead to engineered enzymes with new characteristics whilst the understanding of adaptation mechanisms in bacterial cells has allowed their use under new operational conditions. Bacteria able to thrive under the most extreme conditions have also provided new and extraordinary catalytic processes. In this review, the new tools available for the improvement of biocatalysts are presented and discussed.
Collapse
Affiliation(s)
- Carla C C R de Carvalho
- IBB-Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
21
|
Arense P, Bernal V, Iborra JL, Cánovas M. Metabolic adaptation of Escherichia coli to long-term exposure to salt stress. Process Biochem 2010. [DOI: 10.1016/j.procbio.2010.05.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Indigenous and environmental modulation of frequencies of mutation in Lactobacillus plantarum. Appl Environ Microbiol 2009; 76:1587-95. [PMID: 20038685 DOI: 10.1128/aem.02595-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reliability of microbial (starter) strains in terms of quality, functional properties, growth performance, and robustness is essential for industrial applications. In an industrial fermentation process, the bacterium should be able to successfully withstand various adverse conditions during processing, such as acid, osmotic, temperature, and oxidative stresses. Besides the evolved defense mechanisms, stress-induced mutations participate in adaptive evolution for survival under stress conditions. However, this may lead to accumulation of mutant strains, which may be accompanied by loss of desired functional properties. Defining the effects of specific fermentation or processing conditions on the mutation frequency is an important step toward preventing loss of genome integrity and maintaining the productivity of industrial strains. Therefore, a set of Lactobacillus plantarum mutator reporter strains suitable for qualitative and quantitative analysis of low-frequency mutation events was developed. The mutation reporter system constructed was validated by using chemical mutagenesis (N-methyl-N'-nitro-N-nitrosoguanidine) and by controlled expression of endogenous candidate mutator genes (e.g., a truncated derivative of the L. plantarum hexA gene). Growth at different temperatures, under low-pH conditions, at high salt concentrations, or under starvation conditions did not have a significant effect on the mutation frequency. However, incubation with sublethal levels of hydrogen peroxide resulted in a 100-fold increase in the mutation frequency compared to the background mutation frequency. Importantly, when cells of L. plantarum were adapted to 42 degrees C prior to treatment with sublethal levels of hydrogen peroxide, there was a 10-fold increase in survival after peroxide treatment, and there was a concomitant 50-fold decrease in the mutation frequency. These results show that specific environmental conditions encountered by bacteria may significantly influence the genetic stability of strains, while protection against mutagenic conditions may be obtained by pretreatment of cultures with other, nonmutagenic stress conditions.
Collapse
|
23
|
Ramlachan N, Anderson RC, Andrews K, Harvey RB, Nisbet DJ. A comparative study on the effects of tylosin on select bacteria during continuous flow culture of mixed populations of gut microflora derived from a feral and a domestic pig. Foodborne Pathog Dis 2008; 5:21-31. [PMID: 18260812 DOI: 10.1089/fpd.2007.0022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Continuous flow cultures of feral (culture FC) and domesticated (culture RPCF) pig gut microflora were established in steady state. Cultures were continuously infused with 25 or 100 microg tylosin/mL and sampled at intervals to assess effects on total culturable anaerobes, Bacteroides and Enterococcus via plating to agar supplemented without or with 100 microg tylosin/mL, the latter to assess bacterial sensitivity to tylosin. Endogenous tylosin-insensitive anaerobes within the cultures, while similar prior to tylosin administration, responded differently during tylosin administration, with concentrations in RPCF cultures becoming enriched more than in FC cultures. Tylosin-insensitive anaerobes in RPCF cultures persisted at increased concentrations after cessation of tylosin administration whereas concentrations in FC cultures decreased slightly. Concentrations of Bacteroides and endogenous Enterococcus recovered on medium without tylosin decreased to near or below detectable levels in FC cultures administered 25 or 100 microg tylosin/mL. Tylosin-insensitive Bacteroides were enriched to >5 log10 CFU/mL in RPCF cultures after 25 microg tylosin/mL but not at 100 microg tylosin/mL. Populations of endogenous tylosin-insensitive Enterococcus were enriched in RPCF but not FC cultures administered 25 or 100 microg tylosin/mL. In cultures administered 100 microg tylosin/mL, an exogenous-sourced E. faecium possessing tylosin resistance maintained itself only in the presence of tylosin. These results indicate that under the conditions of these tests, antibiotic exposure may enrich for antibiotic-insensitive bacteria populations of endogenous or exogenous origin but that the ability of an exogenous tylosin-resistant E. faecium to persist is reduced in the absence of the antibiotic, likely due to exclusion by native flora.
Collapse
Affiliation(s)
- Nicole Ramlachan
- USDA-ARS, Southern Plains Agricultural Research Center, Food & Feed Safety Research Unit, College Station, Texas 77843, USA
| | | | | | | | | |
Collapse
|
24
|
Adaptive evolution of a lactose-consuming Saccharomyces cerevisiae recombinant. Appl Environ Microbiol 2008; 74:1748-56. [PMID: 18245248 DOI: 10.1128/aem.00186-08] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The construction of Saccharomyces cerevisiae strains that ferment lactose has biotechnological interest, particularly for cheese whey fermentation. A flocculent lactose-consuming S. cerevisiae recombinant expressing the LAC12 (lactose permease) and LAC4 (beta-galactosidase) genes of Kluyveromyces lactis was constructed previously but showed poor efficiency in lactose fermentation. This strain was therefore subjected to an evolutionary engineering process (serial transfer and dilution in lactose medium), which yielded an evolved recombinant strain that consumed lactose twofold faster, producing 30% more ethanol than the original recombinant. We identified two molecular events that targeted the LAC construct in the evolved strain: a 1,593-bp deletion in the intergenic region (promoter) between LAC4 and LAC12 and a decrease of the plasmid copy number by about 10-fold compared to that in the original recombinant. The results suggest that the intact promoter was unable to mediate the induction of the transcription of LAC4 and LAC12 by lactose in the original recombinant and that the deletion established the transcriptional induction of both genes in the evolved strain. We propose that the tuning of the expression of the heterologous LAC genes in the evolved recombinant was accomplished by the interplay between the decreased copy number of both genes and the different levels of transcriptional induction for LAC4 and LAC12 resulting from the changed promoter structure. Nevertheless, our results do not exclude other possible mutations that may have contributed to the improved lactose fermentation phenotype. This study illustrates the usefulness of simple evolutionary engineering approaches in strain improvement. The evolved strain efficiently fermented threefold-concentrated cheese whey, providing an attractive alternative for the fermentation of lactose-based media.
Collapse
|
25
|
Masci P, Bernard O, Grognard F. Continuous Selection of the Fastest Growing Species in the Chemostat. ACTA ACUST UNITED AC 2008. [DOI: 10.3182/20080706-5-kr-1001.01642] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Wendisch VF, Bott M, Eikmanns BJ. Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr Opin Microbiol 2006; 9:268-74. [PMID: 16617034 DOI: 10.1016/j.mib.2006.03.001] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Accepted: 03/24/2006] [Indexed: 11/22/2022]
Abstract
Industrial microorganisms have been developed as biocatalysts to provide new or to optimize existing processes for the biotechnological production of chemicals from renewable plant biomass. Rational strain development by metabolic engineering is crucial to successful processes, and is based on efficient genetic tools and detailed knowledge of metabolic pathways and their regulation. This review summarizes recent advances in metabolic engineering of the industrial model bacteria Escherichia coli and Corynebacterium glutamicum that led to efficient recombinant biocatalysts for the production of acetate, pyruvate, ethanol, d- and l-lactate, succinate, l-lysine and l-serine.
Collapse
Affiliation(s)
- Volker F Wendisch
- Institute of Molecular Microbiology and Biotechnology, Westfalian Wilhelms University Münster, 48149 Münster, Germany.
| | | | | |
Collapse
|
27
|
Fong SS, Nanchen A, Palsson BO, Sauer U. Latent pathway activation and increased pathway capacity enable Escherichia coli adaptation to loss of key metabolic enzymes. J Biol Chem 2005; 281:8024-33. [PMID: 16319065 DOI: 10.1074/jbc.m510016200] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ability of biological systems to adapt to genetic and environmental perturbations is a fundamental but poorly understood process at the molecular level. By quantifying metabolic fluxes and global mRNA abundance, we investigated the genetic and metabolic mechanisms that underlie adaptive evolution of four metabolic gene deletion mutants of Escherichia coli (delta pgi, delta ppc, delta pta, and delta tpi) in parallel evolution experiments of each mutant. The initial response to the gene deletions was flux rerouting through local bypass reactions or normally latent pathways. The principal effect of evolution was improved capacity of already active pathways, whereas new flux distributions were not observed. Combinatorial changes in capacity and pathway activation, however, led to different intracellular flux states that enabled evolution in three of the four parallel cases tested. The molecular bases of the evolved phenotypes were then elucidated by global mRNA transcript analyses. Activation of latent pathways and flux changes in the tricarboxylic acid cycle were found to correlate well with molecular changes at the transcriptional level. Flux alterations in other central metabolic pathways, in contrast, were apparently not connected to changes in the transcriptional network. These results give new insight into the dynamics of the evolutionary process by demonstrating the flexibility of the metabolic network of E. coli to compensate for genetic perturbations and the utility of combining multiple high throughput data sets to differentiate between causal and noncausal mechanistic changes.
Collapse
Affiliation(s)
- Stephen S Fong
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond 28284-3028, USA.
| | | | | | | |
Collapse
|
28
|
Sonderegger M, Sauer U. Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl Environ Microbiol 2003; 69:1990-8. [PMID: 12676674 PMCID: PMC154834 DOI: 10.1128/aem.69.4.1990-1998.2003] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xylose utilization is of commercial interest for efficient conversion of abundant plant material to ethanol. Perhaps the most important ethanol-producing organism, Saccharomyces cerevisiae, however, is incapable of xylose utilization. While S. cerevisiae strains have been metabolically engineered to utilize xylose, none of the recombinant strains or any other naturally occurring yeast has been able to grow anaerobically on xylose. Starting with the recombinant S. cerevisiae strain TMB3001 that overexpresses the xylose utilization pathway from Pichia stipitis, in this study we developed a selection procedure for the evolution of strains that are capable of anaerobic growth on xylose alone. Selection was successful only when organisms were first selected for efficient aerobic growth on xylose alone and then slowly adapted to microaerobic conditions and finally anaerobic conditions, which indicated that multiple mutations were necessary. After a total of 460 generations or 266 days of selection, the culture reproduced stably under anaerobic conditions on xylose and consisted primarily of two subpopulations with distinct phenotypes. Clones in the larger subpopulation grew anaerobically on xylose and utilized both xylose and glucose simultaneously in batch culture, but they exhibited impaired growth on glucose. Surprisingly, clones in the smaller subpopulation were incapable of anaerobic growth on xylose. However, as a consequence of their improved xylose catabolism, these clones produced up to 19% more ethanol than the parental TMB3001 strain produced under process-like conditions from a mixture of glucose and xylose.
Collapse
|
29
|
Schmid A, Hollmann F, Park JB, Bühler B. The use of enzymes in the chemical industry in Europe. Curr Opin Biotechnol 2002; 13:359-66. [PMID: 12323359 DOI: 10.1016/s0958-1669(02)00336-1] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Many European chemical industries are in a phase of reorganization resulting in a general opening towards life sciences. Traditional chemical markets are served increasingly with products derived from bioprocesses or hybrid chemical/biocatalytic processes. Biocatalytic steps are already being used to produce a wide range of products, including agricultural chemicals, organics, drugs and plastic materials, to name but a few. Apart from the rapidly growing number of commercialized bioprocesses, a partial survey of exploratory activities points to future applications of enzymes in the European chemical industry, which will bring new products and technologies and, in some cases, replace traditional syntheses.
Collapse
Affiliation(s)
- Andreas Schmid
- Institute of Biotechnology, Swiss Federal Institute of Technology, Zurich, Hoenggerberg, CH-8093, Zurich, Switzerland.
| | | | | | | |
Collapse
|
30
|
Sauer U. Evolutionary engineering of industrially important microbial phenotypes. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2002; 73:129-69. [PMID: 11816810 DOI: 10.1007/3-540-45300-8_7] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The tremendous complexity of dynamic interactions in cellular systems often impedes practical applications of metabolic engineering that are largely based on available molecular or functional knowledge. In contrast, evolutionary engineering follows nature's 'engineering' principle by variation and selection. Thus, it is a complementary strategy that offers compelling scientific and applied advantages for strain development and process optimization, provided a desired phenotype is amenable to direct or indirect selection. In addition to simple empirical strain development by random mutation and direct selection on plates, evolutionary engineering also encompasses recombination and continuous evolution of large populations over many generations. Two distinct evolutionary engineering applications are likely to gain more relevance in the future: first, as an integral component in metabolic engineering of strains with improved phenotypes, and second, to elucidate the molecular basis of desired phenotypes for subsequent transfer to other hosts. The latter will profit from the broader availability of recently developed methodologies for global response analysis at the genetic and metabolic level. These methodologies facilitate identification of the molecular basis of evolved phenotypes. It is anticipated that, together with novel analytical techniques, bioinformatics, and computer modeling of cellular functions and activities, evolutionary engineering is likely to find its place in the metabolic engineer's toolbox for research and strain development. This review presents evolutionary engineering of whole cells as an emerging methodology that draws on the latest advances from a wide range of scientific and technical disciplines.
Collapse
Affiliation(s)
- U Sauer
- Institute of Biotechnology, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
31
|
Maresová H, Stepánek V, Kyslík P. A chemostat culture as a tool for the improvement of a recombinant E. coli strain over-producing penicillin G acylase. Biotechnol Bioeng 2001; 75:46-52. [PMID: 11536126 DOI: 10.1002/bit.1163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The recombinant strain RE3(pKA18) of Escherichia coli constitutively overproduces penicillin G acylase (PGA) from plasmid-borne gene pga. The host strain RE3 bears the same pga gene on its chromosome, the expression of which is controlled by the natural mechanism of induction with phenylacetic acid (PA). To evaluate the maximum biosynthetic capacity for PGA, induction of the chromosomal pga by PA was studied in a culture of the recombinant strain. PGA production by batch cultures of RE3(pKA18) and RE3 showed a different response to the addition of PA to the medium: while an addition of PA induces PGA in a culture of strain RE3 as expected, in recombinant cells it lowers the specific activity of PGA and a large amount of PGA is released into the culture medium. To improve the PGA production, the strain RE3(pKA18) was cultured in a carbon-limited chemostat and subjected to selection pressure in a medium supplemented with phenylacetic acid amide (PAA). Phenylacetic acid amide served as a source of nitrogen, an inducer of PGA and a factor exerting positive selection pressure on the maintenance of the recombinant plasmid. After 130 generations of growth in the presence of the inducer, no recombinant strain with constitutive expression of the chromosomal gene pga was detected in the prevailing P(+) subpopulation in the chemostat. Shake-flask experiments with the parent recombinant strain RE3(pKA18), host strain RE3, chemostat evolvant ERE3(epKA18), the cured host ERE3 alone, and its derivative after retransformation with ancestral plasmid ERE3(pKA18) showed that inactivation of the plasmid-borne pga by a frame-shift mutation (plasmid epKA18) occurred in the plasmid-bearing subpopulation accumulated in the chemostat. Marked adaptive changes evolved in the host ERE3 during a 130 generation culture: (1) the specific growth rate of the host increased by 30% in a medium without PA, (2) the copy number of plasmids pKA18 and epKA18 in the host cultured in PA-free medium dropped by about 40%, and (3) the leakage of PGA from the cell in the presence of PA found in strain RE3(pKA18) was not observed in strain ERE3(pKA18). This new recombinant strain with modified traits was constructed by means of retransformation of the evolved host ERE3 with ancestral plasmid pKA18.
Collapse
Affiliation(s)
- H Maresová
- Institute of Microbiology CAS, Videnská 1083, Prague 4, 142 20, Czech Republic
| | | | | |
Collapse
|