1
|
Deng Y, Li F, Shang L, Hu Z, Yue C, Tang YZ. The resting cyst of dinoflagellate Scrippsiella acuminata host bacterial microbiomes with more diverse trophic strategies under conditions typically observed in marine sediments. Front Microbiol 2024; 15:1407459. [PMID: 39104580 PMCID: PMC11298437 DOI: 10.3389/fmicb.2024.1407459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Variation in the condition of marine sediments provides selective preservation milieus, which act as a key determinant for the abundance and distribution of dinoflagellate resting cysts in natural sediments. Microbial degradation is an understudied biological factor of potential importance in the processes. However, gaps remain in our knowledge about the fundamental information of the bacterial consortia associated with dinoflagellate resting cysts both in laboratory cultures and in the field. Here we used Scrippsiella acuminata as a representative of cyst-producing dinoflagellates to delineate the diversity and composition of bacterial microbiomes co-existing with the laboratory-cultured resting cysts, and to explore possible impacts of low temperature, darkness, and anoxia (the mock conditions commonly observed in marine sediments) on the associated bacterial consortia. Bacterial microbiome with high diversity were revealed associated with S. acuminata at resting stage. The mock conditions could significantly shift bacterial community structure and exert notably inhibitory effects on growth-promoting bacteria. Resting cysts under conditions typically observed in marine sediments fostered bacterial microbiomes with more diverse trophic strategies, characteristic of prominently enriched anaerobic chemotrophic bacteria generating energy via respiration with several different terminal electron acceptors, which yielded more acidic milieu unfavorable for the preservation of calcareous resting cysts. Our findings suggest that there is complex and dynamic interaction between dinoflagellates resting cysts and the associated bacterial consortia in natural sediments. This intrinsic interaction may influence the maintenance and/or accumulation of dinoflagellate resting cysts with potential of germination and initiation blooms in the field.
Collapse
Affiliation(s)
- Yunyan Deng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Fengting Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Lixia Shang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Zhangxi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Caixia Yue
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Ying Zhong Tang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
2
|
Gorter de Vries PJ, Mol V, Sonnenschein N, Jensen TØ, Nielsen AT. Probing efficient microbial CO 2 utilisation through metabolic and process modelling. Microb Biotechnol 2024; 17:e14414. [PMID: 38380934 PMCID: PMC10880515 DOI: 10.1111/1751-7915.14414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/29/2023] [Accepted: 01/10/2024] [Indexed: 02/22/2024] Open
Abstract
Acetogenic gas fermentation is increasingly studied as a promising technology to upcycle carbon-rich waste gasses. Currently the product range is limited, and production yields, rates and titres for a number of interesting products do not allow for economically viable processes. By pairing process modelling and host-agnostic metabolic modelling, we compare fermentation conditions and various products to optimise the processes. The models were then used in a simulation of an industrial-scale bubble column reactor. We find that increased temperatures favour gas transfer rates, particularly for the valuable and limiting H2 , while furthermore predicting an optimal feed composition of 9:1 mol H2 to mol CO2 . Metabolically, the increased non-growth associated maintenance requirements of thermophiles favours the formation of catabolic products. To assess the expansion of the product portfolio beyond acetate, both a product volatility analysis and a metabolic pathway model were implemented. In-situ recovery of volatile products is shown to be within range for acetone but challenging due to the extensive evaporation of water, while the direct production of more valuable compounds by acetogens is metabolically unfavourable compared to acetate and ethanol. We discuss alternative approaches to overcome these challenges to utilise acetogenic CO2 fixation to produce a wider range of carbon negative chemicals.
Collapse
Affiliation(s)
- Philip J. Gorter de Vries
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens LyngbyDenmark
| | - Viviënne Mol
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens LyngbyDenmark
| | - Nikolaus Sonnenschein
- Department of Biotechnology and BiomedicineTechnical University of DenmarkKongens LyngbyDenmark
| | - Torbjørn Ølshøj Jensen
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens LyngbyDenmark
- AgainSøborgDenmark
| | - Alex Toftgaard Nielsen
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens LyngbyDenmark
| |
Collapse
|
3
|
Zhang ZF, Liu LR, Pan YP, Pan J, Li M. Long-read assembled metagenomic approaches improve our understanding on metabolic potentials of microbial community in mangrove sediments. MICROBIOME 2023; 11:188. [PMID: 37612768 PMCID: PMC10464287 DOI: 10.1186/s40168-023-01630-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Mangrove wetlands are coastal ecosystems with important ecological features and provide habitats for diverse microorganisms with key roles in nutrient and biogeochemical cycling. However, the overall metabolic potentials and ecological roles of microbial community in mangrove sediment are remained unanswered. In current study, the microbial and metabolic profiles of prokaryotic and fungal communities in mangrove sediments were investigated using metagenomic analysis based on PacBio single-molecule real time (SMRT) and Illumina sequencing techniques. RESULTS Comparing to Illumina short reads, the incorporation of PacBio long reads significantly contributed to more contiguous assemblies, yielded more than doubled high-quality metagenome-assembled genomes (MAGs), and improved the novelty of the MAGs. Further metabolic reconstruction for recovered MAGs showed that prokaryotes potentially played an essential role in carbon cycling in mangrove sediment, displaying versatile metabolic potential for degrading organic carbons, fermentation, autotrophy, and carbon fixation. Mangrove fungi also functioned as a player in carbon cycling, potentially involved in the degradation of various carbohydrate and peptide substrates. Notably, a new candidate bacterial phylum named as Candidatus Cosmopoliota with a ubiquitous distribution is proposed. Genomic analysis revealed that this new phylum is capable of utilizing various types of organic substrates, anaerobic fermentation, and carbon fixation with the Wood-Ljungdahl (WL) pathway and the reverse tricarboxylic acid (rTCA) cycle. CONCLUSIONS The study not only highlights the advantages of HiSeq-PacBio Hybrid assembly for a more complete profiling of environmental microbiomes but also expands our understanding of the microbial diversity and potential roles of distinct microbial groups in biogeochemical cycling in mangrove sediment. Video Abstract.
Collapse
Affiliation(s)
- Zhi-Feng Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Present Address: Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Li-Rui Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yue-Ping Pan
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Jie Pan
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China.
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| |
Collapse
|
4
|
Lin TE, Darvishi S. A Brief Review of In Situ and Operando Electrochemical Analysis of Bacteria by Scanning Probes. BIOSENSORS 2023; 13:695. [PMID: 37504094 PMCID: PMC10377567 DOI: 10.3390/bios13070695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023]
Abstract
Bacteria are similar to social organisms that engage in critical interactions with one another, forming spatially structured communities. Despite extensive research on the composition, structure, and communication of bacteria, the mechanisms behind their interactions and biofilm formation are not yet fully understood. To address this issue, scanning probe techniques such as atomic force microscopy (AFM), scanning electrochemical microscopy (SECM), scanning electrochemical cell microscopy (SECCM), and scanning ion-conductance microscopy (SICM) have been utilized to analyze bacteria. This review article focuses on summarizing the use of electrochemical scanning probes for investigating bacteria, including analysis of electroactive metabolites, enzymes, oxygen consumption, ion concentrations, pH values, biofilms, and quorum sensing molecules to provide a better understanding of bacterial interactions and communication. SECM has been combined with other techniques, such as AFM, inverted optical microscopy, SICM, and fluorescence microscopy. This allows a comprehensive study of the surfaces of bacteria while also providing more information on their metabolic activity. In general, the use of scanning probes for the detection of bacteria has shown great promise and has the potential to provide a powerful tool for the study of bacterial physiology and the detection of bacterial infections.
Collapse
Affiliation(s)
- Tzu-En Lin
- Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Sorour Darvishi
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Sun Y, Kokko M, Vassilev I. Anode-assisted electro-fermentation with Bacillus subtilis under oxygen-limited conditions. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:6. [PMID: 36627716 PMCID: PMC9832610 DOI: 10.1186/s13068-022-02253-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Bacillus subtilis is generally regarded as a ubiquitous facultative anaerobe. Oxygen is the major electron acceptor of B. subtilis, and when oxygen is absent, B. subtilis can donate electrons to nitrate or perform fermentation. An anode electrode can also be used by microorganisms as the electron sink in systems called anodic electro-fermentation. The facultative anaerobic character of B. subtilis makes it an excellent candidate to explore with different electron acceptors, such as an anode. This study aimed to optimise industrial aerobic bioprocesses using alternative electron acceptors. In particular, different end product spectrum of B. subtilis with various electron acceptors, including anode from the electro-fermentation system, was investigated. RESULTS B. subtilis was grown using three electron acceptors, i.e. oxygen, nitrate and anode (poised at a potential of 0.7 V vs. standard hydrogen electrode). The results showed oxygen had a crucial role for cells to remain metabolically active. When nitrate or anode was applied as the sole electron acceptor anaerobically, immediate cell lysis and limited glucose consumption were observed. In anode-assisted electro-fermentation with a limited aeration rate, acetoin, as the main end product showed the highest yield of 0.78 ± 0.04 molproduct/molglucose, two-fold higher than without poised potential (0.39 ± 0.08 molproduct/molglucose). CONCLUSIONS Oxygen controls B. subtilis biomass growth, alternative electron acceptors utilisation and metabolites formation. Limited oxygen/air supply enabled the bacteria to donate excess electrons to nitrate or anode, leading to steered product spectrum. The anode-assisted electro-fermentation showed its potential to boost acetoin production for future industrial biotechnology applications.
Collapse
Affiliation(s)
- Yu Sun
- grid.502801.e0000 0001 2314 6254Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720 Tampere, Finland
| | - Marika Kokko
- grid.502801.e0000 0001 2314 6254Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720 Tampere, Finland
| | - Igor Vassilev
- grid.502801.e0000 0001 2314 6254Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720 Tampere, Finland
| |
Collapse
|
6
|
Brahim Belhaouari D, Pires De Souza GA, Lamb DC, Kelly SL, Goldstone JV, Stegeman JJ, Colson P, La Scola B, Aherfi S. Metabolic arsenal of giant viruses: Host hijack or self-use? eLife 2022; 11:e78674. [PMID: 35801640 PMCID: PMC9270025 DOI: 10.7554/elife.78674] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/22/2022] [Indexed: 12/11/2022] Open
Abstract
Viruses generally are defined as lacking the fundamental properties of living organisms in that they do not harbor an energy metabolism system or protein synthesis machinery. However, the discovery of giant viruses of amoeba has fundamentally challenged this view because of their exceptional genome properties, particle sizes and encoding of the enzyme machinery for some steps of protein synthesis. Although giant viruses are not able to replicate autonomously and still require a host for their multiplication, numerous metabolic genes involved in energy production have been recently detected in giant virus genomes from many environments. These findings have further blurred the boundaries that separate viruses and living organisms. Herein, we summarize information concerning genes and proteins involved in cellular metabolic pathways and their orthologues that have, surprisingly, been discovered in giant viruses. The remarkable diversity of metabolic genes described in giant viruses include genes encoding enzymes involved in glycolysis, gluconeogenesis, tricarboxylic acid cycle, photosynthesis, and β-oxidation. These viral genes are thought to have been acquired from diverse biological sources through lateral gene transfer early in the evolution of Nucleo-Cytoplasmic Large DNA Viruses, or in some cases more recently. It was assumed that viruses are capable of hijacking host metabolic networks. But the giant virus auxiliary metabolic genes also may represent another form of host metabolism manipulation, by expanding the catalytic capabilities of the host cells especially in harsh environments, providing the infected host cells with a selective evolutionary advantage compared to non-infected cells and hence favoring the viral replication. However, the mechanism of these genes' functionality remains unclear to date.
Collapse
Affiliation(s)
- Djamal Brahim Belhaouari
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), IHU Méditerranée Infection, Marseille, France, Aix-Marseille UniversitéMarseilleFrance
| | - Gabriel Augusto Pires De Souza
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), IHU Méditerranée Infection, Marseille, France, Aix-Marseille UniversitéMarseilleFrance
| | - David C Lamb
- Faculty of Medicine, Health and Life Sciences, Institute of Life Science, Swansea UniversitySwanseaUnited Kingdom
| | - Steven L Kelly
- Faculty of Medicine, Health and Life Sciences, Institute of Life Science, Swansea UniversitySwanseaUnited Kingdom
| | - Jared V Goldstone
- Biology Department, Woods Hole Oceanographic InstitutionWoods HoleUnited States
| | - John J Stegeman
- Biology Department, Woods Hole Oceanographic InstitutionWoods HoleUnited States
| | - Philippe Colson
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), IHU Méditerranée Infection, Marseille, France, Aix-Marseille UniversitéMarseilleFrance
- Assistance Publique - Hôpitaux de Marseille (AP-HM)MarseilleFrance
| | - Bernard La Scola
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), IHU Méditerranée Infection, Marseille, France, Aix-Marseille UniversitéMarseilleFrance
- Assistance Publique - Hôpitaux de Marseille (AP-HM)MarseilleFrance
| | - Sarah Aherfi
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), IHU Méditerranée Infection, Marseille, France, Aix-Marseille UniversitéMarseilleFrance
- Assistance Publique - Hôpitaux de Marseille (AP-HM)MarseilleFrance
| |
Collapse
|
7
|
Agga GE, Couch M, Parekh RR, Mahmoudi F, Appala K, Kasumba J, Loughrin JH, Conte ED. Lagoon, Anaerobic Digestion, and Composting of Animal Manure Treatments Impact on Tetracycline Resistance Genes. Antibiotics (Basel) 2022; 11:391. [PMID: 35326854 PMCID: PMC8944653 DOI: 10.3390/antibiotics11030391] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 02/04/2023] Open
Abstract
Increased demand for animal protein is met by increased food animal production resulting in large quantities of manure. Animal producers, therefore, need sustainable agricultural practices to protect environmental health. Large quantities of antimicrobials are used in commercial food animal production. Consequently, antimicrobial-resistant bacteria and the resistance genes emerge and are excreted through feces. Manure management is essential for the safe disposal of animal waste. Lagoons, with or without covers, and anaerobic digesters, with the primary purpose of methane production, and composting, with the primary purpose of producing organic fertilizer, are widely used methods of manure treatment. We reviewed manure management practices and their impact on tetracycline resistance genes. Lagoons are maintained at ambient temperatures; especially uncovered lagoons are the least effective in removing tetracycline resistance genes. However, some modifications can improve the performance of lagoons: sequential use of uncovered lagoons and the use of covered lagoons resulted in a one-log reduction, while post-treatments such as biofiltration following covered lagoon treatment resulted in 3.4 log reduction. Mesophilic digestion of animal manure did not have any significant effect; only a 0.7 log reduction in tet(A) was observed in one study. While thermophilic anaerobic digesters are effective, if properly operated, they are expensive for animal producers. Aerobic thermophilic composting is a promising technology if optimized with its economic benefits. Composting of raw animal manure can result in up to a 2.5 log reduction, and postdigestion composting can reduce tetracycline resistance gene concentration by >80%. In general, manure management was not designed to mitigate antimicrobial resistance; future research is needed to optimize the economic benefits of biogas or organic fertilizer on the one hand and for the mitigation of foodborne pathogens and antimicrobial resistance on the other.
Collapse
Affiliation(s)
- Getahun E. Agga
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, USDA, Bowling Green, KY 42101, USA; (R.R.P.); (J.H.L.)
| | - Melanie Couch
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, KY 42101, USA; (M.C.); (F.M.); (K.A.); (J.K.); (E.D.C.)
| | - Rohan R. Parekh
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, USDA, Bowling Green, KY 42101, USA; (R.R.P.); (J.H.L.)
| | - Faranak Mahmoudi
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, KY 42101, USA; (M.C.); (F.M.); (K.A.); (J.K.); (E.D.C.)
| | - Keerthi Appala
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, KY 42101, USA; (M.C.); (F.M.); (K.A.); (J.K.); (E.D.C.)
| | - John Kasumba
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, KY 42101, USA; (M.C.); (F.M.); (K.A.); (J.K.); (E.D.C.)
| | - John H. Loughrin
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, USDA, Bowling Green, KY 42101, USA; (R.R.P.); (J.H.L.)
| | - Eric D. Conte
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, KY 42101, USA; (M.C.); (F.M.); (K.A.); (J.K.); (E.D.C.)
| |
Collapse
|
8
|
Su J, Liu J, Guo D. Application of a novel Polydopamine@EDTA@Fe3O4 material for efficient simultaneous nitrogen and nickel removal in an immobilized biofilm reactor. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2020. [DOI: 10.1515/ijcre-2019-0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
AbstractHigh NO3− and Ni(II) concentrations in mining wastewater pose a risk to public health. In this study, the NO3− and Ni(II) removal process was performed using a novel PDA@EDTA@Fe3O4 immobilization carrier. The effects of hydraulic retention time (HRT; 6, 8, and 10 h), along with Fe(II) (10, 15, and 20 mg/L) and Ni(II) (10, 20, and 30 mg/L) influent concentrations on the simultaneous removal of NO3− and Ni(II) were investigated in immobilized biofilm reactors. Results showed that the highest NO3− removal efficiency (97.78%) and Ni(II) removal efficiency (91.21%) were obtained in the immobilized biofilm reactor with PDA@EDTA@Fe3O4 under the conditions of 10 h HRT, influent Fe(II) concentrations of 20 mg/L and Ni(II) concentrations of 10 mg/L. High-throughput sequencing results confirmed that Cupriavidus sp.CC1 plays a major role in the functioning of the immobilized reactor. This process provides the potential for effective treatment of NO3− and Ni(II) polluted water.
Collapse
Affiliation(s)
- Junfeng Su
- School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, 710055, Xi’an, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi’an University of Architecture and Technology, 710055, Xi’an, China
- Xi’an University of Architecture and TechnologyUniversity of South Australia An De College, 710055, Xi’an, China
| | - Jian Liu
- Xi’an University of Architecture and TechnologyUniversity of South Australia An De College, 710055, Xi’an, China
| | - Dongxin Guo
- School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, 710055, Xi’an, China
| |
Collapse
|
9
|
Samson R, Shah M, Yadav R, Sarode P, Rajput V, Dastager SG, Dharne MS, Khairnar K. Metagenomic insights to understand transient influence of Yamuna River on taxonomic and functional aspects of bacterial and archaeal communities of River Ganges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 674:288-299. [PMID: 31005831 DOI: 10.1016/j.scitotenv.2019.04.166] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
River confluences are interesting ecosystems to investigate for their microbial community structure and functional potentials. River Ganges is one of the most important and holy river of India with great mythological history and religious significance. The Yamuna River meets Ganges at the Prayagraj (formerly known as Allahabad), India to form a unique confluence. The influence of Yamuna River on taxonomic and functional aspects of microbiome at this confluence and its downstream, remains unexplored. To unveil this dearth, whole metagenome sequencing of the microbial (bacterial and archaeal) community from the sediment samples of December 2017 sampling expedition was executed using high throughput MinION technology. Results revealed differences in the relative abundance of bacterial and archaeal communities across the confluence. Grouped by the confluence, a higher abundance of Proteobacteria and lower abundance of Bacteroidetes and Firmicutes was observed for Yamuna River (G15Y) and at immediate downstream of confluence of Ganges (G15DS), as compared to the upstream, confluence, and farther downstream of confluence. A similar trend was observed for archaeal communities with a higher abundance of Euryarchaeota in G15Y and G15DS, indicating Yamuna River's influence. Functional gene(s) analysis revealed the influence of Yamuna River on xenobiotic degradation, resistance to toxic compounds, and antibiotic resistance interceded by the autochthonous microbes at the confluence and succeeding downstream locations. Overall, similar taxonomic and functional profiles of microbial communities before confluence (upstream of Ganges) and farther downstream of confluence, suggested a transient influence of Yamuna River. Our study is significant since it may be foundational basis to understand impact of Yamuna River and also rare event of mass bathing on the microbiome of River Ganges. Further investigation would be required to understand, the underlying cause behind the restoration of microbial profiles post-confluence farther zone, to unravel the rejuvenation aspects of this unique ecosystem.
Collapse
Affiliation(s)
- Rachel Samson
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India
| | - Manan Shah
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India
| | - Rakeshkumar Yadav
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Academy of Scientific and Industrial Research (AcSIR), New Delhi, India
| | - Priyanka Sarode
- Environmental Virology Cell (EVC), CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440020, India
| | - Vinay Rajput
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India
| | - Syed G Dastager
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Academy of Scientific and Industrial Research (AcSIR), New Delhi, India
| | - Mahesh S Dharne
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Academy of Scientific and Industrial Research (AcSIR), New Delhi, India.
| | - Krishna Khairnar
- Academy of Scientific and Industrial Research (AcSIR), New Delhi, India; Environmental Virology Cell (EVC), CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440020, India.
| |
Collapse
|
10
|
Teng Y, Xu Y, Wang X, Christie P. Function of Biohydrogen Metabolism and Related Microbial Communities in Environmental Bioremediation. Front Microbiol 2019; 10:106. [PMID: 30837956 PMCID: PMC6383490 DOI: 10.3389/fmicb.2019.00106] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/17/2019] [Indexed: 01/30/2023] Open
Abstract
Hydrogen (H2) metabolism has attracted considerable interest because the activities of H2-producing and consuming microbes shape the global H2 cycle and may have vital relationships with the global cycling of other elements. There are many pathways of microbial H2 emission and consumption which may affect the structure and function of microbial communities. A wide range of microbial groups employ H2 as an electron donor to catalyze the reduction of pollutants such as organohalides, azo compounds, and trace metals. Syntrophy coupled mutualistic interaction between H2-producing and H2-consuming microorganisms can transfer H2 and be accompanied by the removal of toxic compounds. Moreover, hydrogenases have been gradually recognized to have a key role in the progress of pollutant degradation. This paper reviews recent advances in elucidating role of H2 metabolism involved in syntrophy and hydrogenases in environmental bioremediation. Further investigations should focus on the application of bioenergy in bioremediation to make microbiological H2 metabolism a promising remediation strategy.
Collapse
Affiliation(s)
- Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yongfeng Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomi Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Peter Christie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
11
|
Effects of Carbon Addition on Dissimilatory Fe(III) Reduction in Freshwater Marsh and Meadow Wetlands. SUSTAINABILITY 2018. [DOI: 10.3390/su10114309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The progress of dissimilatory iron(III) reduction is widespread in natural environments, particularly in anoxic habitats; in fact, wetland ecosystems are considered as “hotspots” of dissimilatory Fe(III) reduction. In this study, we conducted soil slurry and microbial inoculation anaerobic incubation with glucose, pyruvate, and soluble quinone anthraquinone-2,6-disulphonate (AQDS) additions in freshwater marsh and meadow wetlands in the Sanjiang Plain, to evaluate the role of carbon addition in the rates and dynamics of iron reduction. Dissimilatory Fe(III) reduction in marsh wetlands responded more quickly and showed twice the potential for Fe(III) reduction as that in meadow wetland. Fe(III) reduction rate in marsh and meadow wetlands was 76% and 30%, respectively. Glucose had a higher capacity to enhance Fe(III) reduction than pyruvate, which provides valuable information for the further isolation of Fe reduction bacteria in pure culture. AQDS could dramatically increase potential Fe(III) reduction as an electron shuttle in both wetlands. pH exhibited a negative relationship with Fe(III) reduction. In view of the significance of freshwater wetlands in the global carbon and iron cycle, further profound research is now essential and should explore the enzymatic mechanisms underlying iron reduction in freshwater wetlands.
Collapse
|
12
|
Nathanael JG, Gamon LF, Cordes M, Rablen PR, Bally T, Fromm KM, Giese B, Wille U. Amide Neighbouring-Group Effects in Peptides: Phenylalanine as Relay Amino Acid in Long-Distance Electron Transfer. Chembiochem 2018; 19:922-926. [PMID: 29460322 DOI: 10.1002/cbic.201800098] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Indexed: 12/27/2022]
Abstract
In nature, proteins serve as media for long-distance electron transfer (ET) to carry out redox reactions in distant compartments. This ET occurs either by a single-step superexchange or through a multi-step charge hopping process, which uses side chains of amino acids as stepping stones. In this study we demonstrate that Phe can act as a relay amino acid for long-distance electron hole transfer through peptides. The considerably increased susceptibility of the aromatic ring to oxidation is caused by the lone pairs of neighbouring amide carbonyl groups, which stabilise the Phe radical cation. This neighbouring-amide-group effect helps improve understanding of the mechanism of extracellular electron transfer through conductive protein filaments (pili) of anaerobic bacteria during mineral respiration.
Collapse
Affiliation(s)
- Joses G Nathanael
- School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria, 3010, Australia
| | - Luke F Gamon
- School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria, 3010, Australia
| | - Meike Cordes
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Paul R Rablen
- Department of Chemistry and Biochemistry, Swarthmore College, 500 College Avenue, Swarthmore, PA, 19081-1397, USA
| | - Thomas Bally
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| | - Katharina M Fromm
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| | - Bernd Giese
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| | - Uta Wille
- School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria, 3010, Australia
| |
Collapse
|
13
|
Xu Y, Xue L, Ye Q, Franks AE, Zhu M, Feng X, Xu J, He Y. Inhibitory Effects of Sulfate and Nitrate Reduction on Reductive Dechlorination of PCP in a Flooded Paddy Soil. Front Microbiol 2018; 9:567. [PMID: 29643842 PMCID: PMC5882776 DOI: 10.3389/fmicb.2018.00567] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/13/2018] [Indexed: 01/12/2023] Open
Abstract
Pentachlorophenol (PCP) is highly toxic and persistent in soils. Bioreduction of PCP often co-occurs with varying concentrations of sulfate and nitrate in flooded paddy soils where each can act as an electron acceptor. Anaerobic soil microcosms were constructed to evaluate the influence of sulfate and nitrate amendments and their redox processes. Microcosms with varying sulfate and nitrate concentrations demonstrated an inhibitory effect on reductive dechlorination of PCP compared to an untreated control. Compared to nitrate, sulfate exhibited a more significant impact on PCP dechlorination, as evidenced by a lower maximum reaction rate and a longer time to reach the maximum reaction rate. Dechlorination of PCP was initiated at the ortho-position, and then at the para- and meta-positions to form 3-CP as the final product in all microcosms. Deep sequencing of microbial communities in the microcosms revealed a strong variation in bacterial taxon among treatments. Specialized microbial groups, such as the genus of Desulfovibrio responding to the addition of sulfate, had a potential to mediate the competitive microbial dechlorination of PCP. Our results provide an insight into the competitive microbial-mediated reductive dechlorination of PCP in natural flooded soil or sediment environments.
Collapse
Affiliation(s)
- Yan Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, China
| | - Lili Xue
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, China
| | - Qi Ye
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, China
| | - Ashley E Franks
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC, Australia.,Centre for Future Landscapes, La Trobe University, Melbourne, VIC, Australia
| | - Min Zhu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, China
| | - Xi Feng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, China
| | - Yan He
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, China
| |
Collapse
|
14
|
Mahmoud M, Torres CI, Rittmann BE. Changes in Glucose Fermentation Pathways as a Response to the Free Ammonia Concentration in Microbial Electrolysis Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13461-13470. [PMID: 29039192 DOI: 10.1021/acs.est.6b05620] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
When a mixed-culture microbial electrolysis cell (MEC) is fed with a fermentable substrate, such as glucose, a significant fraction of the substrate's electrons ends up as methane (CH4) through hydrogenotrophic methanogenesis, an outcome that is undesired. Here, we show that free ammonia-nitrogen (FAN, which is NH3) altered the glucose fermentation pathways in batch MECs, minimizing the production of H2, the "fuel" for hydrogenotrophic methanogens. Consequently, the Coulombic efficiency (CE) increased: 57% for 0.02 g of FAN/L of fed-MEC, compared to 76% for 0.18 g of FAN/L of fed-MECs and 62% for 0.37 g of FAN/L of fed-MECs. Increasing the FAN concentration was associated with the accumulation of higher organic acids (e.g., lactate, iso-butyrate, and propionate), which was accompanied by increasing relative abundances of phylotypes that are most closely related to anode respiration (Geobacteraceae), lactic-acid production (Lactobacillales), and syntrophic acetate oxidation (Clostridiaceae). Thus, the microbial community established syntrophic relationships among glucose fermenters, acetogens, and anode-respiring bacteria (ARB). The archaeal population of the MEC fed 0.02 g FAN/L was dominated by Methanobacterium, but 0.18 and 0.37 g FAN/L led to Methanobrevibacter becoming the most abundant species. Our results provide insight into a way to decrease CH4 production and increase CE using FAN to control the fermentation step, instead of inhibiting methanogens using expensive or toxic chemical inhibitors, such as 2-bromoethanesulfonic acid.
Collapse
Affiliation(s)
- Mohamed Mahmoud
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University , 727 Tyler Road, Tempe, Arizona 85287, United States
- School of Sustainable Engineering and the Built Environment, Arizona State University , Tempe, Arizona 85287, United States
- Water Pollution Research Department, National Research Centre , 33 El-Buhouth St., Dokki, Cairo 12311, Egypt
| | - César I Torres
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University , 727 Tyler Road, Tempe, Arizona 85287, United States
- School for Engineering of Matter, Transport and Energy, Arizona State University , Tempe, Arizona 85287, United States
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University , 727 Tyler Road, Tempe, Arizona 85287, United States
- School of Sustainable Engineering and the Built Environment, Arizona State University , Tempe, Arizona 85287, United States
| |
Collapse
|
15
|
Liu CY, Cade-Menun BJ, Xu XH, Fan JL. Electron Donor Substances and Iron Oxides Stimulate Anaerobic Dechlorination of DDT in a Slurry System with Hydragric Acrisols. JOURNAL OF ENVIRONMENTAL QUALITY 2016; 45:331-340. [PMID: 26828189 DOI: 10.2134/jeq2015.07.0406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The interactive effects between electron donor substances and iron (Fe) oxides have significant influence on electron transfer and the growth of Fe-reducing bacteria, which may affect the reductive dechlorination of 1,1,1-trichoro-2,2-bis(p-chlorophenyl)ethane (DDT) in soils. To evaluate the roles of volatile fatty acids and Fe(III) oxide in accelerating the reductive dechlorination of DDT in Hydragric Acrisols, a batch anaerobic incubation experiment was conducted in a slurry system with the following seven treatments: sterile soil, control (DDT-contaminated soil), lactic acid, propionic acid, goethite, lactic acid + goethite, and propionic acid + goethite. Results showed that after 20 d of incubation, DDT residues for these treatments decreased by 34, 65, 77, 81, 77, 90, and 92% of the initial quantities, respectively, with 1,1-dichloro-2,2-bis(4-chlorophenyl)-ethane as the dominant metabolite. The application of lactic acid had no significant effect on DDT dechlorination in the first 8 d while the methanogenesis rate increased quickly but accelerated DDT dechlorination after Day 8 while the methanogenesis rate decreased and Fe(II) contents increased. The application of propionic acid enhanced DDT dechlorination rates throughout the incubation. The amendment by goethite stimulated microbial reduction of Fe(III) oxides to generate Fe(II), which was an efficient electron donor, thus accelerating DDT dechlorination significantly in the early incubation period. A synergetic interaction that accelerated DDT dechlorination, either between lactic acid and goethite or between propionic acid and goethite, was obtained. The results will be of great significance to develop efficient in situ remediation technology of DDT-contaminated soil.
Collapse
|
16
|
Liu C, Xu X, Fan J. Accelerated anaerobic dechlorination of DDT in slurry with Hydragric Acrisols using citric acid and anthraquinone-2,6-disulfonate (AQDS). J Environ Sci (China) 2015; 38:87-94. [PMID: 26702971 DOI: 10.1016/j.jes.2015.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/05/2015] [Accepted: 05/11/2015] [Indexed: 06/05/2023]
Abstract
The application of electron donor and electron shuttle substances has a vital influence on electron transfer, thus may affect the reductive dechlorination of 1,1,1-trichoro-2,2-bis(p-chlorophenyl)ethane (DDT) in anaerobic reaction systems. To evaluate the roles of citric acid and anthraquinone-2,6-disulfonate (AQDS) in accelerating the reductive dechlorination of DDT in Hydragric Acrisols that contain abundant iron oxide, a batch anaerobic incubation experiment was conducted in a slurry system with four treatments of (1) control, (2) citric acid, (3) AQDS, and (4) citric acid+AQDS. Results showed that DDT residues decreased by 78.93%-92.11% of the initial quantities after 20days of incubation, and 1,1-dichloro-2,2-bis(4-chlorophenyl)-ethane (DDD) was the dominant metabolite. The application of citric acid accelerated DDT dechlorination slightly in the first 8days, while the methanogenesis rate increased quickly, and then the acceleration effect improved after the 8th day while the methanogenesis rate decreased. The amendment by AQDS decreased the Eh value of the reaction system and accelerated microbial reduction of Fe(III) oxides to generate Fe(II), which was an efficient electron donor, thus enhancing the reductive dechlorination rate of DDT. The addition of citric acid+AQDS was most efficient in stimulating DDT dechlorination, but no significant interaction between citric acid and AQDS on DDT dechlorination was observed. The results will be of great significance for developing an efficient in situ remediation strategy for DDT-contaminated sites.
Collapse
Affiliation(s)
- Cuiying Liu
- Jiangsu Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Xianghua Xu
- Jiangsu Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jianling Fan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
17
|
Review of Biohydrometallurgical Metals Extraction from Polymetallic Mineral Resources. MINERALS 2014. [DOI: 10.3390/min5010001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Probst AJ, Birarda G, Holman HYN, DeSantis TZ, Wanner G, Andersen GL, Perras AK, Meck S, Völkel J, Bechtel HA, Wirth R, Moissl-Eichinger C. Coupling genetic and chemical microbiome profiling reveals heterogeneity of archaeome and bacteriome in subsurface biofilms that are dominated by the same archaeal species. PLoS One 2014; 9:e99801. [PMID: 24971452 PMCID: PMC4074051 DOI: 10.1371/journal.pone.0099801] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/17/2014] [Indexed: 02/01/2023] Open
Abstract
Earth harbors an enormous portion of subsurface microbial life, whose microbiome flux across geographical locations remains mainly unexplored due to difficult access to samples. Here, we investigated the microbiome relatedness of subsurface biofilms of two sulfidic springs in southeast Germany that have similar physical and chemical parameters and are fed by one deep groundwater current. Due to their unique hydrogeological setting these springs provide accessible windows to subsurface biofilms dominated by the same uncultivated archaeal species, called SM1 Euryarchaeon. Comparative analysis of infrared imaging spectra demonstrated great variations in archaeal membrane composition between biofilms of the two springs, suggesting different SM1 euryarchaeal strains of the same species at both aquifer outlets. This strain variation was supported by ultrastructural and metagenomic analyses of the archaeal biofilms, which included intergenic spacer region sequencing of the rRNA gene operon. At 16S rRNA gene level, PhyloChip G3 DNA microarray detected similar biofilm communities for archaea, but site-specific communities for bacteria. Both biofilms showed an enrichment of different deltaproteobacterial operational taxonomic units, whose families were, however, congruent as were their lipid spectra. Consequently, the function of the major proportion of the bacteriome appeared to be conserved across the geographic locations studied, which was confirmed by dsrB-directed quantitative PCR. Consequently, microbiome differences of these subsurface biofilms exist at subtle nuances for archaea (strain level variation) and at higher taxonomic levels for predominant bacteria without a substantial perturbation in bacteriome function. The results of this communication provide deep insight into the dynamics of subsurface microbial life and warrant its future investigation with regard to metabolic and genomic analyses.
Collapse
Affiliation(s)
- Alexander J. Probst
- Institute for Microbiology and Archaea Center, University of Regensburg, Regensburg, Germany
- Department for Bioinformatics, Second Genome Inc., South San Francisco, California, United States of America
| | - Giovanni Birarda
- Center for Environmental Biotechnology, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Hoi-Ying N. Holman
- Center for Environmental Biotechnology, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Todd Z. DeSantis
- Department for Bioinformatics, Second Genome Inc., South San Francisco, California, United States of America
| | - Gerhard Wanner
- Department of Biology I, Biozentrum, LMU Munich, Planegg-Martinsried, Germany
| | - Gary L. Andersen
- Center for Environmental Biotechnology, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Alexandra K. Perras
- Institute for Microbiology and Archaea Center, University of Regensburg, Regensburg, Germany
| | - Sandra Meck
- Institute for Microbiology and Archaea Center, University of Regensburg, Regensburg, Germany
| | - Jörg Völkel
- Department of Geomorphology and Soil Science, Technische Universität München, Center of Life and Food Sciences Weihenstephan, Freising, Germany
| | - Hans A. Bechtel
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Reinhard Wirth
- Institute for Microbiology and Archaea Center, University of Regensburg, Regensburg, Germany
| | | |
Collapse
|
19
|
Camargo ER, Senseman SA, Haney RL, Guice JB, McCauley GN. Soil residue analysis and degradation of saflufenacil as affected by moisture content and soil characteristics. PEST MANAGEMENT SCIENCE 2013; 69:1291-1297. [PMID: 23908059 DOI: 10.1002/ps.3494] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 11/12/2012] [Accepted: 01/21/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Saflufenacil dissipation in soils under different moisture conditions is not available in the scientific literature. The objective of this study was to evaluate saflufenacil degradation and persistence in soils from rice regions under field capacity (non-flooded) and saturated (flooded) conditions. RESULTS The accelerated solvent extraction (ASE) residue analytical method developed to conduct the study resulted in recovery greater than 80% for the combinations of soils and moisture conditions. Saflufenacil degradation was faster at field capacity for all soils, except for Morey soil. Herbicide half-life was 28.6, 15.0 and 23.1 days under field capacity treatments and 58.8, 36.9 and 79.7 under saturated conditions for Nada, Crowley and Gilbert soils respectively. A half-life no longer than 80 days was observed for the combination of soils and moisture treatments. CONCLUSION An ASE method was developed and used to extract saflufenacil from soil samples. Half-life averaged among soils was 59 and 33 days for saturated and field capacity respectively. Saflufenacil persistence in the environment was 2-3 times longer under flooded conditions for most of the soils studied.
Collapse
Affiliation(s)
- Edinalvo R Camargo
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, USA; CNPq, Conselho Nacional do Desenvolvimento Científico e Tecnológico, Brasília, DF, Brazil
| | | | | | | | | |
Collapse
|
20
|
Nilsson T, Rova M, Smedja Bäcklund A. Microbial metabolism of oxochlorates: a bioenergetic perspective. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:189-97. [PMID: 22735192 DOI: 10.1016/j.bbabio.2012.06.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 06/05/2012] [Accepted: 06/15/2012] [Indexed: 11/28/2022]
Abstract
The microbial metabolism of oxochlorates is part of the biogeochemical cycle of chlorine. Organisms capable of growth using perchlorate or chlorate as respiratory electron acceptors are also interesting for applications in biotreatment of oxochlorate-containing effluents or bioremediation of contaminated areas. In this review, we discuss the reactions of oxochlorate respiration, the corresponding enzymes, and the relation to respiratory electron transport that can contribute to a proton gradient across the cell membrane. Enzymes specific for oxochlorate respiration are oxochlorate reductases and chlorite dismutase. The former belong to DMSO reductase family of molybdenum-containing enzymes. The heme protein chlorite dismutase, which decomposes chlorite into chloride and molecular oxygen, is only distantly related to other proteins with known functions. Pathways for electron transport may be different in perchlorate and chlorate reducers, but appear in both cases to be similar to pathways found in other respiratory systems. This article is part of a Special Issue entitled: Evolutionary aspects bioenergetic systems.
Collapse
Affiliation(s)
- Thomas Nilsson
- Karlstad University, Dept. Chemistry and Biomedical Sciences, SE-651 88 Karlstad, Sweden.
| | | | | |
Collapse
|
21
|
Impacts of Possible CO2 Seepage from Sub-Seabed Storage on Trace Elements Mobility and Bacterial Distribution at Sediment-Water Interface. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.egypro.2012.06.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
|
23
|
da Cruz GF, de Vasconcellos SP, Angolini CFF, Dellagnezze BM, Garcia INS, de Oliveira VM, dos Santos Neto EV, Marsaioli AJ. Could petroleum biodegradation be a joint achievement of aerobic and anaerobic microrganisms in deep sea reservoirs? AMB Express 2011; 1:47. [PMID: 22196374 PMCID: PMC3279308 DOI: 10.1186/2191-0855-1-47] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 12/23/2011] [Indexed: 11/10/2022] Open
Abstract
Several studies suggest that petroleum biodegradation can be achieved by either aerobic or anaerobic microorganisms, depending on oxygen input or other electron acceptors and appropriate nutrients. Evidence from in vitro experiments with samples of petroleum formation water and oils from Pampo Field indicate that petroleum biodegradation is more likely to be a joint achievement of both aerobic and anaerobic bacterial consortium, refining our previous observations of aerobic degradation. The aerobic consortium depleted, in decreasing order, hydrocarbons > hopanes > steranes > tricyclic terpanes while the anaerobic consortium depleted hydrocarbons > steranes > hopanes > tricyclic terpanes. The oxygen content of the mixed consortia was measured from time to time revealing alternating periods of microaerobicity (O2 ~0.8 mg.L-1) and of aerobicity (O2~6.0 mg.L-1). In this experiment, the petroleum biodegradation changed from time to time, alternating periods of biodegradation similar to the aerobic process and periods of biodegradation similar to the anaerobic process. The consortia showed preferences for metabolizing hydrocarbons > hopanes > steranes > tricyclic terpanes during a 90-day period, after which this trend changed and steranes were more biodegraded than hopanes. The analysis of aerobic oil degrading microbiota by the 16S rRNA gene clone library detected the presence of Bacillus, Brevibacterium, Mesorhizobium and Achromobacter, and the analysis of the anaerobic oil degrading microbiota using the same technique detected the presence of Bacillus and Acinetobacter (facultative strains). In the mixed consortia Stenotrophomonas, Brevibacterium, Bacillus, Rhizobium, Achromobacter and 5% uncultured bacteria were detected. This is certainly a new contribution to the study of reservoir biodegradation processes, combining two of the more important accepted hypotheses.
Collapse
|
24
|
Kato S, Hashimoto K, Watanabe K. Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals. Environ Microbiol 2011; 14:1646-54. [DOI: 10.1111/j.1462-2920.2011.02611.x] [Citation(s) in RCA: 445] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Hong Y, Wu P, Li W, Gu J, Duan S. Humic analog AQDS and AQS as an electron mediator can enhance chromate reduction by Bacillus sp. strain 3C3. Appl Microbiol Biotechnol 2011; 93:2661-8. [PMID: 21938640 DOI: 10.1007/s00253-011-3577-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/18/2011] [Accepted: 09/09/2011] [Indexed: 11/28/2022]
Abstract
Humus as an electron mediator is recognized as an effective strategy to improve the biological transformation and degradation of toxic substances, yet the action of humus in microbial detoxification of chromate is still unknown. In this study, a humus-reducing strain 3C(3) was isolated from mangrove sediment. Based on the analyses of morphology, physiobiochemical characteristics, and 16S rRNA gene sequence, this strain was identified Bacillus sp. Strain 3C(3) can effectively reduce humic analog anthraquinone-2,6-disulfonate (AQDS) and anthraquinone-2-sulfonate (AQS) with lactate, formate, or glucose as electron donors. When the cells were killed by incubation at 95°C for 30 min or an electron donor was absent, the humic reduction did not occur, showing that the humic reduction was a biochemical process. However, strain 3C(3) had low capability of chromate reduction under anaerobic conditions, despite of having strong tolerance of the toxic metal. But in the presence of humic substances AQDS or AQS, we found that chromate reduction by strain 3C(3) was enhanced greatly. Because strain 3C(3) is an effective humus-reducing bacterium, it is proposed that humic substances could serve as electron mediator to interact with chromate and accelerate chromate reduction. Our results suggest that chromate contaminations can be detoxified by adding humic analog (low to 0.1 mM) as an electron mediator in the microbial incubation.
Collapse
Affiliation(s)
- Yiguo Hong
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, People's Republic of China.
| | | | | | | | | |
Collapse
|
26
|
Kurakin A. The self-organizing fractal theory as a universal discovery method: the phenomenon of life. Theor Biol Med Model 2011; 8:4. [PMID: 21447162 PMCID: PMC3080324 DOI: 10.1186/1742-4682-8-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 03/29/2011] [Indexed: 12/15/2022] Open
Abstract
A universal discovery method potentially applicable to all disciplines studying organizational phenomena has been developed. This method takes advantage of a new form of global symmetry, namely, scale-invariance of self-organizational dynamics of energy/matter at all levels of organizational hierarchy, from elementary particles through cells and organisms to the Universe as a whole. The method is based on an alternative conceptualization of physical reality postulating that the energy/matter comprising the Universe is far from equilibrium, that it exists as a flow, and that it develops via self-organization in accordance with the empirical laws of nonequilibrium thermodynamics. It is postulated that the energy/matter flowing through and comprising the Universe evolves as a multiscale, self-similar structure-process, i.e., as a self-organizing fractal. This means that certain organizational structures and processes are scale-invariant and are reproduced at all levels of the organizational hierarchy. Being a form of symmetry, scale-invariance naturally lends itself to a new discovery method that allows for the deduction of missing information by comparing scale-invariant organizational patterns across different levels of the organizational hierarchy.An application of the new discovery method to life sciences reveals that moving electrons represent a keystone physical force (flux) that powers, animates, informs, and binds all living structures-processes into a planetary-wide, multiscale system of electron flow/circulation, and that all living organisms and their larger-scale organizations emerge to function as electron transport networks that are supported by and, at the same time, support the flow of electrons down the Earth's redox gradient maintained along the core-mantle-crust-ocean-atmosphere axis of the planet. The presented findings lead to a radically new perspective on the nature and origin of life, suggesting that living matter is an organizational state/phase of nonliving matter and a natural consequence of the evolution and self-organization of nonliving matter.The presented paradigm opens doors for explosive advances in many disciplines, by uniting them within a single conceptual framework and providing a discovery method that allows for the systematic generation of knowledge through comparison and complementation of empirical data across different sciences and disciplines.
Collapse
Affiliation(s)
- Alexei Kurakin
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
27
|
Blodau C. Thermodynamic Control on Terminal Electron Transfer and Methanogenesis. ACS SYMPOSIUM SERIES 2011. [DOI: 10.1021/bk-2011-1071.ch004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Christian Blodau
- School of Environmental Sciences, University of Guelph, N1G 2W1, Guelph, Canada
| |
Collapse
|
28
|
Hong YG, Gu JD. Physiology and biochemistry of reduction of azo compounds by Shewanella strains relevant to electron transport chain. Appl Microbiol Biotechnol 2010; 88:637-43. [PMID: 20706834 PMCID: PMC2938420 DOI: 10.1007/s00253-010-2820-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Revised: 08/02/2010] [Accepted: 08/03/2010] [Indexed: 11/27/2022]
Abstract
Azo dyes are toxic, highly persistent, and ubiquitously distributed in the environments. The large-scale production and application of azo dyes result in serious environmental pollution of water and sediments. Bacterial azo reduction is an important process for removing this group of contaminants. Recent advances in this area of research reveal that azo reduction by Shewanella strains is coupled to the oxidation of electron donors and linked to the electron transport and energy conservation in the cell membrane. Up to date, several key molecular components involved in this reaction have been identified and the primary electron transportation system has been proposed. These new discoveries on the respiration pathways and electron transfer for bacterial azo reduction has potential biotechnological implications in cleaning up contaminated sites.
Collapse
Affiliation(s)
- Yi-Guo Hong
- Key Laboratory of Tropical Marine Environment Dynamics (LED), South China Sea Institute of Oceanography, Chinese Academy of Sciences, 164 Xingang Road West, Guangzhou 510301, People's Republic of China.
| | | |
Collapse
|
29
|
Dittrich M, Sibler S. Calcium carbonate precipitation by cyanobacterial polysaccharides. ACTA ACUST UNITED AC 2010. [DOI: 10.1144/sp336.4] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractCyanobacteria have been recognized as key players in the precipitation of calcium carbonate in marine and freshwater systems. These bacteria increase pH, (as a result of photosynthetic activity) and also produce extracellular polysaccharides, which act as binding sites for Ca2+ and CO32−. Both processes influence the morphology and the mineralogy of the carbonate minerals. In order to clarify the role of polysaccharides of picocyanobacteria upon calcium carbonate precipitation, both their buffering capacity and ability to induce precipitation need to be investigated. In this experimental study, we characterized the polysaccharides of three unicellular autotrophic picocyanobacterial Synechococcus-type strains by potentiometric titration and infrared spectroscopy. Potentiometric titrations were conducted to determine the total buffering capacity. The nature and concentration of active sites of the polysaccharides was clarified with the aid of potentiometric titration and spectral analysis of an aqueous cellular suspension. Precipitation experiments with polysaccharides of different strains allowed an estimation of their potential to precipitate calcium carbonate. The results presented here indicate that polysaccharides from cyanobacteria have a strong potential to exchange protons with their surrounding environment. Precipitation experiments demonstrated that extracellular polysaccharides of all the strains studied able to precipitate calcium carbonate.
Collapse
Affiliation(s)
- M. Dittrich
- Swiss Federal Institute for Environmental Science and Technology, EAWAG and Swiss Federal Institute of Technology, ETH, Limnological Research Center, Seestrasse 79, 6047 Kastanienbaum, Switzerland
| | - S. Sibler
- Swiss Federal Institute for Environmental Science and Technology, EAWAG and Swiss Federal Institute of Technology, ETH, Limnological Research Center, Seestrasse 79, 6047 Kastanienbaum, Switzerland
| |
Collapse
|
30
|
|
31
|
Heimann A, Jakobsen R, Blodau C. Energetic constraints on H2-dependent terminal electron accepting processes in anoxic environments: a review of observations and model approaches. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:24-33. [PMID: 20039730 DOI: 10.1021/es9018207] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Microbially mediated terminal electron accepting processes (TEAPs) to a large extent control the fate of redox reactive elements and associated reactions in anoxic soils, sediments, and aquifers. This review focuses on thermodynamic controls and regulation of H2-dependent TEAPs, case studies illustrating this concept, and the quantitative description of thermodynamic controls in modeling. Other electron transfer processes are considered where appropriate. The work reviewed shows that thermodynamics and microbial kinetics are connected near thermodynamic equilibrium. Free energy thresholds for terminal respiration are physiologically based and often near -20 kJ mol(-1), depending on the mechanism of ATP generation; more positive free energy values have been reported under "starvation conditions" for methanogenesis and lower values for TEAPs that provide more energy. H2-dependent methanogenesis and sulfate reduction are under direct thermodynamic control in soils and sediments and generally approach theoretical minimum energy thresholds. If H2 concentrations are lowered by thermodynamically more potent TEAPs, these processes are inhibited. This principle is also valid for TEAPS providing more free energy, such as denitrification and arsenate reduction, but electron donor concentration cannot be lowered so that the processes reach theoretical energy thresholds. Thermodynamics and kinetics have been integrated by combining traditional descriptions of microbial kinetics with the equilibrium constant K and reaction quotient Q of a process, taking into account process-specific threshold energies. This approach is dynamically evolving toward a general concept of microbially driven electron transfer in anoxic environments and has been used successfully in applications ranging from bioreactor regulation to groundwater and sediment biogeochemistry.
Collapse
Affiliation(s)
- Axel Heimann
- Institute of Environment and Resources, Bygningstorvet, Bilding 115, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | | | | |
Collapse
|
32
|
Kashefi K, Moskowitz BM, Lovley DR. Characterization of extracellular minerals produced during dissimilatory Fe(III) and U(VI) reduction at 100 degrees C by Pyrobaculum islandicum. GEOBIOLOGY 2008; 6:147-154. [PMID: 18380877 DOI: 10.1111/j.1472-4669.2007.00142.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In order to gain insight into the significance of biotic metal reduction and mineral formation in hyperthermophilic environments, metal mineralization as a result of the dissimilatory reduction of poorly crystalline Fe(III) oxide, and U(VI) reduction at 100 degrees C by Pyrobaculum islandicum was investigated. When P. islandicum was grown in a medium with poorly crystalline Fe(III) oxide as an electron acceptor and hydrogen as an electron donor, the Fe(III) oxide was reduced to an extracellular, ultrafine-grained magnetite with characteristics similar to that found in some hot environments and that was previously thought to be of abiotic origin. Furthermore, cell suspensions of P. islandicum rapidly reduced the soluble and oxidized form of uranium, U(VI), to extracellular precipitates of the highly insoluble U(IV) mineral, uraninite (UO(2)). The reduction of U(VI) was dependent on the presence of hydrogen as the electron donor. These findings suggest that microbes may play a key role in metal deposition in hyperthermophilic environments and provide a plausible explanation for such phenomena as magnetite accumulation and formation of uranium deposits at ca. 100 degrees C.
Collapse
Affiliation(s)
- K Kashefi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| | | | | |
Collapse
|
33
|
Vig K, Singh DK, Agarwal HC, Dhawan AK, Dureja P. Soil microorganisms in cotton fields sequentially treated with insecticides. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2008; 69:263-76. [PMID: 17298846 DOI: 10.1016/j.ecoenv.2006.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 11/09/2006] [Accepted: 12/18/2006] [Indexed: 05/13/2023]
Abstract
A crop protection system consisting of sequential treatments by six insecticides--dimethoate, monocrotophos, deltamethrin, endosulfan, cypermethrin, and triazophos--at recommended dosages in cotton fields in Punjab, India was investigated for its effects on nontarget soil microorganisms and their activities. Successive applications of the insecticides caused only short-lived adverse effects on the soil microorganisms. None of the insecticides used had any adverse effects on soil fungi as reflected by their total numbers. Significant change in Azotobacter numbers were observed after dimethoate, triazophos, and endosulfan treatment in 1998 soil. An increase of up to 71% in actinomycetes numbers was observed after deltamethrin treatment in the treated fields in 1995. Few short-term changes in iron-reduction capacity were observed after endosulfan and cypermethrin treatments. No adverse effect was observed on the soil respiration during all the experimental periods. The amount of residues detected in soil ranged from 8.5 to 42.0 ng g(-1)dry wt. soil for organophosphorus insecticides and from nondetectable to 5.55 ng g (-1)dry wt. soil for synthetic pyrethroids. It ranged between 7.3 and 35.6 ng g(-1)dry wt. soil for endosulfan. On many occasions two or three insecticide residues were detected together; therefore, the effect observed on soil microorganisms and their activities was a multiresidue effect. In 1998, crop soil amounts of insecticide residues were generally more than those in 1995 and 1996. Persistence and dissipation patterns in soils with a history of exposure to the insecticides compared to the non-history soils were similar.
Collapse
Affiliation(s)
- K Vig
- Department of Zoology, University of Delhi, Delhi 110007, India.
| | | | | | | | | |
Collapse
|
34
|
Vignais PM, Billoud B. Occurrence, Classification, and Biological Function of Hydrogenases: An Overview. Chem Rev 2007; 107:4206-72. [PMID: 17927159 DOI: 10.1021/cr050196r] [Citation(s) in RCA: 1059] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Paulette M. Vignais
- CEA Grenoble, Laboratoire de Biochimie et Biophysique des Systèmes Intégrés, UMR CEA/CNRS/UJF 5092, Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV), 17 rue des Martyrs, 38054 Grenoble cedex 9, France, and Atelier de BioInformatique Université Pierre et Marie Curie (Paris 6), 12 rue Cuvier, 75005 Paris, France
| | - Bernard Billoud
- CEA Grenoble, Laboratoire de Biochimie et Biophysique des Systèmes Intégrés, UMR CEA/CNRS/UJF 5092, Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV), 17 rue des Martyrs, 38054 Grenoble cedex 9, France, and Atelier de BioInformatique Université Pierre et Marie Curie (Paris 6), 12 rue Cuvier, 75005 Paris, France
| |
Collapse
|
35
|
Ueki T, Lovley DR. Heat-shock sigma factor RpoH from Geobacter sulfurreducens. MICROBIOLOGY-SGM 2007; 153:838-846. [PMID: 17322204 DOI: 10.1099/mic.0.2006/000638-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Recent studies with Myxococcus xanthus have suggested that homologues of the Escherichia coli heat-shock sigma factor, RpoH, may not be involved in the heat-shock response in this delta-proteobacterium. The genome of another delta-proteobacterium, Geobacter sulfurreducens, which is considered to be a representative of the Fe(III)-reducing Geobacteraceae that predominate in a diversity of subsurface environments, contains an rpoH homologue. Characterization of the G. sulfurreducens rpoH homologue revealed that it was induced by a temperature shift from 30 degrees C to 42 degrees C and that an rpoH-deficient mutant was unable to grow at 42 degrees C. The predicted heat-shock genes, hrcA, grpE, dnaK, groES and htpG, were heat-shock inducible in an rpoH-dependent manner, and comparison of promoter regions of these genes identified the consensus sequences for the -10 and -35 promoter elements. In addition, DNA elements identical to the CIRCE consensus sequence were found in promoters of rpoH, hrcA and groES, suggesting that these genes are regulated by a homologue of the repressor HrcA, which is known to bind the CIRCE element. These results suggest that the G. sulfurreducens RpoH homologue is the heat-shock sigma factor and that heat-shock response in G. sulfurreducens is regulated positively by RpoH as well as negatively by the HrcA/CIRCE system.
Collapse
Affiliation(s)
- Toshiyuki Ueki
- Department of Microbiology, Morrill Science Center IV North, University of Massachusetts Amherst, 639 North Pleasant Street, Amherst, MA 01003-9298, USA
| | - Derek R Lovley
- Department of Microbiology, Morrill Science Center IV North, University of Massachusetts Amherst, 639 North Pleasant Street, Amherst, MA 01003-9298, USA
| |
Collapse
|
36
|
Dale JR, Wade R, Dichristina TJ. A conserved histidine in cytochrome c maturation permease CcmB of Shewanella putrefaciens is required for anaerobic growth below a threshold standard redox potential. J Bacteriol 2007; 189:1036-43. [PMID: 17142390 PMCID: PMC1797334 DOI: 10.1128/jb.01249-06] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 11/19/2006] [Indexed: 11/20/2022] Open
Abstract
Shewanella putrefaciens strain 200 respires a wide range of compounds as terminal electron acceptor. The respiratory versatility of Shewanella is attributed in part to a set of c-type cytochromes with widely varying midpoint redox potentials (E'(0)). A point mutant of S. putrefaciens, originally designated Urr14 and here renamed CCMB1, was found to grow at wild-type rates on electron acceptors with high E'0 [O2, NO3-, Fe(III) citrate, MnO2, and Mn(III) pyrophosphate] yet was severely impaired for growth on electron acceptors with low E'0 [NO2-, U(VI), dimethyl sulfoxide, TMAO (trimethylamine N-oxide), fumarate, gamma-FeOOH, SO3(2-), and S2O3(2-)]. Genetic complementation and nucleotide sequence analyses indicated that the CCMB1 respiratory mutant phenotype was due to mutation of a conserved histidine residue (H108Y) in a protein that displayed high homology to Escherichia coli CcmB, the permease subunit of an ABC transporter involved in cytochrome c maturation. Although CCMB1 retained the ability to grow on electron acceptors with high E'(0), the cytochrome content of CCMB1 was <10% of that of the wild-type strain. Periplasmic extracts of CCMB1 contained slightly greater concentrations of the thiol functional group (-SH) than did the wild-type strain, an indication that the E(h) of the CCMB1 periplasm was abnormally low. A ccmB deletion mutant was unable to respire anaerobically on any electron acceptor, yet retained aerobic respiratory capability. These results suggest that the mutation of a conserved histidine residue (H108) in CCMB1 alters the redox homeostasis of the periplasm during anaerobic growth on electron acceptors with low (but not high) E'0. This is the first report of the effects of Ccm deficiencies on bacterial respiration of electron acceptors whose E'0 nearly span the entire redox continuum.
Collapse
Affiliation(s)
- Jason R Dale
- School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332-0230, USA
| | | | | |
Collapse
|
37
|
Hong Y, Xu M, Guo J, Xu Z, Chen X, Sun G. Respiration and growth of Shewanella decolorationis S12 with an Azo compound as the sole electron acceptor. Appl Environ Microbiol 2007; 73:64-72. [PMID: 17085710 PMCID: PMC1797134 DOI: 10.1128/aem.01415-06] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Accepted: 10/17/2006] [Indexed: 11/20/2022] Open
Abstract
The ability of Shewanella decolorationis S12 to obtain energy for growth by coupling the oxidation of various electron donors to dissimilatory azoreduction was investigated. This microorganism can reduce a variety of azo dyes by use of formate, lactate, pyruvate, or H(2) as the electron donor. Furthermore, strain S12 grew to a maximal density of 3.0 x 10(7) cells per ml after compete reduction of 2.0 mM amaranth in a defined medium. This was accompanied by a stoichiometric consumption of 4.0 mM formate over time when amaranth and formate were supplied as the sole electron acceptor and donor, respectively, suggesting that microbial azoreduction is an electron transport process and that this electron transport can yield energy to support growth. Purified membranous, periplasmic, and cytoplasmic fractions from S12 were analyzed, but only the membranous fraction was capable of reducing azo dyes with formate, lactate, pyruvate, or H(2) as the electron donor. The presence of 5 microM Cu(2+) ions, 200 microM dicumarol, 100 microM stigmatellin, and 100 microM metyrapone inhibited anaerobic azoreduction activity by both whole cells and the purified membrane fraction, showing that dehydrogenases, cytochromes, and menaquinone are essential electron transfer components for azoreduction. These results provide evidence that the microbial anaerobic azoreduction is linked to the electron transport chain and suggest that the dissimilatory azoreduction is a form of microbial anaerobic respiration. These findings not only expand the number of potential electron acceptors known for microbial energy conservation but also elucidate the mechanisms of microbial anaerobic azoreduction.
Collapse
Affiliation(s)
- Yiguo Hong
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | | | | | | | | | | |
Collapse
|
38
|
Weber KA, Achenbach LA, Coates JD. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 2006; 4:752-64. [PMID: 16980937 DOI: 10.1038/nrmicro1490] [Citation(s) in RCA: 802] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Iron (Fe) has long been a recognized physiological requirement for life, yet for many microorganisms that persist in water, soils and sediments, its role extends well beyond that of a nutritional necessity. Fe(II) can function as an electron source for iron-oxidizing microorganisms under both oxic and anoxic conditions and Fe(III) can function as a terminal electron acceptor under anoxic conditions for iron-reducing microorganisms. Given that iron is the fourth most abundant element in the Earth's crust, iron redox reactions have the potential to support substantial microbial populations in soil and sedimentary environments. As such, biological iron apportionment has been described as one of the most ancient forms of microbial metabolism on Earth, and as a conceivable extraterrestrial metabolism on other iron-mineral-rich planets such as Mars. Furthermore, the metabolic versatility of the microorganisms involved in these reactions has resulted in the development of biotechnological applications to remediate contaminated environments and harvest energy.
Collapse
Affiliation(s)
- Karrie A Weber
- Department of Plant and Microbial Biology, 271 Koshland Hall, University of California, Berkeley, Berkeley, California 94720, USA
| | | | | |
Collapse
|
39
|
Kamnev AA, Tugarova AV, Antonyuk LP, Tarantilis PA, Kulikov LA, Perfiliev YD, Polissiou MG, Gardiner PHE. Instrumental analysis of bacterial cells using vibrational and emission Mössbauer spectroscopic techniques. Anal Chim Acta 2006; 573-574:445-52. [PMID: 17723559 DOI: 10.1016/j.aca.2006.04.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 03/19/2006] [Accepted: 04/20/2006] [Indexed: 11/20/2022]
Abstract
In biosciences and biotechnology, the expanding application of physicochemical approaches using modern instrumental techniques is an efficient strategy to obtain valuable and often unique information at the molecular level. In this work, we applied a combination of vibrational (Fourier transform infrared (FTIR), FT-Raman) spectroscopic techniques, useful in overall structural and compositional analysis of bacterial cells of the rhizobacterium Azospirillum brasilense, with 57Co emission Mössbauer spectroscopy (EMS) used for sensitive monitoring of metal binding and further transformations in live bacterial cells. The information obtained, together with ICP-MS analyses for metals taken up by the bacteria, is useful in analysing the impact of the environmental conditions (heavy metal stress) on the bacterial metabolism and some differences in the heavy metal stress-induced behaviour of non-endophytic (Sp7) and facultatively endophytic (Sp245) strains. The results show that, while both strains Sp7 and Sp245 take up noticeable and comparable amounts of heavy metals from the medium (0.12 and 0.13 mg Co, 0.48 and 0.44 mg Cu or 4.2 and 2.1 mg Zn per gram of dry biomass, respectively, at a metal concentration of 0.2 mM in the medium), their metabolic responses differ essentially. Whereas for strain Sp7 the FTIR measurements showed significant accumulation of polyhydroxyalkanoates as storage materials involved in stress endurance, strain Sp245 did not show any major changes in cellular composition. Nevertheless, EMS measurements showed rapid binding of cobalt(II) by live bacterial cells (chemically similar to metal binding by dead bacteria) and its further transformation in the live cells within an hour.
Collapse
Affiliation(s)
- Alexander A Kamnev
- Laboratory of Biochemistry of Plant-Bacterial Symbioses, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 410049 Saratov, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Khare T, Esteve-Núñez A, Nevin KP, Zhu W, Yates JR, Lovley D, Giometti CS. Differential protein expression in the metal-reducing bacteriumGeobacter sulfurreducens strain PCA grown with fumarate or ferric citrate. Proteomics 2006; 6:632-40. [PMID: 16342140 DOI: 10.1002/pmic.200500137] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Geobacter sulfurreducens, generally considered to be a strict anaerobe, is a predominant microbe in subsurface environments, where it utilizes available metals as electron acceptors. To better understand the metabolic processes involved in the metal-reduction capability of this microbe, the proteins expressed by cells grown anaerobically with either fumarate or ferric citrate as electron acceptor were compared. Proteins were separated by 2-DE under denaturing or nondenaturing conditions, and proteins varying in abundance with a high level of statistical significance (p<0.0001) were identified by peptide mass analysis. Denaturing 2-DE revealed significant differences in the relative abundance of the membrane proteins OmpA and peptidoglycan-associated lipoprotein, several metabolic enzymes, and, in addition, superoxide dismutase and rubredoxin oxidoreductase. Nondenaturing 2-DE revealed elevated catalase in cells grown with ferric citrate. These results suggest that, in addition to adjustments in membrane transport and specific metabolic pathways in response to these two different electron acceptors, distinct differences exist in the oxidative environment within the cell when fumarate or soluble ferric citrate is provided as electron acceptor. Although an anaerobe, G. sulfurreducens appears to have alternate mechanisms for dealing with reactive oxygen species in response to increased intracellular soluble iron.
Collapse
Affiliation(s)
- Tripti Khare
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Fushun WANG, Congqiang LIU, Xiaobing LIANG, Zhongqin WEI, Jun LI, Hai XU. Impact on the remobilization of trace metals in lake sediments by micro-organisms. ACTA ACUST UNITED AC 2006. [DOI: 10.18307/2006.0107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
42
|
Ramsay JA, Robertson K, vanLoon G, Acay N, Ramsay BA. Enhancement of PAH biomineralization rates by cyclodextrins under Fe(III)-reducing conditions. CHEMOSPHERE 2005; 61:733-40. [PMID: 16219508 DOI: 10.1016/j.chemosphere.2005.03.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Revised: 02/18/2005] [Accepted: 03/22/2005] [Indexed: 05/04/2023]
Abstract
Amendment of a soil slurry with low concentrations of a cyclodextrin, hydroxypropyl-beta-cyclodextrin (HPCD), (0.05-0.5 g l(-1)) increased the phenanthrene mineralization rate of a microbial consortium by 25% under Fe(III)-reducing conditions. Although a higher concentration (5.0 g l(-1)) resulted in a faster initial rate of mineralization, mineralization ceased after 25 days with maximum mineralization 17% lower than the control (no HPCD). At lower HPCD concentrations, mineralization was still taking place at day 76. Although pH should affect Fe(III) solubility, mineralization rates at pH 6.0 and 8.0 were comparable. Decreasing the temperature reduced the extent and rate of mineralization, but mineralization rates at 10 degrees C were still 60% of that obtained at 30 degrees C.
Collapse
Affiliation(s)
- Juliana A Ramsay
- Department of Chemical Engineering, Queen's University, Kingston, Ont., Canada K7L 3N6.
| | | | | | | | | |
Collapse
|
43
|
|
44
|
McCrindle SL, Kappler U, McEwan AG. Microbial Dimethylsulfoxide and Trimethylamine-N-Oxide Respiration. Adv Microb Physiol 2005; 50:147-98. [PMID: 16221580 DOI: 10.1016/s0065-2911(05)50004-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Over the last two decades, the biochemistry and genetics of dimethylsulfoxide (DMSO) and trimethylamine-N-oxide (TMAO) respiration has been characterised, particularly in Escherichia coli marine bacteria of the genus Shewanella and the purple phototrophic bacteria, Rhodobacter sphaeroides and R. capsulatus. All of the enzymes (or catalytic subunits) involved the final step in DMSO and TMAO respiration contain a pterin molybdenum cofactor and are members of the DMSO reductase family of molybdoenzymes. In E. coli, the dimethylsulfoxide reductase (DmsABC) can be purified from membranes as a complex, which exhibits quinol-DMSO oxidoreductase activity. The enzyme is anchored to the membrane via the DmsC subunit and its catalytic subunit DmsA is now considered to face the periplasm. Electron transfer to DmsA involves the DmsB subunit, which is a polyferredoxin related to subunits found in other molybdoenzymes such as nitrate reductase and formate dehydrogenase. A characteristic of the DmsAB-type DMSO reductase is its ability to reduce a variety of S- and N-oxides. E. coli contains a trimethylamine-N-oxide reductase (TorA) that is highly specific for N-oxides. This enzyme is located in the periplasm and is connected to the quinone pool via a membrane-bound penta-haem cytochrome (TorC). DorCA in purple phototrophic bacteria of the genus Rhodobacter is very similar to TorCA with the critical difference that DorA catalyses reduction of both DMSO and TMAO. It is known as a DMSO reductase because the S-oxide is the best substrate. Crystal structures of DorA and TorA have revealed critical differences at the Mo active site that may explain the differences between substrate specificity between the two enzymes. DmsA, TorA and DorA possess a "twin arginine" N-terminal signal sequence consistent with their secretion via the TAT secretory system and not the Sec system. The enzymes are secreted with their bound prosthetic groups: this take place in the cytoplasm and the biogenesis involves a chaperone protein, which is cognate for each enzyme. Expression of the DMSO and TMAO respiratory operons is induced in response to a fall in oxygen tension. dmsABC expression is positively controlled by the oxygen-responsive transcription factor, Fnr and ModE, a transcription factor that binds molybdate. In contrast, torCAD expression is not under Fnr- or ModE-control but is dependent upon a sensor histidine kinase-response regulator pair, TorSR, which activate gene expression under conditions of low oxygen tension in the presence of N- or S-oxide. Regulation of dorCDA expression is similar to that seen for torCAD but it appears that the expression of the sensor histidine kinase-response regulator pair, DorSR is regulated by Fnr and there is an additional tier of regulation involving the ModE-homologue MopB, molybdate and the transcription factor DorX. Analysis of microbial genomes has revealed the presence of dms and tor operons in a wide variety of bacteria and in some archaea and duplicate dms and tor operons have been identified in E. coli. Challenges ahead will include the determination of the significance of the presence of the dms operon in bacterial pathogens and the determination of the significance of DMSO respiration in the global turnover of marine organo-sulfur compounds.
Collapse
Affiliation(s)
- Sharon L McCrindle
- School of Molecular and Microbial Sciences, The University of Queensland, Brisbane 4072, Australia
| | | | | |
Collapse
|
45
|
Abstract
Dissimilatory Fe(III) and Mn(IV) reduction has an important influence on the geochemistry of modern environments, and Fe(III)-reducing microorganisms, most notably those in the Geobacteraceae family, can play an important role in the bioremediation of subsurface environments contaminated with organic or metal contaminants. Microorganisms with the capacity to conserve energy from Fe(III) and Mn(IV) reduction are phylogenetically dispersed throughout the Bacteria and Archaea. The ability to oxidize hydrogen with the reduction of Fe(III) is a highly conserved characteristic of hyperthermophilic microorganisms and one Fe(III)-reducing Archaea grows at the highest temperature yet recorded for any organism. Fe(III)- and Mn(IV)-reducing microorganisms have the ability to oxidize a wide variety of organic compounds, often completely to carbon dioxide. Typical alternative electron acceptors for Fe(III) reducers include oxygen, nitrate, U(VI) and electrodes. Unlike other commonly considered electron acceptors, Fe(III) and Mn(IV) oxides, the most prevalent form of Fe(III) and Mn(IV) in most environments, are insoluble. Thus, Fe(III)- and Mn(IV)-reducing microorganisms face the dilemma of how to transfer electrons derived from central metabolism onto an insoluble, extracellular electron acceptor. Although microbiological and geochemical evidence suggests that Fe(III) reduction may have been the first form of microbial respiration, the capacity for Fe(III) reduction appears to have evolved several times as phylogenetically distinct Fe(III) reducers have different mechanisms for Fe(III) reduction. Geobacter species, which are representative of the family of Fe(III) reducers that predominate in a wide diversity of sedimentary environments, require direct contact with Fe(III) oxides in order to reduce them. In contrast, Shewanella and Geothrix species produce chelators that solubilize Fe(III) and release electron-shuttling compounds that transfer electrons from the cell surface to the surface of Fe(III) oxides not in direct contact with the cells. Electron transfer from the inner membrane to the outer membrane in Geobacter and Shewanella species appears to involve an electron transport chain of inner-membrane, periplasmic, and outer-membrane c-type cytochromes, but the cytochromes involved in these processes in the two organisms are different. In addition, Geobacter species specifically express flagella and pili during growth on Fe(III) and Mn(IV) oxides and are chemotactic to Fe(II) and Mn(II), which may lead Geobacter species to the oxides under anoxic conditions. The physiological characteristics of Geobacter species appear to explain why they have consistently been found to be the predominant Fe(III)- and Mn(IV)-reducing microorganisms in a variety of sedimentary environments. In comparison with other respiratory processes, the study of Fe(III) and Mn(IV) reduction is in its infancy, but genome-enabled approaches are rapidly advancing our understanding of this environmentally significant physiology.
Collapse
Affiliation(s)
- Derek R Lovley
- Department of Microbiology, University of Massachusetts-Amherst, Amherst, MA 01003, USA.
| | | | | |
Collapse
|
46
|
Danielsson Thorell H, Beyer NH, Heegaard NHH, Ohman M, Nilsson T. Comparison of native and recombinant chlorite dismutase from Ideonella dechloratans. ACTA ACUST UNITED AC 2004; 271:3539-46. [PMID: 15317589 DOI: 10.1111/j.0014-2956.2004.04290.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A detailed comparison between native chlorite dismutase from Ideonella dechloratans, and the recombinant version of the protein produced in Escherichia coli, suggests the presence of a covalent modification in the native enzyme. Although the native and recombinant N- and C-terminal sequences are identical, the enzymes display different electrophoretic mobilities, and produce different peptide maps upon digestion with trypsin and separation of fragments using capillary electrophoresis. Comparison of MALDI mass spectra of tryptic peptides from the native and recombinant enzymes suggests two locations for modification in the native protein. Mass spectrometric analysis of isolated peptides from a tryptic digest of the native enzyme identifies a possible cross-linked dipeptide, suggesting an intrachain cross-link in the parent protein. Spectrophotometric titration of the native enzyme in the denatured state reveals two titrating components absorbing at 295 nm, suggesting the presence of about one tyrosine residue per subunit with an anomalously low pK(a). The EPR spectrum for the recombinant enzyme is different from that of the native enzyme, and contains a substantial contribution of a low-spin species with the characteristics of bis-histidine coordination. These results are discussed in terms of a covalent cross-link between a histidine and a tyrosine sidechain, similar to those found in other heme enzymes operating under highly oxidizing conditions.
Collapse
|
47
|
Butler JE, Kaufmann F, Coppi MV, Núñez C, Lovley DR. MacA, a diheme c-type cytochrome involved in Fe(III) reduction by Geobacter sulfurreducens. J Bacteriol 2004; 186:4042-5. [PMID: 15175321 PMCID: PMC419948 DOI: 10.1128/jb.186.12.4042-4045.2004] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 36-kDa diheme c-type cytochrome abundant in Fe(III)-respiring Geobacter sulfurreducens, designated MacA, was more highly expressed during growth with Fe(III) as the electron acceptor than with fumarate. Although MacA has homology to proteins with in vitro peroxidase activity, deletion of macA had no impact on response to oxidative stress. However, the capacity for Fe(III) reduction was greatly diminished, indicating that MacA, which is predicted to be localized in the periplasm, is a key intermediate in electron transfer to Fe(III).
Collapse
Affiliation(s)
- Jessica E Butler
- Department of Microbiology, 203 Morrill Science Center IVN, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | | | | | | | | |
Collapse
|
48
|
Thorell HD, Stenklo K, Karlsson J, Nilsson T. A gene cluster for chlorate metabolism in Ideonella dechloratans. Appl Environ Microbiol 2003; 69:5585-92. [PMID: 12957948 PMCID: PMC194937 DOI: 10.1128/aem.69.9.5585-5592.2003] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlorate reductase has been isolated from the chlorate-respiring bacterium Ideonella dechloratans, and the genes encoding the enzyme have been sequenced. The enzyme is composed of three different subunits and contains molybdopterin, iron, probably in iron-sulfur clusters, and heme b. The genes (clr) encoding chlorate reductase are arranged as clrABDC, where clrA, clrB, and clrC encode the subunits and clrD encodes a specific chaperone. Judging from the subunit composition, cofactor content, and sequence comparisons, chlorate reductase belongs to class II of the dimethyl sulfoxide reductase family. The clr genes are preceded by a novel insertion sequence (transposase gene surrounded by inverted repeats), denoted ISIde1. Further upstream, we find the previously characterized gene for chlorite dismutase (cld), oriented in the opposite direction. Chlorate metabolism in I. dechloratans starts with the reduction of chlorate, which is followed by the decomposition of the resulting chlorite to chloride and molecular oxygen. The present work reveals that the genes encoding the enzymes catalyzing both these reactions are in close proximity.
Collapse
|
49
|
Luu Y, Ramsay BA, Ramsay JA. Nitrilotriacetate stimulation of anaerobic Fe(III) respiration by mobilization of humic materials in soil. Appl Environ Microbiol 2003; 69:5255-62. [PMID: 12957911 PMCID: PMC194982 DOI: 10.1128/aem.69.9.5255-5262.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An enrichment culture capable of naphthalene mineralization reduced Fe(III) oxides without direct contact in anaerobic soil microcosms when the Fe(III) was placed in dialysis membranes or entrapped within alginate beads. Both techniques demonstrated that a component in soil, possibly humic materials, facilitated Fe(III) reduction when direct contact between cells and Fe(III) was not possible. The addition of the synthetic Fe(III) chelator, nitrilotriacetic acid (NTA), to soil enhanced Fe(III) reduction across the dialysis membrane and alginate beads, with the medium changing from clear to a dark brown color. An NTA-soil extract was more effective in Fe(III) reduction than the extracted soil itself. Characteristics of the NTA extract were consistent with that of humic substances. The results indicate that NTA improved Fe(III) reduction not by Fe(III) solubilization but by extraction of humic substances from soil into the aqueous medium. This is the first study in which stimulation of Fe(III) reduction through the addition of chemical chelators is shown to be due to the extraction of electron-shuttling compounds from the soil and not to solubilization of the Fe(III) and indicates that mobilization of humic materials could be an important component of anaerobic biostimulation.
Collapse
Affiliation(s)
- Y Luu
- Department of Chemical Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | |
Collapse
|
50
|
Ghosh D, Bal B, Kashyap VK, Pal S. Molecular phylogenetic exploration of bacterial diversity in a Bakreshwar (India) hot spring and culture of Shewanella-related thermophiles. Appl Environ Microbiol 2003; 69:4332-6. [PMID: 12839826 PMCID: PMC165147 DOI: 10.1128/aem.69.7.4332-4336.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial diversity of a hot spring in Bakreshwar, India, was investigated by a culture-independent approach. 16S ribosomal DNA clones derived from the sediment samples were found to be associated with gamma-Proteobacteria, cyanobacteria, and green nonsulfur and low-GC gram-positive bacteria. The first of the above phylotypes cobranches with Shewanella, a well-known iron reducer. This phylogenetic correlation has been exploited to develop culture conditions for thermophilic iron-reducing microorganisms.
Collapse
Affiliation(s)
- Dhritiman Ghosh
- Department of Life Science and Biotechnology, Jadavpur University, Calcutta 700 032, India
| | | | | | | |
Collapse
|