1
|
Bashir AK, Wink L, Duller S, Schwendner P, Cockell C, Rettberg P, Mahnert A, Beblo-Vranesevic K, Bohmeier M, Rabbow E, Gaboyer F, Westall F, Walter N, Cabezas P, Garcia-Descalzo L, Gomez F, Malki M, Amils R, Ehrenfreund P, Monaghan E, Vannier P, Marteinsson V, Erlacher A, Tanski G, Strauss J, Bashir M, Riedo A, Moissl-Eichinger C. Taxonomic and functional analyses of intact microbial communities thriving in extreme, astrobiology-relevant, anoxic sites. MICROBIOME 2021; 9:50. [PMID: 33602336 PMCID: PMC7893877 DOI: 10.1186/s40168-020-00989-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Extreme terrestrial, analogue environments are widely used models to study the limits of life and to infer habitability of extraterrestrial settings. In contrast to Earth's ecosystems, potential extraterrestrial biotopes are usually characterized by a lack of oxygen. METHODS In the MASE project (Mars Analogues for Space Exploration), we selected representative anoxic analogue environments (permafrost, salt-mine, acidic lake and river, sulfur springs) for the comprehensive analysis of their microbial communities. We assessed the microbiome profile of intact cells by propidium monoazide-based amplicon and shotgun metagenome sequencing, supplemented with an extensive cultivation effort. RESULTS The information retrieved from microbiome analyses on the intact microbial community thriving in the MASE sites, together with the isolation of 31 model microorganisms and successful binning of 15 high-quality genomes allowed us to observe principle pathways, which pinpoint specific microbial functions in the MASE sites compared to moderate environments. The microorganisms were characterized by an impressive machinery to withstand physical and chemical pressures. All levels of our analyses revealed the strong and omnipresent dependency of the microbial communities on complex organic matter. Moreover, we identified an extremotolerant cosmopolitan group of 34 poly-extremophiles thriving in all sites. CONCLUSIONS Our results reveal the presence of a core microbiome and microbial taxonomic similarities between saline and acidic anoxic environments. Our work further emphasizes the importance of the environmental, terrestrial parameters for the functionality of a microbial community, but also reveals a high proportion of living microorganisms in extreme environments with a high adaptation potential within habitability borders. Video abstract.
Collapse
Affiliation(s)
- Alexandra Kristin Bashir
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
- Department of Microbiology and Archaea Center, University of Regensburg, Regensburg, Germany
| | - Lisa Wink
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Stefanie Duller
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Petra Schwendner
- UK Center for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Charles Cockell
- UK Center for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Petra Rettberg
- Institute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR), Cologne, Germany
| | - Alexander Mahnert
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Kristina Beblo-Vranesevic
- Institute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR), Cologne, Germany
| | - Maria Bohmeier
- Institute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR), Cologne, Germany
| | - Elke Rabbow
- Institute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR), Cologne, Germany
| | - Frederic Gaboyer
- Centre de Biophysique Moléculaire, Centre National de la Recherché Scientifique (CNRS), Orléans, France
| | - Frances Westall
- Centre de Biophysique Moléculaire, Centre National de la Recherché Scientifique (CNRS), Orléans, France
| | | | | | - Laura Garcia-Descalzo
- Instituto Nacional de Técnica Aeroespacial – Centro de Astrobiología (INTA-CAB), Madrid, Spain
| | - Felipe Gomez
- Instituto Nacional de Técnica Aeroespacial – Centro de Astrobiología (INTA-CAB), Madrid, Spain
| | - Mustapha Malki
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Ricardo Amils
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | | | - Euan Monaghan
- Leiden Observatory, Universiteit Leiden, Leiden, The Netherlands
| | | | - Viggo Marteinsson
- MATIS, Reykjavík, Iceland
- Faculty of Food Science and Nutrition, University of Iceland, Reykjavik, Iceland
| | - Armin Erlacher
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - George Tanski
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Periglacial Research Unit, Potsdam, Germany
| | - Jens Strauss
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Periglacial Research Unit, Potsdam, Germany
| | - Mina Bashir
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Graz, Austria
| | - Andreas Riedo
- Sackler Laboratory for Astrophysics, Leiden Observatory, Leiden University, Leiden, The Netherlands
| | - Christine Moissl-Eichinger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| |
Collapse
|
2
|
Cheng L, Min D, He R, Cheng Z, Liu D, Yu H. Developing a base‐editing system to expand the carbon source utilization spectra of
Shewanella oneidensis
MR‐1 for enhanced pollutant degradation. Biotechnol Bioeng 2020; 117:2389-2400. [DOI: 10.1002/bit.27368] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/25/2020] [Accepted: 04/29/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Lei Cheng
- School of Life Sciences, University of Science and Technology of China Hefei China
| | - Di Min
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and EngineeringUniversity of Science and Technology of China Hefei China
| | - Ru‐Li He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and EngineeringUniversity of Science and Technology of China Hefei China
| | - Zhou‐Hua Cheng
- School of Life Sciences, University of Science and Technology of China Hefei China
| | - Dong‐Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and EngineeringUniversity of Science and Technology of China Hefei China
| | - Han‐Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and EngineeringUniversity of Science and Technology of China Hefei China
| |
Collapse
|
3
|
Cheng L, Min D, Liu DF, Zhu TT, Wang KL, Yu HQ. Deteriorated biofilm-forming capacity and electroactivity of Shewanella oneidnsis MR-1 induced by insertion sequence (IS) elements. Biosens Bioelectron 2020; 156:112136. [PMID: 32174561 DOI: 10.1016/j.bios.2020.112136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/17/2022]
Abstract
Shewanella oneidensis MR-1, a model species of exoelectrogenic bacteria (EEB), has been widely applied in bioelectrochemical systems. Biofilms of EEB grown on electrodes are essential in governing the current output and power density of bioelectrochemical systems. The MR-1 genome is exceptionally dynamic due to the existence of a large number of insertion sequence (IS) elements. However, to date, the impacts of IS elements on the biofilm-forming capacity of EEB and performance of bioelectrochemical systems remain unrevealed. Herein, we isolated a non-motile mutant (NMM) with biofilm-deficient phenotype from MR-1. We found that the insertion of an ISSod2 element into the flrA (encoding the master regulator for flagella synthesis and assembly) of MR-1 resulted in the non-motile and biofilm-deficient phenotypes in NMM cells. Notably, such a variant was readily confused with the wild-type strain because there were no obvious differences in growth rates and colonial morphologies between the two strains. However, the reduced biofilm formation on the electrodes and the deteriorated performances of bioelectrochemical systems and Cr(VI) immobilization for the strain NMM were observed. Given the wide distribution of IS elements in EEB, appropriate cultivation and preservation conditions should be adopted to reduce the likelihood that IS elements-mediated mutation occurs in EEB. These findings reveal the negative impacts of IS elements on the biofilm-forming capacity of EEB and performance of bioelectrochemical systems and suggest that great attention should be given to the actual physiological states of EEB before their applications.
Collapse
Affiliation(s)
- Lei Cheng
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Di Min
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| | - Ting-Ting Zhu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Kai-Li Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
4
|
Neveu M, Hays LE, Voytek MA, New MH, Schulte MD. The Ladder of Life Detection. ASTROBIOLOGY 2018; 18:1375-1402. [PMID: 29862836 PMCID: PMC6211372 DOI: 10.1089/ast.2017.1773] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/23/2018] [Indexed: 05/04/2023]
Abstract
We describe the history and features of the Ladder of Life Detection, a tool intended to guide the design of investigations to detect microbial life within the practical constraints of robotic space missions. To build the Ladder, we have drawn from lessons learned from previous attempts at detecting life and derived criteria for a measurement (or suite of measurements) to constitute convincing evidence for indigenous life. We summarize features of life as we know it, how specific they are to life, and how they can be measured, and sort these features in a general sense based on their likelihood of indicating life. Because indigenous life is the hypothesis of last resort in interpreting life-detection measurements, we propose a small but expandable set of decision rules determining whether the abiotic hypothesis is disproved. In light of these rules, we evaluate past and upcoming attempts at life detection. The Ladder of Life Detection is not intended to endorse specific biosignatures or instruments for life-detection measurements, and is by no means a definitive, final product. It is intended as a starting point to stimulate discussion, debate, and further research on the characteristics of life, what constitutes a biosignature, and the means to measure them.
Collapse
Affiliation(s)
- Marc Neveu
- NASA Postdoctoral Management Program Fellow, Universities Space Research Association, Columbia, Maryland
- NASA Headquarters, Washington, DC
| | - Lindsay E. Hays
- NASA Headquarters, Washington, DC
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | | | | |
Collapse
|
5
|
Ranawat P, Rawat S. Metal-tolerant thermophiles: metals as electron donors and acceptors, toxicity, tolerance and industrial applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:4105-4133. [PMID: 29238927 DOI: 10.1007/s11356-017-0869-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
Metal-tolerant thermophiles are inhabitants of a wide range of extreme habitats like solfatara fields, hot springs, mud holes, hydrothermal vents oozing out from metal-rich ores, hypersaline pools and soil crusts enriched with metals and other elements. The ability to withstand adverse environmental conditions, like high temperature, high metal concentration and sometimes high pH in their niche, makes them an interesting subject for understanding mechanisms behind their ability to deal with multiple duress simultaneously. Metals are essential for biological systems, as they participate in biochemistries that cannot be achieved only by organic molecules. However, the excess concentration of metals can disrupt natural biogeochemical processes and can impose toxicity. Thermophiles counteract metal toxicity via their unique cell wall, metabolic factors and enzymes that carry out metal-based redox transformations, metal sequestration by metallothioneins and metallochaperones as well as metal efflux. Thermophilic metal resistance is heterogeneous at both genetic and physiology levels and may be chromosomally, plasmid or transposon encoded with one or more genes being involved. These effective response mechanisms either individually or synergistically make proliferation of thermophiles in metal-rich habitats possibly. This article presents the state of the art and future perspectives of responses of thermophiles to metals at genetic as well as physiological levels.
Collapse
Affiliation(s)
- Preeti Ranawat
- Department of Botany and Microbiology, Hemvati Nandan Bahuguna Garhwal University, Srinagar (Garhwal), Uttarakhand, India
| | - Seema Rawat
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India.
| |
Collapse
|
6
|
Min D, Cheng L, Zhang F, Huang XN, Li DB, Liu DF, Lau TC, Mu Y, Yu HQ. Enhancing Extracellular Electron Transfer of Shewanella oneidensis MR-1 through Coupling Improved Flavin Synthesis and Metal-Reducing Conduit for Pollutant Degradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:5082-5089. [PMID: 28414427 DOI: 10.1021/acs.est.6b04640] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Dissimilatory metal reducing bacteria (DMRB) are capable of extracellular electron transfer (EET) to insoluble metal oxides, which are used as external electron acceptors by DMRB for their anaerobic respiration. The EET process has important contribution to environmental remediation mineral cycling, and bioelectrochemical systems. However, the low EET efficiency remains to be one of the major bottlenecks for its practical applications for pollutant degradation. In this work, Shewanella oneidensis MR-1, a model DMRB, was used to examine the feasibility of enhancing the EET and its biodegradation capacity through genetic engineering. A flavin biosynthesis gene cluster ribD-ribC-ribBA-ribE and metal-reducing conduit biosynthesis gene cluster mtrC-mtrA-mtrB were coexpressed in S. oneidensis MR-1. Compared to the control strain, the engineered strain was found to exhibit an improved EET capacity in microbial fuel cells and potentiostat-controlled electrochemical cells, with an increase in maximum current density by approximate 110% and 87%, respectively. The electrochemical impedance spectroscopy (EIS) analysis showed that the current increase correlated with the lower interfacial charge-transfer resistance of the engineered strain. Meanwhile, a three times more rapid removal rate of methyl orange by the engineered strain confirmed the improvement of its EET and biodegradation ability. Our results demonstrate that coupling of improved synthesis of mediators and metal-reducing conduits could be an efficient strategy to enhance EET in S. oneidensis MR-1, which is essential to the applications of DMRB for environmental remediation, wastewater treatment, and bioenergy recovery from wastes.
Collapse
Affiliation(s)
- Di Min
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China , Hefei, 230026, China
- USTC-CityU Joint Advanced Research Center , Suzhou, China
| | - Lei Cheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China , Hefei, 230026, China
| | - Feng Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China , Hefei, 230026, China
| | - Xue-Na Huang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China , Hefei, 230026, China
| | - Dao-Bo Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China , Hefei, 230026, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China , Hefei, 230026, China
| | - Tai-Chu Lau
- USTC-CityU Joint Advanced Research Center , Suzhou, China
- Department of Biology and Chemistry, City University of Hong Kong , Hong Kong, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China , Hefei, 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China , Hefei, 230026, China
| |
Collapse
|
7
|
Perfumo A, Cockell C, Elsaesser A, Marchant R, Kminek G. Microbial diversity in Calamita ferromagnetic sand. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:483-490. [PMID: 23761311 DOI: 10.1111/j.1758-2229.2011.00244.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Calamita is a black ferromagnetic sand from a marine iron ore on Elba Island (Italy). Its total iron content is approximately 80% and a major fraction (63% w/w) has magnetic properties. Desiccation, ultraviolet irradiation and the high temperature induced by the thermal conductivity of iron make Calamita sand an extreme biotope. We report, for the first time, the geomicrobiological characterization of Calamita sand, which showed a low bacterial biodiversity as determined by denaturing gradient gel electrophoresis and 16S rRNA gene clone library analysis. We retrieved sequences closely affiliated with uncultured bacteria inhabiting the harshest deserts on Earth. Radiation- and desiccation-tolerant bacteria from the phyla Proteobacteria, Actinobacteria and Deinococcus-Thermus dominated the community. Heavy metal-resistant organisms, for example Variovorax sp. were also abundant. Sequences of organisms with an inferred metabolism based on lithotrophic iron oxidation were detected. The sands also contained thermophilic bacilli, which were cultivated at 60°C. These data provided important insights also into the biogeographical distribution of these organisms in the Mediterranean region. In summary, this study on Calamita helps to expand our knowledge of the biodiversity in extreme, iron-rich, environments.
Collapse
Affiliation(s)
- Amedea Perfumo
- Planetary Protection, European Space Agency-ESA/ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands School of Biomedical Sciences, University of Ulster, Coleraine, UK Planetary and Space Science Research Institute, Open University, Milton Keynes, UK
| | | | | | | | | |
Collapse
|
8
|
Disruption of the putative cell surface polysaccharide biosynthesis gene SO3177 in Shewanella oneidensis MR-1 enhances adhesion to electrodes and current generation in microbial fuel cells. Appl Environ Microbiol 2010; 76:4151-7. [PMID: 20453127 DOI: 10.1128/aem.00117-10] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A microbial fuel cell (MFC) was inoculated with a random transposon insertion mutant library of Shewanella oneidensis MR-1 and operated with lactate as the sole fuel to select for mutants that preferentially grew in it. Agar plate cultivation of the resultant MFC enrichment culture detected an increased number of colonies exhibiting rough morphology. One such isolate, strain 4A, generated 50% more current in an MFC than wild-type MR-1. Determination of the transposon insertion site in strain 4A followed by deletion and complementation experiments revealed that the SO3177 gene, encoding a putative formyltransferase and situated in a cell surface polysaccharide biosynthesis gene cluster, was responsible for the increased current. Transmission electron microscopy showed that a layered structure at the cell surface, stainable with ruthenium red, was impaired in the SO3177 mutant (DeltaSO3177), confirming that SO3177 is involved in the biosynthesis of cell surface polysaccharides. Compared to the wild type, DeltaSO3177 cells preferentially attached to graphite felt anodes in MFCs, while physicochemical analyses revealed that the cell surface of DeltaSO3177 was more hydrophobic. These results demonstrate that cell surface polysaccharides affect not only the cell adhesion to graphite anodes but also the current generation in MFCs.
Collapse
|
9
|
Nealson K. Taking the Concept to the Limit: Uncultivable Bacteria and Astrobiology. MICROBIOLOGY MONOGRAPHS 2009. [DOI: 10.1007/978-3-540-85465-4_9003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
10
|
Cavalazzi B. Chemotrophic filamentous microfossils from the Hollard Mound (Devonian, Morocco) as investigated by focused ion beam. ASTROBIOLOGY 2007; 7:402-15. [PMID: 17480168 DOI: 10.1089/ast.2005.0398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The biologic origin of objects with microbe-like morphologies from the oldest preserved terrestrial sedimentary rocks remains a matter of controversy. Their biogenicity has been questioned, as well as the claim that they are convincing evidence of early life. Though minerals with microbe-like morphologies represent ambiguous evidence of life, they are, in a number of conditions, the only achievable information. In this study, the focused ion beam (FIB) electron microscopy technique was used for nano and micrometer-scale high-resolution imaging and in situ microsectioning of filamentous microfossils. The structural elements of these filaments, their spatial relationships with the host rock, and artifacts produced by alteration of the original morphology due to laboratory sample processing have been clearly defined. The in situ sectioning provided a means by which to investigate surface and subsurface microstructures and perform different analytical techniques on the same object, which minimizes sample destruction and avoids excessive manual handling and exposure of the specimen during analysis. Improvement in the morphological and compositional evaluation of the filaments has facilitated the development of a hypothesis regarding the metabolic pathway of the filamentous microfossils preserved in the Middle Devonian-aged Hollard Mound deposit, Anti-Atlas, Morocco. The results of this study demonstrate the potential of the FIB/SEM (scanning electron microscopy) system for detecting microbial-scale morphologies.
Collapse
Affiliation(s)
- Barbara Cavalazzi
- Dipartimento di Scienze della Terra e Geologico-Ambientali, Universitá di Bologna, Bologna, Italy.
| |
Collapse
|
11
|
|
12
|
Ye Q, Roh Y, Carroll SL, Blair B, Zhou J, Zhang CL, Fields MW. Alkaline anaerobic respiration: isolation and characterization of a novel alkaliphilic and metal-reducing bacterium. Appl Environ Microbiol 2004; 70:5595-602. [PMID: 15345448 PMCID: PMC520920 DOI: 10.1128/aem.70.9.5595-5602.2004] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron-reducing enrichments were obtained from leachate ponds at the U.S. Borax Company in Boron, Calif. Based on partial small-subunit (SSU) rRNA gene sequences (approximately 500 nucleotides), six isolates shared 98.9% nucleotide identity. As a representative, the isolate QYMF was selected for further analysis. QYMF could be grown with Fe(III)-citrate, Fe(III)-EDTA, Co(III)-EDTA, or Cr(VI) as electron acceptors, and yeast extract and lactate could serve as electron donors. Growth during iron reduction occurred over the pH range of 7.5 to 11.0 (optimum, pH 9.5), a sodium chloride range of 0 to 80 g/liter (optimum, 20 g/liter), and a temperature range of 4 to 45 degrees C (optimum, approximately 35 degrees C), and iron precipitates were formed. QYMF was a strict anaerobe that could be grown in the presence of borax, and the cells were straight rods that produced endospores. Sodium chloride and yeast extract stimulated growth. Phylogenetic analysis of the SSU rRNA gene indicated that the bacterium was a low-G+C gram-positive microorganism and had 96 and 92% nucleotide identity with Alkaliphilus transvaalensis and Alkaliphilus crotonatoxidans, respectively. The major phospholipid fatty acids were 14:1, 16:1omega7c, and 16:0, which were different from those of other alkaliphiles but similar to those of reported iron-reducing bacteria. The results demonstrated that the isolate might represent a novel metal-reducing alkaliphilic species. The name Alkaliphilus metalliredigens sp. nov. is proposed. The isolation and activity of metal-reducing bacteria from borax-contaminated leachate ponds suggest that bioremediation of metal-contaminated alkaline environments may be feasible and have implications for alkaline anaerobic respiration.
Collapse
Affiliation(s)
- Qi Ye
- Department of Geology, University of Missouri, Columbia, MO, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Schultheiss D, Kube M, Schüler D. Inactivation of the flagellin gene flaA in Magnetospirillum gryphiswaldense results in nonmagnetotactic mutants lacking flagellar filaments. Appl Environ Microbiol 2004; 70:3624-31. [PMID: 15184166 PMCID: PMC427767 DOI: 10.1128/aem.70.6.3624-3631.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Magnetotactic bacteria synthesize magnetosomes, which cause them to orient and migrate along magnetic field lines. The analysis of magnetotaxis and magnetosome biomineralization at the molecular level has been hindered by the unavailability of genetic methods, namely the lack of a means to introduce directed gene-specific mutations. Here we report a method for knockout mutagenesis by homologous recombination in Magnetospirillum gryphiswaldense. Multiple flagellin genes, which are unlinked in the genome, were identified in M. gryphiswaldense. The targeted disruption of the flagellin gene flaA was shown to eliminate flagella formation, motility, and magnetotaxis. The techniques described in this paper will make it possible to take full advantage of the forthcoming genome sequences of M. gryphiswaldense and other magnetotactic bacteria.
Collapse
|
14
|
Lloyd JR, Lovley DR, Macaskie LE. Biotechnological application of metal-reducing microorganisms. ADVANCES IN APPLIED MICROBIOLOGY 2004; 53:85-128. [PMID: 14696317 DOI: 10.1016/s0065-2164(03)53003-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Jonathan R Lloyd
- Williamson Research Centre for Molecular Environmental Studies, Department of Earth Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
| | | | | |
Collapse
|
15
|
Shenroy AR, Visweswariah SS. Class III nucleotide cyclases in bacteria and archaebacteria: lineage-specific expansion of adenylyl cyclases and a dearth of guanylyl cyclases. FEBS Lett 2004; 561:11-21. [PMID: 15043055 DOI: 10.1016/s0014-5793(04)00128-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Class III nucleotide cyclases are found in bacteria, eukaryotes and archaebacteria. Our survey of the bacterial and archaebacterial genome and plasmid sequences identified 193 Class III cyclase genes in only 29 species, of which we predict the majority to be adenylyl cyclases. Interestingly, several putative cyclase genes were found to have non-conserved substrate specifying residues. Ancestors of the eukaryotic C1-C2 domain containing soluble adenylyl cyclases as well as the protist guanylyl cyclases were found in bacteria. Diverse domains were fused to the cyclase domain and phylogenetic analysis indicated that most proteins within a single cluster have similar domain compositions, emphasising the ancient evolutionary origin and versatility of the cyclase domain.
Collapse
Affiliation(s)
- Avinash R Shenroy
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India.
| | | |
Collapse
|
16
|
Abstract
The microbial reduction of metals has attracted recent interest as these transformations can play crucial roles in the cycling of both inorganic and organic species in a range of environments and, if harnessed, may offer the basis for a wide range of innovative biotechnological processes. Under certain conditions, however, microbial metal reduction can also mobilise toxic metals with potentially calamitous effects on human health. This review focuses on recent research on the reduction of a wide range of metals including Fe(III), Mn(IV) and other more toxic metals such as Cr(VI), Hg(II), Co(III), Pd(II), Au(III), Ag(I), Mo(VI) and V(V). The reduction of metalloids including As(V) and Se(VI) and radionuclides including U(VI), Np(V) and Tc(VII) is also reviewed. Rapid advances over the last decade have resulted in a detailed understanding of some of these transformations at a molecular level. Where known, the mechanisms of metal reduction are discussed, alongside the environmental impact of such transformations and possible biotechnological applications that could utilise these activities.
Collapse
Affiliation(s)
- Jonathan R Lloyd
- The Williamson Research Centre for Molecular Environmental Studies, Department of Earth Sciences, The University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|