1
|
Nishimura Y, Tanaka H, Ishida T, Imai S, Matsusue Y, Agata Y, Horiike K. Immunohistochemical localization of D-serine dehydratase in chicken tissues. Acta Histochem 2014; 116:702-7. [PMID: 24529545 DOI: 10.1016/j.acthis.2013.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 12/21/2013] [Accepted: 12/22/2013] [Indexed: 02/05/2023]
Abstract
Chicken D-serine dehydratase (DSD) degrades d-serine to pyruvate and ammonia. The enzyme requires both pyridoxal 5'-phosphate and Zn(2+) for its activity. d-Serine is a physiological coagonist that regulates the activity of the N-methyl-d-aspartate receptor (NMDAR) for l-glutamate. We have recently found in chickens that d-serine is degraded only by DSD in the brain, whereas it is also degraded to 3-hydroxypyruvate by d-amino acid oxidase (DAO) in the kidney and liver. In mammalian brains, d-serine is degraded only by DAO. It has not been clarified why chickens selectively use DSD for the control of d-serine concentrations in the brain. In the present study, we measured DSD activity in chicken tissues, and examined the cellular localization of DSD using a specific anti-chicken DSD antibody. The highest activity was found in kidney. Skeletal muscles and heart showed no activity. In chicken brain, cerebellum showed about 6-fold-higher activity (1.1 ± 0.3 U/g protein) than cerebrum (0.19 ± 0.03 U/g protein). At the cellular level DSD was demonstrated in proximal tubule cells of the kidney, in hepatocytes, in Bergmann-glia cells of the cerebellum and in astrocytes. The finding of DSD in glial cells seems to be important because d-serine is involved in NMDAR-dependent brain functions.
Collapse
Affiliation(s)
- Yoshihiro Nishimura
- Department of Orthopaedic Surgery, Shiga University of Medical Science, Seta, Ohtsu, Shiga 520-2192, Japan
| | - Hiroyuki Tanaka
- Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Seta, Ohtsu, Shiga 520-2192, Japan.
| | - Tetsuo Ishida
- Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Seta, Ohtsu, Shiga 520-2192, Japan
| | - Shinji Imai
- Department of Orthopaedic Surgery, Shiga University of Medical Science, Seta, Ohtsu, Shiga 520-2192, Japan
| | - Yoshitaka Matsusue
- Department of Orthopaedic Surgery, Shiga University of Medical Science, Seta, Ohtsu, Shiga 520-2192, Japan
| | - Yasutoshi Agata
- Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Seta, Ohtsu, Shiga 520-2192, Japan
| | - Kihachiro Horiike
- Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Seta, Ohtsu, Shiga 520-2192, Japan
| |
Collapse
|
2
|
Identification of a Novel Spinal Dorsal Horn Astroglial d-Amino Acid Oxidase–Hydrogen Peroxide Pathway Involved in Morphine Antinociceptive Tolerance. Anesthesiology 2014; 120:962-75. [DOI: 10.1097/aln.0b013e3182a66d2a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstract
Background:
d-Amino acid oxidase (DAAO) is a flavin adenine dinucleotide-dependent peroxisomal flavoenzyme which is almost exclusively expressed within astrocytes in the spinal cord. DAAO catalyzes oxidation of d-amino acids to hydrogen peroxide, which is a stable and less active reactive oxygen species, and may represent a final form of reactive oxygen species. This study tested the hypothesis that the spinal astroglial DAAO–hydrogen peroxide pathway plays an important role in the development of morphine antinociceptive tolerance.
Methods:
Rat and mouse formalin, hot-plate, and tail-flick tests were used, and spinal DAAO expression and hydrogen peroxide level were measured. Sample size of animals was six in each study group.
Results:
Subcutaneous and intrathecal DAAO inhibitors, including 5-chloro-benzo[d]isoxazol-3-ol, AS057278, and sodium benzoate, completely prevented and reversed morphine antinociceptive tolerance in the formalin, hot-plate, and tail-immersion tests, with a positive correlation to their DAAO inhibitory activities. Intrathecal gene silencers, small interfering RNA/DAAO and small hairpin RNA/DAAO, almost completely prevented morphine tolerance. Intrathecal 5-chloro-benzo[d]isoxazol-3-ol and small interfering RNA/DAAO completely prevented increased spinal hydrogen peroxide levels after chronic morphine treatment. Intrathecal nonselective hydrogen peroxide scavenger phenyl-tert-N-butyl nitrone and the specific hydrogen peroxide catalyst catalase also abolished established morphine tolerance. Spinal dorsal horn astrocytes specifically expressed DAAO was significantly up-regulated, accompanying astrocyte hypertrophy after chronic morphine treatment.
Conclusions:
For the first time, the authors’ result identify a novel spinal astroglial DAAO–hydrogen peroxide pathway that is critically involved in the initiation and maintenance of morphine antinociceptive tolerance, and suggest that this pathway is of potential utility for the management of morphine tolerance and chronic pain.
Collapse
|
3
|
Preparation and characterization of L-phenylalanine-derivatized β-cyclodextrin-bonded silica and its application on chiral separation of alanine acid racemates. KOREAN J CHEM ENG 2013. [DOI: 10.1007/s11814-013-0160-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Gong N, Gao ZY, Wang YC, Li XY, Huang JL, Hashimoto K, Wang YX. A series of D-amino acid oxidase inhibitors specifically prevents and reverses formalin-induced tonic pain in rats. J Pharmacol Exp Ther 2011; 336:282-93. [PMID: 20952482 DOI: 10.1124/jpet.110.172353] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We have found that mutation of D-amino acid oxidase (DAO) diminished formalin-induced tonic pain. The present research further studied the analgesic effects of a series of DAO inhibitors in this model. 5-Chlorobenzo[d]isoxazol-3-ol (CBIO), 4H-thieno[3,2-b]pyrrole-5-carboxylic acid (compound 8), 5-methylpyrazole-3-carboxylic acid (AS057278), sodium benzoate, and 4-nitro-3-pyrazole carboxylic acid (NPCA) inhibited rat spinal cord-derived DAO activity in a concentration-dependent manner, with maximal inhibition of 100% and potency rank of CBIO > compound 8 > AS057278 > sodium benzoate > NPCA. In rats, intrathecal injections of CBIO, compound 8, AS057278, and sodium benzoate but not NPCA specifically prevented formalin-induced tonic pain but not acute nociception, with the same potency order as in the DAO activity assay. The highly potent analgesia of DAO inhibitors was evidenced by CBIO, which prevented 50% pain at 0.06 μg, approximately 5-fold the potency of morphine. CBIO given after formalin challenge also reversed the established pain state to the same degree as prevention. The antihyperalgesic potencies of these DAO inhibitors were highly correlated to their inhibitions of spinal DAO activity. Maximum inhibition of pain by these compounds was approximately 60%, comparable with that of the N-methyl-D-aspartic acid receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801), suggesting that a larger portion of formalin-induced tonic pain is "DAO-sensitive," whereas the remaining 40% of tonic pain and acute nociception is "DAO-insensitive." These findings, combined with our previous DAO gene mutation and induction results, indicate spinal DAO mediates both induction and maintenance of formalin-induced tonic pain and further validate spinal DAO as a novel and efficacious target molecule for the treatment of chronic pain.
Collapse
Affiliation(s)
- Nian Gong
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, No. 6 Biomedicine Building (Suite 106), 800 Dongchuan Road, Shanghai 2002 40, China
| | | | | | | | | | | | | |
Collapse
|
5
|
Reyes-Haro D, Müller J, Boresch M, Pivneva T, Benedetti B, Scheller A, Nolte C, Kettenmann H. Neuron-astrocyte interactions in the medial nucleus of the trapezoid body. ACTA ACUST UNITED AC 2010; 135:583-94. [PMID: 20479112 PMCID: PMC2888059 DOI: 10.1085/jgp.200910354] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The calyx of Held (CoH) synapse serves as a model system to analyze basic mechanisms of synaptic transmission. Astrocyte processes are part of the synaptic structure and contact both pre- and postsynaptic membranes. In the medial nucleus of the trapezoid body (MNTB), midline stimulation evoked a current response that was not mediated by glutamate receptors or glutamate uptake, despite the fact that astrocytes express functional receptors and transporters. However, astrocytes showed spontaneous Ca2+ responses and neuronal slow inward currents (nSICs) were recorded in the postsynaptic principal neurons (PPNs) of the MNTB. These currents were correlated with astrocytic Ca2+ activity because dialysis of astrocytes with BAPTA abolished nSICs. Moreover, the frequency of these currents was increased when Ca2+ responses in astrocytes were elicited. NMDA antagonists selectively blocked nSICs while D-serine degradation significantly reduced NMDA-mediated currents. In contrast to previous studies in the hippocampus, these NMDA-mediated currents were rarely synchronized.
Collapse
Affiliation(s)
- Daniel Reyes-Haro
- Cellular Neuroscience, Max Delbrück Center for Molecular Medicine, 13092 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Zhao WJ, Gao ZY, Wei H, Nie HZ, Zhao Q, Zhou XJ, Wang YX. Spinal D-amino acid oxidase contributes to neuropathic pain in rats. J Pharmacol Exp Ther 2010; 332:248-54. [PMID: 19828879 DOI: 10.1124/jpet.109.158816] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
D-amino acid oxidase (DAO) is an enzyme catalyzing oxidative deamination of neutral and polar d-amino acids and is expressed in the kidneys, liver, and central nervous system (CNS) including the spinal cord. We have previously demonstrated that DAO gene deletion/mutation by using mutant ddY/DAO(-/-) mice and systemic administration of the DAO inhibitor sodium benzoate blocked formalin-induced hyperalgesia in mice. In this study, we further investigated the potential role of DAO in neuropathic pain in a rat model of tight L(5)/L(6) spinal nerve ligation. After L(5)/L(6) spinal nerve ligation, the mRNA expression (measured by real-time quantitative polymerase chain reaction) and enzyme activity (measured by a colorimetric method) of DAO in the lumbar spinal cord were markedly increased, in agreement with the development of neuropathic pain (mechanical allodynia). Intraperitoneal injection of sodium benzoate (400 mg/kg) specifically blocked mechanical allodynia in neuropathic rats and formalin-induced hyperalgesia but did not suppress acute pain responses in the tail-flick test or formalin test. Systemic injection of sodium benzoate also inhibited DAO activity in the lumbar spinal cord of rats. Furthermore, direct intrathecal (spinal cord) injection of benzoate (30 mug/rat) specifically blocked spinal nerve ligation-induced mechanical allodynia in neuropathic rats and formalin-induced hyperalgesia (but not acute pain) in the formalin test. Based on the above results, we conclude that spinal DAO plays a pronociceptive (rather than an antinociceptive) role and might be a target molecule for the treatment of chronic pain of neuropathic origin.
Collapse
Affiliation(s)
- Wen-Juan Zhao
- King's Laboratory, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Tanaka H, Yamamoto A, Ishida T, Horiike K. Simultaneous measurement of D-serine dehydratase and d-amino acid oxidase activities by the detection of 2-oxo-acid formation with reverse-phase high-performance liquid chromatography. Anal Biochem 2006; 362:83-8. [PMID: 17254537 DOI: 10.1016/j.ab.2006.12.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 12/10/2006] [Accepted: 12/12/2006] [Indexed: 11/25/2022]
Abstract
N-methyl-D-aspartate receptors (NMDARs) play critical roles in excitatory synaptic transmission in the vertebrate central nervous system. NMDARs need D-serine for their channel activities in various brain regions. In mammalian brains, D-serine is produced from L-serine by serine racemase and degraded by D-amino acid oxidase (DAO) to 3-hydroxypyruvate. In avian organs, such as the kidney, in addition to DAO, D-serine is also degraded to pyruvate by D-serine dehydratase (DSD). To examine the roles of these two enzymes in avian brains, we developed a method to simultaneously measure DAO and DSD activities. First, the keto acids produced from D-serine were derivatized with 3-methyl-2-benzothiazolinone hydrazone to stable azines. Second, the azine derivatives were quantified by means of reverse-phase high-performance liquid chromatography using 2-oxoglutarate as an internal standard. This method allowed the simultaneous detection of DAO and DSD activities as low as 100 pmol/min/mg protein. Chicken brain showed only DSD activities (0.4+/-0.2 nmol/min/mg protein) whereas rat brain exhibited only DAO activities (0.7+/-0.1 nmol/min/mg protein). This result strongly suggests that DSD plays the same role in avian brains, as DAO plays in mammalian brains. The present method is applicable to other keto acids producing enzymes with minor modifications.
Collapse
Affiliation(s)
- Hiroyuki Tanaka
- Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Seta, Ohtsu, Shiga 520-2192, Japan.
| | | | | | | |
Collapse
|
8
|
Hamase K, Nagayasu R, Morikawa A, Konno R, Zaitsu K. Sensitive high-performance liquid chromatographic assay for D-amino-acid oxidase activity in mammalian tissues using a fluorescent non-natural substrate, 5-fluoro-D-tryptophan. J Chromatogr A 2005; 1106:159-64. [PMID: 16443460 DOI: 10.1016/j.chroma.2005.08.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 07/27/2005] [Accepted: 08/15/2005] [Indexed: 11/21/2022]
Abstract
A sensitive assay for D-amino-acid oxidase (DAO) activity in mammalian tissues has been established. D-Tryptophan (D-Trp) analogs were tested as substrates for DAO, and 5-fluoro-D-tryptophan (D-FTP) was found to be the best substrate. By the enzymatic reaction, D-FTP was converted to 5-fluoroindole-3-acetic acid (FIAA), a highly fluorescent product, and the product was determined by an RP-HPLC system with a fluorescence detector. The detection limit for purified DAO (from hog kidney) was 0.25 microU, and the within-day and day-to-day precisions of the assays were 4.6% (RSD, n=5), and 13.8% (RSD, 5 days), respectively. By the present method, the detailed distribution of DAO activity in the mouse brain was determined using individual animals for the first time, and significant activities were observed in the cerebellum, medulla oblongata and midbrain. Because sensitive DAO assay is frequently required in small tissues or in limited-tissue regions, the present method is useful for various research studies concerning DAO and the related D-amino acids.
Collapse
Affiliation(s)
- Kenji Hamase
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
9
|
Schell MJ. The N-methyl D-aspartate receptor glycine site and D-serine metabolism: an evolutionary perspective. Philos Trans R Soc Lond B Biol Sci 2004; 359:943-64. [PMID: 15306409 PMCID: PMC1693380 DOI: 10.1098/rstb.2003.1399] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The N-methyl D-aspartate (NMDA) type of glutamate receptor requires two distinct agonists to operate. Glycine is assumed to be the endogenous ligand for the NMDA receptor glycine site, but this notion has been challenged by the discovery of high levels of endogenous d-serine in the mammalian forebrain. I have outlined an evolutionary framework for the appearance of a glycine site in animals and the metabolic events leading to high levels of D-serine in brain. Sequence alignments of the glycine-binding regions, along with the scant experimental data available, suggest that the properties of invertebrate NMDA receptor glycine sites are probably different from those in vertebrates. The synthesis of D-serine in brain is due to a pyridoxal-5'-phosphate (B(6))-requiring serine racemase in glia. Although it remains unknown when serine racemase first evolved, data concerning the evolution of B(6) enzymes, along with the known occurrences of serine racemases in animals, point to D-serine synthesis arising around the divergence time of arthropods. D-Serine catabolism occurs via the ancient peroxisomal enzyme d-amino acid oxidase (DAO), whose ontogenetic expression in the hindbrain of mammals is delayed until the postnatal period and absent from the forebrain. The phylogeny of D-serine metabolism has relevance to our understanding of brain ontogeny, schizophrenia and neurotransmitter dynamics.
Collapse
Affiliation(s)
- Michael J Schell
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
| |
Collapse
|
10
|
Hamase K, Morikawa A, Zaitsu K. D-Amino acids in mammals and their diagnostic value. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 781:73-91. [PMID: 12450654 DOI: 10.1016/s1570-0232(02)00690-6] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Substantial amounts of D-amino acids are present in mammalian tissues; their function, origin and relationship between pathophysiological processes have been of great interest over the last two decades. In the present article, analytical methods including chromatographic, electrophoretic and enzymatic methods to determine D-amino acids in mammalian tissues are reviewed, and the distribution of these D-amino acids in mammals is discussed. An overview of the function, origin and relationship between the amino acids and pathophysiological processes is also given.
Collapse
Affiliation(s)
- Kenji Hamase
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|