1
|
Combes R, Balls M, Illing P, Bhogal N, Dale J, Duvé G, Feron V, Grindon C, Gülden M, Loizou G, Priston R, Westmoreland C. Possibilities for a New Approach to Chemicals Risk Assessment — The Report of a FRAME Workshop. Altern Lab Anim 2019; 34:621-49. [PMID: 17266394 DOI: 10.1177/026119290603400606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Robert Combes
- FRAME, Russell & Burch House, 96-98 North Sherwood Street, Nottingham, NG1 4EE, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Prieto P, Baird AW, Blaauboer BJ, Castell Ripoll JV, Corvi R, Dekant W, Dietl P, Gennari A, Gribaldo L, Griffin JL, Hartung T, Heindel JJ, Hoet P, Jennings P, Marocchio L, Noraberg J, Pazos P, Westmoreland C, Wolf A, Wright J, Pfaller W. The Assessment of Repeated Dose ToxicityIn Vitro: A Proposed Approach. Altern Lab Anim 2019; 34:315-41. [PMID: 16831063 DOI: 10.1177/026119290603400307] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Pilar Prieto
- ECVAM, Institute for Health & Consumer Protection, European Joint Research Centre, 21020 Ispra (VA), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Zhang S, Chen H, Wang A, Liu Y, Hou H, Hu Q. Genotoxicity evaluation of carbon monoxide and 1,3-butadiene using a new joint technology: the in vitro γH2AX HCS assay combined with air–liquid interface system. Toxicol Mech Methods 2018; 29:1-7. [DOI: 10.1080/15376516.2018.1477897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Sen Zhang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, P.R. China
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P.R. China
- University of Science and Technology of China, Hefei, P.R. China
| | - Huan Chen
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, P.R. China
| | - An Wang
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P.R. China
| | - Yong Liu
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P.R. China
| | - Hongwei Hou
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, P.R. China
| | - Qingyuan Hu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, P.R. China
| |
Collapse
|
4
|
Pradeep P, Povinelli RJ, Merrill SJ, Bozdag S, Sem DS. Novel Uses of In Vitro Data to Develop Quantitative Biological Activity Relationship Models for in Vivo Carcinogenicity Prediction. Mol Inform 2015; 34:236-45. [PMID: 27490169 DOI: 10.1002/minf.201400168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 02/24/2015] [Indexed: 01/06/2023]
Abstract
The availability of large in vitro datasets enables better insight into the mode of action of chemicals and better identification of potential mechanism(s) of toxicity. Several studies have shown that not all in vitro assays can contribute as equal predictors of in vivo carcinogenicity for development of hybrid Quantitative Structure Activity Relationship (QSAR) models. We propose two novel approaches for the use of mechanistically relevant in vitro assay data in the identification of relevant biological descriptors and development of Quantitative Biological Activity Relationship (QBAR) models for carcinogenicity prediction. We demonstrate that in vitro assay data can be used to develop QBAR models for in vivo carcinogenicity prediction via two case studies corroborated with firm scientific rationale. The case studies demonstrate the similarities between QBAR and QSAR modeling in: (i) the selection of relevant descriptors to be used in the machine learning algorithm, and (ii) the development of a computational model that maps chemical or biological descriptors to a toxic endpoint. The results of both the case studies show: (i) improved accuracy and sensitivity which is especially desirable under regulatory requirements, and (ii) overall adherence with the OECD/REACH guidelines. Such mechanism based models can be used along with QSAR models for prediction of mechanistically complex toxic endpoints.
Collapse
Affiliation(s)
- Prachi Pradeep
- Department of Mathematics, Computer Science and Statistics, Marquette University, 1313 W. Wisconsin Avenue, Milwaukee, WI 53233, USA fax: (414) 288-5472.
| | - Richard J Povinelli
- Department of Electrical and Computer Engineering, Marquette University, 1515 W. Wisconsin Avenue, Milwaukee, WI 53233, USA
| | - Stephen J Merrill
- Department of Mathematics, Computer Science and Statistics, Marquette University, 1313 W. Wisconsin Avenue, Milwaukee, WI 53233, USA fax: (414) 288-5472
| | - Serdar Bozdag
- Department of Mathematics, Computer Science and Statistics, Marquette University, 1313 W. Wisconsin Avenue, Milwaukee, WI 53233, USA fax: (414) 288-5472
| | - Daniel S Sem
- School of Pharmacy, Concordia University Wisconsin, 12800 N. Lake Shore Drive, Mequon, WI 53097, USA
| |
Collapse
|
5
|
Pirovano A, Brandmaier S, Huijbregts MAJ, Ragas AMJ, Veltman K, Hendriks AJ. The utilisation of structural descriptors to predict metabolic constants of xenobiotics in mammals. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:247-258. [PMID: 25531263 DOI: 10.1016/j.etap.2014.11.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 11/28/2014] [Accepted: 11/29/2014] [Indexed: 06/04/2023]
Abstract
Quantitative structure-activity relationships (QSARs) were developed to predict the Michaelis-Menten constant (Km) and the maximum reaction rate (Vmax) of xenobiotics metabolised by four enzyme classes in mammalian livers: alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), flavin-containing monooxygenase (FMO), and cytochrome P450 (CYP). Metabolic constants were gathered from the literature and a genetic algorithm was employed to select at most six predictors from a pool of over 2000 potential molecular descriptors using two-thirds of the xenobiotics in each enzyme class. The resulting multiple linear models were cross-validated using the remaining one-third of the compounds. The explained variances (R(2)adj) of the QSARs were between 50% and 80% and the predictive abilities (R(2)ext) between 50% and 60%, except for the Vmax QSAR of FMO with both R(2)adj and R(2)ext less than 30%. The Vmax values of FMO were independent of substrate chemical structure because the rate-limiting step of its catalytic cycle occurs before compound oxidation. For the other enzymes, Vmax was predominantly determined by functional groups or fragments and electronic properties because of the strong and chemical-specific interactions involved in the metabolic reactions. The most relevant predictors for Km were functional groups or fragments for the enzymes metabolising specific compounds (ADH, ALDH and FMO) and size and shape properties for CYP, likely because of the broad substrate specificity of CYP enzymes. The present study can be helpful to predict the Km and Vmax of four important oxidising enzymes in mammals and better understand the underlying principles of chemical transformation by liver enzymes.
Collapse
Affiliation(s)
- Alessandra Pirovano
- Radboud University Nijmegen, Institute for Wetland and Water Research, Department of Environmental Science, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Stefan Brandmaier
- Helmholtz Zentrum München-German Research Centre for Environmental Health (GmbH), Institute of Structural Biology, Ingolstaedter Landstrasse 1, Neuherberg, D-85764 Munich, Germany; Helmholtz-Zentrum München-German Research Centre for Environmental Health (GmbH), Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Munich, Germany
| | - Mark A J Huijbregts
- Radboud University Nijmegen, Institute for Wetland and Water Research, Department of Environmental Science, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Ad M J Ragas
- Radboud University Nijmegen, Institute for Wetland and Water Research, Department of Environmental Science, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; Faculty of Management, Science and Technology, Open University, Heerlen, The Netherlands
| | - Karin Veltman
- Radboud University Nijmegen, Institute for Wetland and Water Research, Department of Environmental Science, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - A Jan Hendriks
- Radboud University Nijmegen, Institute for Wetland and Water Research, Department of Environmental Science, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
6
|
Hayes AJ, Bakand S. Toxicological perspectives of inhaled therapeutics and nanoparticles. Expert Opin Drug Metab Toxicol 2014; 10:933-47. [PMID: 24810077 DOI: 10.1517/17425255.2014.916276] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION The human respiratory system is an important route for the entry of inhaled therapeutics into the body to treat diseases. Inhaled materials may consist of gases, vapours, aerosols and particulates. In all cases, assessing the toxicological effect of inhaled therapeutics has many challenges. AREAS COVERED This article provides an overview of in vivo and in vitro models for testing the toxicity of inhaled therapeutics and nanoparticles implemented in drug delivery. Traditionally, inhalation toxicity has been performed on test animals to identify the median lethal concentration of airborne materials. Later maximum tolerable concentration denoted by LC0 has been introduced as a more ethically acceptable end point. More recently, in vitro methods have been developed, allowing the direct exposure of airborne material to cultured human target cells on permeable porous membranes at the air-liquid interface. EXPERT OPINION Modifications of current inhalation therapies, new pulmonary medications for respiratory diseases and implementation of the respiratory tract for systemic drug delivery are providing new challenges when conducting well-designed inhalation toxicology studies. In particular, the area of nanoparticles and nanocarriers is of critical toxicological concern. There is a need to develop toxicological test models, which characterise the toxic response and cellular interaction between inhaled particles and the respiratory system.
Collapse
Affiliation(s)
- Amanda J Hayes
- The University of New South Wales, School of Chemistry , UNSW Sydney, 2052 , Australia +61 403 028747 ; +61 2 9385 6141 ;
| | | |
Collapse
|
7
|
Vietti G, Ibouraadaten S, Palmai-Pallag M, Yakoub Y, Bailly C, Fenoglio I, Marbaix E, Lison D, van den Brule S. Towards predicting the lung fibrogenic activity of nanomaterials: experimental validation of an in vitro fibroblast proliferation assay. Part Fibre Toxicol 2013; 10:52. [PMID: 24112397 PMCID: PMC3852297 DOI: 10.1186/1743-8977-10-52] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/27/2013] [Indexed: 11/15/2022] Open
Abstract
Background Carbon nanotubes (CNT) can induce lung inflammation and fibrosis in rodents. Several studies have identified the capacity of CNT to stimulate the proliferation of fibroblasts. We developed and validated experimentally here a simple and rapid in vitro assay to evaluate the capacity of a nanomaterial to exert a direct pro-fibrotic effect on fibroblasts. Methods The activity of several multi-wall (MW)CNT samples (NM400, the crushed form of NM400 named NM400c, NM402 and MWCNTg 2400) and asbestos (crocidolite) was investigated in vitro and in vivo. The proliferative response to MWCNT was assessed on mouse primary lung fibroblasts, human fetal lung fibroblasts (HFL-1), mouse embryonic fibroblasts (BALB-3T3) and mouse lung fibroblasts (MLg) by using different assays (cell counting, WST-1 assay and propidium iodide PI staining) and dispersion media (fetal bovine serum, FBS and bovine serum albumin, BSA). C57BL/6 mice were pharyngeally aspirated with the same materials and lung fibrosis was assessed after 2 months by histopathology, quantification of total collagen lung content and pro-fibrotic cytokines in broncho-alveolar lavage fluid (BALF). Results MWCNT (NM400 and NM402) directly stimulated fibroblast proliferation in vitro in a dose-dependent manner and induced lung fibrosis in vivo. NM400 stimulated the proliferation of all tested fibroblast types, independently of FBS- or BSA- dispersion. Results obtained by WST1 cell activity were confirmed with cell counting and cell cycle (PI staining) assays. Crocidolite also stimulated fibroblast proliferation and induced pulmonary fibrosis, although to a lesser extent than NM400 and NM402. In contrast, shorter CNT (NM400c and MWCNTg 2400) did not induce any fibroblast proliferation or collagen accumulation in vivo, supporting the idea that CNT structure is an important parameter for inducing lung fibrosis. Conclusions In this study, an optimized proliferation assay using BSA as a dispersant, MLg cells as targets and an adaptation of WST-1 as readout was developed. The activity of MWCNT in this test strongly reflects their fibrotic activity in vivo, supporting the predictive value of this in vitro assay in terms of lung fibrosis potential.
Collapse
Affiliation(s)
- Giulia Vietti
- Louvain centre for Toxicology and Applied Pharmacology, Université catholique de Louvain, Avenue E, Mounier, 52 - bte B1,52,12, 1200 Brussels, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Groothuis FA, Heringa MB, Nicol B, Hermens JLM, Blaauboer BJ, Kramer NI. Dose metric considerations in in vitro assays to improve quantitative in vitro-in vivo dose extrapolations. Toxicology 2013; 332:30-40. [PMID: 23978460 DOI: 10.1016/j.tox.2013.08.012] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 07/17/2013] [Accepted: 08/14/2013] [Indexed: 12/17/2022]
Abstract
Challenges to improve toxicological risk assessment to meet the demands of the EU chemical's legislation, REACH, and the EU 7th Amendment of the Cosmetics Directive have accelerated the development of non-animal based methods. Unfortunately, uncertainties remain surrounding the power of alternative methods such as in vitro assays to predict in vivo dose-response relationships, which impedes their use in regulatory toxicology. One issue reviewed here, is the lack of a well-defined dose metric for use in concentration-effect relationships obtained from in vitro cell assays. Traditionally, the nominal concentration has been used to define in vitro concentration-effect relationships. However, chemicals may differentially and non-specifically bind to medium constituents, well plate plastic and cells. They may also evaporate, degrade or be metabolized over the exposure period at different rates. Studies have shown that these processes may reduce the bioavailable and biologically effective dose of test chemicals in in vitro assays to levels far below their nominal concentration. This subsequently hampers the interpretation of in vitro data to predict and compare the true toxic potency of test chemicals. Therefore, this review discusses a number of dose metrics and their dependency on in vitro assay setup. Recommendations are given on when to consider alternative dose metrics instead of nominal concentrations, in order to reduce effect concentration variability between in vitro assays and between in vitro and in vivo assays in toxicology.
Collapse
Affiliation(s)
- Floris A Groothuis
- Institute for Risk Assessment Sciences, Utrecht University, PO Box 80177, 3508 TD Utrecht, The Netherlands.
| | - Minne B Heringa
- National Institute of Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, The Netherlands.
| | - Beate Nicol
- Unilever U.K., Safety & Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedford MK44 1LQ, United Kingdom.
| | - Joop L M Hermens
- Institute for Risk Assessment Sciences, Utrecht University, PO Box 80177, 3508 TD Utrecht, The Netherlands.
| | - Bas J Blaauboer
- Institute for Risk Assessment Sciences, Utrecht University, PO Box 80177, 3508 TD Utrecht, The Netherlands.
| | - Nynke I Kramer
- Institute for Risk Assessment Sciences, Utrecht University, PO Box 80177, 3508 TD Utrecht, The Netherlands.
| |
Collapse
|
9
|
In vitro cytotoxicity and morphological assessment of smoke from polymer combustion in human lung derived cells (A549). Int J Hyg Environ Health 2012; 215:320-32. [DOI: 10.1016/j.ijheh.2011.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Revised: 12/01/2011] [Accepted: 12/17/2011] [Indexed: 11/20/2022]
|
10
|
Scanu M, Mancuso L, Cao G. Evaluation of the use of human Mesenchymal Stem Cells for acute toxicity tests. Toxicol In Vitro 2011; 25:1989-95. [PMID: 21798340 DOI: 10.1016/j.tiv.2011.07.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 07/07/2011] [Accepted: 07/08/2011] [Indexed: 11/24/2022]
Abstract
In vitro cytotoxicity tests are typically carried out with transformed, immortalized cell lines or primary cells. Immortalized cells are readily available and easily maintained, although they usually show anomalous behavior and phenotypes, which do not reflect the mechanisms observed in their normal homologous cells. Primary cells are indeed considered a better option as model systems for predicting toxicological behavior, although they are limited in quantity and suffer from batch-to-batch variation due to the need to isolate them freshly for each study. In particular, human Mesenchymal Stem Cells (hMSCs) have never been adopted in order to develop in vitro model systems for acute toxicity tests of chemicals. Therefore, the aim of this study was to verify the possibility of using hMSCs as an alternative method to estimate in vivo starting dose for acute toxicity. As suggested by ICCVAM, 12 reference chemicals were assessed in the present study and a Neutral Red Uptake assay was performed. It is shown for the first time that MSCs isolated from human bone marrow can be confidently used in this area of toxicology. MSCs represent a good promise for the development of in vitro human assays and could ultimately replace, improve or overtake current predictive models in toxicology.
Collapse
Affiliation(s)
- M Scanu
- Dipartimento di Ingegneria Chimica e Materiali, Università degli Studi di Cagliari, Piazza d'Armi, 09123 Cagliari, Italy.
| | | | | |
Collapse
|
11
|
Bakand S, Hayes A. Troubleshooting methods for toxicity testing of airborne chemicals in vitro. J Pharmacol Toxicol Methods 2010; 61:76-85. [DOI: 10.1016/j.vascn.2010.01.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 01/18/2010] [Accepted: 01/20/2010] [Indexed: 01/01/2023]
|
12
|
|
13
|
Richter E, Engl J, Friesenegger S, Tricker AR. Biotransformation of 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone in Lung Tissue from Mouse, Rat, Hamster, and Man. Chem Res Toxicol 2009; 22:1008-17. [DOI: 10.1021/tx800461d] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elmar Richter
- Walther Straub Institute, Department of Toxicology, Ludwig-Maximilians University of Munich, Nussbaumstrasse 26, D-80336 Munich, Germany, and PMI Research & Development, Philip Morris Products S.A., Quai Jeanrenaud 56, CH-2000 Neuchâtel, Switzerland
| | - Johannes Engl
- Walther Straub Institute, Department of Toxicology, Ludwig-Maximilians University of Munich, Nussbaumstrasse 26, D-80336 Munich, Germany, and PMI Research & Development, Philip Morris Products S.A., Quai Jeanrenaud 56, CH-2000 Neuchâtel, Switzerland
| | - Susanne Friesenegger
- Walther Straub Institute, Department of Toxicology, Ludwig-Maximilians University of Munich, Nussbaumstrasse 26, D-80336 Munich, Germany, and PMI Research & Development, Philip Morris Products S.A., Quai Jeanrenaud 56, CH-2000 Neuchâtel, Switzerland
| | - Anthony R. Tricker
- Walther Straub Institute, Department of Toxicology, Ludwig-Maximilians University of Munich, Nussbaumstrasse 26, D-80336 Munich, Germany, and PMI Research & Development, Philip Morris Products S.A., Quai Jeanrenaud 56, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
14
|
Bakand S, Winder C, Khalil C, Hayes A. Toxicity Assessment of Industrial Chemicals and Airborne Contaminants: Transition fromIn VivotoIn VitroTest Methods: A Review. Inhal Toxicol 2008; 17:775-87. [PMID: 16195213 DOI: 10.1080/08958370500225240] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Exposure to occupational and environmental contaminants is a major contributor to human health problems. Inhalation of gases, vapors, aerosols, and mixtures of these can cause a wide range of adverse health effects, ranging from simple irritation to systemic diseases. Despite significant achievements in the risk assessment of chemicals, the toxicological database, particularly for industrial chemicals, remains limited. Considering there are approximately 80,000 chemicals in commerce, and an extremely large number of chemical mixtures, in vivo testing of this large number is unachievable from both economical and practical perspectives. While in vitro methods are capable of rapidly providing toxicity information, regulatory agencies in general are still cautious about the replacement of whole-animal methods with new in vitro techniques. Although studying the toxic effects of inhaled chemicals is a complex subject, recent studies demonstrate that in vitro methods may have significant potential for assessing the toxicity of airborne contaminants. In this review, current toxicity test methods for risk evaluation of industrial chemicals and airborne contaminants are presented. To evaluate the potential applications of in vitro methods for studying respiratory toxicity, more recent models developed for toxicity testing of airborne contaminants are discussed.
Collapse
Affiliation(s)
- S Bakand
- Chemical Safety and Applied Toxicology (CSAT) Laboratories, School of Safety Science, University of New South Wales, Sydney, Australia.
| | | | | | | |
Collapse
|
15
|
Combes R, Grindon C, Cronin MT, Roberts DW, Garrod JF. Integrated Decision-tree Testing Strategies for Acute Systemic Toxicity and Toxicokinetics with Respect to the Requirements of the EU REACH Legislation. Altern Lab Anim 2008; 36 Suppl 1:91-109. [DOI: 10.1177/026119290803601s08] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Liverpool John Moores University and FRAME conducted a joint research project, sponsored by Defra, on the status of alternatives to animal testing with regard to the European Union REACH (Registration, Evaluation and Authorisation of Chemicals) system for the safety testing and risk assessment of chemicals. The project covered all the main toxicity endpoints associated with REACH. This paper focuses on the use of alternative (non-animal) methods (both in vitro and in silico) for acute systemic toxicity and toxicokinetic testing. The paper reviews in vitro tests based on basal cytotoxicity and target organ toxicity, along with QSAR models and expert systems available for this endpoint. The use of PBPK modelling for the prediction of ADME properties is also discussed. These tests are then incorporated into a decision-tree style, integrated testing strategy, which also includes the use of refined in vivo acute toxicity tests, as a last resort. The implementation of the strategy is intended to minimise the use of animals in the testing of acute systemic toxicity and toxicokinetics, whilst satisfying the scientific and logistical demands of the EU REACH legislation.
Collapse
Affiliation(s)
| | | | - Mark T.D. Cronin
- School of Pharmacy and Chemistry, Liverpool John Moores University, Liverpool, UK
| | - David W. Roberts
- School of Pharmacy and Chemistry, Liverpool John Moores University, Liverpool, UK
| | - John F. Garrod
- Chemicals and Nanotechnologies Division, Defra, London, UK
| |
Collapse
|
16
|
Junghans M, Schaefer M, Drost W, Hassold E, Stock F, Dünne M, Juffernholz T, Meyer W, Ranke J. Reconsidering environmental effects assessment of chemicals: Proposal for a dynamic testing strategy. Basic Appl Ecol 2008. [DOI: 10.1016/j.baae.2007.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Combes R, Grindon C, Cronin MTD, Roberts DW, Garrod JF. Integrated decision-tree testing strategies for acute systemic toxicity and toxicokinetics with respect to the requirements of the EU REACH legislation. Altern Lab Anim 2008; 36:45-63. [PMID: 18333714 DOI: 10.1177/026119290803600107] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Liverpool John Moores University and FRAME conducted a joint research project, sponsored by Defra, on the status of alternatives to animal testing with regard to the European Union REACH (Registration, Evaluation and Authorisation of Chemicals) system for the safety testing and risk assessment of chemicals. The project covered all the main toxicity endpoints associated with REACH. This paper focuses on the use of alternative (non-animal) methods (both in vitro and in silico) for acute systemic toxicity and toxicokinetic testing. The paper reviews in vitro tests based on basal cytotoxicity and target organ toxicity, along with QSAR models and expert systems available for this endpoint. The use of PBPK modelling for the prediction of ADME properties is also discussed. These tests are then incorporated into a decision-tree style, integrated testing strategy, which also includes the use of refined in vivo acute toxicity tests, as a last resort. The implementation of the strategy is intended to minimise the use of animals in the testing of acute systemic toxicity and toxicokinetics, whilst satisfying the scientific and logistical demands of the EU REACH legislation.
Collapse
|
18
|
Bakand S, Winder C, Hayes A. Comparative in vitro cytotoxicity assessment of selected gaseous compounds in human alveolar epithelial cells. Toxicol In Vitro 2007; 21:1341-7. [PMID: 17574383 DOI: 10.1016/j.tiv.2007.04.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 04/04/2007] [Accepted: 04/23/2007] [Indexed: 01/11/2023]
Abstract
Exposure to airborne contaminants is significantly associated with human health risks, ranging from bronchial reactivity to morbidity and mortality due to acute intense or long term low level repeated exposures. However, the precise mechanisms that derive such effects are not always understood. Although inhalation studies are technologically complicated, correct hazard characterisation is essential for comparable risk assessment of inhaled materials. The aim of this study was to investigate the comparative in vitro cytotoxicity of selected gaseous contaminants in human lung cells. The cytotoxicity of nitrogen dioxide (NO(2)), sulphur dioxide (SO(2)) and ammonia (NH(3)) was investigated in A549- human pulmonary type II-like epithelial cell lines cultured on porous membranes in Snapwell inserts. A dynamic direct exposure method was established by utilizing the horizontal diffusion chamber system (Harvard Apparatus Inc, USA) for delivery of test atmospheres. Test atmospheres were generated using a dynamic direct dilution method and the concentration monitored by appropriate analytical methods. A diversified battery of in vitro assays including the MTS (tetrazolium salt; Promega), NRU (neutral red uptake; Sigma) and ATP (adenosine triphosphate; Promega) assays was implemented. Airborne IC(50) (50% inhibitory concentration) values were calculated based on the most sensitive assay for each test gas including NO(2) (IC(50)=11+/-3.54 ppm; NRU)>SO(2) (IC(50)=48+/-2.83 ppm; ATP)> and NH(3) (IC(50)=199+/-1.41 ppm; MTS). However, all in vitro assays revealed similar toxicity ranking for selected gaseous contaminants. Identical toxicity ranking was achieved using both in vitro and published in vivo data. This comparison suggests that results of in vitro methods are comparable to in vivo data and may provide greater sensitivity for respiratory toxicity studies of gaseous contaminants.
Collapse
Affiliation(s)
- S Bakand
- Chemical Safety and Applied Toxicology (CSAT) Laboratories, School of Safety Science, The University of New South Wales, UNSW Sydney 2052, Australia
| | | | | |
Collapse
|
19
|
Bakand S, Hayes A, Winder C. An integrated in vitro approach for toxicity testing of airborne contaminants. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:1604-12. [PMID: 17763078 DOI: 10.1080/15287390701434604] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
While it is possible to establish the chemical composition of air pollutants through conventional air sampling and analytical techniques, such data do not provide direct measures of toxicity and the potential mechanisms that induce adverse effects. The aim of this study was to optimize in vitro methods for toxicity testing of airborne contaminants. An integrated approach was designed in which appropriate exposure techniques were developed. A diversified range of in vitro assays using multiple human cell systems were implemented. Direct exposure of cells to airborne contaminants was developed by culturing cells on porous membranes in conjunction with a horizontal diffusion chamber system. Concentration-response curves were generated allowing the measurement of toxicity endpoints. Regression analysis indicated a significant correlation between in vitro and published in vivo toxicity data for the majority of selected chemical contaminants. Airborne IC50 values were calculated for selected volatile organic compounds (xylene, 5350 +/- 328 ppm > toluene, 10,500 +/- 527 ppm) and gaseous contaminants (NO2, 11 +/- 3.54 ppm > SO2, 48 +/- 2.83 ppm and > NH3, 199 +/- 1.41 ppm). Results of this study indicate the significant potential of in vitro methods as an advanced technology for toxicity assessment of airborne contaminants.
Collapse
Affiliation(s)
- Shahnaz Bakand
- Chemical Safety and Applied Toxicology Laboratories, School of Safety Science, University of New South Wales, UNSW Sydney, Australia
| | | | | |
Collapse
|
20
|
Ranke J, Müller A, Bottin-Weber U, Stock F, Stolte S, Arning J, Störmann R, Jastorff B. Lipophilicity parameters for ionic liquid cations and their correlation to in vitro cytotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2007; 67:430-8. [PMID: 17034854 DOI: 10.1016/j.ecoenv.2006.08.008] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 07/26/2006] [Accepted: 08/23/2006] [Indexed: 05/12/2023]
Abstract
Regarding the great structural variability of the currently expanding group of ionic liquids, it is highly desirable to understand the basic factors affecting their toxicity in different biological systems. The present study of a set of 74 ionic liquids with imidazolium, pyrrolidinium, pyridinium, quinolinium, quaternary phosphonium and quaternary ammonium cations and the comparatively small anions Cl(-), Br(-), BF(4)(-), or PF(6)(-) demonstrates the influence of the cation lipophilicity on the cytotoxicity in IPC-81 leukemia cells from rats. The scope of this correlation is limited to ionic liquids with these or similarly small anions that are sufficiently nonreactive under physiological and chromatographic conditions and whose cation lipophilicity does not exceed a certain threshold.
Collapse
Affiliation(s)
- Johannes Ranke
- Department of Bioorganic Chemistry, UFT Center of Environmental Science and Technology, University of Bremen, Leobener Strasse, D-28359 Bremen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
McDermott C, Allshire A, van Pelt FNAM, Heffron JJA. Validation of a method for acute and subchronic exposure of cells in vitro to volatile organic solvents. Toxicol In Vitro 2007; 21:116-24. [PMID: 17045455 DOI: 10.1016/j.tiv.2006.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 08/24/2006] [Accepted: 08/30/2006] [Indexed: 11/28/2022]
Abstract
In vitro assessment of organic solvents can be problematic as the volatile nature of these compounds makes maintaining a constant exposure level difficult. However, a stable exposure level must be maintained if reliable dose response data are to be obtained. Here we describe a gas-tight glass exposure system which allows prolonged exposure of cultured cells to constant concentrations of volatile organic solvents. The system permits convenient sampling of gas and liquid phases for reliable quantification of solvent concentration. We determined medium/air partition coefficients (K) for toluene, n-hexane and methyl ethyl ketone which can be used to calculate liquid phase solvent exposure levels in an in vitro system specifically designed for organic solvent exposure. Cultured cells were exposed to these compounds for five days and toxicity assessed by trypan blue exclusion. Headspace gas chromatography was used to determine K in RPMI-1640 and EMEM tissue culture medium at 37 degrees C. The presence of cells in the system at levels normally used in in vitro exposure systems did not significantly alter solvent partitioning. Equilibrium liquid phase solvent concentrations were measured by gas chromatography for two of the compounds to confirm that exposure levels calculated using K were correct. Results show that sub-chronic exposure to volatile organic solvents causes a dose dependent decrease in Jurkat T-cells and SH-SY5Y viability. Solvent potency increased with lipophilicity (n-hexane>toluene>MEK).
Collapse
|
22
|
Vanparys C, Maras M, Lenjou M, Robbens J, Van Bockstaele D, Blust R, De Coen W. Flow cytometric cell cycle analysis allows for rapid screening of estrogenicity in MCF-7 breast cancer cells. Toxicol In Vitro 2006; 20:1238-48. [PMID: 16797915 DOI: 10.1016/j.tiv.2006.05.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 04/26/2006] [Accepted: 05/04/2006] [Indexed: 11/17/2022]
Abstract
The quantitative measurement of individual cells and their characteristics by means of flow cytometry is already for many years of great value for clinical studies. However, its potential as a tool in (eco)toxicology has only recently been discovered. Analysis of cell cycle kinetics with DNA-staining dyes can offer a valuable alternative to detect effects of chemicals on cell proliferation, an important endpoint in screening estrogen-like properties of chemicals. In the present study, flow cytometric cell cycle analysis in growth arrested MCF-7 cells exposed to five xenoestrogens correspond well with cell proliferation results of the conventionally used E-screen assay. Moreover, re-induction of proliferation in MCF-7 cells, indicated by the percentage of cells in S(ynthesis)-phase, is most pronounced after 24 h exposure, thus allowing a faster screening of xenoestrogens. This flow cytometric proliferation assay confirms that the estrogenic activity of structurally analogous parabens is mediated by the estrogen receptor pathway and is proportional to the alkyl chain length. Moreover, the ER-mediated mode of action of two fluorotelomer alcohols (6:2 FTOH and 8:2 FTOH), recently reported as xenoestrogenic, could be elucidated. These results support the potential of flow cytometric cell cycle kinetics as a screening assay for estrogen-like properties of chemicals.
Collapse
Affiliation(s)
- C Vanparys
- Laboratory of Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
| | | | | | | | | | | | | |
Collapse
|
23
|
Bakand S, Winder C, Khalil C, Hayes A. An experimental in vitro model for dynamic direct exposure of human cells to airborne contaminants. Toxicol Lett 2006; 165:1-10. [PMID: 16488094 DOI: 10.1016/j.toxlet.2006.01.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 01/16/2006] [Accepted: 01/16/2006] [Indexed: 11/18/2022]
Abstract
The aim of this study was to establish a dynamic in vitro model for direct exposure of human cells to gaseous contaminants to investigate the cellular responses to airborne chemical exposures. Nitrogen dioxide (NO2) was selected as a model gas compound. Standard test atmospheres were generated (2.5-10 ppm), using a dynamic direct dilution method. Human cells including: A549 pulmonary type II-like epithelial cell lines and skin fibroblasts were grown on porous membranes. Human cells on snapwell inserts were placed in horizontal diffusion chambers and exposed to various airborne concentrations of NO2 directly at the air/liquid interface for 1 h at 37 degrees C. Cytotoxicity of the test gas was investigated using the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium), NRU (neutral red uptake) and ATP (Adenosine triphosphate) assays. Dose-dependent effects of NO2 were observed in human cells tested which resulted in a significant reduction of cell viability at concentrations normally encountered in workplace environments (p<0.05). Our findings suggest that the dynamic direct exposure method can be used for in vitro inhalational and dermal toxicity studies and potentially as an advanced technology for biomonitoring of airborne contaminants in future occupational and environmental toxicity assessments.
Collapse
Affiliation(s)
- S Bakand
- Chemical Safety and Applied Toxicology (CSAT) Laboratories, School of Safety Science, The University of New South Wales, UNSW Sydney 2052, Australia.
| | | | | | | |
Collapse
|
24
|
Lestari F, Markovic B, Green AR, Chattopadhyay G, Hayes AJ. Comparative assessment of three in vitro exposure methods for combustion toxicity. J Appl Toxicol 2006; 26:99-114. [PMID: 16217724 DOI: 10.1002/jat.1112] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A comparative assessment of three approaches for the use of human cells in vitro to investigate combustion toxicity was conducted. These included one indirect and two direct (passive and dynamic) exposure methods. The indirect method used an impinger system in which culture medium was used to trap the toxicants, whilst the direct exposure involved the use of a Horizontal Harvard Navicyte Chamber at the air/liquid interface. The cytotoxic effects of thermal decomposition products were assessed using the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay (Promega) on a selection of human cells including: HepG2, A549 and skin fibroblasts. A small scale laboratory fire test using a vertical tube furnace was designed for the generation of combustion products. Polymethyl methacrylate (PMMA) was selected as a model polymer to study the cytotoxic effects of combustion products. NOAEC (no observable adverse effect concentration), IC10 (10% inhibitory concentration), IC50 (50% inhibitory concentration) and TLC (total lethal concentration) values were determined from dose response curves. Assessment using the NRU (neutral red uptake) and ATP (adenosine triphosphate) assays on human lung derived cells (A549) was also undertaken. Comparison between in vitro cytotoxicity results against published toxicity data for PMMA combustion and predicted LC50 (50% lethal concentration) values calculated from identified compounds using GCMS (gas chromatography mass spectrometry) was determined. The results suggested that the indirect exposure method did not appear to simulate closely exposure via inhalation, whilst exposure at the air/liquid interface by using the dynamic method proved to be a more representative method of human inhalation. This exposure method may be a potential system for in vitro cytotoxicity testing in combustion toxicity.
Collapse
Affiliation(s)
- Fatma Lestari
- Chemical Safety and Applied Toxicology (CSAT) Laboratories, School of Safety Science, The University of New South Wales, Sydney NSW 2052, Australia.
| | | | | | | | | |
Collapse
|
25
|
Abstract
The use of data from non-animal toxicity methods in risk assessment has mainly been limited to hazard identification and for elucidating mechanisms of toxicity. However, there is a need to extend the use of in vitro tests to hazard characterisation and risk assessment. This might be feasible by: (a) increased use of human cells of different types; (b) better maintenance of differentiated cells in culture for long periods; (c) use of genetically-engineered cells with useful characteristics; (d) development of complex organotypic cell systems; (e) development of co-cultures of different cell types; and (f) development of techniques for long term culturing, repeat dosing and assessment of recovery. Also, it will be necessary to obtain more information on the differences between cells in culture and in situ in tissues, and on the effects of dosing in vitro and in vivo, to develop realistic and meaningful uncertainty factors to allow in vitro information to be used for risk assessment in its own right, and in conjunction with animal data. These issues and a suggested proposal for using in vitro data in risk assessment are discussed.
Collapse
|
26
|
Lestari F, Hayes AJ, Green AR, Markovic B. In vitro cytotoxicity of selected chemicals commonly produced during fire combustion using human cell lines. Toxicol In Vitro 2005; 19:653-63. [PMID: 15893446 DOI: 10.1016/j.tiv.2005.03.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Revised: 01/18/2005] [Accepted: 03/04/2005] [Indexed: 11/26/2022]
Abstract
Fire combustion products contain a broad range of chemicals, which have a multitude of possible toxic interactions in humans. The aim of this study was to evaluate the cytotoxicity of selected substances commonly produced during fire combustion. A range of human cell lines and cultures including: skin fibroblasts, HepG2 (liver derived), and A549 (lung derived cells) were used to represent different human target organs. The colorimetric MTS assay (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) was used to detect the cytotoxic effects of selected substances including: acetic acid, ammonia, formaldehyde, hydrobromic acid, hydrochloric acid, hydrofluoric acid, potassium cyanide, sodium fluoride, sodium nitrite, sodium sulphide, and sulphurous acid. In this study, the NOAEC (No Observable Adverse Effect Concentration), IC(10) (10% inhibitory concentration), IC50 (50% inhibitory concentration), and TLC (Total Lethal Concentration) values were determined. The ratio between in vitro IC50 to in vivo human toxicity data (Lowest Lethal Dose-LDLo and Lowest Lethal Concentration--LCLo) was also established. Results indicated a strong relationship between IC50 values on the cell types used: fibroblast and A549 (R2: 0.92), A549 and HepG2 (R2: 0.72), fibroblast and HepG2 (R2: 0.69). Good correlation was obtained between the IC50 against LDLo and LCLo when an appropriate adjustment factor was implemented. Results of this study indicated that in vitro methods could be a potential technique for assessing the toxicity of fire combustion products.
Collapse
Affiliation(s)
- F Lestari
- Chemical Safety and Applied Toxicology (CSAT) Laboratories, School of Safety Science, The University of New South Wales, Sydney 2052, Australia.
| | | | | | | |
Collapse
|
27
|
Balls M. Progressing toward the reduction, refinement and replacement of laboratory animal procedures: thoughts on some encounters with Dr Iain Purchase. Toxicol In Vitro 2004; 18:165-70. [PMID: 14757106 DOI: 10.1016/s0887-2333(03)00145-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A variety of encounters with Dr Iain Purchase over the last 25 years are reviewed in relation to their significance in terms of progress toward the reduction, refinement and replacement of animal procedures in toxicology and toxicity testing. Included are the work of the first FRAME Toxicity Committee and the FRAME International Alternatives Validation Scheme, the International Conferences on Practical In Vitro Toxicology and the foundation of Toxicology in Vitro, the work of an Institute of Medical Ethics working party on issues raised by animal experimentation and alternative approaches, the need for in vitro assays for chemical carcinogenesis based on the transformation of human cells, the problem presented by the human hazard potential of thousands of chemicals already in use before modern regulations for the registration of new chemicals came into force, and the importance of testing strategies with a focus on the integrated use of non-animal computer-based and in vitro test systems.
Collapse
Affiliation(s)
- Michael Balls
- Fund for the Replacement of Animals in Medical Experiments (FRAME), Russell & Burch House, 96-98 North Sherwood Street, Nottingham NG1 4EE, UK.
| |
Collapse
|
28
|
Blaauboer BJ. Biokinetic and Toxicodynamic Modelling and its Role in Toxicological Research and Risk Assessment. Altern Lab Anim 2003; 31:277-81. [PMID: 15612871 DOI: 10.1177/026119290303100310] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Toxicological risk assessment for chemicals is still mainly based on highly standardised protocols for animal experimentation and exposure assessment. However, developments in our knowledge of general physiology, in chemicobiological interactions and in (computer-supported) modelling, have resulted in a tremendous change in our understanding of the molecular mechanisms underlying the toxicity of chemicals. This permits the development of biologically based models, in which the biokinetics as well as the toxicodynamics of compounds can be described. In this paper, the possibilities are discussed of developing systems in which the systemic (acute and chronic) toxicities of chemicals can be quantified without the heavy reliance on animal experiments. By integrating data derived from different sources, predictions of toxicity can be made. Key elements in this integrated approach are the evaluation of chemical functionalities representing structural alerts for toxic actions, the construction of biokinetic models on the basis of non-animal data (for example, tissue–blood partition coefficients, in vitro biotransformation parameters), tests or batteries of tests for determining basal cytotoxicity, and more-specific tests for evaluating tissue or organ toxicity. It is concluded that this approach is a useful tool for various steps in toxicological hazard and risk assessment, especially for those forms of toxicity for which validated in vitro and other non-animal tests have already been developed.
Collapse
Affiliation(s)
- Bas J Blaauboer
- Institute for Risk Assessment Sciences (IRAS), Division of Toxicology, Utrecht University, P.O. Box 80.176, 3508 TD Utrecht, The Netherlands
| |
Collapse
|
29
|
Blaauboer BJ. The integration of data on physico-chemical properties, in vitro-derived toxicity data and physiologically based kinetic and dynamic as modelling a tool in hazard and risk assessment. A commentary. Toxicol Lett 2003; 138:161-71. [PMID: 12559700 DOI: 10.1016/s0378-4274(02)00367-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Toxicity of a compound for an organism is dependent on the route of exposure, the amount (or concentration), the way in which the compound is taken up, distributes and is eliminated from the organism (ADME, kinetics) and the intrinsic properties (reactivity; mode of action, dynamics) of the compound towards the organism. These three elements: exposure, kinetics and dynamics form the basis of hazard and risk evaluations. Developments in our knowledge of the way in which physico-chemical properties of chemicals (on the one side) and physiological processes in the organism (on the other side) determine a compound's toxicity have greatly increased our understanding of toxicological processes and our ability to interpret experimental results. This has now resulted in the development of model systems in which the above-mentioned processes can be described mathematically. Biokinetic modelling is currently of great interest, but the further development of toxicodynamic modelling is equally important. The combination of both allows the estimation of a compound's critical amount/concentration on the critical site of action, which ideally would be the basis for hazard and risk assessments. In vitro systems have been extremely useful in studying the molecular basis of a chemical's biological activity, including its mechanism(s) of toxic action. Other achievements include the prediction of biological reactivity on the basis of a compound's physico-chemical properties and the construction of quantitative structure-activity relationships (QSARs). However, for the incorporation of in vitro-derived data as well as the results of QSARs, kinetic modelling is indispensable. Thus, biokinetic and toxicodynamic modelling are important (if not crucial) tools in toxicological research and there are increasing opportunities to incorporate the results of this work in hazard and risk assessments. Their implementation will allow a much more scientifically-based and a better structured risk assessment, which will be to a much lesser extent relying on animal experimentation.
Collapse
Affiliation(s)
- B J Blaauboer
- Institute for Risk Assessment Sciences, Division of Toxicology, Utrecht University, P.O. Box 80.176, 3508 TD Utrecht, The Netherlands.
| |
Collapse
|
30
|
Combes R, Barratt M, Balls M. An Overall Strategy for the Testing of Chemicals for Human Hazard and Risk Assessment under the EU REACH System. Altern Lab Anim 2003; 31:7-19. [PMID: 16221040 DOI: 10.1177/026119290303100103] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In its White Paper, Strategy for a Future Chemicals Policy, published in 2001, the European Commission (EC) proposed the REACH (Registration, Evaluation and Authorisation of CHemicals) system to deal with both existing and new chemical substances. This system is based on a top-down approach to toxicity testing, in which the degree of toxicity information required is dictated primarily by production volume (tonnage). If testing is to be based on traditional methods, very large numbers of laboratory animals could be needed in response to the REACH system, causing ethical, scientific and logistical problems that would be incompatible with the time-schedule envisaged for testing. The EC has emphasised the need to minimise animal use, but has failed to produce a comprehensive strategy for doing so. The present document provides an overall scheme for predictive toxicity testing, whereby the non-animal methods identified and discussed in a recent and comprehensive ECVAM document, could be used in a tiered approach to provide a rapid and scientifically justified basis for the risk assessment of chemicals for their toxic effects in humans. The scheme starts with a preliminary risk assessment process (involving available information on hazard and exposure), followed by testing, based on physicochemical properties and (Q)SAR approaches. (Q)SAR analyses are used in conjunction with expert system and biokinetic modelling, and information on metabolism and identification of the principal metabolites in humans. The resulting information is then combined with production levels and patterns of use to assess potential human exposure. The nature and extent of any further testing should be based strictly on the need to fill essential information gaps in order to generate adequate risk assessments, and should rely on non-animal methods, as far as possible. The scheme also includes a feedback loop, so that new information is used to improve the predictivity of computational expert systems. Several recommendations are made, the most important of which is that the European Union (EU) should actively promote the improvement and validation of (Q)SAR models and expert systems, and computer-based methods for biokinetic modelling, since these offer the most realistic and most economical solution to the need to test large numbers of chemicals.
Collapse
Affiliation(s)
- Robert Combes
- Fund for the Replacement of Animals in Medical Experiments, 96-98 North Sherwood Street, Nottingham NG1 4EE, UK
| | | | | |
Collapse
|
31
|
Blaauboer BJ. The necessity of biokinetic information in the interpretation of in vitro toxicity data. Altern Lab Anim 2002; 30 Suppl 2:85-91. [PMID: 12513656 DOI: 10.1177/026119290203002s13] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Data derived from in vitro toxicity studies are not directly applicable in an assessment of the toxicity of compounds in intact organisms. The major limitation is the lack of knowledge of biokinetic behaviour in vivo. Since the toxicity of a compound will be determined by the critical concentration (or other dose metric) of the critical compound (or a metabolite thereof) at the critical site of toxic action, biokinetic behaviour must be taken into account. Possibilities of biokinetic modelling on the basis of in vitro and other non-animal data are discussed, and the application of the results in hazard and risk-assessment schedules is considered.
Collapse
Affiliation(s)
- Bas J Blaauboer
- Institute for Risk Assessment Sciences (IRAS), Division of Toxicology, Utrecht University, P.O. Box 80.176, 3508 TD Utrecht, The Netherlands
| |
Collapse
|