1
|
Li T, Bu G, Chen Y, Zhao Q, Chang Y. Heat/non-heat treatment alleviates β-conglycinin-triggered food allergy reactions by modulating the Th1/Th2 immune balance in a BALB/c mouse model. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6531-6540. [PMID: 38517196 DOI: 10.1002/jsfa.13476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/02/2024] [Accepted: 03/22/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND With the increasing popularity of plant protein-based diets, soy proteins are favored as the most important source of plant protein worldwide. However, potential food allergy risks limit their use in the food industry. This work aims to reveal the mechanism of β-conglycinin-induced food allergy, and to explore the regulatory mechanism of heat treatment and high hydrostatic pressure (HHP) treatment in a BALB/c mouse model. RESULTS Our results showed that oral administration of β-conglycinin induced severe allergic symptoms in BALB/c mice, but these symptoms were effectively alleviated through heat treatment and HHP treatment. Moreover, β-conglycinin stimulated lymphocyte proliferation and differentiation; a large number of cytokines interleukin (IL)-4, IL-5, IL-10, IL-12 and IL-13 were released and interferon γ secretion was inhibited, which disrupted the Th1/Th2 immune balance and promoted the differentiation and proliferation of naive T cells into Th2-type cells. CONCLUSION Heat/non-heat treatment altered the conformation of soybean protein, which significantly reduced allergic reactions in mice. This regulatory mechanism may be associated with Th1/Th2 immune balance. Our results provide data support for understanding the changes in allergenicity of soybean protein within the food industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tanghao Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Gaungzhou, China
| | - Guanhao Bu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Yixuan Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Qingqing Zhao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Yongfeng Chang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
2
|
Caffeic acid-assisted cross-linking catalyzed by polyphenol oxidase decreases the allergenicity of ovalbumin in a Balb/c mouse model. Food Chem Toxicol 2018; 111:275-283. [DOI: 10.1016/j.fct.2017.11.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/10/2017] [Accepted: 11/18/2017] [Indexed: 02/06/2023]
|
3
|
Goodman RE, Ebisawa M, Ferreira F, Sampson HA, van Ree R, Vieths S, Baumert JL, Bohle B, Lalithambika S, Wise J, Taylor SL. AllergenOnline: A peer-reviewed, curated allergen database to assess novel food proteins for potential cross-reactivity. Mol Nutr Food Res 2016; 60:1183-98. [PMID: 26887584 DOI: 10.1002/mnfr.201500769] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 02/04/2016] [Accepted: 02/09/2016] [Indexed: 01/15/2023]
Abstract
SCOPE Increasingly regulators are demanding evaluation of potential allergenicity of foods prior to marketing. Primary risks are the transfer of allergens or potentially cross-reactive proteins into new foods. AllergenOnline was developed in 2005 as a peer-reviewed bioinformatics platform to evaluate risks of new dietary proteins in genetically modified organisms (GMO) and novel foods. METHODS AND RESULTS The process used to identify suspected allergens and evaluate the evidence of allergenicity was refined between 2010 and 2015. Candidate proteins are identified from the NCBI database using keyword searches, the WHO/IUIS nomenclature database and peer reviewed publications. Criteria to classify proteins as allergens are described. Characteristics of the protein, the source and human subjects, test methods and results are evaluated by our expert panel and archived. Food, inhalant, salivary, venom, and contact allergens are included. Users access allergen sequences through links to the NCBI database and relevant references are listed online. Version 16 includes 1956 sequences from 778 taxonomic-protein groups that are accepted with evidence of allergic serum IgE-binding and/or biological activity. CONCLUSION AllergenOnline provides a useful peer-reviewed tool for identifying the primary potential risks of allergy for GMOs and novel foods based on criteria described by the Codex Alimentarius Commission (2003).
Collapse
Affiliation(s)
- Richard E Goodman
- Food Allergy Research and Resource Program, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Motohiro Ebisawa
- Department of Allergy, Sagamihara National Hospital, Sagamihara, Japan
| | - Fatima Ferreira
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Hugh A Sampson
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ronald van Ree
- Departments of Experimental Immunology and of Otorhinolaryngology, Academic Medical Center, Amsterdam, The Netherlands
| | - Stefan Vieths
- Department of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Joseph L Baumert
- Food Allergy Research and Resource Program, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Barbara Bohle
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Sreedevi Lalithambika
- Food Allergy Research and Resource Program, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - John Wise
- Food Allergy Research and Resource Program, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Steve L Taylor
- Food Allergy Research and Resource Program, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
4
|
Mihajlovic L, Radosavljevic J, Nordlund E, Krstic M, Bohn T, Smit J, Buchert J, Cirkovic Velickovic T. Peanut protein structure, polyphenol content and immune response to peanut proteins in vivo are modulated by laccase. Food Funct 2016; 7:2357-66. [DOI: 10.1039/c5fo01325a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Laccase cross-linking of peanut protein causes changes in the protein structure, phenolic composition and immunological properties of the treated peanut protein.
Collapse
Affiliation(s)
- L. Mihajlovic
- University of Belgrade
- Faculty of Chemistry
- Belgrade
- Serbia
| | | | | | - M. Krstic
- University of Belgrade
- Faculty of Chemistry
- Belgrade
- Serbia
| | - T. Bohn
- Centre de Recherche Public – Gabriel Lippmann
- Belvaux
- Luxembourg
| | - J. Smit
- Institute for Risk Assessment Sciences
- Utrecht University
- Utrecht
- Netherlands
| | - J. Buchert
- National Food Resources Institute (Luke)
- Helsinki
- Finland
| | | |
Collapse
|
5
|
Sletten GBG, Halvorsen R, Egaas E, Halstensen TS. Changes in humoral responses to beta-lactoglobulin in tolerant patients suggest a particular role for IgG4 in delayed, non-IgE-mediated cow's milk allergy. Pediatr Allergy Immunol 2006; 17:435-43. [PMID: 16925689 DOI: 10.1111/j.1399-3038.2006.00408.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The major cow's milk allergen beta-lactoglobulin (beta-LG) is relatively resistant to enzymatic degradation and may therefore be involved in non-immunoglobulin (Ig)E-mediated cow's milk allergy (CMA) with delayed gastrointestinal symptoms. Serum levels of beta-LG-specific IgG(1), IgG(4), IgE, and IgA were compared in clinically reactive and tolerized IgE-mediated and non-IgE-mediated CMA with delayed gastrointestinal symptoms (n = 29) and controls (n = 10). Tolerance was associated with decreased beta-LG-specific IgE, IgG(1), and IgG(4) levels in both patient groups. However, the significantly increased beta-LG-specific IgG(4) levels in clinically reactive non-IgE-mediated CMA patients, and its median 36-fold reduction in tolerant patients, suggested a possible immunopathological role for IgG(4) in delayed CMA. Similarly, the significantly increased beta-LG-specific IgE levels in IgE-mediated CMA patients were decreased 44-fold in tolerant patients. The tolerant patients had apparently shifted the humoral immune response from a beta-LG-specific IgE- and/or IgG(4)-dominated immune response to an IgA-dominated immune response as the IgA/IgE or IgA/IgG(4) ratios increased 90- and 15-fold in tolerant IgE-mediated-, and non-IgE-mediated CMA patients, respectively. Thus, the marked difference in beta-LG-specific Ig ratios suggested a tolerance-induced inhibition of a Th(2)-type of immune response with significantly increased IgA dominance in both CMA patient groups.
Collapse
|
6
|
Maziak W. The asthma epidemic and our artificial habitats. BMC Pulm Med 2005; 5:5. [PMID: 15799786 PMCID: PMC1079886 DOI: 10.1186/1471-2466-5-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Accepted: 03/31/2005] [Indexed: 02/06/2023] Open
Abstract
Background The recent increase in childhood asthma has been a puzzling one. Recent views focus on the role of infection in the education of the immune system of young children. However, this so called hygiene hypothesis fails to answer some important questions about the current trends in asthma or to account for environmental influences that bear little relation to infection. Discussion The multi-factorial nature of asthma, reflecting the different ways we tend to interact with our environment, mandates that we look at the asthma epidemic from a broader perspective. Seemingly modern affluent lifestyles are placing us increasingly in static, artificial, microenvironments very different from the conditions prevailed for most part of our evolution and shaped our organisms. Changes that occurred during the second half of the 20th century in industrialized nations with the spread of central heating/conditioning, building insulation, hygiene, TV/PC/games, manufactured food, indoor entertainment, cars, medical care, and sedentary lifestyles all seem to be depriving our children from the essential inputs needed to develop normal airway function (resistance). Asthma according to this view is a manifestation of our respiratory maladaptation to modern lifestyles, or in other words to our increasingly artificial habitats. The basis of the artificial habitat notion may lie in reduced exposure of innate immunity to a variety of environmental stimuli, infectious and non-infectious, leading to reduced formulation of regulatory cells/cytokines as well as inscribed regulatory pathways. This could contribute to a faulty checking mechanism of non-functional Th2 (and likely Th1) responses, resulting in asthma and other immuno-dysregulation disorders. Summary In this piece I discuss the artificial habitat concept, its correspondence with epidemiological data of asthma and allergy, and provide possible immunological underpinning for it from an evolutionary perspective of health and disease.
Collapse
Affiliation(s)
- Wasim Maziak
- Syrian Center for Tobacco Studies, Aleppo, Syria.
| |
Collapse
|
7
|
Chatel JM, Nouaille S, Adel-Patient K, Le Loir Y, Boe H, Gruss A, Wal JM, Langella P. Characterization of a Lactococcus lactis strain that secretes a major epitope of bovine beta-lactoglobulin and evaluation of its immunogenicity in mice. Appl Environ Microbiol 2004; 69:6620-7. [PMID: 14602621 PMCID: PMC262270 DOI: 10.1128/aem.69.11.6620-6627.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Bovine beta-lactoglobulin (Blg) is one of the major cow's milk allergens. Peptide 41-60 of Blg (Blg41-60) was described as a murine T-cell determinant and a murine, rat, and human immunoglobulin E (IgE) epitope. The aim of this study was the expression of Blg41-60 as a fusion protein in the food-grade bacterium Lactococcus lactis and the characterization of its immunogenicity in mice. We constructed a recombinant strain of L. lactis capable of inducible production and secretion of Blg41-60::Nuc, a fusion protein between Blg41-60 and the mature part of the staphylococcal nuclease (Nuc). The highest production yield of Blg41-60::Nuc (32.5 mg/liter) was reached 4 h after induction. At this time, up to 75% of Blg41-60::Nuc was secreted. When monoclonal antibodies specific for Blg41-60 were used, purified Blg41-60::Nuc and synthetic Blg41-60 exhibited very similar immunoreactivities. Subcutaneous coadministration of purified Blg41-60::Nuc and killed nonrecombinant L. lactis resulted in the induction of specific anti-Blg41-60 IgG2a and IgG1. The IgG1/IgG2a ratio and the lack of specific IgE suggest a Th1-type immune response, i.e., a nonallergic response. Similar administrations of the killed Blg41-60::Nuc-producing L. lactis strain did not elicit a specific immune response, whereas a transitory mucosal IgA-specific immune response was induced in mice after oral administration of the live Blg41-60::Nuc-producing L. lactis strain.
Collapse
Affiliation(s)
- Jean-Marc Chatel
- Unité d'Immuno-Allergie Alimentaire, INRA/CEA, CE de Saclay, DRM-SPI, 91191 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Adel-Patient K, Créminon C, Bernard H, Clément G, Négroni L, Frobert Y, Grassi J, Wal JM, Chatel JM. Evaluation of a high IgE-responder mouse model of allergy to bovine beta-lactoglobulin (BLG): development of sandwich immunoassays for total and allergen-specific IgE, IgG1 and IgG2a in BLG-sensitized mice. J Immunol Methods 2000; 235:21-32. [PMID: 10675754 DOI: 10.1016/s0022-1759(99)00210-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
An animal model of food allergy represents an important tool for studying the mechanisms of induction and repression of an allergic reaction, as well as for the development of an immunotherapy to prevent or minimize such an adverse reaction. IgE and IgG1 (Th2 response) vs. IgG2a (Th1 response) are good markers for the induction of an allergic response in mice. Nevertheless, while the total serum concentrations of these isotypes are easy to measure using classical sandwich immunoassays, this is not the case for allergen-specific isotypes. To develop an animal model of allergy to bovine beta-lactoglobulin (BLG), we set up quantitative assays for total and for allergen-specific IgE, IgG1 and IgG2a. Microtiter plates coated either with anti-isotype antibodies (Abs) or with allergen were used for Ab capture, while anti-isotype Fab' fragments coupled to acetylcholinesterase were used for visualization. These assays of anti-BLG specific Abs are original in two ways. First, assay calibration is performed using anti-BLG specific mAbs, thus allowing good quantification of the different isotypes and subclasses of serum antibodies. Second, the detection of all anti-BLG specific Abs, i.e., those recognizing both the native and denatured forms of the protein, is achieved through indirect coating of BLG using biotin-streptavidin binding. The present assays are quantitative, specific to the isotype (cross-reactivity <0.5%), very sensitive (detection limit in the 10 pg/ml range), and reproducible (coefficient of variation less than 10%). Applied to the humoral response in mice sensitized with BLG adsorbed on alum, these assays proved to be a very useful tool for monitoring high IgE-responder mice following BLG immunization, and for an immunotherapy directed at polarizing the immune response.
Collapse
Affiliation(s)
- K Adel-Patient
- Laboratoire INRA-CEA d'ImmunoAllergie Alimentaire, Service de Pharmacologie et d'Immunologie, Bat 136, CE-Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Halstensen TS, Løvik M, Alexander J, Smith E. Environmental chemicals and food allergy/intolerance, a synopsis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 1997; 4:179-185. [PMID: 21781819 DOI: 10.1016/s1382-6689(97)10061-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Affiliation(s)
- T S Halstensen
- Department of Environmental Medicine, National Institute of Public Health, P.O. Box 4404 Torshov, N-0403 Oslo, Norway
| | | | | | | |
Collapse
|