1
|
Kim M, Jang HJ, Baek SY, Choi KJ, Han DH, Sung JS. Regulation of base excision repair during adipogenesis and osteogenesis of bone marrow-derived mesenchymal stem cells. Sci Rep 2023; 13:16384. [PMID: 37773206 PMCID: PMC10542337 DOI: 10.1038/s41598-023-43737-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/27/2023] [Indexed: 10/01/2023] Open
Abstract
Bone marrow-derived human mesenchymal stem cells (hMSCs) can differentiate into various lineages, such as chondrocytes, adipocytes, osteoblasts, and neuronal lineages. It has been shown that the high-efficiency DNA-repair capacity of hMSCs is decreased during their differentiation. However, the underlying its mechanism during adipogenesis and osteogenesis is unknown. Herein, we investigated how alkyl-damage repair is modulated during adipogenic and osteogenic differentiation, especially focusing on the base excision repair (BER) pathway. Response to an alkylation agent was assessed via quantification of the double-strand break (DSB) foci and activities of BER-related enzymes during differentiation in hMSCs. Adipocytes showed high resistance against methyl methanesulfonate (MMS)-induced alkyl damage, whereas osteoblasts were more sensitive than hMSCs. During the differentiation, activities, and protein levels of uracil-DNA glycosylase were found to be regulated. In addition, ligation-related proteins, such as X-ray repair cross-complementing protein 1 (XRCC1) and DNA polymerase β, were upregulated in adipocytes, whereas their levels and recruitment declined during osteogenesis. These modulations of BER enzyme activity during differentiation influenced DNA repair efficiency and the accumulation of DSBs as repair intermediates in the nucleus. Taken together, we suggest that BER enzymatic activity is regulated in adipogenic and osteogenic differentiation and these alterations in the BER pathway led to different responses to alkyl damage from those in hMSCs.
Collapse
Affiliation(s)
- Min Kim
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, 10326, Republic of Korea
| | - Hyun-Jin Jang
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, 10326, Republic of Korea
| | - Song-Yi Baek
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, 10326, Republic of Korea
| | - Kyung-Jin Choi
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, 10326, Republic of Korea
| | - Dong-Hee Han
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, 10326, Republic of Korea
| | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, 10326, Republic of Korea.
| |
Collapse
|
2
|
Aspen Cancer Conference Fellows. Toxicol Pathol 2016. [DOI: 10.1080/01926230490882358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
3
|
Kaina B, Margison GP, Christmann M. Targeting O⁶-methylguanine-DNA methyltransferase with specific inhibitors as a strategy in cancer therapy. Cell Mol Life Sci 2010; 67:3663-81. [PMID: 20717836 PMCID: PMC11115711 DOI: 10.1007/s00018-010-0491-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 07/28/2010] [Indexed: 11/29/2022]
Abstract
O (6)-methylguanine-DNA methyltransferase (MGMT) repairs the cancer chemotherapy-relevant DNA adducts, O (6)-methylguanine and O (6)-chloroethylguanine, induced by methylating and chloroethylating anticancer drugs, respectively. These adducts are cytotoxic, and given the overwhelming evidence that MGMT is a key factor in resistance, strategies for inactivating MGMT have been pursued. A number of drugs have been shown to inactivate MGMT in cells, human tumour models and cancer patients, and O (6)-benzylguanine and O (6)-[4-bromothenyl]guanine have been used in clinical trials. While these agents show no side effects per se, they also inactivate MGMT in normal tissues and hence exacerbate the toxic side effects of the alkylating drugs, requiring dose reduction. This might explain why, in any of the reported trials, the outcome has not been improved by their inclusion. It is, however, anticipated that, with the availability of tumour targeting strategies and hematopoetic stem cell protection, MGMT inactivators hold promise for enhancing the effectiveness of alkylating agent chemotherapy.
Collapse
Affiliation(s)
- Bernd Kaina
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, 55131, Mainz, Germany.
| | | | | |
Collapse
|
4
|
Mazon G, Philippin G, Cadet J, Gasparutto D, Modesti M, Fuchs RP. Alkyltransferase-like protein (eATL) prevents mismatch repair-mediated toxicity induced by O6-alkylguanine adducts in Escherichia coli. Proc Natl Acad Sci U S A 2010; 107:18050-5. [PMID: 20921378 PMCID: PMC2964255 DOI: 10.1073/pnas.1008635107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
O(6)-alkylG adducts are highly mutagenic due to their capacity to efficiently form O(6)-alkylG:T mispairs during replication, thus triggering G→A transitions. Mutagenesis is largely prevented by repair strategies such as reversal by alkyltransferases or excision by nucleotide excision repair (NER). Moreover, methyl-directed mismatch repair (MMR) is known to trigger sensitivity to methylating agents via a mechanism that involves recognition by MutS of the O(6)-mG:T replication intermediates. We wanted to investigate the mechanism by which MMR controls the genotoxicity of environmentally relevant O(6)-alkylG adducts formed by ethylene oxide and propylene oxide. Recently, the alkyltransferase-like gene ybaZ (eATL) was shown to enhance repair of these slightly larger O(6)-alkylG adducts by NER. We analyzed the toxicity and mutagenesis induced by these O(6)-alkylG adducts using single-adducted plasmid probes. We show that the eATL gene product prevents MMR-mediated attack of the O(6)-alkylG:T replication intermediate for the larger alkyl groups but not for methyl. In vivo data are compatible with the occurrence of repeated cycles of MMR attack of the O(6)-alkylG:T intermediate. In addition, in vitro, the eATL protein efficiently prevents binding of MutS to the O(6)-alkylG:T mispairs formed by the larger alkyl groups but not by methyl. In conclusion, eATL not only enhances the efficiency of repair of these larger adducts by NER, it also shields these adducts from MMR-mediated toxicity.
Collapse
Affiliation(s)
- Gerard Mazon
- Centre National de la Recherche Scientifique (CNRS), Unité Propre de Recherche 3081, Genome Instability and Carcinogenesis, Conventionné par l'Université d'Aix-Marseille 2, 13402 Marseille Cedex 20, France; and
| | - Gaëlle Philippin
- Centre National de la Recherche Scientifique (CNRS), Unité Propre de Recherche 3081, Genome Instability and Carcinogenesis, Conventionné par l'Université d'Aix-Marseille 2, 13402 Marseille Cedex 20, France; and
| | - Jean Cadet
- Institut Nanosciences et Cryogénie/Service de Chimie Inorganique et Biologique-Unité Mixte de Recherche E3 Commissariat à l'Énergie Atomique (CEA)-Université Joseph Fourier, Federation de Recherche en Evolution 3200 CEA-CNRS/CEA Grenoble, F-38054 Grenoble Cedex 9, France
| | - Didier Gasparutto
- Institut Nanosciences et Cryogénie/Service de Chimie Inorganique et Biologique-Unité Mixte de Recherche E3 Commissariat à l'Énergie Atomique (CEA)-Université Joseph Fourier, Federation de Recherche en Evolution 3200 CEA-CNRS/CEA Grenoble, F-38054 Grenoble Cedex 9, France
| | - Mauro Modesti
- Centre National de la Recherche Scientifique (CNRS), Unité Propre de Recherche 3081, Genome Instability and Carcinogenesis, Conventionné par l'Université d'Aix-Marseille 2, 13402 Marseille Cedex 20, France; and
| | - Robert P. Fuchs
- Centre National de la Recherche Scientifique (CNRS), Unité Propre de Recherche 3081, Genome Instability and Carcinogenesis, Conventionné par l'Université d'Aix-Marseille 2, 13402 Marseille Cedex 20, France; and
| |
Collapse
|
5
|
Fukui K. DNA mismatch repair in eukaryotes and bacteria. J Nucleic Acids 2010; 2010. [PMID: 20725617 PMCID: PMC2915661 DOI: 10.4061/2010/260512] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 06/24/2010] [Indexed: 12/17/2022] Open
Abstract
DNA mismatch repair (MMR) corrects mismatched base pairs mainly caused by DNA replication errors. The fundamental mechanisms and proteins involved in the early reactions of MMR are highly conserved in almost all organisms ranging from bacteria to human. The significance of this repair system is also indicated by the fact that defects in MMR cause human hereditary nonpolyposis colon cancers as well as sporadic tumors. To date, 2 types of MMRs are known: the human type and Escherichia coli type. The basic features of the former system are expected to be universal among the vast majority of organisms including most bacteria. Here, I review the molecular mechanisms of eukaryotic and bacterial MMR, emphasizing on the similarities between them.
Collapse
Affiliation(s)
- Kenji Fukui
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| |
Collapse
|
6
|
O6-methylguanine-induced cell death involves exonuclease 1 as well as DNA mismatch recognition in vivo. Proc Natl Acad Sci U S A 2009; 106:576-81. [PMID: 19124772 DOI: 10.1073/pnas.0811991106] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Alkylation-induced O(6)-methylguanine (O(6)MeG) DNA lesions can be mutagenic or cytotoxic if unrepaired by the O(6)MeG-DNA methyltransferase (Mgmt) protein. O(6)MeG pairs with T during DNA replication, and if the O(6)MeG:T mismatch persists, a G:C to A:T transition mutation is fixed at the next replication cycle. O(6)MeG:T mismatch detection by MutSalpha and MutLalpha leads to apoptotic cell death, but the mechanism by which this occurs has been elusive. To explore how mismatch repair mediates O(6)MeG-dependent apoptosis, we used an Mgmt-null mouse model combined with either the Msh6-null mutant (defective in mismatch recognition) or the Exo1-null mutant (impaired in the excision step of mismatch repair). Mouse embryonic fibroblasts and bone marrow cells derived from Mgmt-null mice were much more alkylation-sensitive than wild type, as expected. However, ablation of either Msh6 or Exo1 function rendered these Mgmt-null cells just as resistant to alkylation-induced cytotoxicity as wild-type cells. Rapidly proliferating tissues in Mgmt-null mice (bone marrow, thymus, and spleen) are extremely sensitive to apoptosis induced by O(6)MeG-producing agents. Here, we show that ablation of either Msh6 or Exo1 function in the Mgmt-null mouse renders these rapidly proliferating tissues alkylation-resistant. However, whereas the Msh6 defect confers total alkylation resistance, the Exo1 defect leads to a variable tissue-specific alkylation resistance phenotype. Our results indicate that Exo1 plays an important role in the induction of apoptosis by unrepaired O(6)MeGs.
Collapse
|
7
|
Shuga J, Zhang J, Samson LD, Lodish HF, Griffith LG. In vitro erythropoiesis from bone marrow-derived progenitors provides a physiological assay for toxic and mutagenic compounds. Proc Natl Acad Sci U S A 2007; 104:8737-42. [PMID: 17502613 PMCID: PMC1885572 DOI: 10.1073/pnas.0701829104] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The goal of this study was to create an in vitro cell culture system that captures essential features of the in vivo erythroid micronucleus (MN) genotoxicity assay, thus enabling increased throughput and controlled studies of the hematopoietic DNA damage response. We show that adult bone marrow (BM) cultures respond to erythropoietin, the principal hormone that stimulates erythropoiesis, with physiological erythropoietic proliferation, differentiation, and enucleation. We then show that this in vitro erythropoietic system clearly signals exposure to genotoxicants through erythroid MN formation. Furthermore, we determined that DNA repair-deficient (MGMT(-/-)) BM displayed sensitivity to genotoxic exposure in vivo compared with WT BM and that this phenotypic response was reflected in erythropoietic cultures. These findings suggest that this in vitro erythroid MN assay is capable of screening for genotoxicity on BM in a physiologically reflective manner. Finally, responses to genotoxicants during erythroid differentiation varied with exposure time, demonstrating that this system can be used to study the effect of DNA damage at specific developmental stages.
Collapse
Affiliation(s)
- J. Shuga
- Department of Chemical Engineering
- Whitehead Institute for Biomedical Research
- Center for Environmental Health Sciences
| | - J. Zhang
- Whitehead Institute for Biomedical Research
| | - L. D. Samson
- Center for Environmental Health Sciences
- Biological Engineering Division
- Department of Biology, and
| | - H. F. Lodish
- Whitehead Institute for Biomedical Research
- Biological Engineering Division
- Department of Biology, and
- To whom correspondence should be addressed at:
Nine Cambridge Center, WI-601, Cambridge, MA 02141. E-mail:
| | - L. G. Griffith
- Center for Environmental Health Sciences
- Biological Engineering Division
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
8
|
Sandercock LE, Kwok MCH, Luchman HA, Mark SC, Giesbrecht JL, Samson LD, Jirik FR. Mutational-reporter transgenes rescued from mice lacking either Mgmt, or both Mgmt and Msh6 suggest that O6-alkylguanine-induced miscoding does not contribute to the spontaneous mutational spectrum. Oncogene 2004; 23:5931-40. [PMID: 15208683 DOI: 10.1038/sj.onc.1207791] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
O6-methylguanine methyltransferase, Mgmt, constitutes the first line of defense against O6-alkylguanine, which can result in G : C to A : T transitions upon DNA replication. Mgmt has been found in organisms as diverse as archaebacteria and mammals. This evolutionary conservation suggests that all organisms may be exposed to either endogenous or environmental alkylating agents. We thus hypothesized that tissues of Mgmt-/- mice would exhibit elevated mutant frequencies. Employing the Big Blue trade mark transgenic system, we evaluated lacI mutants rescued from liver and small intestinal DNA of young Mgmt-/- mice. Interestingly, while there was a small difference between Mgmt-/- mice and controls with respect to lacI mutant frequency, no differences attributable to Mgmt deficiency were apparent in the mutational spectra. Although mutations stemming from O6-guanine alkylations would be predicted to be cumulative, we found no evidence of an Mgmt-dependent alteration in mutation spectrum in DNA samples from 12 month-old mice. To optimize our ability to detect mutations resulting from O6-alkylguanine-induced G : T mismatches, mice with combined deficiencies of Mgmt and the DNA mismatch repair molecule, Msh6, were analysed. In spite of this strategy, we observed no significant differences between Mgmt-/- Msh6-/- and Msh6-/- mouse lacI mutations, except for a trend towards a greater percentage (of total transitions) of G : C to A : T changes in Mgmt-/-Msh6-/- livers. Therefore, despite the striking evolutionary conservation of Mgmt, deficiency of this gene did not significantly impact the spontaneous lacI mutational spectrum in vivo.
Collapse
Affiliation(s)
- Linda E Sandercock
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | | | | | |
Collapse
|
9
|
Margison GP, Santibáñez-Koref MF. O6-alkylguanine-DNA alkyltransferase: role in carcinogenesis and chemotherapy. Bioessays 2002; 24:255-66. [PMID: 11891762 DOI: 10.1002/bies.10063] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The DNA in human cells is continuously undergoing damage as consequences of both endogenous processes and exposure to exogenous agents. The resulting structural changes can be repaired by a number of systems that function to preserve genome integrity. Most pathways are multicomponent, involving incision in the damaged DNA strand and resynthesis using the undamaged strand as a template. In contrast, O(6)-alkylguanine-DNA alkyltransferase is able to act as a single protein that reverses specific types of alkylation damage simply by removing the offending alkyl group, which becomes covalently attached to the protein and inactivates it. The types of damage that ATase repairs are potentially toxic, mutagenic, recombinogenic and clastogenic. They are generated by certain classes of carcinogenic and chemotherapeutic alkylating agents. There is consequently a great deal of interest in this repair system in relation to both carcinogenesis and cancer chemotherapy.
Collapse
Affiliation(s)
- Geoffrey P Margison
- CRC Carcinogenesis Group, Paterson Institute for Cancer Research, Manchester, UK
| | | |
Collapse
|
10
|
Allan JM, Wild CP, Rollinson S, Willett EV, Moorman AV, Dovey GJ, Roddam PL, Roman E, Cartwright RA, Morgan GJ. Polymorphism in glutathione S-transferase P1 is associated with susceptibility to chemotherapy-induced leukemia. Proc Natl Acad Sci U S A 2001; 98:11592-7. [PMID: 11553769 PMCID: PMC58774 DOI: 10.1073/pnas.191211198] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2001] [Indexed: 01/02/2023] Open
Abstract
Glutathione S-transferases (GSTs) detoxify potentially mutagenic and toxic DNA-reactive electrophiles, including metabolites of several chemotherapeutic agents, some of which are suspected human carcinogens. Functional polymorphisms exist in at least three genes that encode GSTs, including GSTM1, GSTT1, and GSTP1. We hypothesize, therefore, that polymorphisms in genes that encode GSTs alter susceptibility to chemotherapy-induced carcinogenesis, specifically to therapy-related acute myeloid leukemia (t-AML), a devastating complication of long-term cancer survival. Elucidation of genetic determinants may help to identify individuals at increased risk of developing t-AML. To this end, we have examined 89 cases of t-AML, 420 cases of de novo AML, and 1,022 controls for polymorphisms in GSTM1, GSTT1, and GSTP1. Gene deletion of GSTM1 or GSTT1 was not specifically associated with susceptibility to t-AML. Individuals with at least one GSTP1 codon 105 Val allele were significantly over-represented in t-AML cases compared with de novo AML cases [odds ratio (OR), 1.81; 95% confidence interval (CI), 1.11-2.94]. Moreover, relative to de novo AML, the GSTP1 codon 105 Val allele occurred more often among t-AML patients with prior exposure to chemotherapy (OR, 2.66; 95% CI, 1.39-5.09), particularly among those with prior exposure to known GSTP1 substrates (OR, 4.34; 95% CI, 1.43-13.20), and not among those t-AML patients with prior exposure to radiotherapy alone (OR,1.01; 95% CI, 0.50-2.07). These data suggest that inheritance of at least one Val allele at GSTP1 codon 105 confers a significantly increased risk of developing t-AML after cytotoxic chemotherapy, but not after radiotherapy.
Collapse
Affiliation(s)
- J M Allan
- Molecular Epidemiology Unit, Academic Unit of Epidemiology and Health Services Research, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|