1
|
Kachmar J, Saei H, Morinière V, Heidet L, Knebelmann B, Gribouval O, Mautret-Godefroy M, Burtey S, Vuiblet V, Alla A, Ibalanky A, Moranne O, Nizon M, Savenkoff B, Nitschké P, Antignac C, Dorval G. Phenotypic Heterogeneity of ADTKD-MUC1 Diagnosed Using VNtyper, a Novel Genetic Technique. Am J Kidney Dis 2025; 85:603-609.e1. [PMID: 39848530 DOI: 10.1053/j.ajkd.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 01/25/2025]
Abstract
RATIONALE & OBJECTIVE Molecular diagnosis of autosomal dominant tubulointerstitial kidney disease (ADTKD) due to variants in the MUC1 gene has long been challenging because variants lie in a large variable number of tandem repeat (VNTR) region, making identification impossible using standard short-read techniques. Previously, we addressed this diagnostic limitation by developing a computational pipeline named VNtyper for easier reliable detection of MUC1 VNTR pathogenic variants from short-read sequences. This led to unexpected diagnoses of ADTKD-MUC1 among patients with kidney disease referred for genetic testing, which we report here. STUDY DESIGN Cross-sectional observational study. SETTING & PARTICIPANTS 4,040 patients referred to Necker Enfants-Malades Hospital from 2017 to 2023 for genetic testing for (1) glomerular disease, (2) ciliopathy, (3) congenital anomalies of the kidneys and urinary tracts (CAKUT), (4) ADTKD, or (5) chronic kidney disease (CKD) of unknown origin, in whom MUC1 had not been previously tested by SNaPshot minisequencing. EXPOSURE Clinical suspicion of ADTKD. OUTCOME ADTKD-MUC1 diagnosed using VNtyper. ANALYTICAL APPROACH Data were collected from patients in whom ADTKD-MUC1 was newly diagnosed and patients in whom ADTKD was clinically suspected were compared with those in whom ADTKD was not. RESULTS We identified 40 patients with MUC1 variants by VNtyper, including 33 new index patients and 7 relatives. Of the 33 index cases, 20 had been suspected of having ADTKD based on clinical features, and in the other 13 ADTKD had not been considered. In patients in whom ADTKD had not been considered clinically, the detection rate was 0.05% (1 of 1,895) among patients with glomerular disease, 1.2% (4 of 329) among patients with ciliopathy, 0.09% (1 of 1,099) among patients with CAKUT and 2.5% (7 of 285) among patients with CKD of unknown origin. In 6 patients there was no family history of kidney disease, and we confirmed de novo presentation in 2 patients by segregation studies. LIMITATIONS Observational study and selected referral population (may not represent the prevalence or phenotypes in the general kidney disease population). CONCLUSIONS With VNtyper, we were able to diagnose new cases of ADTKD-MUC1 in a large cohort of patients with various phenotypes. Some patients had atypical phenotypes due to a variant in another gene, and some had no family history of kidney disease, suggesting de novo disease, which was confirmed in 2 patients. PLAIN-LANGUAGE SUMMARY Molecular diagnosis of autosomal dominant tubulointerstitial kidney disease due to variants in the MUC1 gene (ADTKD-MUC1) has long been challenging. Recently, we developed a computational pipeline named VNtyper to allow easier, reliable detection of MUC1 variants. When applied to a large heterogenous cohort of patients, it allowed us to diagnose ADTKD in patients in whom it had not been suspected. In some cases, this was due to 2 concomitant genetic diagnoses, which affected the phenotype. In others, there was no family history of kidney disease suggestive of an autosomal dominant disorder, and we were able to confirm de novo ADTKD-MUC1 in 2 patients.
Collapse
Affiliation(s)
- Jessica Kachmar
- Hereditary Kidney Diseases Laboratory, Inserm UMR 1163, Imagine Institute, Paris Cité University, Paris, France
| | - Hassan Saei
- Hereditary Kidney Diseases Laboratory, Inserm UMR 1163, Imagine Institute, Paris Cité University, Paris, France
| | - Vincent Morinière
- Department of Genomic Medicine for Rare Diseases, Necker-Enfants Malades Hospital, Assistance Publique, Hôpitaux de Paris (AP-HP), Paris, France
| | - Laurence Heidet
- Hereditary Kidney Diseases Laboratory, Inserm UMR 1163, Imagine Institute, Paris Cité University, Paris, France; Pediatric Nephrology Department, MARHEA Reference Center, Necker-Enfants Malades Hospital, Assistance Publique, Hôpitaux de Paris (AP-HP), Paris, France
| | - Bertrand Knebelmann
- Department of Nephrology, MARHEA Reference Center, Necker-Enfants Malades Hospital, Assistance Publique, Hôpitaux de Paris (AP-HP), Paris, France
| | - Olivier Gribouval
- Hereditary Kidney Diseases Laboratory, Inserm UMR 1163, Imagine Institute, Paris Cité University, Paris, France
| | - Manon Mautret-Godefroy
- Department of Genomic Medicine for Rare Diseases, Necker-Enfants Malades Hospital, Assistance Publique, Hôpitaux de Paris (AP-HP), Paris, France
| | - Stéphane Burtey
- Inserm, C2VN, INRAE, C2VN, Aix-Marseille University, Marseille, France; Nephrology and Renal Transplantation Center, AP-HM Hôpital de la Conception, Marseille, France
| | - Vincent Vuiblet
- Department of Nephrology, CHU de Reims, Reims, France; Department of Pathology, CHU de Reims, Reims, France; Artificial Intelligence Institute, Reims Champagne-Ardenne University, CHU de Reims, Reims, France
| | - Asma Alla
- Department of Nephrology, CHRU de Nancy, Nancy, France
| | - Axel Ibalanky
- Department of Nephrology, Groupe Hospitalier Sud Ile-de-France, Melun, France
| | - Olivier Moranne
- Nephrology-Dialysis-Apheresis Unit, University Hospital Caremeau Nîmes, Montpellier University, Nîmes, France
| | - Mathilde Nizon
- Medical Genetics Department, CHU Hôtel Dieu, Nantes, France
| | | | - Patrick Nitschké
- Bioinformatics Platform, Inserm UMR 1163, Imagine Institute, Paris Cité University, Paris, France
| | - Corinne Antignac
- Hereditary Kidney Diseases Laboratory, Inserm UMR 1163, Imagine Institute, Paris Cité University, Paris, France
| | - Guillaume Dorval
- Hereditary Kidney Diseases Laboratory, Inserm UMR 1163, Imagine Institute, Paris Cité University, Paris, France; Department of Genomic Medicine for Rare Diseases, Necker-Enfants Malades Hospital, Assistance Publique, Hôpitaux de Paris (AP-HP), Paris, France.
| |
Collapse
|
2
|
Varol A, Klauck SM, Dantzer F, Efferth T. Enhancing cisplatin drug sensitivity through PARP3 inhibition: The influence on PDGF and G-coupled signal pathways in cancer. Chem Biol Interact 2024; 398:111094. [PMID: 38830565 DOI: 10.1016/j.cbi.2024.111094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/07/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
Drug resistance poses a significant challenge in cancer treatment despite the clinical efficacy of cisplatin. Identifying and targeting biomarkers open new ways to improve therapeutic outcomes. In this study, comprehensive bioinformatic analyses were employed, including a comparative analysis of multiple datasets, to evaluate overall survival and mutation hotspots in 27 base excision repair (BER) genes of more than 7,500 tumors across 23 cancer types. By using various parameters influencing patient survival, revealing that the overexpression of 15 distinct BER genes, particularly PARP3, NEIL3, and TDG, consistently correlated with poorer survival across multiple factors such as race, gender, and metastasis. Single nucleotide polymorphism (SNP) analyses within protein-coding regions highlighted the potential deleterious effects of mutations on protein structure and function. The investigation of mutation hotspots in BER proteins identified PARP3 due to its high mutation frequency. Moving from bioinformatics to wet lab experiments, cytotoxic experiments demonstrated that the absence of PARP3 by CRISPR/Cas9-mediated knockdown in MDA-MB-231 breast cancer cells increased drug activity towards cisplatin, carboplatin, and doxorubicin. Pathway analyses indicated the impact of PARP3 absence on the platelet-derived growth factor (PDGF) and G-coupled signal pathways on cisplatin exposure. PDGF, a critical regulator of various cellular functions, was downregulated in the absence of PARP3, suggesting a role in cancer progression. Moreover, the influence of PARP3 knockdown on G protein-coupled receptors (GPCRs) affects their function in the presence of cisplatin. In conclusion, the study demonstrated a synthetic lethal interaction between GPCRs, PDGF signaling pathways, and PARP3 gene silencing. PARP3 emerged as a promising target.
Collapse
Affiliation(s)
- Ayşegül Varol
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128, Mainz, Germany
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) Heidelberg, National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership between DKFZ and University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Françoise Dantzer
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, UMR7242, Centre Nationale de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, CS10413, 67412, Illkirch, France
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128, Mainz, Germany.
| |
Collapse
|
3
|
Khushman MM, Toboni MD, Xiu J, Manne U, Farrell A, Lou E, Shields AF, Philip PA, Salem ME, Abraham J, Spetzler D, Marshall J, Jayachandran P, Hall MJ, Lenz HJ, Sahin IH, Seeber A, Powell MA. Differential Responses to Immune Checkpoint Inhibitors are Governed by Diverse Mismatch Repair Gene Alterations. Clin Cancer Res 2024; 30:1906-1915. [PMID: 38350001 DOI: 10.1158/1078-0432.ccr-23-3004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/23/2023] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
PURPOSE The response to immune checkpoint inhibitors (ICI) in deficient mismatch repair (dMMR) colorectal cancer and endometrial cancer is variable. Here, we explored the differential response to ICIs according to different mismatch repair alterations. EXPERIMENTAL DESIGN Colorectal cancer (N = 13,701) and endometrial cancer (N = 3,315) specimens were tested at Caris Life Sciences. Median overall survival (mOS) was estimated using Kaplan-Meier. The prediction of high-, intermediate-, and low-affinity epitopes by tumor mutation burden (TMB) values was conducted using R-squared (R2). RESULTS Compared with mutL (MLH1 and PMS2) co-loss, the mOS was longer in mutS (MSH2 and MSH6) co-loss in all colorectal cancer (54.6 vs. 36 months; P = 0.0.025) and endometrial cancer (81.5 vs. 48.2 months; P < 0.001) patients. In ICI-treated patients, the mOS was longer in mutS co-loss in colorectal cancer [not reached (NR) vs. 36 months; P = 0.011). In endometrial cancer, the mOS was NR vs. 42.2 months; P = 0.711]. The neoantigen load (NAL) in mutS co-loss compared with mutL co-loss was higher in colorectal cancer (high-affinity epitopes: 25.5 vs. 19; q = 0.017, intermediate: 39 vs. 32; q = 0.004, low: 87.5 vs. 73; q < 0.001) and endometrial cancer (high-affinity epitopes: 15 vs. 11; q = 0.002, intermediate: 27.5 vs. 19; q < 0.001, low: 59 vs. 41; q < 0.001), respectively. R2 ranged from 0.25 in mutS co-loss colorectal cancer to 0.95 in mutL co-loss endometrial cancer. CONCLUSIONS Patients with mutS co-loss experienced longer mOS in colorectal cancer and endometrial cancer and better response to ICIs in colorectal cancer. Among all explored biomarkers, NAL was higher in mutS co-loss and may be a potential driving factor for the observed better outcomes. TMB did not reliably predict NAL.
Collapse
Affiliation(s)
- Moh'd M Khushman
- Washington University in St. Louis/Siteman Cancer Center, St. Louis, Missouri
| | - Michael D Toboni
- The University of Alabama at Birmingham/O'Neal Comprehensive Cancer Center, Birmingham, Alabama
| | | | - Upender Manne
- The University of Alabama at Birmingham/O'Neal Comprehensive Cancer Center, Birmingham, Alabama
| | | | - Emil Lou
- University of Minnesota/Masonic Cancer Center, Minneapolis, Minnesota
| | - Anthony F Shields
- Wayne State University/Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Philip A Philip
- Wayne State University/Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | | | | | | | - John Marshall
- Georgetown University/Georgetown Lombardi Comprehensive Cancer Center, Washington, District of Columbia
| | - Priya Jayachandran
- University of South California/Norris Comprehensive Cancer Center, Los Angeles, California
| | | | - Heinz-Josef Lenz
- University of South California/Norris Comprehensive Cancer Center, Los Angeles, California
| | - Ibrahim Halil Sahin
- University of Pittsburgh Medical Center/Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Andreas Seeber
- Medical University of Innsbruck, Comprehensive Cancer Center Innsbruck, Innsbruck, Austria
| | - Mathew A Powell
- Washington University in St. Louis/Siteman Cancer Center, St. Louis, Missouri
| |
Collapse
|
4
|
Baltzi E, Papaloukas C, Spandidos DA, Michalopoulos I. Genes encoding γ‑glutamyl‑transpeptidases in the allicin biosynthetic pathway in garlic ( Allium sativum). Biomed Rep 2024; 20:45. [PMID: 38357244 PMCID: PMC10865298 DOI: 10.3892/br.2024.1733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
Allicin is a thiosulphate molecule produced in garlic (Allium sativum) and has a wide range of biological actions and pharmaceutical applications. Its precursor molecule is the non-proteinogenic amino acid alliin (S-allylcysteine sulphoxide). The alliin biosynthetic pathway in garlic involves a group of enzymes, members of which are the γ-glutamyl-transpeptidase isoenzymes, Allium sativum γ-glutamyl-transpeptidase AsGGT1, AsGGT2 and AsGGT3, which catalyze the removal of the γ-glutamyl group from γ-glutamyl-S-allyl-L-cysteine to produce S-allyl-L-cysteine. This removal is followed by an S-oxygenation, which leads to the biosynthesis of alliin. The aim of the present study is to annotate previously discovered genes of garlic γ-glutamyl-transpeptidases, as well as a fourth candidate gene (AsGGT4) that has yet not been described. The annotation includes identifying the loci of the genes in the garlic genome, revealing the overall structure and conserved regions of these genes, and elucidating the evolutionary history of these enzymes through their phylogenetic analysis. The genomic structure of γ-glutamyl-transpeptidase genes is conserved; each gene consists of seven exons, and these genes are located on different chromosomes. AsGGT3 and AsGGT4 enzymes contain a signal peptide. To that end, the AsGGT3 protein sequence was corrected; four indel events occurring in AsGGT3 coding regions suggested that at least in the garlic variety Ershuizao, AsGGT3 may be a pseudogene. Finally, the use of protein structure prediction tools allowed the visualization of the tertiary structure of the candidate peptide.
Collapse
Affiliation(s)
- Eleni Baltzi
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | - Costas Papaloukas
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Ioannis Michalopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
5
|
Taghizadeh Shool M, Amiri Rudbari H, Cuevas-Vicario JV, Rodríguez-Rubio A, Stagno C, Iraci N, Efferth T, Omer EA, Schirmeister T, Blacque O, Moini N, Sheibani E, Micale N. Investigating the Cytotoxicity of Ru(II) Polypyridyl Complexes by Changing the Electronic Structure of Salicylaldehyde Ligands. Inorg Chem 2024; 63:1083-1101. [PMID: 38156413 DOI: 10.1021/acs.inorgchem.3c03414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
A novel class of Ru(II)-based polypyridyl complexes with an auxiliary salicylaldehyde ligand [Ru(phen)2(X-Sal)]BF4 {X: H (1), 5-Cl (2), 5-Br (3), 3,5-Cl2 (4), 3,5-Br2 (5), 3-Br,5-Cl (6), 3,5-I2 (7), 5-NO2 (8), 5-Me (9), 4-Me (10), 4-OMe (11), and 4-DEA (12), has been synthesized and characterized by elemental analysis, FT-IR, and 1H/13C NMR spectroscopy. The molecular structure of 4, 6, 9, 10, and 11 was determined by single-crystal X-ray diffraction analysis which revealed structural similarities. DFT and TD-DFT calculations showed that they also possess similar electronic structures. Absorption/emission spectra were recorded for 2, 3, 10, and 11. All Ru-complexes, unlike the pure ligands and the complex lacking the salicylaldehyde component, displayed outstanding antiproliferative activity in the screening test (10 μM) against CCRF-CEM leukemia cells underlining the crucial role of the presence of the auxiliary ligand for the biological activity. The two most active derivatives, namely 7 and 10, were selected for continuous assays showing IC50 values in the submicromolar and micromolar range against drug-sensitive CCRF-CEM and multidrug-resistant CEM/ADR5000 leukemia cells, respectively. These two compounds were investigated in silico for their potential binding to duplex DNA well-matched and mismatched base pairs, since they showed remarkable selectivity indexes (2.2 and 19.5 respectively) on PBMC cells.
Collapse
Affiliation(s)
| | - Hadi Amiri Rudbari
- Department of Chemistry, University of Isfahan, 81746-73441 Isfahan, Iran
| | - José V Cuevas-Vicario
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Andrea Rodríguez-Rubio
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Claudio Stagno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, I-98166 Messina, Italy
| | - Nunzio Iraci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, I-98166 Messina, Italy
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Ejlal A Omer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Tanja Schirmeister
- Department of Medicinal Chemistry, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Nakisa Moini
- Department of Chemistry, Faculty Chemistry, Alzahra University, Vanak, P.O. Box 1993891176, 1993891176 Tehran, Iran
| | - Esmail Sheibani
- Department of Chemistry, University of Isfahan, 81746-73441 Isfahan, Iran
| | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, I-98166 Messina, Italy
| |
Collapse
|
6
|
Toboni MD, Wu S, Farrell A, Xiu J, Ribeiro JR, Oberley MJ, Arend R, Erickson BK, Herzog TJ, Thaker PH, Powell MA. Differential outcomes and immune checkpoint inhibitor response among endometrial cancer patients with MLH1 hypermethylation versus MLH1 "Lynch-like" mismatch repair gene mutation. Gynecol Oncol 2023; 177:132-141. [PMID: 37683549 DOI: 10.1016/j.ygyno.2023.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
OBJECTIVES To identify differential survival outcomes and immune checkpoint inhibitor (ICI) response in MLH1 hypermethylated versus MLH1 mutated ("Lynch-like") endometrial tumors and determine whether their molecular profiles can elucidate the differential outcomes. METHODS 1673 mismatch repair deficient endometrial tumors were analyzed by next-generation sequencing and whole transcriptome sequencing (Caris Life Sciences, Phoenix, AZ). PD-L1, ER, and PR were tested by immunohistochemistry and immune cell infiltrates were calculated using MCP-counter. Significance was determined using Chi-square and Mann-Whitney U tests and adjusted for multiple comparisons. Overall survival (OS) was depicted using Kaplan-Meier survival curves. RESULTS The endometrial cancer cohort comprised 89.2% patients with MLH1 hypermethylated tumors and 10.8% with MLH1 mutated tumors, with median ages of 67 and 60 years, respectively (p < 0.01). Patients with MLH1 hypermethylated tumors had significantly worse OS and trended toward worse OS following ICI treatment than patients with MLH1 mutated tumors. The immune microenvironment of MLH1 hypermethylated relative to MLH1 mutated was characterized by decreased PD-L1 positivity, immune checkpoint gene expression, immune cell infiltration, T cell inflamed scores, and interferon gamma (IFNγ) scores. MLH1 hypermethylation was also associated with decreased mutation rates in TP53 and DNA damage repair genes, but increased rates of JAK1, FGFR2, CCND1, and PTEN mutations, as well as increased ER and PR positivity. CONCLUSIONS Endometrial cancer patients with MLH1 hypermethylation display significantly decreased survival and discrepant immunotherapy responses compared to patients with MLH1 mutated tumors, which was associated with differential mutational profiles, a more immune cold phenotype, and increased ER/PR expression in MLH1 hypermethylated tumors. Providers may consider early transition from single agent ICI to a multi-agent regimen or hormonal therapy for patients with MLH1 hypermethylated tumors.
Collapse
Affiliation(s)
- Michael D Toboni
- University of Alabama at Birmingham, Division of Gynecologic Oncology, Birmingham, AL, USA.
| | - Sharon Wu
- Caris Life Sciences, Phoenix, AZ, USA
| | | | | | | | | | - Rebecca Arend
- UAB Comprehensive Cancer Center Experimental Therapeutics Program, Birmingham, AL, USA
| | - Britt K Erickson
- University of Minnesota, Division of Gynecologic Oncology, Minneapolis, MN, USA
| | | | - Premal H Thaker
- Washington University School of Medicine, Division of Gynecologic Oncology, St. Louis, MO, USA
| | - Matthew A Powell
- Washington University School of Medicine, Division of Gynecologic Oncology, St. Louis, MO, USA
| |
Collapse
|
7
|
Anderson ME, Smith JL, Grossman AD. Multiple mechanisms for overcoming lethal over-initiation of DNA replication. Mol Microbiol 2022; 118:426-442. [PMID: 36053906 PMCID: PMC9825946 DOI: 10.1111/mmi.14976] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/14/2022] [Accepted: 08/25/2022] [Indexed: 01/12/2023]
Abstract
DNA replication is highly regulated and primarily controlled at the step of initiation. In bacteria, the replication initiator DnaA and the origin of replication oriC are the primary targets of regulation. Perturbations that increase or decrease replication initiation can cause a decrease in cell fitness. We found that multiple mechanisms, including an increase in replication elongation and a decrease in replication initiation, can compensate for lethal over-initiation. We found that in Bacillus subtilis, under conditions of rapid growth, loss of yabA, a negative regulator of replication initiation, caused a synthetic lethal phenotype when combined with the dnaA1 mutation that also causes replication over-initiation. We isolated several classes of suppressors that restored viability to dnaA1 ∆yabA double mutants. Some suppressors (relA, nrdR) stimulated replication elongation. Others (dnaC, cshA) caused a decrease in replication initiation. One class of suppressors decreased replication initiation in the dnaA1 ∆yabA mutant by causing a decrease in the amount of the replicative helicase, DnaC. We found that decreased levels of helicase in otherwise wild-type cells were sufficient to decrease replication initiation during rapid growth, indicating that the replicative helicase is limiting for replication initiation. Our results highlight the multiple mechanisms cells use to regulate DNA replication.
Collapse
Affiliation(s)
- Mary E. Anderson
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Janet L. Smith
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Alan D. Grossman
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
8
|
Maphosa MN, Steenkamp ET, Kanzi AM, van Wyk S, De Vos L, Santana QC, Duong TA, Wingfield BD. Intra-Species Genomic Variation in the Pine Pathogen Fusarium circinatum. J Fungi (Basel) 2022; 8:jof8070657. [PMID: 35887414 PMCID: PMC9316270 DOI: 10.3390/jof8070657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 12/10/2022] Open
Abstract
Fusarium circinatum is an important global pathogen of pine trees. Genome plasticity has been observed in different isolates of the fungus, but no genome comparisons are available. To address this gap, we sequenced and assembled to chromosome level five isolates of F. circinatum. These genomes were analysed together with previously published genomes of F. circinatum isolates, FSP34 and KS17. Multi-sample variant calling identified a total of 461,683 micro variants (SNPs and small indels) and a total of 1828 macro structural variants of which 1717 were copy number variants and 111 were inversions. The variant density was higher on the sub-telomeric regions of chromosomes. Variant annotation revealed that genes involved in transcription, transport, metabolism and transmembrane proteins were overrepresented in gene sets that were affected by high impact variants. A core genome representing genomic elements that were conserved in all the isolates and a non-redundant pangenome representing all genomic elements is presented. Whole genome alignments showed that an average of 93% of the genomic elements were present in all isolates. The results of this study reveal that some genomic elements are not conserved within the isolates and some variants are high impact. The described genome-scale variations will help to inform novel disease management strategies against the pathogen.
Collapse
|
9
|
Sahin IH, Goyal S, Pumpalova Y, Sonbol MB, Das S, Haraldsdottir S, Ahn D, Ciombor KK, Chen Z, Draper A, Berlin J, Bekaii‐Saab T, Lesinski GB, El‐Rayes BF, Wu C. Mismatch Repair (MMR) Gene Alteration and BRAF V600E Mutation Are Potential Predictive Biomarkers of Immune Checkpoint Inhibitors in MMR-Deficient Colorectal Cancer. Oncologist 2021; 26:668-675. [PMID: 33631043 PMCID: PMC8342606 DOI: 10.1002/onco.13741] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/21/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitor (ICI) therapy is highly effective in metastatic mismatch repair-deficient (MMR-D) colorectal cancer (CRC). In this study, we evaluated molecular and clinical predictors of ICI response in MMR-D CRC. MATERIALS AND METHODS Patient databases at four cancer institutions were queried. The Fisher exact test was performed to test the association of clinical and molecular markers. The Kaplan-Meier method was used to estimate progression-free survival (PFS) and compared by the log-rank test. Twelve- and 24-month PFS rates were compared by the Z test. RESULTS A total of 60 patients with CRC with MMR-D/microsatellite instability-high who previously received ICIs were identified. Patients with liver metastasis had a lower overall response rate as compared with other sites of metastasis (36.4% vs. 68.7%; p = .081). Patients with MLH1/PMS2 loss had worse 1-year and 2-year PFS rates compared with patients with MSH2/MSH6 loss (84.2% vs. 57.8% and 78.2% vs. 54.2%, respectively; p < .001). There were improved 1-year and 2-year PFS rates in patients with wild-type BRAF when compared with patients with BRAF V600E mutation (73.3% vs. 40%, and 73.3% vs. 26.7%; respectively; p < .001). Patients aged >65 had significantly worse PFS rates as compared with patients aged ≤65 (p < .001). CONCLUSION BRAF V600E mutation, MLH1 and/or PMS2 loss, as well as age >65 years and liver metastasis, may be predictive of duration of ICI response in patients with MMR-D CRC. Larger cohorts are needed to confirm our findings. IMPLICATIONS FOR PRACTICE The results of this study reveal clinically important biomarkers that potentially predict immune checkpoint inhibitor response in patients with mismatch repair-deficient colorectal cancer.
Collapse
Affiliation(s)
| | - Subir Goyal
- Emory University School of Medicine, Winship Cancer InstituteAtlantaGeorgiaUSA
| | | | | | - Satya Das
- Vanderbilt University Ingram Cancer CenterNashvilleTennesseeUSA
| | | | | | | | - Zhengjia Chen
- Emory University School of Medicine, Winship Cancer InstituteAtlantaGeorgiaUSA
| | - Amber Draper
- Emory University School of Medicine, Winship Cancer InstituteAtlantaGeorgiaUSA
| | - Jordan Berlin
- Vanderbilt University Ingram Cancer CenterNashvilleTennesseeUSA
| | | | - Gregory B. Lesinski
- Emory University School of Medicine, Winship Cancer InstituteAtlantaGeorgiaUSA
| | - Bassel F. El‐Rayes
- Emory University School of Medicine, Winship Cancer InstituteAtlantaGeorgiaUSA
| | - Christina Wu
- Emory University School of Medicine, Winship Cancer InstituteAtlantaGeorgiaUSA
| |
Collapse
|
10
|
Tan E, Sahin IH. Defining the current role of immune checkpoint inhibitors in the treatment of mismatch repair-deficient/microsatellite stability-high colorectal cancer and shedding light on future approaches. Expert Rev Gastroenterol Hepatol 2021; 15:735-742. [PMID: 33539189 DOI: 10.1080/17474124.2021.1886077] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Introduction: Mismatch repair deficient (MMR-D)/microsatellite instability-high (MSI-H) colorectal cancer (CRC) carries unique biologic features including high tumor mutation burden, increased amount of mutation-associated neoantigen generation, and the presence of marked tumor-infiltrating lymphocytes. Immune checkpoint inhibitor (ICI) therapy has rapidly changed the treatment algorithm of MMR-D/MSI-H CRC.Areas covered: In this review article, we discuss the recent data regarding the use of ICIs in metastatic MMR-D/MSI-H CRC patients. We also elaborated on potential biomarkers of ICI response and innovative therapeutic approaches that may prevail resistance mechanisms for the treatment of MMR-D/MSI-H colorectal cancer.Expert opinion: Pembrolizumab was recently granted approval by the FDA as first-line therapy for metastatic MMR-D/MSI-H CRC based on the results of the Keynote 177 study. The combination of nivolumab and ipilimumab will also likely be a choice for the initial therapy of MMR-D/MSI-H CRC in the near future. More therapeutic modalities with novel immunomodulatory agents as well as targeted therapy directed to immune resistance pathways are needed. The novel approaches discussed in this review article will define potential treatment options for the management of MMR-D/MSI-H CRC patients who progress on first-line ICI therapy.
Collapse
Affiliation(s)
- Elaine Tan
- Department of Gastrointestinal Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ibrahim Halil Sahin
- Department of Gastrointestinal Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
11
|
Zhou H, Xu B, Xu J, Zhu G, Guo Y. Novel MRPS9-ALK Fusion Mutation in a Lung Adenocarcinoma Patient: A Case Report. Front Oncol 2021; 11:670907. [PMID: 34168990 PMCID: PMC8217641 DOI: 10.3389/fonc.2021.670907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/10/2021] [Indexed: 12/25/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) rearrangements account for approximately 5-6% of non-small-cell lung cancer (NSCLC) patients. In this study, a case of lung adenocarcinoma harboring a novel MRPS9-ALK fusion is reported. The patient responded well to the first and second generation of ALK-tyrosine kinase inhibitors (ALK-TKIs) (crizotinib then alectinib), as her imaging findings and clinical symptoms significantly improved. At last follow-up, over 21 months of overall survival (OS) has been achieved since ALK-TKI treatment. The progression-free survival (PFS) is already ten months since alectinib. The adverse effects were manageable. The case presented here provides first clinical evidence of the efficacy of ALK-TKIs in NSCLC patients with MRPS9-ALK fusion.
Collapse
Affiliation(s)
- Huamiao Zhou
- Department of Oncology, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Binyue Xu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jili Xu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guomeng Zhu
- Department of Oncology, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Yong Guo
- Department of Oncology, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, China
| |
Collapse
|
12
|
Zhang H, Hu Y, Seymen F, Koruyucu M, Kasimoglu Y, Wang S, Wright JT, Havel MW, Zhang C, Kim J, Simmer JP, Hu JC. ENAM mutations and digenic inheritance. Mol Genet Genomic Med 2019; 7:e00928. [PMID: 31478359 PMCID: PMC6785452 DOI: 10.1002/mgg3.928] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND ENAM mutations cause autosomal dominant or recessive amelogenesis imperfecta (AI) and show a dose effect: enamel malformations are more severe or only penetrant when both ENAM alleles are defective. METHODS Whole exome sequences of recruited AI probands were initially screened for mutations in known AI candidate genes. Sanger sequencing was used to confirm sequence variations and their segregation with the disease phenotype. The co-occurrence of ENAM and LAMA3 mutations in one family raised the possibility of digenic inheritance. Enamel formed in Enam+/+ Ambn+/+ , Enam+/- , Ambn+/- , and Enam+/- Ambn+/- mice was characterized by dissection and backscattered scanning electron microscopy (bSEM). RESULTS ENAM mutations segregating with AI in five families were identified. Two novel ENAM frameshift mutations were identified. A single-nucleotide duplication (c.395dupA/p.Pro133Alafs*13) replaced amino acids 133-1142 with a 12 amino acid (ATTKAAFEAAIT*) sequence, and a single-nucleotide deletion (c.2763delT/p.Asp921Glufs*32) replaced amino acids 921-1142 with 31 amino acids (ESSPQQASYQAKETAQRRGKAKTLLEMMCPR*). Three families were heterozygous for a previously reported single-nucleotide ENAM deletion (c.588+1delG/p.Asn197Ilefs*81). One of these families also harbored a heterozygous LAMA3 mutation (c.1559G>A/p.Cys520Tyr) that cosegregated with both the AI phenotype and the ENAM mutation. In mice, Ambn+/- maxillary incisors were normal. Ambn+/- molars were also normal, except for minor surface roughness. Ambn+/- mandibular incisors were sometimes chalky and showed minor chipping. Enam+/- incisor enamel was thinner than normal with ectopic mineral deposited laterally. Enam+/- molars were sometimes chalky and rough surfaced. Enam+/- Ambn+/- enamel was thin and rough, in part due to ectopic mineralization, but also underwent accelerated attrition. CONCLUSION Novel ENAM mutations causing AI were identified, raising to 22 the number of ENAM variations known to cause AI. The severity of the enamel phenotype in Enam+/- Ambn+/- double heterozygous mice is caused by composite digenic effects. Digenic inheritance should be explored as a cause of AI in humans.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMIUSA
| | - Yuanyuan Hu
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMIUSA
| | - Figen Seymen
- Department of Pedodontics, Faculty of DentistryIstanbul UniversityIstanbulTurkey
| | - Mine Koruyucu
- Department of Pedodontics, Faculty of DentistryIstanbul UniversityIstanbulTurkey
| | - Yelda Kasimoglu
- Department of Pedodontics, Faculty of DentistryIstanbul UniversityIstanbulTurkey
| | - Shih‐Kai Wang
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMIUSA
- Department of DentistryNational Taiwan University School of DentistryTaipei CityTaiwan R.O.C.
| | - John Timothy Wright
- Department of Pediatric DentistryUniversity of North Carolina School of DentistryChapel HillNCUSA
| | - Michael W. Havel
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMIUSA
| | - Chuhua Zhang
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMIUSA
| | - Jung‐Wook Kim
- Department of Molecular Genetics and Department of Pediatric Dentistry and Dental Research Institute, School of DentistrySeoul National UniversitySeoulKorea
| | - James P. Simmer
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMIUSA
| | - Jan C.‐C. Hu
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMIUSA
| |
Collapse
|
13
|
Hoffmann GR. Twenty Years of Reflections in Mutation Research. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 780:106-120. [PMID: 31395355 DOI: 10.1016/j.mrrev.2019.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/25/2019] [Indexed: 11/18/2022]
Abstract
Reflections is a component of Mutation Research Reviews devoted to historical and philosophical themes pertaining to the subject of mutation. Reflections was initiated in 1999 and has included a broad array of topics centered on mutation research, but overlapping other scientific fields and touching upon history, sociology, politics, philosophy and ethics. This commentary offers an editor's reflections on the 44 papers in the Reflections series, including the people who contributed to the series and the topics that they discussed.
Collapse
Affiliation(s)
- George R Hoffmann
- Department of Biology, College of the Holy Cross, One College Street, Worcester, MA 01610, USA.
| |
Collapse
|
14
|
Kuzminov A. Half-Intercalation Stabilizes Slipped Mispairing and Explains Genome Vulnerability to Frameshift Mutagenesis by Endogenous "Molecular Bookmarks". Bioessays 2019; 41:e1900062. [PMID: 31379009 DOI: 10.1002/bies.201900062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/06/2019] [Indexed: 01/11/2023]
Abstract
Some 60 years ago chemicals that intercalate between base pairs of duplex DNA were found to amplify frameshift mutagenesis. Surprisingly, the robust induction of frameshifts by intercalators still lacks a mechanistic model, leaving this classic phenomenon annoyingly intractable. A promising idea of asymmetric half-intercalation-stabilizing frameshift intermediates during DNA synthesis has never been developed into a model. Instead, researchers of frameshift mutagenesis embraced the powerful slipped-mispairing concept that unexpectedly struggled with the role of intercalators in frameshifting. It is proposed that the slipped mispairing and the half-intercalation ideas are two sides of the same coin. Further, existing findings are reviewed to test predictions of the combined "half-intercalation into the slipped-mispairing intermediate" model against accumulated knowledge. The existence of potential endogenous intercalators and the phenomenon of "DNA bookmarks" reveal ample possibilities for natural frameshift mutagenisis in the cell. From this alarming perspective, it is discussed how the cell could prevent genome deterioration from frameshift mutagenesis.
Collapse
Affiliation(s)
- Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, B103 CLSL, 601 South Goodwin Ave, Urbana, IL, 61801-3709, USA
| |
Collapse
|
15
|
Gabr MT, Pigge FC. Platinum(II) Complexes with Sterically Expansive Tetraarylethylene Ligands as Probes for Mismatched DNA. Inorg Chem 2018; 57:12641-12649. [DOI: 10.1021/acs.inorgchem.8b01782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Moustafa T. Gabr
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - F. Christopher Pigge
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
16
|
Nano A, Boynton AN, Barton JK. A Rhodium-Cyanine Fluorescent Probe: Detection and Signaling of Mismatches in DNA. J Am Chem Soc 2017; 139:17301-17304. [PMID: 29136382 PMCID: PMC5892186 DOI: 10.1021/jacs.7b10639] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report a bifunctional fluorescent probe that combines a rhodium metalloinsertor with a cyanine dye as the fluorescent reporter. The conjugate shows weak luminescence when free in solution or with well matched DNA but exhibits a significant luminescence increase in the presence of a 27-mer DNA duplex containing a central CC mismatch. DNA photocleavage experiments demonstrate that, upon photoactivation, the conjugate cleaves the DNA backbone specifically near the mismatch site on a 27-mer fragment, consistent with mismatch targeting. Fluorescence titrations with the 27-mer duplex containing the CC mismatch reveal a DNA binding affinity of 3.1 × 106 M-1, similar to that of other rhodium metalloinsertors. Fluorescence titrations using genomic DNA extracted from various cell lines demonstrate a clear discrimination in fluorescence between those cell lines that are proficient or deficient in mismatch repair. This differential luminescence reflects the sensitive detection of the mismatchrepair-deficient phenotype.
Collapse
Affiliation(s)
- Adela Nano
- California Institute of Technology, Division of Chemistry and Chemical Engineering, Pasadena, California 91125, United States
| | - Adam N. Boynton
- California Institute of Technology, Division of Chemistry and Chemical Engineering, Pasadena, California 91125, United States
| | - Jacqueline K. Barton
- California Institute of Technology, Division of Chemistry and Chemical Engineering, Pasadena, California 91125, United States
| |
Collapse
|
17
|
Khuntamoon T, Thepouyporn A, Kaewprasert S, Prangthip P, Pooudoung S, Chaisri U, Maneesai P, Kwanbunjan K. Thai generic-brand dry canine foods: mutagenicity and the effects of feeding in vivo and in vitro. BMC Vet Res 2016; 12:17. [PMID: 26785914 PMCID: PMC4719534 DOI: 10.1186/s12917-016-0640-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/14/2016] [Indexed: 11/12/2022] Open
Abstract
Background The commercial pet-food industry and the market value of the pet industry have increased. Most owners are concerned about their pets’ health, and prefer commercial pet foods as their regular diet. This study thus aimed to determine whether a selection of local generic-brand dry canine foods had any potential to promote chronic disease. Methods Five local, generic-brand, dry canine foods were studied for potential mutagenicity; the effects of long-term consumption were also observed in rats. All canine foods were extracted with distilled water and absolute ethanol. The Ames test was used to detect short-term genetic damage, using Salmonella typhimurium tester strains TA98 and TA100. Simultaneously, the long-term effects were studied in an animal model by observing rats fed with these canine foods, compared with normal rat food, for a period of 15 weeks. Results Using the water extracts, all dry canine foods studied showed considerable mutagenic effects on the tester strains. One brand affected both tester strains, whereas 3 showed positive to TA98, and one to TA100. With the absolute ethanol extract, three of the five brands had a considerable mutagenic effect on TA98, and another affected TA100. In the long-term test, all rats remained alive until the end of the experiment, exhibited no apparent signs of toxicity or serious illness, and maintained normal bodyweight and weight gain. Serum blood biochemistry and hematological parameters in canine food-fed rats showed some negative effects. Correspondingly, histopathological investigation of their liver and kidneys showed deterioration. Conclusions Mutagenic potential and the negative potential health impacts were observed in all local-brand dry canine foods tested.
Collapse
Affiliation(s)
- Tanyalak Khuntamoon
- Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Apanchanid Thepouyporn
- Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Sarunya Kaewprasert
- Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Pattaneeya Prangthip
- Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Somchai Pooudoung
- Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Urai Chaisri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Phudit Maneesai
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand.
| | - Karunee Kwanbunjan
- Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
18
|
Wang H, Wang K, Xiao G, Ma J, Wang B, Shen S, Fu X, Zou G, Zou B. Molecular Mechanisms for High Hydrostatic Pressure-Induced Wing Mutagenesis in Drosophila melanogaster. Sci Rep 2015; 5:14965. [PMID: 26446369 PMCID: PMC4597337 DOI: 10.1038/srep14965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/14/2015] [Indexed: 11/09/2022] Open
Abstract
Although High hydrostatic pressure (HHP) as an important physical and chemical tool has been increasingly applied to research of organism, the response mechanisms of organism to HHP have not been elucidated clearly thus far. To identify mutagenic mechanisms of HHP on organisms, here, we treated Drosophila melanogaster (D. melanogaster) eggs with HHP. Approximately 75% of the surviving flies showed significant morphological abnormalities from the egg to the adult stages compared with control flies (p < 0.05). Some eggs displayed abnormal chorionic appendages, some larvae were large and red, and some adult flies showed wing abnormalities. Abnormal wing phenotypes of D. melanogaster induced by HHP were used to investigate the mutagenic mechanisms of HHP on organism. Thus 285 differentially expressed genes associated with wing mutations were identified using Affymetrix Drosophila Genome Array 2.0 and verified with RT-PCR. We also compared wing development-related central genes in the mutant flies with control flies using DNA sequencing to show two point mutations in the vestigial (vg) gene. This study revealed the mutagenic mechanisms of HHP-induced mutagenesis in D. melanogaster and provided a new model for the study of evolution on organisms.
Collapse
Affiliation(s)
- Hua Wang
- State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, P. R. China.,College of Life Science, Jilin University, Changchun, 130012, P. R. China
| | - Kai Wang
- State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, P. R. China
| | - Guanjun Xiao
- State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, P. R. China
| | - Junfeng Ma
- College of Life Science, Jilin University, Changchun, 130012, P. R. China
| | - Bingying Wang
- College of Life Science, Jilin University, Changchun, 130012, P. R. China
| | - Sile Shen
- College of Life Science, Jilin University, Changchun, 130012, P. R. China
| | - Xueqi Fu
- College of Life Science, Jilin University, Changchun, 130012, P. R. China
| | - Guangtian Zou
- State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, P. R. China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
19
|
Abe H, Kaneda A, Fukayama M. Epstein-Barr Virus-Associated Gastric Carcinoma: Use of Host Cell Machineries and Somatic Gene Mutations. Pathobiology 2015; 82:212-223. [PMID: 26337667 DOI: 10.1159/000434683] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/27/2015] [Indexed: 01/03/2025] Open
Abstract
Epstein-Barr virus (EBV)-associated gastric carcinoma (EBVaGC) is a distinct subtype of gastric carcinoma, consisting of clonal growth of EBV-infected epithelial cells. Its unique characteristics have been demonstrated by epidemiological, clinical and pathological studies using in situ hybridization for EBV-encoded small RNAs. An oncogenic process for EBVaGC has also been revealed. EBV uses various host-cell machineries, including cell division machinery to propagate clonal virus genomes, DNA-methylation machinery to epigenetically control infected cells, and microRNA and exosome machineries to modify the behavior and microenvironment of infected cells. Recent comprehensive molecular analyses from The Cancer Genome Atlas project demonstrate that EBVaGC is a representative molecular subtype that is distinct from microsatellite unstable, genomically stable and chromosome unstable subtypes. In addition to having the highest level of DNA methylation in CpG islands of promoter regions, EBVaGC harbors particular gene alterations, including a high frequency of mutations in PIK3CA and ARID1A, mutation in BCOR, and amplification of PD-L1 and PD-L2. Although currently undetermined, the virus might use the altered cellular functions that are induced by these somatic mutations. Further investigation of virus-driven oncogenesis will enable hitherto unknown functions of stomach epithelial cell machineries to be elucidated, which may reveal potential therapeutic targets for EBVaGC.
Collapse
Affiliation(s)
- Hiroyuki Abe
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
20
|
Haegeman A, Zro K, Sammin D, Vandenbussche F, Ennaji MM, De Clercq K. Investigation of a Possible Link Between Vaccination and the 2010 Sheep Pox Epizootic in Morocco. Transbound Emerg Dis 2015; 63:e278-e287. [PMID: 25753969 DOI: 10.1111/tbed.12342] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Indexed: 11/28/2022]
Abstract
Sheep pox is endemic in most parts of Northern Africa and has the potential to cause severe economic problems. Live attenuated vaccines are used in Morocco, and in many other countries, to control the disease. Sheep pox virus (SPPV) re-appeared in 2010 causing a nodular clinical form previously not observed in Morocco. The severe clinical signs observed during the course of this outbreak and initial reports citing similarity in nucleotide sequence between the Moroccan vaccine strain and field isolates warranted a more in depth analysis of this epizootic. In this study, sequence analysis showed that isolates obtained from four provinces of eastern Morocco were identical, demonstrating that a single SPPV strain was responsible for the 2010 epizootic. In addition, the genome fragments sequenced and phylogenetic analyses undertaken as part of this study showed significant differences between field isolates and the Moroccan vaccine strain. New PCR methods were developed to differentiate between wild-type isolates and vaccine strains of SPPV. Using these methods, no trace of wild-type SPPV was found in the vaccine and no evidence was found to suggest that the vaccine strain was causing clinical disease.
Collapse
Affiliation(s)
- A Haegeman
- Viral Diseases, Vesicular and Exotic Diseases, CODA-CERVA, Brussels, Belgium.
| | - K Zro
- Laboratoire de Virologie et Hygiène & Microbiologie, Faculté des Sciences et Techniques, Mohammedia, Morocco.,Laboratoire de diagnostic recherche et développement, Biopharma, Rabat, Morocco
| | - D Sammin
- Department of Agriculture Food and the Marine Laboratories, Backweston, Co. Kildare, Ireland
| | - F Vandenbussche
- Viral Diseases, Molecular Platform, CODA-CERVA, Brussels, Belgium
| | - M M Ennaji
- Laboratoire de Virologie et Hygiène & Microbiologie, Faculté des Sciences et Techniques, Mohammedia, Morocco
| | - K De Clercq
- Viral Diseases, Vesicular and Exotic Diseases, CODA-CERVA, Brussels, Belgium
| |
Collapse
|
21
|
Abstract
UNLABELLED Copper is an essential micronutrient used as a metal cofactor by a variety of enzymes, including cytochrome c oxidase (Cox). In all organisms from bacteria to humans, cellular availability and insertion of copper into target proteins are tightly controlled due to its toxicity. The major subunit of Cox contains a copper atom that is required for its catalytic activity. Previously, we identified CcoA (a member of major facilitator superfamily transporters) as a component required for cbb3-type Cox production in the Gram-negative, facultative phototroph Rhodobacter capsulatus. Here, first we demonstrate that CcoA is a cytoplasmic copper importer. Second, we show that bypass suppressors of a ccoA deletion mutant suppress cbb3-Cox deficiency by increasing cellular copper content and sensitivity. Third, we establish that these suppressors are single-base-pair insertion/deletions located in copA, encoding the major P1B-type ATP-dependent copper exporter (CopA) responsible for copper detoxification. A copA deletion alone has no effect on cbb3-Cox biogenesis in an otherwise wild-type background, even though it rescues the cbb3-Cox defect in the absence of CcoA and renders cells sensitive to copper. We conclude that a hitherto unknown functional interplay between the copper importer CcoA and the copper exporter CopA controls intracellular copper homeostasis required for cbb3-Cox production in bacteria like R. capsulatus. IMPORTANCE Copper (Cu) is an essential micronutrient required for many processes in the cell. It is found as a cofactor for heme-copper containing cytochrome c oxidase enzymes at the terminus of the respiratory chains of aerobic organisms by catalyzing reduction of dioxygen (O2) to water. Defects in the biogenesis and copper insertion into cytochrome c oxidases lead to mitochondrial diseases in humans. This work shows that a previously identified Cu transporter (CcoA) is a Cu importer and illustrates the link between two Cu transporters, the importer CcoA and the exporter CopA, required for Cu homeostasis and Cu trafficking to cytochrome c oxidase in the cell.
Collapse
|
22
|
Romano CM, Lauck M, Salvador FS, Lima CR, Villas-Boas LS, Araújo ESA, Levi JE, Pannuti CS, O'Connor D, Kallas EG. Inter- and intra-host viral diversity in a large seasonal DENV2 outbreak. PLoS One 2013; 8:e70318. [PMID: 23936406 PMCID: PMC3732279 DOI: 10.1371/journal.pone.0070318] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 06/18/2013] [Indexed: 01/28/2023] Open
Abstract
Background High genetic diversity at both inter- and intra-host level are hallmarks of RNA viruses due to the error-prone nature of their genome replication. Several groups have evaluated the extent of viral variability using different RNA virus deep sequencing methods. Although much of this effort has been dedicated to pathogens that cause chronic infections in humans, few studies investigated arthropod-borne, acute viral infections. Methods and Principal Findings We deep sequenced the complete genome of ten DENV2 isolates from representative classical and severe cases sampled in a large outbreak in Brazil using two different approaches. Analysis of the consensus genomes confirmed the larger extent of the 2010 epidemic in comparison to a previous epidemic caused by the same viruses in another city two years before (genetic distance = 0.002 and 0.0008 respectively). Analysis of viral populations within the host revealed a high level of conservation. After excluding homopolymer regions of 454/Roche generated sequences, we found 10 to 44 variable sites per genome population at a frequency of >1%, resulting in very low intra-host genetic diversity. While up to 60% of all variable sites at intra-host level were non-synonymous changes, only 10% of inter-host variability resulted from non-synonymous mutations, indicative of purifying selection at the population level. Conclusions and Significance Despite the error-prone nature of RNA-dependent RNA-polymerase, dengue viruses maintain low levels of intra-host variability.
Collapse
Affiliation(s)
- Camila Malta Romano
- Instituto de Medicina Tropical de São Paulo e Faculdade de Medicina, Departamento de Moléstias Infecciosas e Parasitárias (LIMHC), Universidade de São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Song H, Kaiser JT, Barton JK. Crystal structure of Δ-[Ru(bpy)₂dppz]²⁺ bound to mismatched DNA reveals side-by-side metalloinsertion and intercalation. Nat Chem 2012; 4:615-20. [PMID: 22824892 DOI: 10.1038/nchem.1375] [Citation(s) in RCA: 243] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/26/2011] [Indexed: 12/20/2022]
Abstract
DNA mismatches represent a novel target in the development of diagnostics and therapeutics for cancer, because deficiencies in DNA mismatch repair are implicated in cancers, and cells that are repair-deficient show a high frequency of mismatches. Metal complexes with bulky intercalating ligands serve as probes for DNA mismatches. Here, we report the high-resolution (0.92 Å) crystal structure of the ruthenium 'light switch' complex Δ-[Ru(bpy)(2)dppz](2+) (bpy = 2,2'-bipyridine and dppz = dipyridophenazine), which is known to show luminescence on binding to duplex DNA, bound to both mismatched and well-matched sites in the oligonucleotide 5'-(dCGGAAATTACCG)(2)-3' (underline denotes AA mismatches). Two crystallographically independent views reveal that the complex binds mismatches through metalloinsertion, ejecting both mispaired adenosines. Additional ruthenium complexes are intercalated at well-matched sites, creating an array of complexes in the minor groove stabilized by stacking interactions between bpy ligands and extruded adenosines. This structure attests to the generality of metalloinsertion and metallointercalation as DNA binding modes.
Collapse
Affiliation(s)
- Hang Song
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
24
|
The quiescent cellular state is Arf/p53-dependent and associated with H2AX downregulation and genome stability. Int J Mol Sci 2012; 13:6492-6506. [PMID: 22754379 PMCID: PMC3382772 DOI: 10.3390/ijms13056492] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 05/21/2012] [Accepted: 05/22/2012] [Indexed: 12/17/2022] Open
Abstract
Cancer is a disease associated with genomic instability and mutations. Excluding some tumors with specific chromosomal translocations, most cancers that develop at an advanced age are characterized by either chromosomal or microsatellite instability. However, it is still unclear how genomic instability and mutations are generated during the process of cellular transformation and how the development of genomic instability contributes to cellular transformation. Recent studies of cellular regulation and tetraploidy development have provided insights into the factors triggering cellular transformation and the regulatory mechanisms that protect chromosomes from genomic instability.
Collapse
|
25
|
Ernst RJ, Komor AC, Barton JK. Selective cytotoxicity of rhodium metalloinsertors in mismatch repair-deficient cells. Biochemistry 2011; 50:10919-28. [PMID: 22103240 DOI: 10.1021/bi2015822] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mismatches in DNA occur naturally during replication and as a result of endogenous DNA damaging agents, but the mismatch repair (MMR) pathway acts to correct mismatches before subsequent rounds of replication. Rhodium metalloinsertors bind to DNA mismatches with high affinity and specificity and represent a promising strategy to target mismatches in cells. Here we examine the biological fate of rhodium metalloinsertors bearing dipyridylamine ancillary ligands in cells deficient in MMR versus those that are MMR-proficient. These complexes are shown to exhibit accelerated cellular uptake which permits the observation of various cellular responses, including disruption of the cell cycle, monitored by flow cytometry assays, and induction of necrosis, monitored by dye exclusion and caspase inhibition assays, that occur preferentially in the MMR-deficient cell line. These cellular responses provide insight into the mechanisms underlying the selective activity of this novel class of targeted anticancer agents.
Collapse
Affiliation(s)
- Russell J Ernst
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | | | | |
Collapse
|
26
|
Abstract
Protein is an essential component for life, and its synthesis is mediated by codons in any organisms on earth. While some codons encode the same amino acid, their usage is often highly biased. There are many factors that can cause the bias, but a potential effect of mononucleotide repeats, which are known to be highly mutable, on codon usage and codon pair preference is largely unknown. In this study we performed a genomic survey on the relationship between mononucleotide repeats and codon pair bias in 53 bacteria, 68 archaea, and 13 eukaryotes. By distinguishing the codon pair bias from the codon usage bias, four general patterns were revealed: strong avoidance of five or six mononucleotide repeats in codon pairs; lower observed/expected (o/e) ratio for codon pairs with C or G repeats (C/G pairs) than that with A or T repeats (A/T pairs); a negative correlation between genomic GC contents and the o/e ratios, particularly for C/G pairs; and avoidance of C/G pairs in highly conserved genes. These results support natural selection against long mononucleotide repeats, which could induce frameshift mutations in coding sequences. The fact that these patterns are found in all kingdoms of life suggests that this is a general phenomenon in living organisms. Thus, long mononucleotide repeats may play an important role in base composition and genetic stability of a gene and gene functions.
Collapse
|
27
|
Buck DP, Paul JA, Pisani MJ, Collins JG, Keene FR. Binding of a Flexibly-linked Dinuclear Ruthenium(II) Complex to Adenine-bulged DNA Duplexes. Aust J Chem 2010. [DOI: 10.1071/ch10065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Using 1H NMR spectroscopy and molecular modelling, the DNA binding of a chiral dinuclear ruthenium(ii) complex {Δ,Δ-[{Ru(phen)2}2(μ-bb7)]4+; phen = 1,10-phenanthroline, bb7 = 1,7-bis[4(4′-methyl-2,2′-bipyridyl)]-heptane} involving a bridging ligand containing a flexible aliphatic chain has been studied. The binding of the ruthenium(ii) complex was examined with the non-self-complementary duplexes d(CCGAGAATCGGCC):d(GGCCGATTCCGG) (containing a single adenine bulge: designated SB) and d(CCGAGCCGTGCC):d(GGCACGAGCCGG) (containing two adenine bulge sites separated by two base-pairs: designated DB). The NMR data indicated that the ruthenium(ii) complex bound at the bulge site of SB, with one ruthenium centre located at the bulge site with the second metal centre binding with lower affinity and selectivity in the duplex region adjacent to the bulge site. Less specific binding is inferred from chemical shift changes of nucleotide protons two to five base pairs from the single adenine bulge. The ruthenium(ii) complex selectively bound the DB duplex with one metal centre located at each bulge site. The NMR results also suggested that the metal complex binding induced greater changes to the structure of the SB duplex, compared with the DB duplex. Modelling indicates the bridging ligand allowed each ruthenium(ii) metal centre to bind one adenine bulge of the doubly-bulged duplex without disrupting the DNA structure, using the additional torsional flexibility conferred by the aliphatic bridging ligand. However, the second ruthenium(ii) metal centre is not able to bind in the minor groove of the singly-bulged duplex without disrupting the structure, as the metal centre is too bulky. The results of this study suggest dinuclear ruthenium(ii) complexes have considerable potential as probes for DNA and RNA sequences that contain two bulge sites separated by a small number of base-pairs.
Collapse
|
28
|
Paun BC, Cheng Y, Leggett BA, Young J, Meltzer SJ, Mori Y. Screening for microsatellite instability identifies frequent 3'-untranslated region mutation of the RB1-inducible coiled-coil 1 gene in colon tumors. PLoS One 2009; 4:e7715. [PMID: 19888451 PMCID: PMC2766054 DOI: 10.1371/journal.pone.0007715] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 10/08/2009] [Indexed: 11/18/2022] Open
Abstract
Background Coding region microsatellite instability (MSI) results in loss of gene products and promotion of microsatellite-unstable (MSI-H) carcinogenesis. Recent studies have indicated that MSI within 3′-untranslated regions (3′UTRs) may post-transcriptionally dysregulate gene products. Within this context, we conducted a broad mutational survey of 42 short 3′UTR microsatellites (MSs) in 45 MSI-H colorectal tumors and their corresponding normal colonic mucosae. Methodology/Principal Findings In order to estimate the overall susceptibility of MSs to MSI in MSI-H tumors, the observed MSI frequency of each MS was correlated with its length, interspecies sequence conservation level, and distance from some genetic elements (i.e., stop codon, polyA signal, and microRNA binding sites). All MSs were stable in normal colonic mucosae. The MSI frequency at each MS in MSI-H tumors was independent of sequence conservation level and distance from other genetic elements. In contrast, MS length correlated significantly with MSI frequency in MSI-H tumors (r = 0.86, p = 7.2×10−13). 3′UTR MSs demonstrated MSI frequencies in MSI-H tumors higher than the 99% upper limit predicted by MS length for RB1-inducible coiled-coil 1(RB1CC1, mutation frequency 68.4%), NUAK family SNF1-like kinase 1(NUAK1, 31.0%), and Rtf1, Paf1/RNA polymerase II complex component, homolog (RTF1, 25.0%). An in silico prediction of RNA structure alterations was conducted for these MSI events to gauge their likelihood of affecting post-transcriptional regulation. RB1CC1 mutant was predicted to lose a microRNA-accessible loop structure at a putative binding site for the tumor-suppressive microRNA, miR-138. In contrast, the predicted 3′UTR structural change was minimal for NUAK1- and RTF1 mutants. Notably, real-time quantitative RT-PCR analysis revealed significant RB1CC1 mRNA overexpression vs. normal colonic mucosae in MSI-H cancers manifesting RB1CC1 3′UTR MSI (9.0-fold; p = 3.6×10−4). Conclusions This mutational survey of well-characterized short 3′UTR MSs confirms that MSI incidence in MSI-H colorectal tumors correlates with MS length, but not with sequence conservation level or distance from other genetic elements. This study also identifies RB1CC1 as a novel target of frequent mutation and aberrant upregulation in MSI-H colorectal tumors. The predicted loss of a microRNA-accessible structure in mutant RB1CC1 RNA fits the hypothesis that 3′UTR MSI involves in aberrant RB1CC1 posttranscriptional upregulation. Further direct assessments are indicated to investigate this possibility.
Collapse
Affiliation(s)
- Bogdan C. Paun
- Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Yulan Cheng
- Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Barbara A. Leggett
- Conjoint Gastroenterology Lab, Royal Brisbane Hospital Foundation, Clinical Research Centre, Bancroft Centre, Herston, Queensland, Australia
| | - Joanne Young
- Familial Cancer Laboratory, Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Stephen J. Meltzer
- Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Division of Gastroenterology, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Yuriko Mori
- Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
29
|
Keene FR, Smith JA, Collins JG. Metal complexes as structure-selective binding agents for nucleic acids. Coord Chem Rev 2009. [DOI: 10.1016/j.ccr.2009.01.004] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Ernst RJ, Song H, Barton JK. DNA mismatch binding and antiproliferative activity of rhodium metalloinsertors. J Am Chem Soc 2009; 131:2359-66. [PMID: 19175313 PMCID: PMC2747594 DOI: 10.1021/ja8081044] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Deficiencies in mismatch repair (MMR) are associated with carcinogenesis. Rhodium metalloinsertors bind to DNA base mismatches with high specificity and inhibit cellular proliferation preferentially in MMR-deficient cells versus MMR-proficient cells. A family of chrysenequinone diimine complexes of rhodium with varying ancillary ligands that serve as DNA metalloinsertors has been synthesized, and both DNA mismatch binding affinities and antiproliferative activities against the human colorectal carcinoma cell lines HCT116N and HCT116O, an isogenic model system for MMR deficiency, have been determined. DNA photocleavage experiments reveal that all complexes bind to the mismatch sites with high specificities; DNA binding affinities to oligonucleotides containing single base CA and CC mismatches, obtained through photocleavage titration or competition, vary from 10(4) to 10(8) M(-1) for the series of complexes. Significantly, binding affinities are found to be inversely related to ancillary ligand size and directly related to differential inhibition of the HCT116 cell lines. The observed trend in binding affinity is consistent with the metalloinsertion mode where the complex binds from the minor groove with ejection of mismatched base pairs. The correlation between binding affinity and targeting of the MMR-deficient cell line suggests that rhodium metalloinsertors exert their selective biological effects on MMR-deficient cells through mismatch binding in vivo.
Collapse
Affiliation(s)
- Russell J. Ernst
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Hang Song
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Jacqueline K. Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
31
|
Loire E, Praz F, Higuet D, Netter P, Achaz G. Hypermutability of Genes in Homo sapiens Due to the Hosting of Long Mono-SSR. Mol Biol Evol 2008; 26:111-21. [DOI: 10.1093/molbev/msn230] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
32
|
DNA from BK virus and JC virus and from KI, WU, and MC polyomaviruses as well as from simian virus 40 is not detected in non-UV-light-associated primary malignant melanomas of mucous membranes. J Clin Microbiol 2008; 46:3595-8. [PMID: 18768658 DOI: 10.1128/jcm.01635-08] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The single most important causative factor for malignant melanomas of the skin is UV radiation. However, this is not true for melanomas on body surfaces sheltered from the sun; thus, it is important to seek new causative factors of melanoma genesis. Human papillomaviruses and gammaherpesviruses are associated with human skin cancer; for example, human papillomavirus types 5 and 8 are associated with epidermodysplasia verruciformis, and human herpesvirus 8 is associated with Kaposi's sarcoma. Recently, a newly described human polyomavirus, Merkel cell polyomavirus (MCPyV), has been associated with Merkel cell carcinoma, an unusual form of neurotropic skin cancer. Moreover, melanocytes are of neuroepithelial origin. This background impelled us to investigate if human polyomavirus DNA could play a role in the development of extracutaneous melanomas. Sixty-four extracutaneous melanomas were initially collected and dissected. Of these, 38 could be successfully used for further testing for the presence of the five human polyomaviruses known so far-BK virus (BKV), JC virus (JCV), KI polyomavirus (KIPyV), WU polyomavirus (WUPyV), and MCPyV-and of simian virus 40 (SV40). No polyomavirus DNA could be detected in any of the samples tested by use of a nested PCR detecting BKV, JCV, and SV40; a newly designed PCR detecting KIPyV and WUPyV; or a newly designed PCR for MCPyV. We conclude that since no human polyomavirus DNA was detected in primary malignant melanomas on non-sun-exposed body surfaces, these polyomaviruses presumably are not major factors for the development of extracutaneous melanomas.
Collapse
|
33
|
Hotz H, Uzzell T, Guex GD, Alpers D, Semlitsch RD, Beerli P. Microsatellites: A tool for evolutionary genetic studies of western Palearctic water frogs. ZOOSYST EVOL 2008. [DOI: 10.1002/mmnz.20010770108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
34
|
Cordier C, Pierre VC, Barton JK. Insertion of a bulky rhodium complex into a DNA cytosine-cytosine mismatch: an NMR solution study. J Am Chem Soc 2007; 129:12287-95. [PMID: 17877349 PMCID: PMC2748819 DOI: 10.1021/ja0739436] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bulky octahedral complex Rh(bpy)2chrysi3+ (chrysi = 5,6-chrysenequinonediimine) binds single-base mismatches in a DNA duplex with micromolar binding affinities and high selectivity. Here we present an NMR solution study to characterize the binding mode of this bulky metal complex with its target CC mismatch in the oligonucleotide duplex (5'-CGGACTCCG-3')2. Both NOESY and COSY studies indicate that Rh(bpy)2chrysi3+ inserts deeply in the DNA at the mismatch site via the minor groove and with ejection of both destabilized cytosines into the opposite major groove. The insertion only minimally distorts the conformation of the oligonucleotide local to the binding site. Both flanking, well-matched base pairs remain tightly hydrogen-bonded to each other, and 2D DQF-COSY experiments indicate that all sugars maintain their original C2'-endo conformation. Remarkably, 31P NMR reveals that opening of the phosphate angles from a BI to a BII conformation is sufficient for insertion of the bulky metal complex. These results corroborate those obtained crystallographically and, importantly, provide structural evidence for this specific insertion mode in solution.
Collapse
Affiliation(s)
| | | | - Jacqueline K. Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
35
|
Pierre VC, Kaiser JT, Barton JK. Insights into finding a mismatch through the structure of a mispaired DNA bound by a rhodium intercalator. Proc Natl Acad Sci U S A 2007; 104:429-34. [PMID: 17194756 PMCID: PMC1766401 DOI: 10.1073/pnas.0610170104] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Indexed: 01/05/2023] Open
Abstract
We report the 1.1-A resolution crystal structure of a bulky rhodium complex bound to two different DNA sites, mismatched and matched in the oligonucleotide 5'-(dCGGAAATTCCCG)2-3'. At the AC mismatch site, the structure reveals ligand insertion from the minor groove with ejection of both mismatched bases and elucidates how destabilized mispairs in DNA may be recognized. This unique binding mode contrasts with major groove intercalation, observed at a matched site, where doubling of the base pair rise accommodates stacking of the intercalator. Mass spectral analysis reveals different photocleavage products associated with the two binding modes in the crystal, with only products characteristic of mismatch binding in solution. This structure, illustrating two clearly distinct binding modes for a molecule with DNA, provides a rationale for the interrogation and detection of mismatches.
Collapse
Affiliation(s)
- Valérie C. Pierre
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Jens T. Kaiser
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Jacqueline K. Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
36
|
Hart JR, Glebov O, Ernst RJ, Kirsch IR, Barton JK. DNA mismatch-specific targeting and hypersensitivity of mismatch-repair-deficient cells to bulky rhodium(III) intercalators. Proc Natl Acad Sci U S A 2006; 103:15359-63. [PMID: 17030786 PMCID: PMC1622828 DOI: 10.1073/pnas.0607576103] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mismatch repair (MMR) is critical to maintaining the integrity of the genome, and deficiencies in MMR are correlated with cancerous transformations. Bulky rhodium intercalators target DNA base mismatches with high specificity. Here we describe the application of bulky rhodium intercalators to inhibit cellular proliferation differentially in MMR-deficient cells compared with cells that are MMR-proficient. Preferential inhibition by the rhodium complexes associated with MMR deficiency is seen both in a human colon cancer cell line and in normal mouse fibroblast cells; the inhibition of cellular proliferation depends strictly on the MMR deficiency of the cell. Furthermore, our assay of cellular proliferation is found to correlate with DNA mismatch targeting by the bulky metallointercalators. It is the Delta-isomer that is active both in targeting base mismatches and in inhibiting DNA synthesis. Additionally, the rhodium intercalators promote strand cleavage at the mismatch site with photoactivation, and we observe that the cellular response is enhanced with photoactivation. Targeting DNA mismatches may therefore provide a cell-selective strategy for chemotherapeutic design.
Collapse
Affiliation(s)
- Jonathan R. Hart
- *Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena, CA 91125; and
| | - Oleg Glebov
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Naval Medical Center, Bethesda, MD 20889
| | - Russell J. Ernst
- *Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena, CA 91125; and
| | - Ilan R. Kirsch
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Naval Medical Center, Bethesda, MD 20889
| | - Jacqueline K. Barton
- *Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena, CA 91125; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
37
|
Moore MJ, Dhingra A, Soltis PS, Shaw R, Farmerie WG, Folta KM, Soltis DE. Rapid and accurate pyrosequencing of angiosperm plastid genomes. BMC PLANT BIOLOGY 2006; 6:17. [PMID: 16934154 PMCID: PMC1564139 DOI: 10.1186/1471-2229-6-17] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Accepted: 08/25/2006] [Indexed: 05/11/2023]
Abstract
BACKGROUND Plastid genome sequence information is vital to several disciplines in plant biology, including phylogenetics and molecular biology. The past five years have witnessed a dramatic increase in the number of completely sequenced plastid genomes, fuelled largely by advances in conventional Sanger sequencing technology. Here we report a further significant reduction in time and cost for plastid genome sequencing through the successful use of a newly available pyrosequencing platform, the Genome Sequencer 20 (GS 20) System (454 Life Sciences Corporation), to rapidly and accurately sequence the whole plastid genomes of the basal eudicot angiosperms Nandina domestica (Berberidaceae) and Platanus occidentalis (Platanaceae). RESULTS More than 99.75% of each plastid genome was simultaneously obtained during two GS 20 sequence runs, to an average depth of coverage of 24.6x in Nandina and 17.3x in Platanus. The Nandina and Platanus plastid genomes shared essentially identical gene complements and possessed the typical angiosperm plastid structure and gene arrangement. To assess the accuracy of the GS 20 sequence, over 45 kilobases of sequence were generated for each genome using conventional sequencing. Overall error rates of 0.043% and 0.031% were observed in GS 20 sequence for Nandina and Platanus, respectively. More than 97% of all observed errors were associated with homopolymer runs, with approximately 60% of all errors associated with homopolymer runs of 5 or more nucleotides and approximately 50% of all errors associated with regions of extensive homopolymer runs. No substitution errors were present in either genome. Error rates were generally higher in the single-copy and noncoding regions of both plastid genomes relative to the inverted repeat and coding regions. CONCLUSION Highly accurate and essentially complete sequence information was obtained for the Nandina and Platanus plastid genomes using the GS 20 System. More importantly, the high accuracy observed in the GS 20 plastid genome sequence was generated for a significant reduction in time and cost over traditional shotgun-based genome sequencing techniques, although with approximately half the coverage of previously reported GS 20 de novo genome sequence. The GS 20 should be broadly applicable to angiosperm plastid genome sequencing, and therefore promises to expand the scale of plant genetic and phylogenetic research dramatically.
Collapse
Affiliation(s)
- Michael J Moore
- Department of Botany, University of Florida, P.O. Box 118526, Gainesville, FL, 32611, USA
- Florida Museum of Natural History, University of Florida, P.O. Box 117800, Gainesville, FL, 32611, USA
| | - Amit Dhingra
- Horticultural Sciences Department, University of Florida, P.O. Box 110690, Gainesville, FL, 32611, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, P.O. Box 117800, Gainesville, FL, 32611, USA
| | - Regina Shaw
- ICBR Genome Sequencing Service Laboratory, University of Florida, P.O. Box 100156, Gainesville, FL, 32610, USA
| | - William G Farmerie
- ICBR Genome Sequencing Service Laboratory, University of Florida, P.O. Box 100156, Gainesville, FL, 32610, USA
| | - Kevin M Folta
- Horticultural Sciences Department, University of Florida, P.O. Box 110690, Gainesville, FL, 32611, USA
| | - Douglas E Soltis
- Department of Botany, University of Florida, P.O. Box 118526, Gainesville, FL, 32611, USA
| |
Collapse
|
38
|
Rodriguez-Viciana P, Collins CH, Moule MG, Fried M. Chromosomal instability at a mutational hotspot in polyoma middle T-antigen affects its ability to activate the ARF-p53 tumor suppressor pathway. Oncogene 2006; 25:1454-62. [PMID: 16261156 DOI: 10.1038/sj.onc.1209197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 09/20/2005] [Accepted: 09/22/2005] [Indexed: 11/09/2022]
Abstract
We have isolated spontaneous mutants of polyoma virus middle T-antigen (PyMT) that do not activate the ARF-p53 pathway based on their inability to block REF52 cell division. The REF52 cells containing these mutants have a flat untransformed morphological phenotype and do not express the ARF protein. The PyMT mutations in the different cell isolates so far analysed occur at a mutational hotspot in the PyMT sequence between nucleotides 1241 and 1249, which contains nine consecutive cytosines. In one set of mutants a single cytosine was deleted, while in another mutant set an additional cytosine was inserted. Both these mutations result in frameshifts, generating altered PyMT proteins containing amino-acid sequences derived from each of the two other alternative reading frames of the polyoma virus early region. Both types of mutations result in the loss of the C-terminal PyMT region containing the membrane-binding hydrophobic region and result is mislocalization of the PyMT mutant proteins. Revertant wild-type PyMT (containing nine cytosines) was easily detected in transformants generated after infection of REF52 cells expressing high amounts of dominant negative p53 with retroviruses containing either mutation. We demonstrate that wild-type PyMT revertants are derived from mutations in the hotspot sequence of the integrated mutant PyMT sequences.
Collapse
Affiliation(s)
- P Rodriguez-Viciana
- UCSF Cancer Research Institute, 2340 Sutter Street, San Francisco, California 94115, USA
| | | | | | | |
Collapse
|
39
|
Abstract
Hypermutable tandem repeat sequences (TRSs) are present in the genomes of both prokaryotic and eukaryotic organisms. Numerous studies have been conducted in several laboratories over the past decade to investigate the mechanisms responsible for expansions and contractions of microsatellites (a subset of TRSs with a repeat length of 1-6 nucleotides) in the model prokaryotic organism Escherichia coli. Both the frequency of tandem repeat instability (TRI), and the types of mutational events that arise, are markedly influenced by the DNA sequence of the repeat, the number of unit repeats, and the types of cellular pathways that process the TRS. DNA strand slippage is a general mechanism invoked to explain instability in TRSs. Misaligned DNA sequences are stabilized both by favorable base pairing of complementary sequences and by the propensity of TRSs to form relatively stable secondary structures. Several cellular processes, including replication, recombination and a variety of DNA repair pathways, have been shown to interact with such structures and influence TRI in bacteria. This paper provides an overview of our current understanding of mechanisms responsible for TRI in bacteria, with an emphasis on studies that have been carried out in E. coli. In addition, new experimental data are presented, suggesting that TLS polymerases (PolII, PolIV and PolV) do not contribute significantly to TRI in E. coli.
Collapse
Affiliation(s)
- M Bichara
- Département Intégrité du Génome de l'UMR 7175, PolAP1, Boulevard Sébastien Brant 67400, Strasbourg-Illkirch, France
| | | | | |
Collapse
|
40
|
Watson ME, Burns JL, Smith AL. Hypermutable Haemophilus influenzae with mutations in mutS are found in cystic fibrosis sputum. MICROBIOLOGY-SGM 2005; 150:2947-2958. [PMID: 15347753 DOI: 10.1099/mic.0.27230-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hypermutable bacterial pathogens exist at surprisingly high prevalence and benefit bacterial populations by promoting adaptation to selective environments, including resistance to antibiotics. Five hundred Haemophilus influenzae isolates were screened for an increased frequency of mutation to resistance to rifampicin, nalidixic acid and spectinomycin: of the 14 hypermutable isolates identified, 12 were isolated from cystic fibrosis (CF) sputum. Analysis by enterobacterial repetitive intergenic consensus (ERIC)-PCR and ribotyping identified eight distinct genetic fingerprints. The hypermutable phenotype of seven of the eight unique isolates was associated with polymorphisms in conserved sites of mutS. Four of the mutant mutS alleles were cloned and failed to complement the mutator phenotype of a mutS : : TSTE mutant of H. influenzae strain Rd KW20. Antibiotic susceptibility testing of the hypermutators identified one beta-lactamase-negative ampicillin-resistant (BLNAR) isolate with two isolates producing beta-lactamase. Six isolates from the same patient with CF, with the same genetic fingerprint, were clonal by multilocus sequence typing (MLST). In this clone, there was an evolution to higher MIC values for the antibiotics administered to the patient during the period in which the strains were isolated. Hypermutable H. influenzae with mutations in mutS are prevalent, particularly in the CF lung environment, and may be selected for and maintained by antibiotic pressure.
Collapse
MESH Headings
- Adenosine Triphosphatases/genetics
- Adenosine Triphosphatases/physiology
- Ampicillin Resistance
- Anti-Bacterial Agents/pharmacology
- Bacterial Proteins/genetics
- Bacterial Proteins/physiology
- Cloning, Molecular
- Cystic Fibrosis/microbiology
- DNA Fingerprinting
- DNA, Bacterial/analysis
- DNA, Bacterial/chemistry
- DNA, Bacterial/isolation & purification
- DNA, Intergenic
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Drug Resistance, Bacterial/genetics
- Genes, Bacterial
- Genetic Complementation Test
- Haemophilus influenzae/drug effects
- Haemophilus influenzae/genetics
- Haemophilus influenzae/isolation & purification
- Humans
- Molecular Sequence Data
- MutS DNA Mismatch-Binding Protein
- Mutation
- Nalidixic Acid/pharmacology
- Polymorphism, Genetic
- Repetitive Sequences, Nucleic Acid
- Ribotyping
- Rifampin/pharmacology
- Selection, Genetic
- Sequence Analysis, DNA
- Spectinomycin/pharmacology
- Sputum/microbiology
- beta-Lactamases/analysis
Collapse
Affiliation(s)
- Michael E Watson
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri-Columbia, Columbia, MO 65212, USA
- Seattle Biomedical Research Institute, 307 Westlake Ave N, Suite 500, Seattle, WA 98109, USA
| | - Jane L Burns
- Division of Infectious Diseases, Children's Hospital and Regional Medical Center, 4800 Sand Point Way, Seattle, WA 98105, USA
| | - Arnold L Smith
- Seattle Biomedical Research Institute, 307 Westlake Ave N, Suite 500, Seattle, WA 98109, USA
| |
Collapse
|
41
|
Varella SD, Pozetti GL, Vilegas W, Varanda EA. Mutagenic activity in waste from an aluminum products factory in Salmonella/microsome assay. Toxicol In Vitro 2004; 18:895-900. [PMID: 15465657 DOI: 10.1016/j.tiv.2004.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 05/18/2004] [Indexed: 11/25/2022]
Abstract
The mutagenic activity of waste material originating from an aluminum products factory was determined by the Salmonella/microsome assay, using the bacterial strains TA100, TA98 and YG1024. The material was obtained by sweeping the factory floor at the end of the work shift. Organic compounds were extracted by ultrasound for 30 min in dichloromethane or 70% ethanol. After evaporation of solvent, these extracts were dissolved in dimethylsulfoxide, and tested for the mutagenic activity at varying concentrations. All the extracts from the factory had mutagenic activity, especially in the YG1024 strain, suggesting the presence of aromatic amines, later confirmed by chemical analysis. The TA98 strain also showed mutagenic activity, though it did not exhibit the highest mutagenicity index observed with the YG1024 strain. In TA100, mutagenic activity was not observed. This study should serve as an alert to management and those who are occupationally exposed, and as a warning that this type of waste should not be discarded in the environment without any control.
Collapse
Affiliation(s)
- Soraya D Varella
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences of Araraquara, Estadual Paulist University, São Paulo 14801-902, Brazil
| | | | | | | |
Collapse
|
42
|
Varella SD, Pozetti GL, Vilegas W, Varanda EA. Mutagenic activity of sweepings and pigments from a household-wax factory assayed with Salmonella typhimurium. Food Chem Toxicol 2004; 42:2029-35. [PMID: 15570690 DOI: 10.1016/j.fct.2004.07.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The mutagenic activity of garbage originating from a household wax industry was determined by the Salmonella/microsome assay, using the bacterial strains TA100, TA98 and YG1024. The garbage was obtained by sweeping the floor of the factory at the end of the work shift. Organic compounds were extracted by ultrasound for 30 min in dichloromethane or 70% ethanol. After evaporation of solvent, these extracts (HFS: household-wax factory sweepings) were dissolved in DMSO, and were tested for the mutagenic activity at varying concentrations (HFS-ET: 0.08-0.68 mg/plate, HFS-DCM: 0.60-7.31 mg/plate). The colouring agents (pigments) used in the production of the wax were also dissolved in DMSO and tested with the assay. The concentrations tested for each pigment were: Amaranth: 0.46-3.65 mg/plate, Auramine: 0.15-1.2 mg/plate and Rhodamine B: 0.22-1.82 mg/plate. Both ET and DCM organic extracts had mutagenic activity, especially in the YG1024 strain. The pigments behaved in a similar way, demonstrating that YG1024 was the most sensitive strain for the detection of mutagenicity, and that metabolization increased the activity. Human exposure (occupational and non-occupational) to industrial residues generated during the household-wax manufacturing and packaging process should be monitored, since this type of garbage is normally deposited in the environment without any control.
Collapse
Affiliation(s)
- S D Varella
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences of Araraquara, Estadual Paulist University, Araraquara 14801902, São Paulo, Brazil
| | | | | | | |
Collapse
|
43
|
Abstract
We studied the dependence of the rate of short deletions and insertions on their contexts using the data on mutations within coding exons at 19 human loci that cause mendelian diseases. We confirm that periodic sequences consisting of three to five or more nucleotides are mutagenic. Mutability of sequences with strongly biased nucleotide composition is also elevated, even when mutations within homonucleotide runs longer than three nucleotides are ignored. In contrast, no elevated mutation rates have been detected for imperfect direct or inverted repeats. Among known candidate contexts, the indel context GTAAGT and regions with purine-pyrimidine imbalance between the two DNA strands are mutagenic in our sample, and many others are not mutagenic. Data on mutation hot spots suggest two novel contexts that increase the deletion rate. Comprehensive analysis of mutability of all possible contexts of lengths four, six, and eight indicates a substantially elevated deletion rate within YYYTG and similar sequences, which is one of the two contexts revealed by the hot spots. Possible contexts that increase the insertion rate (AT(A/C)(A/C)GCC and TACCRC) and decrease deletion (TATCGC) or insertion (GCGG) rates have also been identified. Two-thirds of deletions remove a repeat, and over 80% of insertions create a repeat, i.e., they are duplications.
Collapse
Affiliation(s)
- Alexey S Kondrashov
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland
| | - Igor B Rogozin
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
44
|
Bell JS, Harvey TI, Sims AM, McCulloch R. Characterization of components of the mismatch repair machinery in Trypanosoma brucei. Mol Microbiol 2004; 51:159-73. [PMID: 14651619 DOI: 10.1046/j.1365-2958.2003.03804.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mismatch repair is one of a number of DNA repair pathways that cells possess to deal with damage to their genome. Mismatch repair is concerned with the recognition and correction of incorrectly paired bases, which can be base-base mismatches or insertions or deletions of a few bases, and appears to have been conserved throughout evolution. Primarily, this is concerned with increasing the fidelity of DNA replication, but also has important roles in the regulation of homologous recombination and the correction of chemical damage. In this study, we describe five genes in the protistan parasite Trypanosoma brucei that are likely to be involved in nuclear mismatch repair. The predicted T. brucei mismatch repair genes are diverged compared with their likely counterparts in the other eukaryotes examined to date. To demonstrate that these do indeed encode a functional nuclear mismatch repair system, we made T. brucei null mutants in two of the genes, MSH2 and MLH1, that are likely to be central to the functioning of the mismatch repair machinery. These mutations resulted in increased rates of sequence variation at a number of microsatellite loci in the parasite genome, and led to increased tolerance to the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine, both phenotypes consistent with mismatch repair impairment.
Collapse
Affiliation(s)
- Joanna S Bell
- The Wellcome Centre for Molecular Parasitology, University of Glasgow, Anderson College, 56 Dumbarton Road, Glasgow G11 6NU, UK
| | | | | | | |
Collapse
|
45
|
Cho BP. Dynamic conformational heterogeneities of carcinogen-DNA adducts and their mutagenic relevance. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2004; 22:57-90. [PMID: 16291518 DOI: 10.1081/lesc-200038217] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Arylamines and polycyclic aromatic hydrocarbons (PAHs), which are known as "bulky" carcinogens, have been studied extensively and upon activation in vivo, react with cellular DNA to form DNA-adducts. The available structure data accumulated thus far has revealed that conformational heterogeneity is a common theme among duplex DNA modified with these carcinogens. Several conformationally diverse structures have been elucidated and found to be in equilibrium in certain cases. The dynamics of the heterogeneity appear to be modulated by the nature of the adduct structure and the base sequences neighboring the lesion site. These can be termed as "adduct- and sequence-induced conformational heterogeneities," respectively. Due to the small energy differences, the population levels of these conformers could readily be altered within the active sites of repair or replicate enzymes. Thus, the complex role of "enzyme-induced conformational heterogeneity" must also be taken into consideration for the establishment of a functional structure-mutation relationship. Ultimately, a major challenge in mutation structural biology is to carry out adduct- and site-specific experiments in a conformationally specific manner within biologically relevant environments. Results from such experiments should provide an accurate account of how a single chemically homogenous adduct gives rise to complex multiple mutations, the earliest step in the induction of cancer.
Collapse
Affiliation(s)
- Bongsup P Cho
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02882, USA.
| |
Collapse
|
46
|
Rogozin IB, Pavlov YI. Theoretical analysis of mutation hotspots and their DNA sequence context specificity. Mutat Res 2003; 544:65-85. [PMID: 12888108 DOI: 10.1016/s1383-5742(03)00032-2] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mutation frequencies vary significantly along nucleotide sequences such that mutations often concentrate at certain positions called hotspots. Mutation hotspots in DNA reflect intrinsic properties of the mutation process, such as sequence specificity, that manifests itself at the level of interaction between mutagens, DNA, and the action of the repair and replication machineries. The hotspots might also reflect structural and functional features of the respective DNA sequences. When mutations in a gene are identified using a particular experimental system, resulting hotspots could reflect the properties of the gene product and the mutant selection scheme. Analysis of the nucleotide sequence context of hotspots can provide information on the molecular mechanisms of mutagenesis. However, the determinants of mutation frequency and specificity are complex, and there are many analytical methods for their study. Here we review computational approaches for analyzing mutation spectra (distribution of mutations along the target genes) that include many mutable (detectable) positions. The following methods are reviewed: derivation of a consensus sequence, application of regression approaches to correlate nucleotide sequence features with mutation frequency, mutation hotspot prediction, analysis of oligonucleotide composition of regions containing mutations, pairwise comparison of mutation spectra, analysis of multiple spectra, and analysis of "context-free" characteristics. The advantages and pitfalls of these methods are discussed and illustrated by examples from the literature. The most reliable analyses were obtained when several methods were combined and information from theoretical analysis and experimental observations was considered simultaneously. Simple, robust approaches should be used with small samples of mutations, whereas combinations of simple and complex approaches may be required for large samples. We discuss several well-documented studies where analysis of mutation spectra has substantially contributed to the current understanding of molecular mechanisms of mutagenesis. The nucleotide sequence context of mutational hotspots is a fingerprint of interactions between DNA and DNA repair, replication, and modification enzymes, and the analysis of hotspot context provides evidence of such interactions.
Collapse
Affiliation(s)
- Igor B Rogozin
- Institute of Cytology and Genetics, Russian Academy of Sciences, Novosibirsk, Russia
| | | |
Collapse
|
47
|
Gragg H, Harfe BD, Jinks-Robertson S. Base composition of mononucleotide runs affects DNA polymerase slippage and removal of frameshift intermediates by mismatch repair in Saccharomyces cerevisiae. Mol Cell Biol 2002; 22:8756-62. [PMID: 12446792 PMCID: PMC139878 DOI: 10.1128/mcb.22.24.8756-8762.2002] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The postreplicative mismatch repair (MMR) system is important for removing mutational intermediates that are generated during DNA replication, especially those that arise as a result of DNA polymerase slippage in simple repeats. Here, we use a forward mutation assay to systematically examine the accumulation of frameshift mutations within mononucleotide runs of variable composition in wild-type and MMR-defective yeast strains. These studies demonstrate that (i) DNA polymerase slippage occurs more often in 10-cytosine/10-guanine (10C/10G) runs than in 10-adenine/10-thymine (10A/10T) runs, (ii) the MMR system removes frameshift intermediates in 10A/10T runs more efficiently than in 10C/10G runs, (iii) the MMR system removes -1 frameshift intermediates more efficiently than +1 intermediates in all 10-nucleotide runs, and (iv) the repair specificities of the Msh2p-Msh3p and Msh2p-Msh6p mismatch recognition complexes with respect to 1-nucleotide insertion/deletion loops vary dramatically as a function of run composition. These observations are relevant to issues of genome stability, with both the rates and types of mutations that accumulate in mononucleotide runs being influenced by the primary sequence of the run as well as by the status of the MMR system.
Collapse
Affiliation(s)
- Hana Gragg
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
48
|
Abstract
Hepatocarcinogenesis is a slow process during which genomic changes progressively alter the hepatocellular phenotype to produce cellular intermediates that evolve into hepatocellular carcinoma. During the long preneoplastic stage, in which the liver is often the site of chronic hepatitis, cirrhosis, or both, hepatocyte cycling is accelerated by upregulation of mitogenic pathways, in part through epigenetic mechanisms. This leads to the production of monoclonal populations of aberrant and dysplastic hepatocytes that have telomere erosion and telomerase re-expression, sometimes microsatellite instability, and occasionally structural aberrations in genes and chromosomes. Development of dysplastic hepatocytes in foci and nodules and emergence of hepatocellular carcinoma are associated with the accumulation of irreversible structural alterations in genes and chromosomes, but the genomic basis of the malignant phenotype is heterogeneous. The malignant hepatocyte phenotype may be produced by the disruption of a number of genes that function in different regulatory pathways, producing several molecular variants of hepatocellular carcinoma. New strategies should enable these variants to be characterized.
Collapse
Affiliation(s)
- Snorri S Thorgeirsson
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
49
|
Hotz H, Uzzell T, Guex GD, Alpers D, Semlitsch RD, Beerli P. Microsatellites: A tool for evolutionary genetic studies of western Palearctic water frogs. ACTA ACUST UNITED AC 2001. [DOI: 10.1002/mmnz.4850770108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|