1
|
Duque-Prata A, Serpa C, Caridade PJSB. Theoretical Evaluation of Fluorinated Resazurin Derivatives for In Vivo Applications. Molecules 2024; 29:1507. [PMID: 38611787 PMCID: PMC11013821 DOI: 10.3390/molecules29071507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Primarily owing to the pronounced fluorescence exhibited by its reduced form, resazurin (also known as alamarBlue®) is widely employed as a redox sensor to assess cell viability in in vitrostudies. In an effort to broaden its applicability for in vivo studies, molecular adjustments are necessary to align optical properties with the near-infrared imaging window while preserving redox properties. This study delves into the theoretical characterisation of a set of fluorinated resazurin derivatives proposed by Kachur et al., 2015 examining the influence of fluorination on structural and electrochemical properties. Assuming that the conductor-like polarisable continuum model mimics the solvent effect, the density functional level of theory combining M06-2X/6-311G* was used to calculate the redox potentials. Furthermore, (TD-)DFT calculations were performed with PBE0/def2-TZVP to evaluate nucleophilic characteristics, transition states for fluorination, relative energies, and fluorescence spectra. With the aim of exploring the potential of resazurin fluorinated derivatives as redox sensors tailored for in vivo applications, acid-base properties and partition coefficients were calculated. The theoretical characterisation has demonstrated its potential for designing novel molecules based on fundamental principles.
Collapse
Affiliation(s)
| | | | - Pedro J. S. B. Caridade
- CQC-IMS, Department of Chemistry, University of Coimbra, 304-535 Coimbra, Portugal; (A.D.-P.); (C.S.)
| |
Collapse
|
2
|
Hughes K, Le TB, Van Der Smissen P, Tyteca D, Mingeot-Leclercq MP, Quetin-Leclercq J. The Antileishmanial Activity of Eugenol Associated with Lipid Storage Reduction Rather Than Membrane Properties Alterations. Molecules 2023; 28:molecules28093871. [PMID: 37175277 PMCID: PMC10179746 DOI: 10.3390/molecules28093871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Leishmaniasis is a neglected tropical disease that still infects thousands of people per year throughout the world. The occurrence of resistance against major treatments for this disease causes a healthcare burden in low-income countries. Eugenol is a phenylpropanoid that has shown in vitro antileishmanial activity against Leishmania mexicana mexicana (Lmm) promastigotes with an IC50 of 2.72 µg/mL and a high selectivity index. Its specific mechanism of action has yet to be studied. We prepared large unilamellar vesicles (LUVs), mimicking Lmm membranes, and observed that eugenol induced an increase in membrane permeability and a decrease in membrane fluidity at concentrations much higher than IC50. The effect of eugenol was similar to the current therapeutic antibiotic, amphotericin B, although the latter was effective at lower concentrations than eugenol. However, unlike amphotericin B, eugenol also affected the permeability of LUVs without sterol. Its effect on the membrane fluidity of Lmm showed that at high concentrations (≥22.5× IC50), eugenol increased membrane fluidity by 20-30%, while no effect was observed at lower concentrations. Furthermore, at concentrations below 10× IC50, a decrease in metabolic activity associated with the maintenance of membrane integrity revealed a leishmaniostatic effect after 24 h of incubation with Lmm promastigotes. While acidocalcisomes distribution and abundance revealed by Trypanosoma brucei vacuolar H+ pyrophosphatase (TbVP1) immunolabeling was not modified by eugenol, a dose-dependent decrease of lipid droplets assessed by the Nile Red assay was observed. We hereby demonstrate that the antileishmanial activity of eugenol might not directly involve plasma membrane sterols such as ergosterol, but rather target the lipid storage of Lmm.
Collapse
Affiliation(s)
- Kristelle Hughes
- Pharmacognosy Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue E. Mounier 72, B1.72.03, B-1200 Brussels, Belgium
| | - Thanh Binh Le
- Pharmacognosy Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue E. Mounier 72, B1.72.03, B-1200 Brussels, Belgium
| | - Patrick Van Der Smissen
- CELL Unit and PICT Imaging Platform, de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, B1.75.05, B-1200 Brussels, Belgium
| | - Donatienne Tyteca
- CELL Unit and PICT Imaging Platform, de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, B1.75.05, B-1200 Brussels, Belgium
| | - Marie-Paule Mingeot-Leclercq
- Cellular and Molecular Pharmacology Unit (FACM), Louvain Drug Research Institute, Université Catholique de Louvain, Avenue E. Mounier 73, B1.73.05, B-1200 Brussels, Belgium
| | - Joëlle Quetin-Leclercq
- Pharmacognosy Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue E. Mounier 72, B1.72.03, B-1200 Brussels, Belgium
| |
Collapse
|
3
|
Zharkova MS, Komlev AS, Filatenkova TA, Sukhareva MS, Vladimirova EV, Trulioff AS, Orlov DS, Dmitriev AV, Afinogenova AG, Spiridonova AA, Shamova OV. Combined Use of Antimicrobial Peptides with Antiseptics against Multidrug-Resistant Bacteria: Pros and Cons. Pharmaceutics 2023; 15:291. [PMID: 36678918 PMCID: PMC9863607 DOI: 10.3390/pharmaceutics15010291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Antimicrobial peptides (AMPs) are acknowledged as a promising template for designing new antimicrobials. At the same time, existing toxicity issues and limitations in their pharmacokinetics make topical application one of the less complicated routes to put AMPs-based therapeutics into actual medical practice. Antiseptics are one of the common components for topical treatment potent against antibiotic-resistant pathogens but often with toxicity limitations of their own. Thus, the interaction of AMPs and antiseptics is an interesting topic that is also less explored than combined action of AMPs and antibiotics. Herein, we analyzed antibacterial, antibiofilm, and cytotoxic activity of combinations of both membranolytic and non-membranolytic AMPs with a number of antiseptic agents. Fractional concentration indices were used as a measure of possible effective concentration reduction achievable due to combined application. Cases of both synergistic and antagonistic interaction with certain antiseptics and surfactants were identified, and trends in the occurrence of these types of interaction were discussed. The data may be of use for AMP-based drug development and suggest that the topic requires further attention for successfully integrating AMPs-based products in the context of complex treatment. AMP/antiseptic combinations show promise for creating topical formulations with improved activity, lowered toxicity, and, presumably, decreased chances of inducing bacterial resistance. However, careful assessment is required to avoid AMP neutralization by certain antiseptic classes in either complex drug design or AMP application alongside other therapeutics/care products.
Collapse
Affiliation(s)
- Maria S. Zharkova
- Institute of Experimental Medicine, WCRC “Center for Personalized Medicine”, 12 Academic Pavlov Street, St. Petersburg 197022, Russia
| | - Aleksey S. Komlev
- Institute of Experimental Medicine, WCRC “Center for Personalized Medicine”, 12 Academic Pavlov Street, St. Petersburg 197022, Russia
| | - Tatiana A. Filatenkova
- Institute of Experimental Medicine, WCRC “Center for Personalized Medicine”, 12 Academic Pavlov Street, St. Petersburg 197022, Russia
| | - Maria S. Sukhareva
- Institute of Experimental Medicine, WCRC “Center for Personalized Medicine”, 12 Academic Pavlov Street, St. Petersburg 197022, Russia
| | - Elizaveta V. Vladimirova
- Institute of Experimental Medicine, WCRC “Center for Personalized Medicine”, 12 Academic Pavlov Street, St. Petersburg 197022, Russia
| | - Andrey S. Trulioff
- Institute of Experimental Medicine, WCRC “Center for Personalized Medicine”, 12 Academic Pavlov Street, St. Petersburg 197022, Russia
| | - Dmitriy S. Orlov
- Institute of Experimental Medicine, WCRC “Center for Personalized Medicine”, 12 Academic Pavlov Street, St. Petersburg 197022, Russia
| | - Alexander V. Dmitriev
- Institute of Experimental Medicine, WCRC “Center for Personalized Medicine”, 12 Academic Pavlov Street, St. Petersburg 197022, Russia
| | - Anna G. Afinogenova
- St. Petersburg Pasteur Institute, 14 Mira Street, St. Petersburg 197101, Russia
| | - Anna A. Spiridonova
- Department of Clinical Microbiology, Pavlov First Saint Petersburg State Medical University, 6/8 Lev Tolstoy Street, St. Petersburg 197022, Russia
| | - Olga V. Shamova
- Institute of Experimental Medicine, WCRC “Center for Personalized Medicine”, 12 Academic Pavlov Street, St. Petersburg 197022, Russia
- Department of Biochemistry, Saint Petersburg State University, 7/9 Universitetskaya Embankment, St. Petersburg 199034, Russia
| |
Collapse
|
4
|
Fortier M, Côté-Cyr M, Nguyen V, Babych M, Nguyen PT, Gaudreault R, Bourgault S. Contribution of the 12–17 hydrophobic region of islet amyloid polypeptide in self-assembly and cytotoxicity. Front Mol Biosci 2022; 9:1017336. [PMID: 36262476 PMCID: PMC9573943 DOI: 10.3389/fmolb.2022.1017336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
The islet amyloid polypeptide (IAPP) is a 37-residue aggregation-prone peptide hormone whose deposition as insoluble fibrils in the islets of Langerhans is associated with type II diabetes. Therapeutic interventions targeting IAPP amyloidogenesis, which contributes to pancreatic β-cell degeneration, remain elusive owing to the lack of understanding of the self-assembly mechanisms and of the quaternary proteospecies mediating toxicity. While countless studies have investigated the contributions of the 20–29 amyloidogenic core in self-assembly, IAPP central region, i.e. positions 11 to 19, has been less studied, notwithstanding its potential key role in oligomerization. In this context, the present study aimed at investigating the physicochemical and conformational properties driving IAPP self-assembly and associated cytotoxicity. Computational tools and all-atom molecular dynamics simulation suggested that the hydrophobic 12–17 segment promotes IAPP self-recognition and aggregation. Alanine scanning revealed that the hydrophobic side chains of Leu12, Phe15 and Val17 are critical for amyloid fibril formation. Destabilization of the α-helical folding by Pro substitution enhanced self-assembly when the pyrrolidine ring was successively introduced at positions Ala13, Asn14 and Phe15, in comparison to respective Ala-substituted counterparts. Modulating the peptide backbone flexibility at position Leu16 through successive incorporation of Pro, Gly and α-methylalanine, inhibited amyloid formation and reduced cytotoxicity, while the isobutyl side chain of Leu16 was not critical for self-assembly and IAPP-mediated toxicity. These results highlight the importance of the 12–17 hydrophobic region of IAPP for self-recognition, ultimately supporting the development of therapeutic approaches to prevent oligomerization and/or fibrillization.
Collapse
Affiliation(s)
- Mathilde Fortier
- Department of Chemistry, Succursale Centre-Ville, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Montreal, QC, Canada
| | - Mélanie Côté-Cyr
- Department of Chemistry, Succursale Centre-Ville, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Montreal, QC, Canada
| | - Vy Nguyen
- Department of Chemistry, Succursale Centre-Ville, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Montreal, QC, Canada
| | - Margaryta Babych
- Department of Chemistry, Succursale Centre-Ville, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Montreal, QC, Canada
| | - Phuong Trang Nguyen
- Department of Chemistry, Succursale Centre-Ville, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Montreal, QC, Canada
| | - Roger Gaudreault
- Department of Chemistry, Succursale Centre-Ville, Université du Québec à Montréal, Montreal, QC, Canada
- Department of Physics, Université de Montréal, Succursale Centre-ville, Montreal, QC, Canada
- *Correspondence: Roger Gaudreault, ; Steve Bourgault,
| | - Steve Bourgault
- Department of Chemistry, Succursale Centre-Ville, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Montreal, QC, Canada
- *Correspondence: Roger Gaudreault, ; Steve Bourgault,
| |
Collapse
|
5
|
Lavogina D, Lust H, Tahk MJ, Laasfeld T, Vellama H, Nasirova N, Vardja M, Eskla KL, Salumets A, Rinken A, Jaal J. Revisiting the Resazurin-Based Sensing of Cellular Viability: Widening the Application Horizon. BIOSENSORS 2022; 12:bios12040196. [PMID: 35448256 PMCID: PMC9032648 DOI: 10.3390/bios12040196] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 05/08/2023]
Abstract
Since 1991, the NAD(P)H-aided conversion of resazurin to fluorescent resorufin has been widely used to measure viability based on the metabolic activity in mammalian cell culture and primary cells. However, different research groups have used divergent assay protocols, scarcely reporting the systematic optimization of the assay. Here, we perform extensive studies to fine-tune the experimental protocols utilizing resazurin-based viability sensing. Specifically, we focus on (A) optimization of the assay dynamic range in individual cell lines for the correct measurement of cytostatic and cytotoxic properties of the compounds; (B) dependence of the dynamic range on the physical quantity detected (fluorescence intensity versus change of absorbance spectrum); (C) calibration of the assay for the correct interpretation of data measured in hypoxic conditions; and (D) possibilities for combining the resazurin assay with other methods including measurement of necrosis and apoptosis. We also demonstrate the enhanced precision and flexibility of the resazurin-based assay regarding the readout format and kinetic measurement mode as compared to the widely used analogous assay which utilizes tetrazolium dye MTT. The discussed assay optimization guidelines provide useful instructions for the beginners in the field and for the experienced scientists exploring new ways for measurement of cellular viability using resazurin.
Collapse
Affiliation(s)
- Darja Lavogina
- Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia; (H.L.); (A.S.); (J.J.)
- Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia; (M.-J.T.); (T.L.); (N.N.); (A.R.)
- Competence Centre on Health Technologies, 50411 Tartu, Estonia
- Correspondence: ; Tel.: +372-737-5296
| | - Helen Lust
- Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia; (H.L.); (A.S.); (J.J.)
| | - Maris-Johanna Tahk
- Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia; (M.-J.T.); (T.L.); (N.N.); (A.R.)
| | - Tõnis Laasfeld
- Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia; (M.-J.T.); (T.L.); (N.N.); (A.R.)
- Department of Computer Science, University of Tartu, 51009 Tartu, Estonia
| | - Hans Vellama
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (H.V.); (K.-L.E.)
- Centre of Excellence for Genomics and Translational Medicine, University of Tartu, 51010 Tartu, Estonia
| | - Naila Nasirova
- Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia; (M.-J.T.); (T.L.); (N.N.); (A.R.)
| | - Markus Vardja
- Department of Radiotherapy and Oncological Therapy, Tartu University Hospital, 50406 Tartu, Estonia;
| | - Kattri-Liis Eskla
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (H.V.); (K.-L.E.)
- Centre of Excellence for Genomics and Translational Medicine, University of Tartu, 51010 Tartu, Estonia
| | - Andres Salumets
- Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia; (H.L.); (A.S.); (J.J.)
- Competence Centre on Health Technologies, 50411 Tartu, Estonia
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 14186 Stockholm, Sweden
| | - Ago Rinken
- Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia; (M.-J.T.); (T.L.); (N.N.); (A.R.)
| | - Jana Jaal
- Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia; (H.L.); (A.S.); (J.J.)
- Department of Radiotherapy and Oncological Therapy, Tartu University Hospital, 50406 Tartu, Estonia;
| |
Collapse
|
6
|
Gabano E, Ferraris C, Osella D, Battaglia LS, Ravera M. Formulations of highly antiproliferative hydrophobic Pt(IV) complexes into lipidic nanoemulsions as delivery vehicles. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Rezazadeh-Shojaee FS, Ramazani E, Kasaian J, Tayarani-Najaran Z. Protective effects of 6-gingerol on 6-hydroxydopamine-induced apoptosis in PC12 cells through modulation of SAPK/JNK and survivin activation. J Biochem Mol Toxicol 2021; 36:e22956. [PMID: 34783140 DOI: 10.1002/jbt.22956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 09/23/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022]
Abstract
Due to many therapeutic effects, Ginger (Zingiber officinale) is the most widely used spice around the world, including in Iran. Due to its potent anti-inflammatory and antioxidant effects, ginger may protect against neurodegenerative disorders. Here, we investigated the effects of 6-gingerol (the main bioactive compound in ginger) on 6-hydroxydopamine (6-OHDA)-induced cell death in PC12 cells. Cell viability, cell apoptosis, and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and survivin expression were measured using resazurin, propidium iodide (PI) and flow cytometry, and western blot analysis. 6-OHDA (100 μM) reduced the cell viability, increased apoptosis, increased the active form of SAPK/JNK, and decreased survivin protein level in PC12 exposed cells in a dose and time-dependent manner. Pretreatment with 6-gingerol significantly increased the viability and reduced apoptosis (2.5 and 5 µM). Also, pretreatment with 6-gingerol at 2.5 and 5 µM increased survivin whereas, 6-gingerol at 2.5 µM reduced (P-SAPK/JNK):(SAPK/JNK) levels to a level near that of the related control. According to the results, 6-gingerol blocks 6-OHDA-induced cell damage by suppressing oxidative stress and anti-apoptotic activity. Thus, 6-gingerol may process beneficial protective effects in slowing the progression of Parkinson's disease.
Collapse
Affiliation(s)
- Farzaneh-Sadat Rezazadeh-Shojaee
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Ramazani
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Jamal Kasaian
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Zahra Tayarani-Najaran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Cui H, Li H, Abdel-Samie MA, Surendhiran D, Lin L. Anti-Listeria monocytogenes biofilm mechanism of cold nitrogen plasma. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2020.102571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Mazzio E, Badisa R, Mack N, Cassim S, Zdralevic M, Pouyssegur J, Soliman KFA. Whole-transcriptome Analysis of Fully Viable Energy Efficient Glycolytic-null Cancer Cells Established by Double Genetic Knockout of Lactate Dehydrogenase A/B or Glucose-6-Phosphate Isomerase. Cancer Genomics Proteomics 2020; 17:469-497. [PMID: 32859627 PMCID: PMC7472444 DOI: 10.21873/cgp.20205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/14/2020] [Accepted: 06/26/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND/AIM Nearly all mammalian tumors of diverse tissues are believed to be dependent on fermentative glycolysis, marked by elevated production of lactic acid and expression of glycolytic enzymes, most notably lactic acid dehydrogenase (LDH). Therefore, there has been significant interest in developing chemotherapy drugs that selectively target various isoforms of the LDH enzyme. However, considerable questions remain as to the consequences of biological ablation of LDH or upstream targeting of the glycolytic pathway. MATERIALS AND METHODS In this study, we explore the biochemical and whole transcriptomic effects of CRISPR-Cas9 gene knockout (KO) of lactate dehydrogenases A and B [LDHA/B double KO (DKO)] and glucose-6-phosphate isomerase (GPI KO) in the human colon cancer cell line LS174T, using Affymetrix 2.1 ST arrays. RESULTS The metabolic biochemical profiles corroborate that relative to wild type (WT), LDHA/B DKO produced no lactic acid, (GPI KO) produced minimal lactic acid and both KOs displayed higher mitochondrial respiration, and minimal use of glucose with no loss of cell viability. These findings show a high biochemical energy efficiency as measured by ATP in glycolysis-null cells. Next, transcriptomic analysis conducted on 48,226 mRNA transcripts reflect 273 differentially expressed genes (DEGS) in the GPI KO clone set, 193 DEGS in the LDHA/B DKO clone set with 47 DEGs common to both KO clones. Glycolytic-null cells reflect up-regulation in gene transcripts typically associated with nutrient deprivation / fasting and possible use of fats for energy: thioredoxin interacting protein (TXNIP), mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), PPARγ coactivator 1α (PGC-1α), and acetyl-CoA acyltransferase 2 (ACAA2). Other changes in non-ergometric transcripts in both KOs show losses in "stemness", WNT signaling pathway, chemo/radiation resistance, retinoic acid synthesis, drug detoxification, androgen/estrogen activation, and extracellular matrix reprogramming genes. CONCLUSION These findings demonstrate that: 1) The "Warburg effect" is dispensable, 2) loss of the LDHAB gene is not only inconsequential to viability but fosters greater mitochondrial energy, and 3) drugs that target LDHA/B are likely to be ineffective without a plausible combination second drug target.
Collapse
Affiliation(s)
- Elizabeth Mazzio
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A
| | - Ramesh Badisa
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A
| | - Nzinga Mack
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A
| | - Shamir Cassim
- Department of Medical Biology, Centre Scientifique de Monaco, Monaco, Monaco
| | - Masa Zdralevic
- University Côte d'Azur, IRCAN, CNRS, Centre A. Lacassagne, Nice, France
| | - Jacques Pouyssegur
- Department of Medical Biology, Centre Scientifique de Monaco, Monaco, Monaco
- University Côte d'Azur, IRCAN, CNRS, Centre A. Lacassagne, Nice, France
| | - Karam F A Soliman
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A.
| |
Collapse
|
10
|
Gabano E, Perin E, Fielden C, Platts JA, Gallina A, Rangone B, Ravera M. How to obtain Pt(iv) complexes suitable for conjugation to nanovectors from the oxidation of [PtCl(terpyridine)] . Dalton Trans 2018; 46:10246-10254. [PMID: 28737785 DOI: 10.1039/c7dt01706e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidation of [Pt(II)Cl(terpy)]+ (terpy = 2,2':6',2''-terpyridine) has been attempted with several oxidizing agents and under different experimental conditions in order to obtain a Pt(iv) complex suitable for the conjugation to nanovectors to be used in drug delivery targeting for anticancer therapy. The best compromise in terms of yield and purity of the final complex was obtained by microwave-assisted reaction at 70 °C in 50% aqueous H2O2 for 2 h. Under these conditions the quantitative formation of [Pt(IV)Cl(OH)2(terpy)]+ was observed. The subsequent synthetic steps were, (i) functionalization of [Pt(IV)Cl(OH)2(terpy)]+ in the axial position with succinic anhydride to obtain [Pt(IV)Cl(OH)(succinato)(terpy)]+ and (ii) reaction of the latter with nonporous silica nanoparticles (SNPs) with an external shell containing primary amino groups to obtain a nanovector able to transport the Pt(iv) antitumor prodrug in the form of a conjugate Pt-SNP. Finally, the antiproliferative activity and cell accumulation of [Pt(II)Cl(terpy)]+, [Pt(IV)Cl(OH)2(terpy)]+, and the Pt-SNP conjugate were measured on three cancer cell lines. Despite highly effective accumulation of Pt-SNP in cells, a modest increase in activity was observed with respect to the molecular species. Further experiments showed that the Pt-SNP conjugate can release [Pt(II)Cl(terpy)]+ upon reduction, but this metabolite may undergo hydrolysis, and the resulting aquo complex could coordinate once again the free amino groups of the SNPs. In the resulting tetraamine form, the Pt(ii) complex conjugated to the SNPs cannot completely perform its antiproliferative activity.
Collapse
Affiliation(s)
- E Gabano
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy.
| | | | | | | | | | | | | |
Collapse
|
11
|
Ravera M, Gabano E, Zanellato I, Fregonese F, Pelosi G, Platts JA, Osella D. Antiproliferative activity of a series of cisplatin-based Pt(IV)-acetylamido/carboxylato prodrugs. Dalton Trans 2016; 45:5300-9. [PMID: 26903367 DOI: 10.1039/c5dt04905a] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report studies of a novel series of Pt(IV) complexes exhibiting an asymmetric combination of acetylamido and carboxylato ligands in the axial positions. We demonstrate efficient synthesis of a series of analogues, differing in the alkyl chain length and hence lipophilicity, from a stable acetylamido/hydroxido complex formed by reaction of cisplatin with peroxyacetimidic acid (PAIA). NMR spectroscopy and X-ray crystallography confirm the identity of the resulting complexes, and highlight subtle differences in the structure and stability of acetylamido complexes compared to the equivalent acetato complexes. Reduction of acetylamido complexes, whether achieved chemically or electro-chemically, is significantly more difficult than that of acetate complexes, resulting in lower antiproliferative activity for shorter-chain complexes. For those with longer chains and hence greater cell uptake, this difference is negated and acetylamido complexes are as active as acetato analogues, both exhibiting antiproliferative potency (1/IC50) against A2780 ovarian cancer cells similar to that of cisplatin.
Collapse
Affiliation(s)
- Mauro Ravera
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy.
| | - Elisabetta Gabano
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy.
| | - Ilaria Zanellato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy.
| | - Federico Fregonese
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy.
| | - Giorgio Pelosi
- Dipartimento di Chimica, Università di Parma, Parco Area delle Scienze, 17/A, 43124 Parma, Italy
| | - James A Platts
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | - Domenico Osella
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy.
| |
Collapse
|
12
|
Dingemans MM, Schütte MG, Wiersma DM, de Groot A, van Kleef RG, Wijnolts FM, Westerink RH. Chronic 14-day exposure to insecticides or methylmercury modulates neuronal activity in primary rat cortical cultures. Neurotoxicology 2016; 57:194-202. [DOI: 10.1016/j.neuro.2016.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/29/2016] [Accepted: 10/04/2016] [Indexed: 10/20/2022]
|
13
|
May glutamine addiction drive the delivery of antitumor cisplatin-based Pt(IV) prodrugs? J Inorg Biochem 2016; 167:27-35. [PMID: 27898344 DOI: 10.1016/j.jinorgbio.2016.11.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/09/2016] [Accepted: 11/16/2016] [Indexed: 12/11/2022]
Abstract
A small series of Pt(IV) prodrugs containing Gln-like (Gln=glutamine) axial ligands has been designed with the aim to take advantage of the increased demand of Gln showed by some cancer cells (glutamine addiction). In complex 4 the Gln, linked through the α-carboxylic group is recognized by the Gln transporters, in particular by the solute carrier transporter SLC1A5. All compounds showed cellular accumulation, as well as antiproliferative activity, related to their lipophilicity, as already demonstrated for the majority of Pt(IV) prodrugs, that enter cells mainly by passive diffusion. On the contrary, when the Gln concentration in cell medium is near or lower to the physiological value, complex 4 acts as a Trojan horse: it enters SLC1A5-overexpressing cells, where, upon reduction, it releases the active metabolite cisplatin and the Gln-containing ligand, thus preventing any possible extrusion by the L-type amino acid transporter LAT1. This selective mechanism could decrease off-target accumulation of 4 and, consequently, Pt-associated side-effects.
Collapse
|
14
|
Polyanionic Biopolymers for the Delivery of Pt(II) Cationic Antiproliferative Complexes. Bioinorg Chem Appl 2016; 2016:2380540. [PMID: 27774043 PMCID: PMC5059510 DOI: 10.1155/2016/2380540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/08/2016] [Indexed: 12/29/2022] Open
Abstract
Phenanthriplatin, that is, (SP-4-3)-diamminechlorido(phenanthridine)platinum(II) nitrate, an effective antitumor cationic Pt(II) complex, was loaded on negatively charged dextran sulfate (DS) as a model vector for drug delivery via electrostatic interactions. The free complex and the corresponding conjugate with DS were tested on two standard human tumor cell lines, namely, ovarian A2780 and colon HCT 116, and on several malignant pleural mesothelioma cell lines (namely, epithelioid BR95, mixed/biphasic MG06, sarcomatoid MM98, and sarcomatoid cisplatin-resistant MM98R). The in vitro results suggest that the conjugate releases the active metabolite phenanthriplatin with a biphasic fashion. In these experimental conditions, the conjugate is slightly less active than free phenanthriplatin; but both exhibited antiproliferative potency higher than the reference metallodrug cisplatin and were able to overcome the acquired cisplatin chemoresistance in MM98R cells.
Collapse
|
15
|
Brack W, Ait-Aissa S, Burgess RM, Busch W, Creusot N, Di Paolo C, Escher BI, Mark Hewitt L, Hilscherova K, Hollender J, Hollert H, Jonker W, Kool J, Lamoree M, Muschket M, Neumann S, Rostkowski P, Ruttkies C, Schollee J, Schymanski EL, Schulze T, Seiler TB, Tindall AJ, De Aragão Umbuzeiro G, Vrana B, Krauss M. Effect-directed analysis supporting monitoring of aquatic environments--An in-depth overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 544:1073-118. [PMID: 26779957 DOI: 10.1016/j.scitotenv.2015.11.102] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/20/2015] [Accepted: 11/20/2015] [Indexed: 05/18/2023]
Abstract
Aquatic environments are often contaminated with complex mixtures of chemicals that may pose a risk to ecosystems and human health. This contamination cannot be addressed with target analysis alone but tools are required to reduce this complexity and identify those chemicals that might cause adverse effects. Effect-directed analysis (EDA) is designed to meet this challenge and faces increasing interest in water and sediment quality monitoring. Thus, the present paper summarizes current experience with the EDA approach and the tools required, and provides practical advice on their application. The paper highlights the need for proper problem formulation and gives general advice for study design. As the EDA approach is directed by toxicity, basic principles for the selection of bioassays are given as well as a comprehensive compilation of appropriate assays, including their strengths and weaknesses. A specific focus is given to strategies for sampling, extraction and bioassay dosing since they strongly impact prioritization of toxicants in EDA. Reduction of sample complexity mainly relies on fractionation procedures, which are discussed in this paper, including quality assurance and quality control. Automated combinations of fractionation, biotesting and chemical analysis using so-called hyphenated tools can enhance the throughput and might reduce the risk of artifacts in laboratory work. The key to determining the chemical structures causing effects is analytical toxicant identification. The latest approaches, tools, software and databases for target-, suspect and non-target screening as well as unknown identification are discussed together with analytical and toxicological confirmation approaches. A better understanding of optimal use and combination of EDA tools will help to design efficient and successful toxicant identification studies in the context of quality monitoring in multiply stressed environments.
Collapse
Affiliation(s)
- Werner Brack
- UFZ Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany; RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Selim Ait-Aissa
- Institut National de l'Environnement Industriel et des Risques INERIS, BP2, 60550 Verneuil-en-Halatte, France
| | - Robert M Burgess
- US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, Narragansett, RI, USA
| | - Wibke Busch
- UFZ Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany
| | - Nicolas Creusot
- Institut National de l'Environnement Industriel et des Risques INERIS, BP2, 60550 Verneuil-en-Halatte, France
| | | | - Beate I Escher
- UFZ Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany; Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - L Mark Hewitt
- Water Science and Technology Directorate, Environment Canada, 867 Lakeshore Road, Burlington, Ontario L7S 1A1, Canada
| | - Klara Hilscherova
- Masaryk University, Research Centre for Toxic Compounds in the Environment (RECETOX), Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Henner Hollert
- RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Willem Jonker
- VU University, BioMolecular Analysis Group, Amsterdam, The Netherlands
| | - Jeroen Kool
- VU University, BioMolecular Analysis Group, Amsterdam, The Netherlands
| | - Marja Lamoree
- VU Amsterdam, Institute for Environmental Studies, Amsterdam, The Netherlands
| | - Matthias Muschket
- UFZ Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany
| | - Steffen Neumann
- Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Pawel Rostkowski
- NILU - Norwegian Institute for Air Research, Instituttveien 18, 2007 Kjeller, Norway
| | | | - Jennifer Schollee
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Emma L Schymanski
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Tobias Schulze
- UFZ Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany
| | | | - Andrew J Tindall
- WatchFrag, Bâtiment Genavenir 3, 1 Rue Pierre Fontaine, 91000 Evry, France
| | | | - Branislav Vrana
- Masaryk University, Research Centre for Toxic Compounds in the Environment (RECETOX), Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Martin Krauss
- UFZ Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
16
|
Ravera M, Gabano E, Zanellato I, Perin E, Arrais A, Osella D. Functionalized nonporous silica nanoparticles as carriers for Pt(iv) anticancer prodrugs. Dalton Trans 2016; 45:17233-17240. [DOI: 10.1039/c6dt03133a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Conjugate Pt(iv)–silica nanoparticles exhibited better antiproliferative activity than cisplatin and Pt(iv) precursors, due to their more efficient cellular uptake.
Collapse
Affiliation(s)
- M. Ravera
- Dipartimento di Scienze e Innovazione Tecnologica
- Università del Piemonte Orientale
- 15121 Alessandria
- Italy
| | - E. Gabano
- Dipartimento di Scienze e Innovazione Tecnologica
- Università del Piemonte Orientale
- 15121 Alessandria
- Italy
| | - I. Zanellato
- Dipartimento di Scienze e Innovazione Tecnologica
- Università del Piemonte Orientale
- 15121 Alessandria
- Italy
| | - E. Perin
- Dipartimento di Scienze e Innovazione Tecnologica
- Università del Piemonte Orientale
- 15121 Alessandria
- Italy
| | - A. Arrais
- Dipartimento di Scienze e Innovazione Tecnologica
- Università del Piemonte Orientale
- 15121 Alessandria
- Italy
| | - D. Osella
- Dipartimento di Scienze e Innovazione Tecnologica
- Università del Piemonte Orientale
- 15121 Alessandria
- Italy
| |
Collapse
|
17
|
Functional fluorescent nonporous silica nanoparticles as carriers for Pt(IV) anticancer prodrugs. J Inorg Biochem 2015; 151:132-42. [DOI: 10.1016/j.jinorgbio.2015.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 07/16/2015] [Accepted: 08/03/2015] [Indexed: 11/22/2022]
|
18
|
Ravera M, Gabano E, Bianco S, Ermondi G, Caron G, Vallaro M, Pelosi G, Zanellato I, Bonarrigo I, Cassino C, Osella D. Host–guest inclusion systems of Pt(IV)-bis(benzoato) anticancer drug candidates and cyclodextrins. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.03.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Ravera M, Gabano E, Zanellato I, Bonarrigo I, Alessio M, Arnesano F, Galliani A, Natile G, Osella D. Cellular trafficking, accumulation and DNA platination of a series of cisplatin-based dicarboxylato Pt(IV) prodrugs. J Inorg Biochem 2015; 150:1-8. [PMID: 26042542 DOI: 10.1016/j.jinorgbio.2015.05.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 01/25/2023]
Abstract
A series of Pt(IV) anticancer prodrug candidates, having the equatorial arrangement of cisplatin and bearing two aliphatic carboxylato axial ligands, has been investigated to prove the relationship between lipophilicity, cellular accumulation, DNA platination and antiproliferative activity on the cisplatin-sensitive A2780 ovarian cancer cell line. Unlike cisplatin, no facilitated influx/efflux mechanism appears to operate in the case of the Pt(IV) complexes under investigation, thus indicating that they enter by passive diffusion. While Pt(IV) complexes having lipophilicity comparable to that of cisplatin (negative values of log Po/w) exhibit a cellular accumulation similar to that of cisplatin, the most lipophilic complexes of the series show much higher cellular accumulation (stemming from enhanced passive diffusion), accompanied by greater DNA platination and cell growth inhibition. Even if the Pt(IV) complexes are removed from the culture medium in the recovery process, the level of DNA platination remains very high and persistent in time, indicating efficient storing of the complexes and poor detoxification efficiency.
Collapse
Affiliation(s)
- Mauro Ravera
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Elisabetta Gabano
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Ilaria Zanellato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Ilaria Bonarrigo
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Manuela Alessio
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Fabio Arnesano
- Dipartimento di Chimica, Università di Bari "Aldo Moro", Via E. Orabona, 4, 70125 Bari, Italy
| | - Angela Galliani
- Dipartimento di Chimica, Università di Bari "Aldo Moro", Via E. Orabona, 4, 70125 Bari, Italy
| | - Giovanni Natile
- Dipartimento di Chimica, Università di Bari "Aldo Moro", Via E. Orabona, 4, 70125 Bari, Italy
| | - Domenico Osella
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy.
| |
Collapse
|
20
|
Mealy J, O'Kelly K. Cell response to hydroxyapatite surface topography modulated by sintering temperature. J Biomed Mater Res A 2015; 103:3533-8. [PMID: 25903792 DOI: 10.1002/jbm.a.35487] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/13/2015] [Accepted: 04/14/2015] [Indexed: 01/27/2023]
Abstract
Increased mesenchymal stem cell (MSC) activity on hydroxyapatite (HA) bone tissue engineering scaffolds will improve their viability in diffusion-based in vivo environments and is therefore highly desirable. This work focused on modulating the sintered HA surface topography with a view to increasing cell activity; this was achieved by varying the sintering temperature of the HA substrates. Cells were cultured on the substrates for periods of up to 19 days and displayed a huge variation in viability. MSC metabolic activity was measured using a resazurin sodium salt assay and revealed that surfaces sintered from 1250 to 1350°C significantly outperformed their lower temperature counterparts from day one (p ≤ 0.05). Surfaces sintered at 1300°C induced 57% more cell activity than the control at day 16. No significant activity was observed on surfaces sintered below 1200°C. It is suggested that this is due to the granular morphology produced at these temperatures providing insufficient contact area for cell attachment. In addition, we propose the average surface wavelength as a more quantitative surface descriptor than those readily found in the literature. The wavelengths of the substrates presented here were highly correlated with cell activity (R(2) = 0.9019); with a wavelength of 2.675 µm on the 1300°C surface inducing the highest cell response.
Collapse
Affiliation(s)
- Jacob Mealy
- Trinity Centre for Bioengineering, Trinity College, Dublin, Ireland.,Dept. Mechanical and Manufacturing Engineering, Trinity College, Dublin, Ireland
| | - Kevin O'Kelly
- Trinity Centre for Bioengineering, Trinity College, Dublin, Ireland.,Dept. Mechanical and Manufacturing Engineering, Trinity College, Dublin, Ireland
| |
Collapse
|
21
|
Inhibition of Excessive Monoamine Oxidase A/B Activity Protects Against Stress-induced Neuronal Death in Huntington Disease. Mol Neurobiol 2014; 52:1850-1861. [PMID: 25398695 PMCID: PMC4586002 DOI: 10.1007/s12035-014-8974-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/29/2014] [Indexed: 01/20/2023]
Abstract
Monoamine oxidases (MAO) are important components of the homeostatic machinery that maintains the levels of monoamine neurotransmitters, including dopamine, in balance. Given the imbalance in dopamine levels observed in Huntington disease (HD), the aim of this study was to examine MAO activity in a mouse striatal cell model of HD and in human neural cells differentiated from control and HD patient-derived induced pluripotent stem cell (hiPSC) lines. We show that mouse striatal neural cells expressing mutant huntingtin (HTT) exhibit increased MAO expression and activity. We demonstrate using luciferase promoter assays that the increased MAO expression reflects enhanced epigenetic activation in striatal neural cells expressing mutant HTT. Using cellular stress paradigms, we further demonstrate that the increase in MAO activity in mutant striatal neural cells is accompanied by enhanced susceptibility to oxidative stress and impaired viability. Treatment of mutant striatal neural cells with MAO inhibitors ameliorated oxidative stress and improved cellular viability. Finally, we demonstrate that human HD neural cells exhibit increased MAO-A and MAO-B expression and activity. Altogether, this study demonstrates abnormal MAO expression and activity and suggests a potential use for MAO inhibitors in HD.
Collapse
|
22
|
Wang YH, Han YP, Yu HT, Pu XP, Du GH. Protocatechualdehyde prevents methylglyoxal-induced mitochondrial dysfunction and AGEs-RAGE axis activation in Human lens epithelial cells. Eur J Pharmacol 2014; 738:374-83. [DOI: 10.1016/j.ejphar.2014.04.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 04/23/2014] [Accepted: 04/27/2014] [Indexed: 12/17/2022]
|
23
|
Zanellato I, Bonarrigo I, Colangelo D, Gabano E, Ravera M, Alessio M, Osella D. Biological activity of a series of cisplatin-based aliphatic bis(carboxylato) Pt(IV) prodrugs: how long the organic chain should be? J Inorg Biochem 2014; 140:219-27. [PMID: 25171667 DOI: 10.1016/j.jinorgbio.2014.07.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/29/2014] [Accepted: 07/29/2014] [Indexed: 01/20/2023]
Abstract
The biological properties of a series of cisplatin-based Pt(IV) prodrug candidates, namely trans,cis,cis-[Pt(carboxylato)2Cl2(NH3)2], where carboxylato=CH3(CH2)nCOO(-) [(1), n=0; (2), n=2; (3), n=4; (4), n=6] having a large interval of lipophilicity are discussed. The stability of the complexes was tested in different pH conditions (i.e. from 1.0 to 9.0) to simulate the hypothetical conditions for an oral route of administration, showing a high stability (>90%). The transformation into their active Pt(II) metabolites was demonstrated in the presence of ascorbic acid, with a pseudo-first order kinetics, the half-time of which smoothly decreases as the chain length of carboxylic acid increases. Their antiproliferative activity has been evaluated in vitro on a large panel of human cancer cell lines. As expected, the potency increases with the chain length: 3 and 4 resulted by far more active than cisplatin on all cell lines of about one or two orders of magnitude, respectively. Both complexes retained their activity also on cisplatin-resistant cell line, and exhibited a progressive increase of the selectivity compared with non-tumor cells. These results were confirmed with more prolonged treatment (up to 14days) studied on multicellular tumor spheroids (MCTSs). In this case the Pt(IV) complexes exert a protracted antiproliferative action, even if the drug is removed from the culture medium. Finally, in a time-course experiment of the total platinum evaluation in mice blood (after a single oral administration of the title complexes), 2 gave the best results, representing a good compromise between lipophilicity and water solubility, that increase and decrease respectively on passing from 1 to 4.
Collapse
Affiliation(s)
- Ilaria Zanellato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "Amedeo Avogadro", Viale Michel 11, 15121 Alessandria, Italy
| | - Ilaria Bonarrigo
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "Amedeo Avogadro", Viale Michel 11, 15121 Alessandria, Italy
| | - Donato Colangelo
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale "Amedeo Avogadro", Via Solaroli 17, 28100 Novara, Italy
| | - Elisabetta Gabano
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "Amedeo Avogadro", Viale Michel 11, 15121 Alessandria, Italy
| | - Mauro Ravera
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "Amedeo Avogadro", Viale Michel 11, 15121 Alessandria, Italy
| | - Manuela Alessio
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "Amedeo Avogadro", Viale Michel 11, 15121 Alessandria, Italy
| | - Domenico Osella
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "Amedeo Avogadro", Viale Michel 11, 15121 Alessandria, Italy.
| |
Collapse
|
24
|
Wang YH, Yu HT, Pu XP, Du GH. Myricitrin alleviates methylglyoxal-induced mitochondrial dysfunction and AGEs/RAGE/NF-κB pathway activation in SH-SY5Y cells. J Mol Neurosci 2014; 53:562-70. [PMID: 24510749 DOI: 10.1007/s12031-013-0222-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 12/25/2013] [Indexed: 12/17/2022]
Abstract
Advanced glycation end products (AGEs) have been identified in age-related intracellular protein deposits of neurodegenerative diseases. Methylglyoxal (MGO), a dicarbonyl metabolite, is a major precursor of AGEs which have been linked to the development of neurodegenerative diseases. Myricitrin, a flavanoid isolated from the root bark of Myrica cerifera, attenuated 6-OHDA-induced mitochondrial dysfunction and had a potential anti-Parkinson's disease in our previous investigation. The aims of this study were to investigate the protective effects of myricitrin against MGO-induced injury in SH-SY5Y cells and also to look for the possible mechanisms. The results showed that exposure of SH-SY5Y cells to MGO caused decreases of cell viability, intracellular ATP, mitochondrial redox activity, and mitochondrial membrane potential and an increase in reactive oxygen species generation. However, these mitochondrial dysfunctions were alleviated by co-treatment with myricitrin. Additionally, myricitrin was capable of inhibiting AGEs formation, blocking RAGE expression, and inhibiting NF-κB activation and translocation triggered by MGO in SH-SY5Y cells. Our results suggest that myricitrin alleviates MGO-induced mitochondrial dysfunction, and the possible mechanism is through modulating the AGEs/RAGE/NF-κB pathway. In summary, myricitrin might offer a promising therapeutic strategy to reduce the neurotoxicity of reactive dicarbonyl compounds, providing a potential benefit agent with age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Yue-Hua Wang
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | | | | | | |
Collapse
|
25
|
Alessio M, Zanellato I, Bonarrigo I, Gabano E, Ravera M, Osella D. Antiproliferative activity of Pt(IV)-bis(carboxylato) conjugates on malignant pleural mesothelioma cells. J Inorg Biochem 2013; 129:52-7. [DOI: 10.1016/j.jinorgbio.2013.09.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/25/2013] [Accepted: 09/03/2013] [Indexed: 10/26/2022]
|
26
|
Wang YH, Yu HT, Pu XP, Du GH. Baicalein prevents 6-hydroxydopamine-induced mitochondrial dysfunction in SH-SY5Y cells via inhibition of mitochondrial oxidation and up-regulation of DJ-1 protein expression. Molecules 2013; 18:14726-38. [PMID: 24288000 PMCID: PMC6270380 DOI: 10.3390/molecules181214726] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic (DA) neurons at the substantia nigra. Mitochondrial dysfunction is involved in the mechanism of cell damage in Parkinson’s disease (PD). 6-Hydroxydopamine (6-OHDA) is a dopamine analog which specifically damages dopaminergic neurons. Baicalein has been previously reported to have potential in the treatment of PD. The purpose of the present study was to investigate the mechanism of action of baicalein against 6-OHDA injury in SH-SY5Y cells. The results showed that baicalein significantly alleviated alterations of mitochondrial redox activity and mitochondrial membrane potential induced by 6-OHDA in a dose-dependent manner in SH-SY5Y cells compared with vehicle group. Futhermore, baicalein decreased the production of ROS and upregulated the DJ-1 protein expression in SH-SY5Y cells. In addition, baicalein also inhibited ROS production and lipid peroxidation (IC50 = 6.32 ± 0.03 μM) in rat brain mitochondia. In summary, the underlying mechanisms of baicalein against 6-OHDA-induced mitochondrial dysfunction may involve inhibition of mitochondrial oxidation and upregulation of DJ-1 protein expression.
Collapse
Affiliation(s)
- Yue-Hua Wang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University; Beijing 100191, China
- Beijing Key Laboratory of Drug Target Identification, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Authors to whom correspondence should be addressed; E-Mails: (Y.-H.W.); (X.-P.P.); (G.-H.D.); Tel.: +86-10-6316-5313 (Y.-H.W.); +86-10-8280-2431 (X.-P.P.); +86-10-6316-5184 (G.-H.D.)
| | - Hai-Tao Yu
- Jiangsu Kanon Pharmaceutical Co., Ltd, Lianyungang 222047, China
| | - Xiao-Ping Pu
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University; Beijing 100191, China
- Authors to whom correspondence should be addressed; E-Mails: (Y.-H.W.); (X.-P.P.); (G.-H.D.); Tel.: +86-10-6316-5313 (Y.-H.W.); +86-10-8280-2431 (X.-P.P.); +86-10-6316-5184 (G.-H.D.)
| | - Guan-Hua Du
- Beijing Key Laboratory of Drug Target Identification, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Authors to whom correspondence should be addressed; E-Mails: (Y.-H.W.); (X.-P.P.); (G.-H.D.); Tel.: +86-10-6316-5313 (Y.-H.W.); +86-10-8280-2431 (X.-P.P.); +86-10-6316-5184 (G.-H.D.)
| |
Collapse
|
27
|
Zanellato I, Bonarrigo I, Ravera M, Gabano E, Gust R, Osella D. The hexacarbonyldicobalt derivative of aspirin acts as a CO-releasing NSAID on malignant mesothelioma cells. Metallomics 2013; 5:1604-13. [PMID: 24057048 DOI: 10.1039/c3mt00117b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The antiproliferative activity of the aspirin derivative [2-acetoxy-(2-propynyl)benzoate]hexacarbonyldicobalt (Co-ASS) and its analogue hexacarbonyl[μ-(2-ethylphenyl)methanol]dicobalt (Co-EPM) was investigated on malignant pleural mesothelioma (MPM) cell lines, having an epithelioid or a sarcomatoid phenotype. In sarcomatoid cell lines Co-ASS was more potent than Co-EPM and the prototypal metallo-drug cisplatin, and induced cell death through the intrinsic apoptotic pathway, associated with a strong NF-κB inhibition. In contrast, both Co-ASS and Co-EPM showed only a modest cytostatic activity against epithelioid MPM cells. Co-EPM induced an increase of senescent cells, while Co-ASS did not; the different outcomes were traced back to the organic (aspirin-like) portion of the molecule. Both Co-EPM and Co-ASS significantly reduced reactive oxygen/nitrogen species (ROS/RNS), and in turn nitrites, suggesting that the hexacarbonyldicobalt moiety may deliver CO within the cell, acting as a CO-releasing molecule (CO-RM). In perspective, Co-ASS would be better considered as a CO-NSAID agent (a CO-releasing molecule retaining the NSAID properties similar to NO- and H2S-NSAIDs) than as an antitumor drug candidate.
Collapse
Affiliation(s)
- Ilaria Zanellato
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT), Sezione Ambiente-Vita, Università del Piemonte Orientale "A. Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy.
| | | | | | | | | | | |
Collapse
|
28
|
Coban AY, Darka O, Tasdelen Fisgin N, Cihan CC, Bilgin K, Akgunes A, Guven T, Dokuzoguz B, Birinci A, Durupinar B. The Resazurin Microplate Method for Rapid Detection of Vancomycin Resistance in Enterococci. J Chemother 2013; 17:361-6. [PMID: 16167513 DOI: 10.1179/joc.2005.17.4.361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Vancomycin-resistant enterococci (VRE) are a serious challenge for physicians because of the limited treatment options for infections caused by this organism. Prevention of VRE transmission in hospitals requires early detection of infected or colonized patients. Therefore rapid and correct detection of vancomycin resistance is essential. In this study, we use the resazurin microplate method (RMM), which is a modification of the NCCLS and BSAC broth microdilution methods to rapidly determine the susceptibilities of clinical enterococci isolates to vancomycin. The alteration in the RMM was relevant to the final bacterial count. In this method, inoculum that was 10-fold higher than standard methods was used. A total of 80 enterococci, including 11 VRE isolates and 6 vancomycin intermediate isolates, were screened with this modified colorimetric broth microdilution method. After 4 h of incubation 30 microl of 0.01% resazurin solution were added to each well and the plates were reincubated for color change for 5-10 min. The MICs were obtained at the 4th h. The results were in exact agreement with the NCCLS and the BSAC microdilution methods. Absolute and essential agreements were 100% and there were no minor, major or very major errors. In conclusion, this modified colorimetric broth microdilution method can be used as a reliable, easy, cheap and rapid method for early detection of VRE. Moreover, this method has the potential of being used to test the susceptibilities of different bacteria to other antibiotics.
Collapse
Affiliation(s)
- A Y Coban
- Ondokuz Mayis University, Medical School, Department of Microbiology and Clinical Microbiology, Samsun, Turkey.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Nand AV, Swift S, Uy B, Kilmartin PA. Evaluation of antioxidant and antimicrobial properties of biocompatible low density polyethylene/polyaniline blends. J FOOD ENG 2013. [DOI: 10.1016/j.jfoodeng.2012.11.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Lamas B, Goncalves-Mendes N, Nachat-Kappes R, Rossary A, Caldefie-Chezet F, Vasson MP, Farges MC. Leptin modulates dose-dependently the metabolic and cytolytic activities of NK-92 cells. J Cell Physiol 2013; 228:1202-9. [DOI: 10.1002/jcp.24273] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 10/19/2012] [Indexed: 11/07/2022]
|
31
|
Ravera M, Gabano E, Zanellato I, Bonarrigo I, Escribano E, Moreno V, Font-Bardia M, Calvet T, Osella D. Synthesis, characterization and antiproliferative activity on mesothelioma cell lines of bis(carboxylato)platinum(IV) complexes based on picoplatin. Dalton Trans 2012; 41:3313-20. [PMID: 22286213 DOI: 10.1039/c2dt11874b] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and characterization of a series of picoplatin-based (picoplatin = [PtCl(2)(mpy)(NH(3))], mpy = 2-methylpyridine), Pt(iv) complexes with axial carboxylato ligands of increasing length are reported. The synthesis is based on the oxidation with hydrogen peroxide of picoplatin to give the cis,cis,trans-[PtCl(2)(mpy)(NH(3))(OH)(2)] intermediate and then its transformation into the dicarboxylato complexes cis,cis,trans-[PtCl(2)(mpy)(NH(3))(RCOO)(2)] (R = CH(3)(CH(2))(n), n = 0-4) with the corresponding anhydride. Pt(iv) complexes with n = 0-2 were selected to be tested on four malignant pleural mesothelioma (MPM) cell lines, on human mesothelial cells (HMC), and on the cisplatin-sensitive ovarian A2780 cell line along with cisplatin as a metallo-drug reference. In general, the longer the axial chain, the more cytotoxic and selective the Pt(IV) complex is. Pt(IV) analogs show good activity on the MPM cell lines, approaching or in some case bypassing that of cisplatin and represent quite promising drug candidates for the treatment of tumors whose chemoresistance is mainly based on glutathione overexpression, such as MPM.
Collapse
Affiliation(s)
- Mauro Ravera
- Dipartimento di Scienze dell'Ambiente e della Vita, Università del Piemonte Orientale Amedeo Avogadro, Alessandria, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zanellato I, Bonarrigo I, Sardi M, Alessio M, Gabano E, Ravera M, Osella D. Evaluation of platinum-ethacrynic acid conjugates in the treatment of mesothelioma. ChemMedChem 2011; 6:2287-93. [PMID: 22025407 DOI: 10.1002/cmdc.201100426] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/11/2011] [Indexed: 01/03/2023]
Abstract
Malignant pleural mesothelioma (MPM) cells are characterized by chemoresistance associated with glutathione (GSH) metabolism. Ethacrynic acid (EA) is able to inhibit the detoxifying enzyme glutathione-S-transferase (GST), which catalyzes the conjugation between GSH and Pt-based drugs. With the aim of obtaining active bifunctional drugs, a Pt(II) complex containing two EA moieties as leaving groups, namely cis-diamminobis(ethacrynato)platinum(II), was synthesized, characterized, and tested on four MPM cell lines. The resulting antiproliferative activity was compared with that elicited by the analogue Pt(IV) complex, cis,cis,trans-diamminodichloridobis(ethacrynato)platinum(IV) (ethacraplatin) and by the co-administration of free EA and cisplatin. The Pt(II) and Pt(IV) bifunctional complexes showed poorer performance than the reference drug cisplatin alone or in combination with EA. After treatment, cellular GST activity remained consistently unchanged, while the GSH level increased.
Collapse
Affiliation(s)
- Ilaria Zanellato
- Dipartimento di Scienze dell'Ambiente e della Vita, Università del Piemonte Orientale Amedeo Avogadro, Viale Michel 11, 15121 Alessandria, Italy
| | | | | | | | | | | | | |
Collapse
|
33
|
Dingemans MML, Heusinkveld HJ, Bergman A, van den Berg M, Westerink RHS. Bromination pattern of hydroxylated metabolites of BDE-47 affects their potency to release calcium from intracellular stores in PC12 cells. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:519-25. [PMID: 20368133 PMCID: PMC2854729 DOI: 10.1289/ehp.0901339] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 11/19/2009] [Indexed: 05/12/2023]
Abstract
BACKGROUND Brominated flame retardants, including the widely used polybrominated diphenyl ethers (PBDEs), have been detected in humans, raising concern about possible neurotoxicity. Recent research demonstrated that the hydroxylated metabolite 6-OH-BDE-47 increases neurotransmitter release by releasing calcium ions (Ca2+) from intracellular stores at much lower concentrations than its environmentally relevant parent congener BDE-47. Recently, several other hydroxylated BDE-47 metabolites, besides 6-OH-BDE-47, have been detected in human serum and cord blood. OBJECTIVE AND METHODS To investigate the neurotoxic potential of other environmentally relevant PBDEs and their metabolites, we examined and compared the acute effects of BDE-47, BDE-49, BDE-99, BDE-100, BDE-153, and several metabolites of BDE-47-6-OH-BDE-47 (and its methoxylated analog 6-MeO-BDE-47), 6 -OH-BDE-49, 5-OH-BDE-47, 3-OH-BDE-47, and 4 -OH-BDE-49--on intracellular Ca2+ concentration ([Ca2+]i), measured using the Ca2+-responsive dye Fura-2 in neuroendocrine pheochromocytoma (PC12) cells. RESULTS In contrast to the parent PBDEs and 6-MeO-BDE-47, all hydroxylated metabolites induced Ca2+ release from intracellular stores, although with different lowest observed effect concentrations (LOECs). The major intracellular Ca2+ sources were either endoplasmic reticulum (ER; 5-OH-BDE-47 and 6 -OH-BDE-49) or both ER and mitochondria (6-OH-BDE-47, 3-OH-BDE-47, and 4 -OH-BDE-49). When investigating fluctuations in [Ca2+]i, which is a more subtle end point, we observed lower LOECs for 6-OH-BDE-47 and 4 -OH-BDE-49, as well as for BDE-47. CONCLUSIONS The present findings demonstrate that hydroxylated metabolites of BDE-47 cause disturbance of the [Ca2+]i. Importantly, shielding of the OH group on both sides with bromine atoms and/or the ether bond to the other phenyl ring lowers the potency of hydroxylated PBDE metabolites.
Collapse
Affiliation(s)
- Milou M L Dingemans
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.
| | | | | | | | | |
Collapse
|
34
|
Hu F, Li L, Wang C, Zhang Q, Zhang X, Zhao M. Enantioselective induction of oxidative stress by permethrin in rat adrenal pheochromocytoma (PC12) cells. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2010; 29:683-690. [PMID: 20821495 DOI: 10.1002/etc.73] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Synthetic pyrethroid (SP) insecticides are chiral compounds with multiple asymmetric positions. Several recent studies have focused on the effect of enantioselectivity of SPs in acute aquatic toxicity, endocrine-disrupting activities, and immunotoxicity. However, the relevant molecular mechanisms are still unknown. The potential relationship between ecotoxicological effects and oxidative stress could contribute to SP-induced enantioselective cytotoxicity, but this requires further investigation. Therefore, this study was undertaken to evaluate the role of oxidative stress in enantiomer-specific permethrin (PM)-induced cytotoxicity in rat adrenal pheochromocytoma (PC12) cells. The study demonstrated that PM induced enantioselective oxidative stress and cytotoxicity. The reactive oxygen species (ROS) generation and lipid peroxidation production of malondialdehyde (MDA) were obviously increased, whereas the activity of antioxidant enzymes (superoxide dismutase [SOD] and catalase [CAT]) and glutathione (GSH) content had declined after exposure in 1R-trans-PM at a concentration of 30 mg/L. Meanwhile, the result of the cytotoxicity assay showed a clear, dose-dependent growth-inhibition effect of PM in an enantioselective manner. The most toxic effect on PC12 cells was shown by 1R-trans-PM and was approximately 1.6 times higher than that with 1S-cis-PM, which exhibited only a slightly toxic effect at a concentration of 20 mg/L. These results suggested that PM exhibited significant enantioselectivity in oxidative stress, which may be one of the initial events in PM-induced enantioselective cytotoxicity. The present study also improved understanding of enantiomer-specific, SP-induced cytotoxicity. The enantioselectivity should be taken into consideration when assessing ecological effects and development of new chiral pesticides.
Collapse
Affiliation(s)
- Fen Hu
- Research Center of Environmental Science, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | | | | | | | | | | |
Collapse
|
35
|
Cytotoxicity evaluation of three pairs of hexabromocyclododecane (HBCD) enantiomers on Hep G2 cell. Toxicol In Vitro 2008; 22:1520-7. [DOI: 10.1016/j.tiv.2008.05.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 04/21/2008] [Accepted: 05/21/2008] [Indexed: 11/21/2022]
|
36
|
Talbot JD, Barrett JN, Barrett EF, David G. Rapid, stimulation-induced reduction of C12-resorufin in motor nerve terminals: linkage to mitochondrial metabolism. J Neurochem 2008; 105:807-19. [PMID: 18205748 DOI: 10.1111/j.1471-4159.2007.05176.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Alamar blue (resazurin) assay of cell viability monitors the irreversible reduction of non-fluorescent resazurin to fluorescent resorufin. This study focused on the reversible reduction of C12-resorufin to non-fluorescent C12-dihydroresorufin in motor nerve terminals innervating lizard intercostal muscles. Resting C12-resorufin fluorescence decreased when the activity of the mitochondrial electron transport chain (ETC) was accelerated with carbonyl cyanide m-chloro phenyl hydrazone, and increased when ETC activity was inhibited with cyanide. Trains of action potentials (50 Hz for 20-50 s), which reversibly decreased NADH fluorescence and partially depolarized the mitochondrial membrane potential, produced a reversible decrease in C12-resorufin fluorescence which had a similar time course. The stimulation-induced decrease in C12-resorufin fluorescence was blocked by inhibitors of ETC complexes I, III, and IV and by carbonyl cyanide m-chloro phenyl hydrazone, but not by inhibiting mitochondrial ATP synthesis with oligomycin. Mitochondrial depolarization and the decreases in C12-resorufin and NADH fluorescence depended on Ca2+ influx into the terminal, but not on vesicular transmitter release. These results suggest that the reversible reduction of C12-resorufin in stimulated motor nerve terminals is linked, directly or indirectly, to the reversible oxidation of NADH and to Ca(2+) influx into mitochondria, and provides an assay for rapid changes in motor terminal metabolism.
Collapse
Affiliation(s)
- Janet D Talbot
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, Florida 33101, USA
| | | | | | | |
Collapse
|
37
|
Bignetti E, Franchi D, Gorreri A, Fusari A, Del Bono G, Ubaldi A, Aiello G. The selection of serum-independent PC12 cells for a more-reliable manganese cytotoxicity test. Altern Lab Anim 2007; 35:387-95. [PMID: 17850184 DOI: 10.1177/026119290703500401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A major issue concerning the protocols of heavy metal cytotoxicity tests with PC12 cells was the hypothesis that serum in the culture medium might sequester the metal, thus altering the results obtained. However, serum withdrawal impairs the viability of PC12 cells themselves, thus impeding cytotoxicity testing in the absence of serum. In this study, we repeatedly selected undifferentiated, totally non-adherent PC12 cells in Petri dishes. Surprisingly, we discovered that these cells could survive and proliferate in serum-free medium. Moreover, features such as NGF-responsiveness, resazurin reduction potential, doubling rate, protein content, and basal caspase-3 enzyme activity, were equivalent to those exhibited by standard PC12 cultures. Further experiments aimed at fully characterising these serum-independent PC12 cells are in progress. These cells enabled cytotoxicity experiments to be conducted with manganese, both in serum-supplemented and in serum-deprived medium. The results demonstrated that serum removal decreased the LC50 of manganese from 250microM to 32microM, without affecting the internalisation of the metal. The data exclude an early competitive effect of serum on metal internalisation; rather, they suggest a late protective mechanism mediated by serum against the cytotoxic effect of the already-internalised metal.
Collapse
|
38
|
Jamnik P, Goranovic D, Raspor P. Antioxidative action of royal jelly in the yeast cell. Exp Gerontol 2007; 42:594-600. [PMID: 17383134 DOI: 10.1016/j.exger.2007.02.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 01/05/2007] [Accepted: 02/08/2007] [Indexed: 11/22/2022]
Abstract
Royal jelly is a bee product, secreted from the hypopharingeal and mandibular glands of worker bees. There are many reports on pharmacological activities of royal jelly in experimental animals, but there are few about its antioxidative properties connected to aging. The aim of the work was to investigate the antioxidative action of royal jelly in the cell of the yeast Saccharomyces cerevisiae as a model organism. Yeast was cultivated in YEPD medium enriched with different concentrations of royal jelly like 1, 2 and 5 g/L. Yeast growth was monitored by measuring optical density. At different time points cell energy metabolic activity was measured using the cell energy metabolism indicator resazurin, and 2',7'-dichlorofluorescein was applied to estimate intracellular oxidation. Additionally, protein profile of cell extract was analyzed by 2-D electrophoresis. Results showed that royal jelly decreased intracellular oxidation in a dose dependent manner. Additionally it affected growth and cell energy metabolic activity in a growth phase dependent manner. Protein profile analysis showed that royal jelly in the cell does not act only as a scavenger of reactive oxygen species, but it also affects protein expression. Differentially expressed proteins were identified.
Collapse
Affiliation(s)
- Polona Jamnik
- University of Ljubljana, Biotechnical Faculty, Food Science and Technology Department, Chair of Biotechnology, Jamnikarjeva 101, Ljubljana, Slovenia
| | | | | |
Collapse
|
39
|
Liliensiek SJ, Schell K, Howard E, Nealey P, Murphy CJ. Cell sorting but not serum starvation is effective for SV40 human corneal epithelial cell cycle synchronization. Exp Eye Res 2006; 83:61-8. [PMID: 16545370 PMCID: PMC3061619 DOI: 10.1016/j.exer.2005.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 10/28/2005] [Accepted: 11/01/2005] [Indexed: 11/22/2022]
Abstract
SV40 human corneal epithelial cell (HCEC) populations are readily used as a substitute for primary corneal epithelial cells that are difficult to maintain in vitro. To initiate cell-cycle experiments with the SV40-HCEC cells, two separate methods of cell synchronization were compared including serum starvation and sterile cell sorting. We hypothesized that SV40 cells are synchronized at higher efficiencies into each cell cycle phase (G1, S, G2M) when cell sorting is performed when compared to alternative methods of synchronization. SV40 cells were synchronized by deprivation of serum over 96 h or labeled with Höechst 33342 dye and sorted based on DNA content. Cells were synchronized using both methods and harvested at time points up to 72 h after release. To define more precisely the nature of sorted fractions, cells were pulsed with BrdU prior to sorting. SV40-HCEC cells exhibit a well-defined cell cycle profile. Serum deprivation up to 96 h was ineffective for cell synchronization of SV40-HCECs. In comparison, we achieved efficient synchronization of the SV40-HCECs with sterile cell sorting. SV40-HCEC cells gated into G1, S and G2M were synchronized up to 85% following the sort and maintained synchronization up to 24 h. Our findings indicate that serum starvation is not effective for synchronization of the SV40-HCEC cell line. We present a more effective approach, the use of cell sorting for cell synchronization of the SV40-HCEC cells.
Collapse
Affiliation(s)
- Sara J Liliensiek
- Department of Surgical Sciences, School of Veterinary Medicine, 2015 Linden Drive, University of Wisconsin, Madison, WI 53706, USA.
| | | | | | | | | |
Collapse
|
40
|
Anoopkumar-Dukie S, Carey JB, Conere T, O'sullivan E, van Pelt FN, Allshire A. Resazurin assay of radiation response in cultured cells. Br J Radiol 2005; 78:945-7. [PMID: 16177019 DOI: 10.1259/bjr/54004230] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
We describe use of resazurin reduction for measurement of cell response to irradiation as a simple and non-destructive assay that complements the conventional colony forming assay and can readily be applied to both adherent and non-adherent cell cultures. The resazurin method yields data comparable with the colony forming assay as well as to assay of DNA synthesis (BrdU incorporation), giving an OER (oxygen enhancement ratio) of 2.5 at 60% isoeffect level versus 3.1 for the colony forming assay. Intraday and interday precisions for the resazurin assay were 4.1% and 5.2%, respectively.
Collapse
Affiliation(s)
- S Anoopkumar-Dukie
- Department of Pharmacology and Therapeutics, University College Cork, Ireland
| | | | | | | | | | | |
Collapse
|
41
|
Meade-Tollin LC, Wijeratne EMK, Cooper D, Guild M, Jon E, Fritz A, Zhou GX, Whitesell L, Liang JY, Gunatilaka AAL. Ponicidin and oridonin are responsible for the antiangiogenic activity of Rabdosia rubescens, a constituent of the herbal supplement PC SPES. JOURNAL OF NATURAL PRODUCTS 2004; 67:2-4. [PMID: 14738375 DOI: 10.1021/np0304114] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Antiangiogenic activity has been identified in an aqueous EtOH extract of Rabdosia rubescens, a component of the dietary supplement PC SPES. Bioassay-guided fractionation using a novel in vitro human endothelial cell-based assay for angiogenesis afforded the diterpenoids ponicidin (1) and oridonin (2), with significant antiangiogenic activity at subcytotoxic concentrations, suggesting that these constituents may strongly contribute to the demonstrated clinical efficacy of PC SPES as a treatment for advanced prostate cancer.
Collapse
Affiliation(s)
- Linda C Meade-Tollin
- Southwest Center for Natural Products Research and Commercialization, Office of Arid Lands Studies, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, AZ 85706-6800, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sung YJ, Cheng CL, Chen CS, Huang HB, Huang FL, Wu PC, Shiao MS, Tsay HJ. Distinct mechanisms account for beta-amyloid toxicity in PC12 and differentiated PC12 neuronal cells. J Biomed Sci 2003; 10:379-88. [PMID: 12824697 DOI: 10.1007/bf02256429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2002] [Accepted: 03/24/2003] [Indexed: 11/26/2022] Open
Abstract
Whether reactive oxygen species (ROS) mediate beta-amyloid (A beta) neurotoxicity remains controversial. Naive PC12 cells (PC12) and nerve growth factor-differentiated PC12 cells (dPC12) were used to study the role of ROS in cell death induced by A beta(25-35). The viability of PC12 and dPC12 cells decreased by 30-40% after a 48-hour exposure to 20 microM A beta(25-35). Microscopic examination showed that A beta(25-35) induced necrosis in PC12 cells and apoptosis in dPC12 cells. Vitamin E (100 microM) and other antioxidants protected PC12 cells, but not dPC12 cells, against the cytotoxic effect of A beta(25-35). Since H(2)O(2) has been proposed to be involved in A beta toxicity, the effects of H(2)O(2) on PC12 and dPC12 cells were studied. Differentiated PC12 cells appeared to be significantly more resistant to H(2)O(2) than naive PC12 cells. These data suggest that ROS may mediate A beta(25-35) toxicity in PC12 cells but not in dPC12 cells. Because the intracellular levels of ROS were elevated during the differentiation of PC12 cells, the baseline levels of ROS in these two model cell types may determine the intracellular mediators for A beta(25-35) toxicity. Therefore, the protective effects of antioxidants against A beta may depend upon the redox state of the cells.
Collapse
Affiliation(s)
- Yen-Jen Sung
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Mazzio EA, Soliman KFA. Cytoprotection of pyruvic acid and reduced beta-nicotinamide adenine dinucleotide against hydrogen peroxide toxicity in neuroblastoma cells. Neurochem Res 2003; 28:733-41. [PMID: 12716024 DOI: 10.1023/a:1022813817743] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Elevated production of hydrogen peroxide (H2O2) in the central nervous system has been implicated in the pathogenesis of several neurodegenerative diseases, including Parkinson's disease, ischemic reperfusion, stroke, and Alzheimer's disease. Pyruvic acid has a critical role in energy metabolism and a capability to nonenzymatically decarboxylate H2O2 into H2O. This study examined the effects of glycolytic regulation of pyruvic acid on H2O2 toxicity in murine neuroblastoma cells. Glycolytic energy substrates including D-(+)-glucose, D-(-) fructose and the adenosine transport blocker dipyridamole, were not effective in providing protection against H2O2 toxicity, negating energy as a factor. On the other hand, pyruvic acid completely prevented H2O2 toxicity, restoring the loss of ATP and cell viability. H2O2 toxicity was also attenuated by D-fructose 1,6 diphosphate (FBP), phospho (enol) pyruvate (PEP), niacinamide, beta-nicotinamide adenine dinucleotide (beta-NAD+), and reduced form (beta-NADH). Both FBP and PEP exerted positive kinetic effects on pyruvate kinase (PK) activity. Interestingly, only pyruvic acid and beta-NADH exhibited powerful stoichiometric H2O2 antioxidant properties. Further, beta-NADH may exert positive effects on PK activity. Subsequent pyruvic acid accumulation can lead to the recycling of beta-NAD+ through lactate dehydrogenase and beta-NADH through glyceraldehyde-3-phosphate dehydrogenase. It was concluded from these studies that intracellular pyruvic acid and beta-NADH appear to act in concert through glycolysis, to enhance H2O2 intracellular antioxidant capacity in neuroblastoma cells. Future research will be required to examine whether similar effects are observed in primary neuronal culture or intact tissue.
Collapse
Affiliation(s)
- Elizabeth A Mazzio
- College of Pharmacy and Pharmaceutical Sciences, Florida A & M University, Tallahassee, Florida 32307, USA
| | | |
Collapse
|
44
|
Follesa P, Mancuso L, Biggio F, Mostallino MC, Manca A, Mascia MP, Busonero F, Talani G, Sanna E, Biggio G. Gamma-hydroxybutyric acid and diazepam antagonize a rapid increase in GABA(A) receptors alpha(4) subunit mRNA abundance induced by ethanol withdrawal in cerebellar granule cells. Mol Pharmacol 2003; 63:896-907. [PMID: 12644591 DOI: 10.1124/mol.63.4.896] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Both benzodiazepines and gamma-hydroxybutyric acid (GHB) are used to treat alcohol withdrawal syndrome. The molecular basis for this therapeutic efficacy was investigated with primary cultures of rat cerebellar granule cells. Long-term exposure of these cells to ethanol (100 mM, 5 days) reduced the abundance of mRNAs encoding the gamma(2)L and gamma(2)S subunits of the GABA type A receptor (-32 and -23%, respectively) but failed to affect that of alpha(1), alpha(4), or alpha(6) subunit mRNAs. Subsequent ethanol withdrawal resulted in decreases in the amounts of alpha(1) (-29%), alpha(6) (-27%), gamma(2)L (-64%), and gamma(2)S (-76%),subunit mRNAs that were maximal after 6 to 12 h. In contrast, 3 h after ethanol withdrawal, the abundance of the alpha(4) subunit mRNA was increased by 46%. Ethanol withdrawal did not affect neuronal morphology but reduced cellular metabolic activity. The increase in alpha(4) subunit was confirmed by functional studies showing a positive action of flumazenil in patch clamp recordings of GABA-stimulated currents after ethanol withdrawal. Diazepam (10 microM) or GHB (100 mM) prevented the increase in the amount of the alpha(4) subunit mRNA, the metabolic impairment, and the positive action of flumazenil induced by ethanol withdrawal but failed to restore the expression of the alpha(1) and gamma(2) subunits. The antagonism by GHB seems not to be mediated by a direct action at GABA(A)R because GHB failed to potentiate the effects of GABA or diazepam on Cl(-) currents mediated by GABA type A receptor.
Collapse
Affiliation(s)
- Paolo Follesa
- Department of Experimental Biology Bernardo Loddo, University of Cagliari, Cagliari, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mazzio E, Soliman KFA. D-(+)-glucose rescue against 1-methyl-4-phenylpyridinium toxicity through anaerobic glycolysis in neuroblastoma cells. Brain Res 2003; 962:48-60. [PMID: 12543455 DOI: 10.1016/s0006-8993(02)03695-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The active neurotoxin of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 1-methyl-4-phenylpyridinium (MPP+), exerts its lethal effect by inhibiting Complex I of the electron transport chain (ETC). MPP+ shuts down aerobic oxidative phosphorylation and ETC-mediated ATP synthesis. The present investigation examines anaerobic survival during MPP+ toxicity in murine neuroblastoma cells Neuro 2-A (N2-A). MPP+ addition to the cells resulted in a reduction in cell viability, mitochondrial O(2) consumption (MOC) and ATP concentration in a dose-dependent manner. However, the addition of 10 mM of D-(+)-glucose prevented MPP+ toxicity, attenuated the loss of ATP, but did not reverse the complete inhibition of MOC, indicating substrate level phosphorylation and explicit anaerobic survival. Glucose addition prevented MPP+-mediated drop in DeltaPsim, endoplasmic reticulum and intracellular organelle membrane potential tantamount to an increase of cell viability. Secondly, we examined the metabolic regulation of pyruvate dehydrogenase (PDH) and carnitine palmitoyl transferase (CPT) activities during glucose rescue. These enzymes exert control over acetyl CoA reservoirs in the mitochondria during aerobic metabolism. DL-6,8-Thioctic acid (PDH prosthetic group) and insulin slightly augmented metabolic rate, resulting in enhanced vulnerability to MPP+ in a glucose-limited environment. Additional glucose prevented these effects. Amiodarone (CPT inhibitor) and glucagon did not hamper or potentiate glucose rescue against MPP+. These data support strict anaerobic glucose utilization in the presence of toxic levels of MPP+. Moreover, the findings indicate that MPP+ exerts two distinct modes of toxicity (fast and slow death). With MPP+ (<1 mM), anaerobic glycolysis is operational, and toxicity is strictly dependent upon glucose depletion. MPP+ (1-10 mM) initiated acute metabolic collapse, with failure to sustain or switch to anaerobic glycolysis. In conclusion, overcoming energy failure against MPP+ may involve targeting rate-limiting controls over anaerobic energy pathways.
Collapse
Affiliation(s)
- E Mazzio
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | | |
Collapse
|
46
|
Mazzio E, Soliman KFA. The role of glycolysis and gluconeogenesis in the cytoprotection of neuroblastoma cells against 1-methyl 4-phenylpyridinium ion toxicity. Neurotoxicology 2003; 24:137-47. [PMID: 12564389 DOI: 10.1016/s0161-813x(02)00110-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
1-Methyl-4-phenylpyridinium (MPP+) is a mitochondrial Complex I inhibitor and is frequently used to investigate the pathological degeneration of neurons associated with Parkinson's disease (PD). In vitro, extracellular concentration of glucose is one of the most critical factors in establishing the vulnerability of neurons to MPP+ toxicity. While glucose is the primary energy fuel for the brain, central nervous system (CNS) neurons can also take up and utilize other metabolic intermediates for energy. In this study, we compared various monosaccharides, disaccharides, nutritive/non-nutritive sugar alcohols, glycolytic and gluconeogenic metabolic intermediates for their cytoprotection against MPP+ in murine brain neuroblastoma cells. Several monosaccharides were effective against MMP+ (500 microM) including glucose, fructose and mannose, which restored cell viability to 109 +/- 5%, 70 +/- 5%, 99 +/- 3% of live controls, respectively. Slight protective effects were observed in the presence of 3-phosphoglyceric acid and glucose-6-phosphate; however, no protective effects were exhibited by galactose, sucrose, sorbitol, mannitol, glycerol or various gluconeogenic and ketogenic amino acids. On the other hand, fructose 1,6 bisphosphate and gluconeogenic energy intermediates [pyruvic acid, malic acid and phospho(enol)pyruvate (PEP)] were neuroprotective against MPP+. The gluconeogenic intermediates elevated intracellular levels of ATP and reduced propidium iodide (PI) nucleic acid staining to live controls, but did not alter the MPP(+)-induced loss of mitochondrial O2 consumption. These data indicate that malic acid, pyruvic acid and PEP contribute to anaerobic substrate level phosphorylation. The use of hydrazine sulfate to impede gluconeogenesis through PEP carboxykinase (PEPCK) inhibition heightened the protective effects of energy substrates possibly due to attenuated ATP demands from pyruvate carboxylase (PC) activity and pyruvate mitochondrial transport. It was concluded from these studies that several metabolic intermediates are effective in fueling anaerobic glycolysis during mitochondrial inhibition by MPP+.
Collapse
Affiliation(s)
- Elizabeth Mazzio
- College of Pharmacy and Pharmaceutical Sciences, Florida A & M University, Tallahassee, FL 32307, USA
| | | |
Collapse
|
47
|
Soliman MK, Mazzio E, Soliman KFA. Levodopa modulating effects of inducible nitric oxide synthase and reactive oxygen species in glioma cells. Life Sci 2002; 72:185-98. [PMID: 12417252 DOI: 10.1016/s0024-3205(02)02204-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neurological injury and Parkinson disease (PD) are often associated with the increase of nitric oxide (NO) and free radicals from resident glial cells in the brain. In vitro, exposure to L-3-4-dihydroxyphenylalanine (L-DOPA), one of the main therapeutic agents for the treatment of PD, can lead to neurotoxicity. In this study, lipopolysaccharide (LPS) and interferon-gamma (IFN-g) were used to stimulate C6 glioma cells in the presence of varying concentrations of L-DOPA (1 microM-1 mM). The results indicated a slight augmentation of NO(2)(-) production at low concentrations of L-DOPA (<100 microM) and complete inhibition of NO(2)(-) at higher concentrations (500 microM, 1 mM), (p < 0.001). Western blot analysis corroborated that L-DOPA effects on iNOS was at the level of its protein expression. Total reactive oxygen species (ROS) were detected using 2', 7'-dichlorofluorescein diacetate fluorescence dye (2', 7'-DCFC) and there was an increase of intensity with the increasing concentrations of L-DOPA. Furthermore, large amounts of superoxide (O(2)(-)) and hydrogen peroxide (H(2)O(2)) were generated from the autoxidation of L-DOPA. C6 cells contain high levels of catalase, with inadequate levels of superoxide dismutase (SOD); therefore, there was an accumulation of O(2)(-), tantamount to elevation in 2'7'-DCFC intensity. Simultaneous accumulation of O(2)(-) and NO(2)(-) would propel formation of peroxynitrite (ONOO-). SOD completely attenuated the autoxidation of L-DOPA and significantly reversed the inhibitory effects on iNOS at high concentrations. The data obtained confirmed that the observed effects on iNOS were not due to the activation of the D(1) or beta1 adrenergic receptors by L-DOPA. It was concluded from this study that L-DOPA contributed to the modulation of iNOS and to the increase of O(2)(-) production in the stimulated glioma cells in vitro.
Collapse
Affiliation(s)
- Mark K Soliman
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA.
| | | | | |
Collapse
|
48
|
Mazzio E, Becker A, Soliman KFA. Characterization of neurotransmitters and dopamine attenuation of inducible nitric oxide synthase in glioma cells. J Neuroimmunol 2002; 131:70-82. [PMID: 12458038 DOI: 10.1016/s0165-5728(02)00260-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inducible nitric oxide synthase (iNOS) plays a significant role in the pathology of central nervous system diseases. Inducible NOS expression is regulated by intracellular adenosine 3',5'-cyclic monophosphate (cAMP) signaling, and astrocytes contain both iNOS and adenylate cyclase-coupled neurotransmitter receptors. The data obtained from the present study indicated that acetylcholine, lambda-amino-n-butyric acid, glutamate, quinolinic acid, N-methyl-D-aspartate and aspartate have no effect on NO(2)(-) production in C6 glioma cells stimulated by lipopolysaccharide and interferon-gamma. However, dopamine (DA) caused inhibition of NO(2)(-) production and iNOS transcription. The effects of DA were not due to homovanillic acid/3,4-dihydroxyphenylacetic acid, the autoxidative products superoxide (O(2)(-))/hydrogen peroxide (H(2)O(2)) or direct reactions with NO(2)(-). Forskolin, adenylate cyclase activator, dose-dependently reduced NO(2)(-). Meanwhile, (+/-) SKF-38393 D(1) receptor agonist attenuated iNOS in a similar fashion to DA. In addition, the results indicated that DA attenuation of iNOS was significantly impeded by the adenylate cyclase inhibitor MDL-12,330A, the D(1) antagonist SCH-23390, the beta2 adrenergic receptor antagonist ICI-118,551 and the beta1 adrenergic receptor antagonist atenolol. In conclusion, it appears that DA attenuates iNOS through a D(1), beta1 and beta2 adrenergic receptor-linked adenylate cyclase-mediated cAMP cascade.
Collapse
Affiliation(s)
- Elizabeth Mazzio
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | | | | |
Collapse
|
49
|
Pagniello KB, Bols NC, Lee LEJ. Effect of corticosteroids on viability and proliferation of the rainbow trout monocyte/macrophage cell line, RTS11. FISH & SHELLFISH IMMUNOLOGY 2002; 13:199-214. [PMID: 12365731 DOI: 10.1006/fsim.2001.0395] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cortisol at 1,000 and 100 ng/ml, and less consistently at 10 ng/ml, inhibited increases in cell number and 3H-thymidine incorporation by cultures of the rainbow trout (Oncorhynchus mykiss) monocyte/macrophage cell line, RTS11. Cell viability was not altered by cortisol, although a small decline in the capacity of cultures to reduce the redox dye, Alamar Blue was observed. In cortisol-treated cultures, more round and fewer spread cells were evident. Similar results were observed with dexamethasone but not cortisone. The glucocorticoid receptor antagonist, RU-486, prevented the effects of cortisol on RTS11 proliferation, and shape. In co-culture with the spleen stroma cell line (RTS34st) or in medium conditioned by RTS34st, the proliferation of RTS11 was enhanced. Treating RTS11/RTS34st co-cultures or RTS11 cultures in RTS34st conditioned medium with cortisol did not inhibit RTS11 proliferation. Overall these experiments suggest that proliferation of rainbow trout macrophages is regulated by cortisol, but the effect is modulated by the cellular micro-environment, possibly through the release of cytokines.
Collapse
Affiliation(s)
- K B Pagniello
- Department of Biology, University of Waterloo, ON, Canada
| | | | | |
Collapse
|
50
|
Woolley DE, Tetlow LC, Adlam DJ, Gearey D, Eden RD, Ward TH, Allen TD. Electrochemical monitoring of anticancer compounds on the human ovarian carcinoma cell line A2780 and its adriamycin- and Cisplatin-resistant variants. Exp Cell Res 2002; 273:65-72. [PMID: 11795947 DOI: 10.1006/excr.2001.5428] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel electrochemical technique which detects and monitors real-time changes in cell behavior in vitro has been used to examine the effects of recognized anticancer drugs on the human ovarian carcinoma cell line A2780 and its adriamycin (A2780adr)- and cisplatin (A2780cispt)-resistant variants. These cells, adherent to gold electrodes or sensors, modify the extracellular microenvironment at the cell:sensor interface, producing an electrochemical potential that is different from that of the bulk culture medium. Confluent, adherent A2780 cells produced an electrochemical signal, measured as an open circuit potential (OCP), of approximately -100 mV compared to a cell-free value of approximately -15 mV. Exposure of A2780 cells to cisplatin (range 10(-4) to 10(-6) M), adriamycin (range 10(-5) to 10(-7) M), and vinblastine (10(-6) M) all produced positive shifts in the OCP signal relative to untreated control cells during 24 h of culture, but Taxotere (range 10(-5) to 10(-7) M) had no effect. These positive shifts in OCP signal were evident well before observations of reduced cellular adhesion and viability after 24 h, as judged in parallel cultures with a plastic substratum and by scanning electron microscopy. By contrast, the same treatments applied to the A2780adr and A2780cispt variants showed that each demonstrated different sensitivities to the same drugs applied to the parental A2780 cells. The effects of the same four anticancer drugs on ovarian carcinoma (A2780) and breast carcinoma (8701-BC) cell lines showed that the former was far more responsive to adriamycin and cisplatin. Such differences in drug sensitivities between the two cell lines were subsequently confirmed using the conventional MTT assay over 5 days. Although this electrochemical technology readily detects changes in cell adhesion and viability, the modified OCP signals recorded within a few hours of anticancer drug treatments are evident well before microscopic morphological changes become apparent. It is proposed that these early changes in OCP signals, relative to control untreated cells, reflect modifications of physiological/behavioral processes manifested at the cell surface.
Collapse
Affiliation(s)
- D E Woolley
- University Department of Medicine, Manchester Royal Infirmary, Oxford Road, Manchester, M13 9WL, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|