1
|
Geda O, Tábi T, Lakatos PP, Szökő É. Differential Ganglioside and Cholesterol Depletion by Various Cyclodextrin Derivatives and Their Effect on Synaptosomal Glutamate Release. Int J Mol Sci 2022; 23:ijms23169460. [PMID: 36012724 PMCID: PMC9409351 DOI: 10.3390/ijms23169460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Gangliosides are glycosphingolipids of the plasma membrane and are highly enriched in the nervous system where they play a vital role in normal cell functions. Furthermore, several studies suggest their potential involvement in the pathogenesis of neurological conditions. Since cyclodextrins (CDs) can form inclusion complexes with various lipids, methylated beta-CDs are widely used in biomedical research to extract cholesterol from the membrane and study its cellular role. Despite CDs being known to interact with other membrane lipid components, their effect on gangliosides is poorly characterized. The aim of this research was to investigate the effect of dimethyl-beta-cyclodextrin (DIMEB), hydroxypropyl-beta-cyclodextrin (HPBCD), randomly methylated-alpha-cyclodextrin (RAMEA), and hydroxypropyl-alpha-cyclodextrin (HPACD) on ganglioside and cholesterol levels in rat brain synaptosomes. Their effect on membrane integrity and viability was also assessed. We examined the role of lipid depletion by CDs on the release of the major excitatory neurotransmitter, glutamate. Selective concentration range for cholesterol depletion was only found with HPBCD, but not with DIMEB. Selective depletion of gangliosides was achieved by both RAMEA and HPACD. The inhibition of stimulated glutamate release upon ganglioside depletion was found, suggesting their potential role in neurotransmission. Our study highlights the importance of the characterization of the lipid depleting capability of different CDs.
Collapse
|
2
|
Exosomal tau with seeding activity is released from Alzheimer's disease synapses, and seeding potential is associated with amyloid beta. J Transl Med 2021; 101:1605-1617. [PMID: 34462532 PMCID: PMC8590975 DOI: 10.1038/s41374-021-00644-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 01/23/2023] Open
Abstract
Synaptic transfer of tau has long been hypothesized from the human pathology pattern and has been demonstrated in vitro and in vivo, but the precise mechanisms remain unclear. Extracellular vesicles such as exosomes have been suggested as a mechanism, but not all tau is exosomal. The present experiments use a novel flow cytometry assay to quantify depolarization of synaptosomes by KCl after loading with FM2-10, which induces a fluorescence reduction associated with synaptic vesicle release; the degree of reduction in cryopreserved human samples equaled that seen in fresh mouse synaptosomes. Depolarization induced the release of vesicles in the size range of exosomes, along with tetraspanin markers of extracellular vesicles. A number of tau peptides were released, including tau oligomers; released tau was primarily unphosphorylated and C-terminal truncated, with Aβ release just above background. When exosomes were immunopurified from release supernatants, a prominent tau band showed a dark smeared appearance of SDS-stable oligomers along with the exosomal marker syntenin-1, and these exosomes induced aggregation in the HEK tau biosensor assay. However, the flow-through did not seed aggregation. Size exclusion chromatography of purified released exosomes shows faint signals from tau in the same fractions that show a CD63 band, an exosomal size signal, and seeding activity. Crude synaptosomes from control, tauopathy, and AD cases demonstrated lower seeding in tauopathy compared to AD that is correlated with the measured Aβ42 level. These results show that AD synapses release exosomal tau that is C-terminal-truncated, oligomeric, and with seeding activity that is enhanced by Aβ. Taken together with previous findings, these results are consistent with a direct prion-like heterotypic seeding of tau by Aβ within synaptic terminals, with subsequent loading of aggregated tau onto exosomes that are released and competent for tau seeding activity.
Collapse
|
3
|
Butterfield DA. Brain lipid peroxidation and alzheimer disease: Synergy between the Butterfield and Mattson laboratories. Ageing Res Rev 2020; 64:101049. [PMID: 32205035 PMCID: PMC7502429 DOI: 10.1016/j.arr.2020.101049] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/08/2020] [Accepted: 03/12/2020] [Indexed: 02/05/2023]
Abstract
Brains from persons with Alzheimer disease (AD) and its earlier stage, amnestic mild cognitive impairment (MCI), exhibit high levels of oxidative damage, including that to phospholipids. One type of oxidative damage is lipid peroxidation, the most important index of which is protein-bound 4-hydroxy-2-trans-nonenal (HNE). This highly reactive alkenal changes the conformations and lowers the activities of brain proteins to which HNE is covalently bound. Evidence exists that suggests that lipid peroxidation is the first type of oxidative damage associated with amyloid β-peptide (Aβ), a 38-42 amino acid peptide that is highly neurotoxic and critical to the pathophysiology of AD. The Butterfield laboratory is one of, if not the, first research group to show that Aβ42 oligomers led to lipid peroxidation and to demonstrate this modification in brains of subjects with AD and MCI. The Mattson laboratory, particularly when Dr. Mattson was a faculty member at the University of Kentucky, also showed evidence for lipid peroxidation associated with Aβ peptides, mostly in in vitro systems. Consequently, there is synergy between our two laboratories. Since this special tribute issue of Aging Research Reviews is dedicated to the career of Dr. Mattson, a review of some aspects of this synergy of lipid peroxidation and its relevance to AD, as well as the role of lipid peroxidation in the progression of this dementing disorder seems germane. Accordingly, this review outlines some of the individual and/or complementary research on lipid peroxidation related to AD published from our two laboratories either separately or jointly.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University Of Kentucky, Lexington, KY, 40506, United States.
| |
Collapse
|
4
|
Gylys KH, Bilousova T. Flow Cytometry Analysis and Quantitative Characterization of Tau in Synaptosomes from Alzheimer's Disease Brains. Methods Mol Biol 2018; 1523:273-284. [PMID: 27975256 DOI: 10.1007/978-1-4939-6598-4_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Synaptosomes, resealed nerve terminals that form when tissue is homogenized in isotonic medium, are a model system that has been a key source of knowledge about neurotransmission. Synaptosomes contain mitochondria, cytoskeletal proteins, and release neurotransmitters; many have postsynaptic elements. Cryopreservation at the time of autopsy makes it possible to prepare synaptosomes from human samples. Flow cytometry is a powerful analytic technique that precisely measures fluorescence on a cell-by-cell basis, and also indicates particle size and complexity with a routine parameter that measures light scattering. We describe here a procedure for flow cytometry analysis of tau in synaptosomes, a procedure that enables (1) "purification" of synaptosomes from the P-2 fraction (crude synaptosomes) by gating on particle size, and (2) quantitative measure of tau immunofluorescence in individual terminals. Application of flow cytometry to study of synaptosomes has yielded important information, not possible with routine biochemistry, about synaptic pathology in Alzheimer's disease.
Collapse
Affiliation(s)
- Karen Hoppens Gylys
- UCLA School of Nursing and Mary S. Easton Center for Alzheimer's Research at UCLA, Box 956919, Factor Building, Los Angeles, CA, 90095-6919, USA.
| | - Tina Bilousova
- UCLA School of Nursing and Mary S. Easton Center for Alzheimer's Research at UCLA, Box 956919, Factor Building, Los Angeles, CA, 90095-6919, USA
| |
Collapse
|
5
|
Depner H, Lützkendorf J, Babkir HA, Sigrist SJ, Holt MG. Differential centrifugation-based biochemical fractionation of the Drosophila adult CNS. Nat Protoc 2014; 9:2796-808. [PMID: 25393777 DOI: 10.1038/nprot.2014.192] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Drosophila is widely used as a genetic model in questions of development, cellular function and disease. Genetic screens in flies have proven to be incredibly powerful in identifying crucial components for synapse formation and function, particularly in the case of the presynaptic release machinery. Although modern biochemical methods can identify individual proteins and lipids (and their binding partners), they have typically been excluded from use in Drosophila for technical reasons. To bridge this essential gap between genetics and biochemistry, we developed a fractionation method to isolate various parts of the synaptic machinery from Drosophila, thus allowing it to be studied in unprecedented biochemical detail. This is only possible because our protocol has unique advantages in terms of enriching and preserving endogenous protein complexes. The procedure involves decapitation of adult flies, homogenization and differential centrifugation of fly heads, which allow subsequent purification of presynaptic (and to a limited degree postsynaptic) components. It is designed to require only a rudimentary knowledge of biochemical fractionation, and it takes ∼3.5 h. The yield is typically 4 mg of synaptic membrane protein per gram of Drosophila heads.
Collapse
Affiliation(s)
- Harald Depner
- Institute for Biology - Genetics, Freie Universität Berlin, Berlin, Germany
| | - Janine Lützkendorf
- Institute for Biology - Genetics, Freie Universität Berlin, Berlin, Germany
| | - Husam A Babkir
- Institute for Biology - Genetics, Freie Universität Berlin, Berlin, Germany
| | - Stephan J Sigrist
- 1] Institute for Biology - Genetics, Freie Universität Berlin, Berlin, Germany. [2] NeuroCure Cluster of Excellence, Charité, Berlin, Germany
| | - Matthew G Holt
- Laboratory of Glia Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for the Biology of Disease, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Nath AR, Chen RHC, Stanley EF. Cryoloading: introducing large molecules into live synaptosomes. Front Cell Neurosci 2014; 8:4. [PMID: 24478628 PMCID: PMC3899522 DOI: 10.3389/fncel.2014.00004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 01/06/2014] [Indexed: 11/13/2022] Open
Abstract
Neurons communicate with their target cells primarily by the release of chemical transmitters from presynaptic nerve terminals. The study of CNS presynaptic nerve terminals, isolated as synaptosomes (SSMs) has, however, been hampered by the typical small size of these structures that precludes the introduction of non-membrane permeable test substances such as peptides and drugs. We have developed a method to introduce large alien compounds of at least 150 kDa into functional synaptosomes. Purified synaptosomes are frozen in cryo-preserving buffer containing the alien compound. Upon defrosting, many of the SSMs contain the alien compound presumably admitted by bulk buffer-transfer through the surface membranes that crack and reseal during the freeze/thaw cycle. ~80% of the cryoloaded synaptosomes were functional and recycled synaptic vesicles (SVs), as assessed by a standard styryl dye uptake assay. Access of the cryoloaded compound into the cytoplasm and biological activity were confirmed by block of depolarization-induced SV recycling with membrane-impermeant BAPTA (a rapid Ca(2+)-scavenger), or botulinum A light chain (which cleaves the soluble NSF attachment protein receptor (SNARE) protein SNAP25). A major advantage of the method is that loaded frozen synaptosomes can be stored virtually indefinitely for later experimentation. We also demonstrate that individual synaptosome types can be identified by immunostaining of receptors associated with its scab of attached postsynaptic membrane. Thus, cryoloading and scab-staining permits the examination of SV recycling in identified individual CNS presynaptic nerve terminals.
Collapse
Affiliation(s)
- Arup R Nath
- Laboratory of Synaptic Transmission, Toronto Western Research Institute Toronto, ON, Canada
| | - Robert H C Chen
- Laboratory of Synaptic Transmission, Toronto Western Research Institute Toronto, ON, Canada
| | - Elise F Stanley
- Laboratory of Synaptic Transmission, Toronto Western Research Institute Toronto, ON, Canada
| |
Collapse
|
7
|
Harish G, Venkateshappa C, Mahadevan A, Pruthi N, Bharath MMS, Shankar SK. Mitochondrial function in human brains is affected by pre- and post mortem factors. Neuropathol Appl Neurobiol 2013; 39:298-315. [PMID: 22639898 DOI: 10.1111/j.1365-2990.2012.01285.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIM Mitochondrial function and the ensuing ATP synthesis are central to the functioning of the brain and contribute to neuronal physiology. Most studies on neurodegenerative diseases have highlighted that mitochondrial dysfunction is an important event contributing to pathology. However, studies on the human brain mitochondria in various neurodegenerative disorders heavily rely on post mortem samples. As post mortem tissues are influenced by pre- and post mortem factors, we investigated the effect of these variables on mitochondrial function. METHODS We examined whether the mitochondrial function (represented by mitochondrial enzymes and antioxidant activities) in post mortem human brains (n=45) was affected by increased storage time (11.8-104.1 months), age of the donor (2 days to 80 years), post mortem interval (2.5-26 h), gender difference and agonal state [based on Glasgow Coma Scale: range=3-15] in the frontal cortex, as a prototype. RESULTS We observed that the activities of citrate synthase, succinate dehydrogenase and mitochondrial reductase (MTT) were significantly affected only by gender difference (citrate synthase: P=0.005; succinate dehydrogenase: P=0.01; mitochondrial reductase: P=0.006), being higher in females, but not by any other factor. Mitochondrial complex I activity was significantly inhibited by increasing age (r=-0.40; P=0.05). On the other hand, the mitochondrial antioxidant enzyme glutathione reductase decreased with severe agonal state (P=0.003), while the activity of glutathione-S-transferase declined with increased storage time (P=0.005) and severe agonal state (P=0.02). CONCLUSION Our data highlight the influence of pre- and post mortem factors on preservation of mitochondrial function with implications for studies on brain pathology employing stored human samples.
Collapse
Affiliation(s)
- G Harish
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | | | | | | | | | |
Collapse
|
8
|
Daniel JA, Malladi CS, Kettle E, McCluskey A, Robinson PJ. Analysis of synaptic vesicle endocytosis in synaptosomes by high-content screening. Nat Protoc 2012; 7:1439-55. [PMID: 22767087 DOI: 10.1038/nprot.2012.070] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Small molecules modulating synaptic vesicle endocytosis (SVE) may ultimately be useful for diseases where pathological neurotransmission is implicated. Only a small number of specific SVE modulators have been identified to date. Slow progress is due to the laborious nature of traditional approaches to study SVE, in which nerve terminals are identified and studied in cultured neurons, typically yielding data from 10-20 synapses per experiment. We provide a protocol for a quantitative, high-throughput method for studying SVE in thousands of nerve terminals. Rat forebrain synaptosomes are attached to 96-well microplates and depolarized; SVE is then quantified by uptake of the dye FM4-64, which is imaged by high-content screening. Synaptosomes that have been frozen and stored can be used in place of fresh synaptosomes, reducing the experimental time and animal numbers required. With a supply of frozen synaptosomes, the assay can be performed within a day, including data analysis.
Collapse
Affiliation(s)
- James A Daniel
- Cell Signalling Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | | | | | | | | |
Collapse
|
9
|
Regulatory role of cannabinoid receptor 1 in stress-induced excitotoxicity and neuroinflammation. Neuropsychopharmacology 2011; 36:805-18. [PMID: 21150911 PMCID: PMC3055736 DOI: 10.1038/npp.2010.214] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exposure to stress elicits excitoxicity and neuroinflammation in the brain, contributing to cell death and damage in stress-related neurological and neuropsychiatric diseases. The endocannabinoid system is present in stress-responsive neural circuits and has been proposed as an endogenous neuroprotective system activated in some neuropathological scenarios to restore homeostasis. To elucidate the possible regulatory role of cannabinoid receptor 1 (CB1) in stress-induced excitotoxicity and neuroinflammation, both genetic and pharmacological approaches were used alternatively: (1) wild-type (WT) and CB1 knockout mice (CB1-KO) were exposed to immobilization/acoustic stress (2 h/day for 4 days) and (2) to specifically activate CB1, the selective CB1 agonist Arachidonyl-2'-chloroethylamide (ACEA) (2.5 mg/kg) was intraperitoneally administered daily to some groups of animals. Stress exposure increased CB1 mRNA and protein expression in the prefrontal cortex of WT mice in a mechanism related to N-methyl-D-aspartate glutamate receptor activation. Daily ACEA pretreatment prevented stress-induced: (1) upregulation of CB1 mRNA and protein, (2) decrease in glutamate uptake and glutamate astroglial transporter excitatory amino acid transporter 2 expression, (3) increase in consecutive proinflammatory molecules, such as cytokines (tumor necrosis factor-α and MCP-1), nuclear factor kappa B, and enzymatic sources, such as inducible nitric oxide synthase (NOS-2) and cyclooxygenase-2 (COX-2), (4) increase in lipid peroxidation; although having no effect on plasma corticosterone. Interestingly, a possible related mechanism could be the positive ACEA modulation of the antiinflammatory pathway deoxyprostaglandin/peroxisome proliferator-activated receptor γ (15d-PGJ(2)/PPARγ). Conversely, KO animal experiments indicated that a lack of CB1 produces hypothalamic/pituitary/adrenal (HPA) axis dysregulation and exacerbates stress-induced excitotoxic/neuroinflammatory responses. These multifaceted neuroprotective effects suggest that CB1 activation could be a new therapeutic strategy against neurological/neuropsychiatric pathologies with HPA axis dysregulation and an excitotoxic/neuroinflammatory component in their pathophysiology.
Collapse
|
10
|
Barksdale KA, Perez-Costas E, Gandy JC, Melendez-Ferro M, Roberts RC, Bijur GN. Mitochondrial viability in mouse and human postmortem brain. FASEB J 2010; 24:3590-9. [PMID: 20466876 DOI: 10.1096/fj.09-152108] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Neuronal function in the brain requires energy in the form of ATP, and mitochondria are canonically associated with ATP production in neurons. The electrochemical gradient, which underlies the mitochondrial transmembrane potential (DeltaPsi(mem)), is harnessed for ATP generation. Here we show that DeltaPsi(mem) and ATP-production can be engaged in mitochondria isolated from human brains up to 8.5 h postmortem. Also, a time course of postmortem intervals from 0 to 24 h using mitochondria isolated from mouse cortex reveals that DeltaPsi(mem) in mitochondria can be reconstituted beyond 10 h postmortem. It was found that complex I of the mitochondrial electron transport chain was affected adversely with increasing postmortem intervals. Mitochondria isolated from postmortem mouse brains maintain the ability to produce ATP, but rates of production decreased with longer postmortem intervals. Furthermore, we show that postmortem brain mitochondria retain their DeltaPsi(mem) and ATP-production capacities following cryopreservation. Our finding that DeltaPsi(mem) and ATP-generating capacity can be reinitiated in brain mitochondria hours after death indicates that human postmortem brains can be an abundant source of viable mitochondria to study metabolic processes in health and disease. It is also possible to archive these mitochondria for future studies.
Collapse
Affiliation(s)
- Keri A Barksdale
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA
| | | | | | | | | | | |
Collapse
|
11
|
Haberman F, Tang SC, Arumugam TV, Hyun DH, Yu QS, Cutler RG, Guo Z, Holloway HW, Greig NH, Mattson MP. Soluble neuroprotective antioxidant uric acid analogs ameliorate ischemic brain injury in mice. Neuromolecular Med 2007; 9:315-23. [PMID: 17999205 DOI: 10.1007/s12017-007-8010-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 07/23/2007] [Indexed: 02/04/2023]
Abstract
Uric acid is a major antioxidant in the blood of humans that can protect cultured neurons against oxidative and metabolic insults. However, uric acid has a very low solubility which compromises its potential clinical use for neurodegenerative disorders. Here we describe the synthesis, characterization and preclinical development of neuroprotective methyl- and sulfur-containing analogs of uric acid with increased solubility. In vitro and cell culture screening identified 1,7-dimethyluric acid (mUA2) and 6,8-dithiouric acid (sUA2) as two analogs with high antioxidant and neuroprotective activities. When administered intravenously in mice, uric acid analogs mUA2 and sUA2 lessened damage to the brain and improved functional outcome in an ischemia-reperfusion mouse model of stroke. Analogs sUA2 and mUA2 were also effective in reducing damage to the cerebral cortex when administered up to 4 h after stroke onset in a permanent middle cerebral artery occlusion mouse model. These findings suggest a therapeutic potential for soluble analogs of uric acid in the treatment of stroke and related neurodegenerative conditions.
Collapse
Affiliation(s)
- Frank Haberman
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 5600 Nathan Shock Drive, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
García-Bueno B, Caso JR, Pérez-Nievas BG, Lorenzo P, Leza JC. Effects of peroxisome proliferator-activated receptor gamma agonists on brain glucose and glutamate transporters after stress in rats. Neuropsychopharmacology 2007; 32:1251-60. [PMID: 17119541 DOI: 10.1038/sj.npp.1301252] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Repeated stress causes an energy-compromised status in the brain, with a decrease in glucose utilization by the brain cells, which might account for excitotoxicity processes seen in this condition. In fact, brain glucose metabolism mechanisms are impaired in some neurodegenerative disorders, including stress-related neuropsychopathologies. More recently, it has been demonstrated that some synthetic peroxisome proliferator-activated receptor gamma (PPARgamma) agonists increase glucose utilization in rat cortical slices and astrocytes, as well as inhibit brain oxidative damage after repeated stress, which add support for considering these drugs as potential neuroprotective agents. To assess if stress causes glucose utilization impairment in the brain and to study the mechanisms by which this effect is achieved, young-adult male Wistar rats (control and immobilized for 6 h during 7 or 14 consecutive days, S7, S14) were i.p. injected with the natural ligand 15-deoxy-Delta-12,14-prostaglandin J2 (PGJ2, 120 microg/kg) or the high-affinity ligand rosiglitazone (RG, 3 mg/kg) at the onset of stress. Repeated immobilization during 1 or 2 weeks produces a decrease in brain cortical synaptosomal glucose uptake, and this effect was prevented by treatment with both natural and synthetic PPARgamma ligands by restoring protein expression of the neuronal glucose transporter, GLUT-3 in membrane fractions. On the other hand, treatment with PPARgamma ligands prevents stress-induced ATP loss in rat brain. Finally, repeated immobilization stress also produces a decrease in brain cortical synaptosomal glutamate uptake, and this effect was prevented by treatment with PPARgamma ligands by restoring synaptosomal protein expression of the glial glutamate transporter, EAAT2. In summary, our results demonstrate that 15d-PGJ2 and the thiazolidinedione rosiglitazone increase neuronal glucose metabolism, restore brain ATP levels and prevent the impairment in glutamate uptake mechanisms induced by exposure to stress, suggesting that this class of drugs may be therapeutically useful in conditions in which brain glucose levels or availability are limited after exposure to stress.
Collapse
Affiliation(s)
- Borja García-Bueno
- Faculty of Medicine, Department of Pharmacology, University Complutense, Madrid, Spain
| | | | | | | | | |
Collapse
|
13
|
Nukala VN, Singh IN, Davis LM, Sullivan PG. Cryopreservation of brain mitochondria: a novel methodology for functional studies. J Neurosci Methods 2005; 152:48-54. [PMID: 16246427 DOI: 10.1016/j.jneumeth.2005.08.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 08/15/2005] [Accepted: 08/17/2005] [Indexed: 11/20/2022]
Abstract
Often, comparative studies involving large number of animals or human post-mortem tissue samples are precluded, especially those requiring structurally and functionally intact cells and/or organelles. The ability to 'bank' such samples for storage and restore or 'reanimate' them at a later time without causing damage to the structure and/or function becomes imperative. However, to date, such attempts have produced conflicting results. We here demonstrate for the first time that isolated rat brain mitochondria can be successfully cryopreserved and restored for later use. We added a well characterized cryoprotectant 10% (v/v) dimethyl sulfoxide (DMSO) to purified rat cortical mitochondria and allowed them to cool at a uniform rate of approximately 1 degree C/min and stored them at -80 degrees C. Freshly isolated as well as reanimated brain mitochondria were analyzed for respiration. Structural integrity of cryopreserved mitochondria was also verified by electron microscopy. Mitochondrial membrane marker levels were assessed along with cytochrome c levels. Intact structure and function of the cryopreserved brain mitochondria observed allows us the opportunity to store mitochondria for longer periods of time as well as perform metabolic studies as needed. This will considerably expand the time-frame required for carrying out functional analysis in large comparative studies.
Collapse
Affiliation(s)
- Vidya N Nukala
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|
14
|
Gilman CP, Chan SL, Guo Z, Zhu X, Greig N, Mattson MP. p53 is present in synapses where it mediates mitochondrial dysfunction and synaptic degeneration in response to DNA damage, and oxidative and excitotoxic insults. Neuromolecular Med 2003; 3:159-72. [PMID: 12835511 DOI: 10.1385/nmm:3:3:159] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2003] [Accepted: 03/06/2003] [Indexed: 11/11/2022]
Abstract
A form of programmed cell-death called apoptosis occurs in neurons during development of the nervous system, and may also occur in a variety of neuropathological conditions. Here we present evidence obtained in studies of adult mice and neuronal cell cultures showing that p53 protein is present in synapses where its level and amount of phosphorylation are increased following exposure of the cells to the DNA-damaging agent etoposide. We also show that levels of active p53 increase in isolated cortical synaptosomes exposed to oxidative and excitotoxic insults. Increased levels of p53 also precede loss of synapsin I immunoreactive terminals in cultured hippocampal neurons exposed to etoposide. Synaptosomes from p53-deficient mice exhibit increased resistance to oxidative and excitotoxic insults as indicated by stabilization of mitochondrial membrane potential and decreased production of reactive oxygen species. Finally, we show that a synthetic inhibitor of p53 (PFT-alpha) protects synaptosomes from wild-type mice against oxidative and excitotoxic injuries, and preserves presynaptic terminals in cultured hippocampal neurons exposed to etoposide. Collectively, these findings provide the first evidence for a local transcription-independent action of p53 in synapses, and suggest that such a local action of p53 may contribute to the dysfunction and degeneration of synapses that occurs in various neurodegenerative disorders.
Collapse
Affiliation(s)
- Charles P Gilman
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
15
|
Garcia-Sanz A, Badia A, Clos MV. Superfusion of synaptosomes to study presynaptic mechanisms involved in neurotransmitter release from rat brain. ACTA ACUST UNITED AC 2001; 7:94-102. [PMID: 11356375 DOI: 10.1016/s1385-299x(00)00058-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Neurotransmitter release, as the primary way for neuron signaling, represents the target of a staggering number of studies in order to understand complex neural functions. The corpus striatum is a brain area especially rich in neurotransmitters where cholinergic neurons are supposed to play an associative role between different neuronal types, and therefore their activity is modulated by multiple neurotransmitter systems [Trends Neurosci. 17 (1994) 228; Trends Neurosci. 18 (1995) 527] [13,25]. In this regard, superfusion of synaptosomes is a useful in vitro approach to study the neurotransmitter release allowing an unequivocal interpretation of results obtained under accurately specified experimental conditions. Synaptosomes are sealed presynaptic nerve terminals obtained after homogenating brain tissue in iso-osmotic conditions [J. Physiol. 142 (1958) 187] [22]. Synaptosomes have been extensively used to study the mechanism of neurotransmitter release in vitro because they preserve the biochemical, morphological and electrophysiological properties of the synapse [J. Neurocytol. 22 (1993) 735] [42]. The superfusion, strictly a perfusion, allows both the continuous removal of the compounds present in the biophase of the presynaptic proteins and the easy exchange of the medium. We herein describe the method of superfusion of rat striatal synaptosomes to study the [(3)H]ACh release under basal and stimulated conditions. To depolarize the synaptosomal preparation three different strategies were employed: high extracellular concentration of K(+) (15 mM), a K(+) channel-blocker (4-aminopyridine, 1-30 microM), or veratridine (10 microM) which blocks the inactivation of voltage-dependent Na(+) channels.
Collapse
Affiliation(s)
- A Garcia-Sanz
- Departament de Farmacologia i Terapèutica, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | |
Collapse
|