1
|
Khan A, Uddin J, Ali F, Kumar H, Alghamdi W, Ahmad A. AFP-SPTS: An Accurate Prediction of Antifreeze Proteins Using Sequential and Pseudo-Tri-Slicing Evolutionary Features with an Extremely Randomized Tree. J Chem Inf Model 2023; 63:826-834. [PMID: 36649569 DOI: 10.1021/acs.jcim.2c01417] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The development of intracellular ice in the bodies of cold-blooded living organisms may cause them to die. These species yield antifreeze proteins (AFPs) to live in subzero temperature environments. Additionally, AFPs are implemented in biotechnological, industrial, agricultural, and medical fields. Machine learning-based predictors were presented for AFP identification. However, more accurate predictors are still highly desirable for boosting the AFP prediction. This work presents a novel approach, named AFP-SPTS, for the correct prediction of AFPs. We explored the discriminative features with four schemes, namely, dipeptide deviation from the expected mean (DDE), reduced amino acid alphabet (RAAA), grouped dipeptide composition (GDPC), and a novel representative method, called pseudo-position-specific scoring matrix tri-slicing (PseTS-PSSM). Considering the advantages of ensemble learning strategy, we fused each feature vector into different combinations and trained the models with five machine learning algorithms, i.e., multilayer perceptron (MLP), extremely randomized tree (ERT), decision tree (DT), random forest (RF), and AdaBoost. Among all models, PseTS-PSSM + RAAA with an extremely randomized tree attained the best outcomes. The proposed predictor (AFP-SPTS) boosted the accuracies of AFPs in the literature by 1.82 and 4.1%.
Collapse
Affiliation(s)
- Adnan Khan
- Qurtuba University of Science and Information Technology, Peshawar5000, Khyber Pakhtunkhwa, Pakistan
| | - Jamal Uddin
- Qurtuba University of Science and Information Technology, Peshawar5000, Khyber Pakhtunkhwa, Pakistan
| | - Farman Ali
- Sarhad University of Science and Information Technology, Mardan Campus, Peshawar23200, Pakistan.,Department of Elementary and Secondary Education Department, Government of Khyber Pakhtunkhwa, Peshawar5000, Khyber Pakhtunkhwa, Pakistan
| | - Harish Kumar
- Department of Computer Science, College of Computer Science, King Khalid University, Abha61421, Saudi Arabia
| | - Wajdi Alghamdi
- Department of Information Technology, Faculty of Computing and Information Technology, King AbdulAziz University, Jeddah21589, Saudi Arabia
| | - Aftab Ahmad
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan23200, Pakistan
| |
Collapse
|
2
|
Khan A, Uddin J, Ali F, Ahmad A, Alghushairy O, Banjar A, Daud A. Prediction of antifreeze proteins using machine learning. Sci Rep 2022; 12:20672. [PMID: 36450775 PMCID: PMC9712683 DOI: 10.1038/s41598-022-24501-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Living organisms including fishes, microbes, and animals can live in extremely cold weather. To stay alive in cold environments, these species generate antifreeze proteins (AFPs), also referred to as ice-binding proteins. Moreover, AFPs are extensively utilized in many important fields including medical, agricultural, industrial, and biotechnological. Several predictors were constructed to identify AFPs. However, due to the sequence and structural heterogeneity of AFPs, correct identification is still a challenging task. It is highly desirable to develop a more promising predictor. In this research, a novel computational method, named AFP-LXGB has been proposed for prediction of AFPs more precisely. The information is explored by Dipeptide Composition (DPC), Grouped Amino Acid Composition (GAAC), Position Specific Scoring Matrix-Segmentation-Autocorrelation Transformation (Sg-PSSM-ACT), and Pseudo Position Specific Scoring Matrix Tri-Slicing (PseTS-PSSM). Keeping the benefits of ensemble learning, these feature sets are concatenated into different combinations. The best feature set is selected by Extremely Randomized Tree-Recursive Feature Elimination (ERT-RFE). The models are trained by Light eXtreme Gradient Boosting (LXGB), Random Forest (RF), and Extremely Randomized Tree (ERT). Among classifiers, LXGB has obtained the best prediction results. The novel method (AFP-LXGB) improved the accuracies by 3.70% and 4.09% than the best methods. These results verified that AFP-LXGB can predict AFPs more accurately and can participate in a significant role in medical, agricultural, industrial, and biotechnological fields.
Collapse
Affiliation(s)
- Adnan Khan
- grid.444994.00000 0004 0609 284XQurtuba University of Science and Technology, Peshawar, Khyber Pakhtunkhwa Pakistan
| | - Jamal Uddin
- grid.444994.00000 0004 0609 284XQurtuba University of Science and Technology, Peshawar, Khyber Pakhtunkhwa Pakistan
| | - Farman Ali
- Department of Elementary and Secondary Education, Peshawar, Khyber Pakhtunkhwa Pakistan ,grid.444996.20000 0004 0609 292XSarhad University of Science and Information Technology, Mardan, Pakistan
| | - Ashfaq Ahmad
- grid.440522.50000 0004 0478 6450Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Omar Alghushairy
- grid.460099.2Department of Information Systems and Technology, College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia
| | - Ameen Banjar
- grid.460099.2Department of Information Systems and Technology, College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia
| | - Ali Daud
- Abu Dhabi School of Management, Abu Dhabi, United Arab Emirates ,grid.460099.2Department of Computer Science and Artificial Intelligence, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Akhter S, Awan MA, Arshad J, Rakha BA, Ansari MS, Iqbal S. Effect of Synergism Between Carboxylated Poly-l-Lysine and Glycerol on Freezability of Nili-Ravi Buffalo (Bubalus bubalis) Semen. Biopreserv Biobank 2020; 18:367-375. [DOI: 10.1089/bio.2019.0120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Shamim Akhter
- Department of Zoology and Pir Mehr Ali Shah—Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Amjad Awan
- Department of Zoology and Pir Mehr Ali Shah—Arid Agriculture University, Rawalpindi, Pakistan
| | - Javeria Arshad
- Department of Zoology and Pir Mehr Ali Shah—Arid Agriculture University, Rawalpindi, Pakistan
| | - Bushra Allah Rakha
- Department of Wildlife Management, Pir Mehr Ali Shah—Arid Agriculture University, Rawalpindi, Pakistan
| | | | - Sajid Iqbal
- Semen Production Unit Qadirabad, Sahiwal, Pakistan
| |
Collapse
|
4
|
Stoyneva-Gärtner M, Uzunov B, Gärtner G, Radkova M, Atanassov I, Atanasova R, Borisova C, Draganova P, Stoykova P. Review on the biotechnological and nanotechnological potential of the streptophyte genus Klebsormidium with pilot data on its phycoprospecting and polyphasic identification in Bulgaria. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1593887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Maya Stoyneva-Gärtner
- Department of Botany, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Blagoy Uzunov
- Department of Botany, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Georg Gärtner
- Institut für Botanik, Fakultät für Biologie, Universität Innsbruck, Innsbruck, Austria
| | - Mariana Radkova
- Functional Genetics Legumes Group, AgroBioInstitute, Agricultural Academy, Sofia, Bulgaria
| | - Ivan Atanassov
- Molecular Genetics Group, AgroBioInstitute, Agricultural Academy, Sofia, Bulgaria
| | - Ralitsa Atanasova
- Department of Botany, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Cvetanka Borisova
- Department of Botany, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Petya Draganova
- Department of Botany, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Petya Stoykova
- Functional Genetics Legumes Group, AgroBioInstitute, Agricultural Academy, Sofia, Bulgaria
| |
Collapse
|
5
|
Momma M. Detection and Cryoprotective Activity of Dehydrin Proteins from Rice Bran and Soybean Whey. J Nutr Sci Vitaminol (Tokyo) 2019; 65:S129-S133. [PMID: 31619612 DOI: 10.3177/jnsv.65.s129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Dehydrin proteins, group2 LEA proteins in rice bran and soybean whey were analyzed by two-dimensional (2D) electrophoresis, and the cryoprotective activity on freeze/thaw inactivation of lactate dehydrogenase was examined as a criterion of its function. Dehydrins in rice bran were detected by immunoblotting using antibody raised against a conserved lysine-rich motif sequence. In the water-soluble fraction of rice bran, 10 spots of 44 kDa and 23 kDa dehydrin-like polypeptides were detected on the immunoblotted membrane. Isoelectric points of the polypeptides were between 6.6 and 7.4. The 23 kDa dehydrin polypeptide was partially purified by ammonium sulfate fractionation and ion exchange column chromatography. CP50 value, protein amount necessary to keep 50% of enzyme activity, of the 23 kDa dehydrin was 0.78 μM (15.6 μg/mL), slightly lower than that of bovine serum albumin. Heat-soluble soybean whey proteins were analyzed by SDS-PAGE and 2D-electrophoresis. Dehydrin appeared to be the most abundant protein in the fraction. CP50 value for heat-soluble whey protein was estimated to be 15.8 μg/mL, while that of total whey was 355 μg/mL. The result indicated that simple heat fractionation is efficient to concentrate cryoprotective protein from soybean whey.
Collapse
|
6
|
Biggs CI, Bailey TL, Ben Graham, Stubbs C, Fayter A, Gibson MI. Polymer mimics of biomacromolecular antifreezes. Nat Commun 2017; 8:1546. [PMID: 29142216 PMCID: PMC5688100 DOI: 10.1038/s41467-017-01421-7] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/15/2017] [Indexed: 11/08/2022] Open
Abstract
Antifreeze proteins from polar fish species are remarkable biomacromolecules which prevent the growth of ice crystals. Ice crystal growth is a major problem in cell/tissue cryopreservation for transplantation, transfusion and basic biomedical research, as well as technological applications such as icing of aircraft wings. This review will introduce the rapidly emerging field of synthetic macromolecular (polymer) mimics of antifreeze proteins. Particular focus is placed on designing polymers which have no structural similarities to antifreeze proteins but reproduce the same macroscopic properties, potentially by different molecular-level mechanisms. The application of these polymers to the cryopreservation of donor cells is also introduced.
Collapse
Affiliation(s)
- Caroline I Biggs
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Trisha L Bailey
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Ben Graham
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Alice Fayter
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
7
|
Mitchell D, Clarkson G, Fox DJ, Vipond RA, Scott P, Gibson MI. Antifreeze Protein Mimetic Metallohelices with Potent Ice Recrystallization Inhibition Activity. J Am Chem Soc 2017; 139:9835-9838. [PMID: 28715207 PMCID: PMC5562393 DOI: 10.1021/jacs.7b05822] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Indexed: 02/07/2023]
Abstract
Antifreeze proteins are produced by extremophile species to control ice formation and growth, and they have potential applications in many fields. There are few examples of synthetic materials which can reproduce their potent ice recrystallization inhibition property. We report that self-assembled enantiomerically pure, amphipathic metallohelicies inhibited ice growth at just 20 μM. Structure-property relationships and calculations support the hypothesis that amphipathicity is the key motif for activity. This opens up a new field of metallo-organic antifreeze protein mimetics and provides insight into the origins of ice-growth inhibition.
Collapse
Affiliation(s)
| | - Guy Clarkson
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - David J. Fox
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Rebecca A. Vipond
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Peter Scott
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Matthew I. Gibson
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Warwick
Medical School, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
8
|
Dong Z, Wang J, Zhou X. Effect of antifreeze protein on heterogeneous ice nucleation based on a two-dimensional random-field Ising model. Phys Rev E 2017; 95:052140. [PMID: 28618642 DOI: 10.1103/physreve.95.052140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Indexed: 11/07/2022]
Abstract
Antifreeze proteins (AFPs) are the key biomolecules that protect many species from suffering the extreme conditions. Their unique properties of antifreezing provide the potential of a wide range of applications. Inspired by the present experimental approaches of creating an antifreeze surface by coating AFPs, here we present a two-dimensional random-field lattice Ising model to study the effect of AFPs on heterogeneous ice nucleation. The model shows that both the size and the free-energy effect of individual AFPs and their surface coverage dominate the antifreeze capacity of an AFP-coated surface. The simulation results are consistent with the recent experiments qualitatively, revealing the origin of the surprisingly low antifreeze capacity of an AFP-coated surface when the coverage is not particularly high as shown in experiment. These results will hopefully deepen our understanding of the antifreeze effects and thus be potentially useful for designing novel antifreeze coating materials based on biomolecules.
Collapse
Affiliation(s)
- Zhen Dong
- School of Physical Sciences, University of Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Jianjun Wang
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xin Zhou
- School of Physical Sciences, University of Chinese Academy of Science, Beijing 100049, People's Republic of China
| |
Collapse
|
9
|
Xiao X, Hui M, Liu Z. iAFP-Ense: An Ensemble Classifier for Identifying Antifreeze Protein by Incorporating Grey Model and PSSM into PseAAC. J Membr Biol 2016; 249:845-854. [DOI: 10.1007/s00232-016-9935-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/24/2016] [Indexed: 12/12/2022]
|
10
|
Ramya L, Ramakrishnan V. Interaction ofTenebrio MolitorAntifreeze Protein with Ice Crystal: Insights from Molecular Dynamics Simulations. Mol Inform 2016; 35:268-77. [DOI: 10.1002/minf.201600034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/10/2016] [Indexed: 11/09/2022]
Affiliation(s)
- L. Ramya
- Centre for Nanotechnology & Advanced Biomaterials; SASTRA University; Thanjavur-613401 Tamilnadu India
| | | |
Collapse
|
11
|
Affiliation(s)
- Maya Bar Dolev
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agricultural, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; ,
| | - Ido Braslavsky
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agricultural, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; ,
| | - Peter L. Davies
- Department of Biomedical and Molecular Science, Queen's University, Kingston, Ontario K7L 3N6, Canada;
| |
Collapse
|
12
|
TargetFreeze: Identifying Antifreeze Proteins via a Combination of Weights using Sequence Evolutionary Information and Pseudo Amino Acid Composition. J Membr Biol 2015; 248:1005-14. [PMID: 26058944 DOI: 10.1007/s00232-015-9811-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/19/2015] [Indexed: 11/26/2022]
Abstract
Antifreeze proteins (AFPs) are indispensable for living organisms to survive in an extremely cold environment and have a variety of potential biotechnological applications. The accurate prediction of antifreeze proteins has become an important issue and is urgently needed. Although considerable progress has been made, AFP prediction is still a challenging problem due to the diversity of species. In this study, we proposed a new sequence-based AFP predictor, called TargetFreeze. TargetFreeze utilizes an enhanced feature representation method that weightedly combines multiple protein features and takes the powerful support vector machine as the prediction engine. Computer experiments on benchmark datasets demonstrate the superiority of the proposed TargetFreeze over most recently released AFP predictors. We also implemented a user-friendly web server, which is openly accessible for academic use and is available at http://csbio.njust.edu.cn/bioinf/TargetFreeze. TargetFreeze supplements existing AFP predictors and will have potential applications in AFP-related biotechnology fields.
Collapse
|
13
|
Heisig M, Mattessich S, Rembisz A, Acar A, Shapiro M, Booth CJ, Neelakanta G, Fikrig E. Frostbite protection in mice expressing an antifreeze glycoprotein. PLoS One 2015; 10:e0116562. [PMID: 25714402 PMCID: PMC4340617 DOI: 10.1371/journal.pone.0116562] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/11/2014] [Indexed: 12/31/2022] Open
Abstract
Ectotherms in northern latitudes are seasonally exposed to cold temperatures. To improve survival under cold stress, they use diverse mechanisms to increase temperature resistance and prevent tissue damage. The accumulation of anti-freeze proteins that improve cold hardiness occurs in diverse species including plants, arthropods, fish, and amphibians. We previously identified an Ixodes scapularis anti-freeze glycoprotein, named IAFGP, and demonstrated its cold protective function in the natural tick host and in a transgenic Drosophila model. Here we show, in a transgenic mouse model expressing an anti-freeze glycoprotein, that IAFGP protects mammalian cells and mice from cold shock and frostbite respectively. Transgenic skin samples showed reduced cell death upon cold storage ex vivo and transgenic mice demonstrated increased resistance to frostbite injury in vivo. IAFGP actively protects mammalian tissue from freezing, suggesting its application for the prevention of frostbite, and other diseases associated with cold exposure.
Collapse
Affiliation(s)
- Martin Heisig
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, United States of America
| | - Sarah Mattessich
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, United States of America
| | - Alison Rembisz
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, United States of America
| | - Ali Acar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, United States of America
- Department of Infectious Disease and Clinical Microbiology, Gulhane Military Medical Academy, Haydarpasa Training Hospital, Istanbul, Turkey
| | - Martin Shapiro
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, United States of America
| | - Carmen J. Booth
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, United States of America
| | - Girish Neelakanta
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, United States of America
| | - Erol Fikrig
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, United States of America
- Howard Hughes Medical Institute, Chevy Chase, MD, United States of America
- * E-mail:
| |
Collapse
|
14
|
Vorontsov DA, Sazaki G, Hyon SH, Matsumura K, Furukawa Y. Antifreeze Effect of Carboxylated ε-Poly-l-lysine on the Growth Kinetics of Ice Crystals. J Phys Chem B 2014; 118:10240-9. [DOI: 10.1021/jp507697q] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Dmitry A. Vorontsov
- Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue,
23, Nizhny Novgorod, 603950 Russia
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060-0819 Japan
| | - Gen Sazaki
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060-0819 Japan
| | - Suong-Hyu Hyon
- Center for Fiber and Textile Science, Kyoto Institute of Technology, 105 Jibucho, Kyoto Fushimi-ku, Kyoto, 612-8374 Japan
| | - Kazuaki Matsumura
- Japan Advanced Institute of Science and Technology, Asahidai 1-1, Nomi-shi, Ishikawa, 923-1292 Japan
| | - Yoshinori Furukawa
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060-0819 Japan
| |
Collapse
|
15
|
Hara M, Uchida S, Murata T, Wätzig H. Efficient purification of cryoprotective dehydrin protein from the radish (Raphanus sativus) taproot. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2228-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Kim HE, Jeong M, Lee AR, Park CJ, Lee JH. Temperature-dependent Kinetics Study for Hydrogen Exchange of Type I Antifreeze Protein from Winter Flounder. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.1.286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Lim ZL, Low NH, Moffatt BA, Gray GR. Gelation in protein extracts from cold acclimated and non-acclimated winter rye (Secale cereale L. cv Musketeer). Cryobiology 2013; 66:156-66. [PMID: 23348601 DOI: 10.1016/j.cryobiol.2013.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 11/12/2012] [Accepted: 01/10/2013] [Indexed: 12/14/2022]
Abstract
A protein gel is a three-dimensional network consisting of molecular interactions between biopolymers that entrap a significant volume of a continuous liquid phase (water). Molecular interactions in gels occur at junction zones within and between protein molecules through electrostatic forces, hydrogen bonding, hydrophobic associations (van der Waals attractions) and covalent bonding. Gels have the physicochemical properties of both solids and liquids, and are extremely important in the production and stability of a variety of foods, bioproducts and pharmaceuticals. In this study, gelation was induced in phenol extracted protein fractions from non-acclimated (NA) and cold-acclimated (CA) winter rye (Secale cereale L. cv Musketeer) leaf tissue after repeated freeze-thaw treatments. Gel formation only occurred at high pH (pH 12.0) and a minimum of 3-4 freeze-thaw cycles were required. The gel was thermally stable and only a specific combination of chemical treatments could disrupt the gel network. SDS-PAGE analysis identified ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) as the major protein component in the gel, although Rubisco itself did not appear to be a factor in gelation. Raman spectroscopy suggested changes in protein secondary structure during freeze-thaw cycles. Overall, the NA and CA gels were similar in composition and structure, with the exception that the CA gel appeared to be amyloidic in nature based on thioflavin T (ThT) fluorescence. Protein gelation, particularly in the apoplast, may confer protection against freeze-induced dehydration and potentially have a commercial application to improve frozen food quality.
Collapse
Affiliation(s)
- Ze Long Lim
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | | |
Collapse
|
18
|
Statistical thermodynamics of molecules with multiple adsorption states: Application to protein adsorption. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2012.11.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Wang S, Amornwittawat N, Wen X. Thermodynamic Analysis of Thermal Hysteresis: Mechanistic Insights into Biological Antifreezes. THE JOURNAL OF CHEMICAL THERMODYNAMICS 2012; 53:125-130. [PMID: 22822266 PMCID: PMC3398711 DOI: 10.1016/j.jct.2012.04.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Antifreeze proteins (AFPs) bind to ice crystal surfaces and thus inhibit the ice growth. The mechanism for how AFPs suppress freezing is commonly modeled as an adsorption-inhibition process by the Gibbs-Thomson effect. Here we develop an improved adsorption-inhibition model for AFP action based on the thermodynamics of impurity adsorption on the crystal surfaces. We demonstrate the derivation of a realistic relationship between surface protein coverage and the protein concentration. We show that the improved model provides a quantitatively better fit to the experimental antifreeze activities of AFPs from distinct structural classes, including fish and insect AFPs, in a wide range of concentrations. Our theoretical results yielded the adsorption coefficients of the AFPs on ice, suggesting that, despite the distinct difference in their antifreeze activities and structures, the affinities of the AFPs to ice are very close and the mechanism of AFP action is a kinetically controlled, reversible process. The applications of the model to more complex systems along with its potential limitations are also discussed.
Collapse
Affiliation(s)
- Sen Wang
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, California 90032
- Visiting scholar from the Molecular Imaging Program, Stanford University, Stanford, California 94305
| | - Natapol Amornwittawat
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, California 90032
| | - Xin Wen
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, California 90032
| |
Collapse
|
20
|
de Pascale D, De Santi C, Fu J, Landfald B. The microbial diversity of Polar environments is a fertile ground for bioprospecting. Mar Genomics 2012. [PMID: 23199876 DOI: 10.1016/j.margen.2012.04.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The term bioprospecting has been adopted for systematic searches in nature for new bioactive compounds, genes, proteins, microorganisms and other products with potential for commercial use. Much effort has been focused on microorganisms able to thrive under harsh conditions, including the Polar environments. Both the lipid and protein cellular building blocks of Polar microorganisms are shaped by their adaptation to the permanently low temperatures. In addition, strongly differing environments, such as permafrost, glaciers and sea ice, have contributed to additional functional diversity. Emerging massive-parallel sequencing technologies have revealed the existence of a huge, hitherto unseen diversity of low-abundance phylotypes--the rare biosphere--even in the Polar environments. This realization has further strengthened the need to employ cultivation-independent approaches, including metagenomics and single-cell genomic sequencing, to get comprehensive access to the genetic diversity of microbial communities for bioprospecting purposes. In this review, we present an updated snapshot of recent findings on the molecular basis for adaptation to the cold and the phylogenetic diversities of different Polar environments. Novel approaches in bioprospecting are presented and we conclude by showing recent bioprospecting outcomes in terms of new molecules patented or applied by some biotech companies.
Collapse
Affiliation(s)
- Donatella de Pascale
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, I-80134 Naples, Italy.
| | | | | | | |
Collapse
|
21
|
A novel dehydrin-like protein from Aspergillus fumigatus regulates freezing tolerance. Fungal Genet Biol 2012; 49:210-6. [DOI: 10.1016/j.fgb.2012.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 01/10/2012] [Accepted: 01/18/2012] [Indexed: 11/22/2022]
|
22
|
Zhao X, Ma Z, Yin M. Using support vector machine and evolutionary profiles to predict antifreeze protein sequences. Int J Mol Sci 2012; 13:2196-2207. [PMID: 22408447 PMCID: PMC3292016 DOI: 10.3390/ijms13022196] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 01/29/2012] [Accepted: 01/29/2012] [Indexed: 11/16/2022] Open
Abstract
Antifreeze proteins (AFPs) are ice-binding proteins. Accurate identification of new AFPs is important in understanding ice-protein interactions and creating novel ice-binding domains in other proteins. In this paper, an accurate method, called AFP_PSSM, has been developed for predicting antifreeze proteins using a support vector machine (SVM) and position specific scoring matrix (PSSM) profiles. This is the first study in which evolutionary information in the form of PSSM profiles has been successfully used for predicting antifreeze proteins. Tested by 10-fold cross validation and independent test, the accuracy of the proposed method reaches 82.67% for the training dataset and 93.01% for the testing dataset, respectively. These results indicate that our predictor is a useful tool for predicting antifreeze proteins. A web server (AFP_PSSM) that implements the proposed predictor is freely available.
Collapse
Affiliation(s)
- Xiaowei Zhao
- College of Computer Science and Information Technology, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China; E-Mail:
- Key Laboratory of Intelligent Information Processing of Jilin Universities, Northeast Normal University, Changchun 130117, China
- College of Life Science, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Zhiqiang Ma
- College of Computer Science and Information Technology, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China; E-Mail:
- Key Laboratory of Intelligent Information Processing of Jilin Universities, Northeast Normal University, Changchun 130117, China
- College of Life Science, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
- Authors to whom correspondence should be addressed; E-Mails: (Z.M.); (M.Y.); Tel./Fax: +86-0431-8453-6338 (Z.M.; M.Y.)
| | - Minghao Yin
- College of Computer Science and Information Technology, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China; E-Mail:
- Key Laboratory of Intelligent Information Processing of Jilin Universities, Northeast Normal University, Changchun 130117, China
- Authors to whom correspondence should be addressed; E-Mails: (Z.M.); (M.Y.); Tel./Fax: +86-0431-8453-6338 (Z.M.; M.Y.)
| |
Collapse
|
23
|
Cai Y, Liu S, Liao X, Ding Y, Sun J, Zhang D. Purification and partial characterization of antifreeze proteins from leaves of Ligustrum lucidum Ait. FOOD AND BIOPRODUCTS PROCESSING 2011. [DOI: 10.1016/j.fbp.2010.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
AFP-Pred: A random forest approach for predicting antifreeze proteins from sequence-derived properties. J Theor Biol 2010; 270:56-62. [PMID: 21056045 DOI: 10.1016/j.jtbi.2010.10.037] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/29/2010] [Accepted: 10/29/2010] [Indexed: 12/11/2022]
Abstract
Some creatures living in extremely low temperatures can produce some special materials called "antifreeze proteins" (AFPs), which can prevent the cell and body fluids from freezing. AFPs are present in vertebrates, invertebrates, plants, bacteria, fungi, etc. Although AFPs have a common function, they show a high degree of diversity in sequences and structures. Therefore, sequence similarity based search methods often fails to predict AFPs from sequence databases. In this work, we report a random forest approach "AFP-Pred" for the prediction of antifreeze proteins from protein sequence. AFP-Pred was trained on the dataset containing 300 AFPs and 300 non-AFPs and tested on the dataset containing 181 AFPs and 9193 non-AFPs. AFP-Pred achieved 81.33% accuracy from training and 83.38% from testing. The performance of AFP-Pred was compared with BLAST and HMM. High prediction accuracy and successful of prediction of hypothetical proteins suggests that AFP-Pred can be a useful approach to identify antifreeze proteins from sequence information, irrespective of their sequence similarity.
Collapse
|
25
|
Matsumura K, Bae JY, Hyon SH. Polyampholytes as Cryoprotective Agents for Mammalian Cell Cryopreservation. Cell Transplant 2010; 19:691-9. [DOI: 10.3727/096368910x508780] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cryoprotective agents (CPAs) such as dimethyl sulfoxide (DMSO), glycerol, ethylene glycol, and propylene glycol have been used for the cryopreservation of cells and tissues. DMSO is the most effective CPA but shows high cytotoxicity and can effect differentiation. ∈-Poly-l-lysine (PLL) derivatives show higher cryopreservation efficiency than the conventional CPAs. Culture medium solutions with 7.5 w/w% of PLL whose amino groups of more than 50 mol% were converted to carboxyl groups by succinic anhydride showed higher postthaw survival efficiency of L929 cells than those of current CPAs without the addition of any proteins. In addition, rat mesenchymal stem cells were cryopreserved more effectively than with DMSO and fully retained the potential for proliferation and differentiation. Furthermore, many kinds of cells could be cryopreserved with PLL having the appropriate ratio of COOH groups, regardless of the cell types, including adhesive and floating cells, human- and mouse-derived cells, primary cells, and established cell lines. The properties might be associated with the antifreeze protein properties. These results indicate that these polymeric extracellular CPAs may replace current CPAs and the high viability after thawing and nonnecessity of serum ensure that these CPAs may be used in various preservation fields.
Collapse
Affiliation(s)
- Kazuaki Matsumura
- Department of Medical Simulation Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Jung Yoon Bae
- Department of Medical Simulation Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Suong Hyu Hyon
- Department of Medical Simulation Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
26
|
Thermal stability properties of an antifreeze protein from the desert beetle Microdera punctipennis. Cryobiology 2009; 60:192-7. [PMID: 19895800 DOI: 10.1016/j.cryobiol.2009.10.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 09/01/2009] [Accepted: 10/29/2009] [Indexed: 11/20/2022]
Abstract
An insect antifreeze protein gene Mpafp698 was cloned by the RT-PCR approach from the desert beetle Microdera punctipennis. The gene was constructed and heterogeneously expressed in Escherichia coli as fusion proteins, His-MpAFP698, glutathione S-transferase (GST)-MpAFP698, and maltose-binding protein (MBP)-MpAFP698. The thermostability and thermal hysteresis activity of these proteins were determined, with the aim of elucidating the biological characteristics of this protein. The approximate thermal hysteresis (TH) value of the purified His-MpAFP698 was 0.37 degrees C at 0.84 mg/ml, and maintained approximately 95.7% of the TH activity at 100 degrees C for 5 min. Furthermore, heat incubation showed that MBP-MpAFP698 was 10 degrees C more thermostable than MBP protein, indicating that MpAFP698 could, to some extent, improve the thermal stability of the fused partner MBP protein. This study suggests that MpAFP698 has a high thermal stability and could be used to improve the thermal stability of the less stable proteins by producing fusion proteins, which could be used for biotechnological purposes.
Collapse
|
27
|
Matsumura K, Hyon SH. Polyampholytes as low toxic efficient cryoprotective agents with antifreeze protein properties. Biomaterials 2009; 30:4842-9. [PMID: 19515417 DOI: 10.1016/j.biomaterials.2009.05.025] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 05/15/2009] [Indexed: 11/27/2022]
Abstract
Dimethyl sulfoxide (DMSO) has been used for several decades as the most efficient cryoprotective agent (CPA) for many types of cells and tissues in spite of its cytotoxicity and its effects on differentiation. Here we report that polyampholytes with an appropriate ratio of amino and carboxyl groups show higher cryopreservation efficiency and lower cytotoxicity than DMSO. Culture medium solutions of epsilon-poly-L-lysine (PLL) with more than 50 mol% of amino groups carboxylated showed excellent post-thaw survival efficiency of 95% murine L929 cells, and rat mesenchymal stem cells fully retained the potential for differentiation without serum. We also found that carboxylated PLLs showed antifreeze protein properties, such as ice recrystallization inhibition, which may contribute to successful cryopreservation by membrane protection. Thus, these polyampholytes can replace DMSO as new materials for CPAs in various preserving functions and will also be useful in studies elucidating the mechanisms of cryopreservation.
Collapse
Affiliation(s)
- Kazuaki Matsumura
- Department of Medical Simulation Engineering, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | |
Collapse
|
28
|
Venketesh S, Dayananda C. Properties, Potentials, and Prospects of Antifreeze Proteins. Crit Rev Biotechnol 2008; 28:57-82. [DOI: 10.1080/07388550801891152] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Phoon PY, Galindo FG, Vicente A, Dejmek P. Pulsed electric field in combination with vacuum impregnation with trehalose improves the freezing tolerance of spinach leaves. J FOOD ENG 2008. [DOI: 10.1016/j.jfoodeng.2007.12.016] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Kundu S, Roy D. Temperature-induced unfolding pathway of a type III antifreeze protein: Insight from molecular dynamics simulation. J Mol Graph Model 2008; 27:88-94. [DOI: 10.1016/j.jmgm.2008.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 02/15/2008] [Accepted: 03/11/2008] [Indexed: 10/22/2022]
|
31
|
Nishimiya Y, Kondo H, Takamichi M, Sugimoto H, Suzuki M, Miura A, Tsuda S. Crystal structure and mutational analysis of Ca2+-independent type II antifreeze protein from longsnout poacher, Brachyopsis rostratus. J Mol Biol 2008; 382:734-46. [PMID: 18674542 DOI: 10.1016/j.jmb.2008.07.042] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 07/13/2008] [Accepted: 07/16/2008] [Indexed: 10/21/2022]
Abstract
We recently found that longsnout poacher (Brachyosis rostratus) produces a Ca(2+)-independent type II antifreeze protein (lpAFP) and succeeded in expressing recombinant lpAFP using Phichia pastoris. Here, we report, for the first time, the X-ray crystal structure of lpAFP at 1.34 A resolution. The lpAFP structure displayed a relatively planar surface, which encompasses two loop regions (Cys86-Lys89 and Asn91-Cys97) and a short beta-strand (Trp109-Leu112) with three unstructured segments (Gly57-Ile58, Ala103-Ala104, and Pro113-His118). Electrostatic calculation of the protein surface showed that the relatively planar surface was divided roughly into a hydrophobic area (composed of the three unstructured segments lacking secondary structure) and a hydrophilic area (composed of the loops and beta-strand). Site-directed mutation of Ile58 with Phe at the center of the hydrophobic area decreased activity significantly, whereas mutation of Leu112 with Phe at an intermediate area between the hydrophobic and hydrophilic areas retained complete activity. In the hydrophilic area, a peptide-swap mutant in the loops retained 60% activity despite simultaneous mutations of eight residues. We conclude that the epicenter of the ice-binding site of lpAFP is the hydrophobic region, which is centered by Ile58, in the relatively planar surface. We built an ice-binding model for lpAFP on the basis of a lattice match of ice and constrained water oxygen atoms surrounding the hydrophobic area in the lpAFP structure. The model in which lpAFP has been docked to a secondary prism (2-1-10) plane, which is different from the one determined for Ca(2+)-independent type II AFP from sea raven (11-21), appears to explain the results of the mutagenesis analysis.
Collapse
Affiliation(s)
- Yoshiyuki Nishimiya
- Functional Protein Research Group, Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology, 2-17-2-1 Tsukisamu-Higashi, Toyohira, Sapporo 062-8517, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Direct visualization of spruce budworm antifreeze protein interacting with ice crystals: basal plane affinity confers hyperactivity. Biophys J 2008; 95:333-41. [PMID: 18339740 DOI: 10.1529/biophysj.107.125328] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antifreeze proteins (AFPs) protect certain organisms from freezing by adhering to ice crystals, thereby preventing their growth. All AFPs depress the nonequilibrium freezing temperature below the melting point; however AFPs from overwintering insects, such as the spruce budworm (sbw) are 10-100 times more effective than most fish AFPs. It has been proposed that the exceptional activity of these AFPs depends on their ability to prevent ice growth at the basal plane. To test the hypothesis that the hyperactivity of sbwAFP results from direct affinity to the basal plane, we fluorescently tagged sbwAFP and visualized it on the surface of ice crystals using fluorescence microscopy. SbwAFP accumulated at the six prism plane corners and the two basal planes of hexagonal ice crystals. In contrast, fluorescently tagged fish type III AFP did not adhere to the basal planes of a single-crystal ice hemisphere. When ice crystals were grown in the presence of a mixture of type III AFP and sbwAFP, a hybrid crystal shape was produced with sbwAFP bound to the basal planes of truncated bipyramidal crystals. These observations are consistent with the blockage of c-axial growth of ice as a result of direct interaction of sbwAFP with the basal planes.
Collapse
|
33
|
Damodaran S. Inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:10918-10923. [PMID: 18044830 DOI: 10.1021/jf0724670] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate produced by papain action was studied. The ice crystal growth was monitored by thermal cycling between -14 and -12 degrees C at a rate of one cycle per 3 min. It is shown that the hydrolysate fraction containing peptides in the molecular weight range of about 2000-5000 Da exhibited the highest inhibitory activity on ice crystal growth in ice cream mix, whereas fractions containing peptides greater than 7000 Da did not inhibit ice crystal growth. The size distribution of gelatin peptides formed in the hydrolysate was influenced by the pH of hydrolysis. The optimum hydrolysis conditions for producing peptides with maximum ice crystal growth inhibitory activity was pH 7 at 37 degrees C for 10 min at a papain to gelatin ratio of 1:100. However, this may depend on the type and source of gelatin. The possible mechanism of ice crystal growth inhibition by peptides from gelatin is discussed. Molecular modeling of model gelatin peptides revealed that they form an oxygen triad plane at the C-terminus with oxygen-oxygen distances similar to those found in ice nuclei. Binding of this oxygen triad plane to the prism face of ice nuclei via hydrogen bonding appears to be the mechanism by which gelatin hydrolysate might be inhibiting ice crystal growth in ice cream mix.
Collapse
|
34
|
Galindo FG, Sjöholm I, Rasmusson AG, Widell S, Kaack K. Plant Stress Physiology: Opportunities and Challenges for the Food Industry. Crit Rev Food Sci Nutr 2007; 47:749-63. [DOI: 10.1080/10408390601062211] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
35
|
Pertaya N, Marshall CB, DiPrinzio CL, Wilen L, Thomson ES, Wettlaufer JS, Davies PL, Braslavsky I. Fluorescence microscopy evidence for quasi-permanent attachment of antifreeze proteins to ice surfaces. Biophys J 2007; 92:3663-73. [PMID: 17325008 PMCID: PMC1853139 DOI: 10.1529/biophysj.106.096297] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many organisms are protected from freezing by the presence of extracellular antifreeze proteins (AFPs), which bind to ice, modify its morphology, and prevent its further growth. These proteins have a wide range of applications including cryopreservation, frost protection, and as models in biomineralization research. However, understanding their mechanism of action remains an outstanding challenge. While the prevailing adsorption-inhibition hypothesis argues that AFPs must bind irreversibly to ice to arrest its growth, other theories suggest that there is exchange between the bound surface proteins and the free proteins in solution. By conjugating green fluorescence protein (GFP) to a fish AFP (Type III), we observed the binding of the AFP to ice. This was accomplished by monitoring the presence of GFP-AFP on the surface of ice crystals several microns in diameter using fluorescence microscopy. The lack of recovery of fluorescence after photobleaching of the GFP component of the surface-bound GFP-AFP shows that there is no equilibrium surface-solution exchange of GFP-AFP and thus supports the adsorption-inhibition mechanism for this type of AFP. Moreover, our study establishes the utility of fluorescently labeled AFPs as a research tool for investigating the mechanisms underlying the activity of this diverse group of proteins.
Collapse
Affiliation(s)
- Natalya Pertaya
- Department of Physics and Astronomy, Ohio University, Athens, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
García-Arribas O, Mateo R, Tomczak MM, Davies PL, Mateu MG. Thermodynamic stability of a cold-adapted protein, type III antifreeze protein, and energetic contribution of salt bridges. Protein Sci 2006; 16:227-38. [PMID: 17189482 PMCID: PMC2203292 DOI: 10.1110/ps.062448907] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A thermodynamic analysis of a cold-adapted protein, type III anti-freeze protein (AFP), was carried out. The results indicate that the folding equilibrium of type III AFP is a reversible, unimolecular, two-state process with no populated intermediates. Compared to most mesophilic proteins whose folding is two-state, the psychrophilic type III AFP has a much lower thermodynamic stability at 25 degrees C, approximately 3 kcal/mol, and presents a remarkably downshifted stability-temperature curve, reaching a maximum of 5 kcal/mol around 0 degrees C. Type III AFPs contain few and non-optimally distributed surface charges relative to their mesophilic homologs, the C-terminal domains of sialic acid synthases. We used thermodynamic double mutant cycles to evaluate the energetic role of every surface salt bridge in type III AFP. Two isolated salt bridges provided no contribution to stability, while the Asp36-Arg39 salt bridge, involved in a salt bridge network with the C-terminal carboxylate, had a substantial contribution (approximately 1 kcal/mol). However, this contribution was more than counteracted by the destabilizing effect of the Asp36 carboxylate itself, whose removal led to a net 30% increase in stability at 25 degrees C. This study suggests that type III AFPs may have evolved for a minimally acceptable stability at the restricted, low temperature range (around 0 degrees C) at which AFPs must function. In addition, it indicates that salt bridge networks are used in nature also for the stability of psychrophilic proteins, and has led to a type III AFP variant of increased stability that could be used for biotechnological purposes.
Collapse
Affiliation(s)
- Olga García-Arribas
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
37
|
Hamel F, Grondin M, Denizeau F, Averill-Bates DA, Sarhan F. Wheat extracts as an efficient cryoprotective agent for primary cultures of rat hepatocytes. Biotechnol Bioeng 2006; 95:661-70. [PMID: 16927246 DOI: 10.1002/bit.20953] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Hepatocytes are an important physiological model for evaluation of metabolic and biological effects of xenobiotics. They do not proliferate in culture and are extremely sensitive to damage during freezing and thawing, even after the addition of classical cryoprotectants. Thus improved cryopreservation techniques are needed to reduce cell injury and functional impairment. Here, we describe a new and efficient cryopreservation method, which permits long-term storage and recovery of large quantities of healthy cells that maintain high hepatospecific functions. In culture, the morphology of hepatocytes cryopreserved with wheat protein extracts (WPE) was similar to that of fresh cells. Furthermore, hepatospecific functions such as albumin secretion and biotransformation of ammonium to urea were well maintained during 4 days in culture. Inductions of CYP1A1 and CYP2B in hepatocytes cryopreserved with WPEs were similar to those in fresh hepatocytes. These findings clearly show that WPEs are an excellent cryopreservant for primary hepatocytes. The extract was also found to cryopreserve other human and animal cell types such as lung carcinoma, colorectal adenocarcinoma, Chinese hamster ovary transfected with TGF-b1 cDNA, cervical cancer taken from Henrietta Lacks, intestinal epithelium, and T cell leukemia. WPEs have potential as a universal cryopreservant agent of mammalian cells. It is an economic, efficient and non-toxic agent.
Collapse
Affiliation(s)
- Francine Hamel
- Département des Sciences Biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montréal, Québec H3C 3P8, Canada
| | | | | | | | | |
Collapse
|
38
|
Houde M, Belcaid M, Ouellet F, Danyluk J, Monroy AF, Dryanova A, Gulick P, Bergeron A, Laroche A, Links MG, MacCarthy L, Crosby WL, Sarhan F. Wheat EST resources for functional genomics of abiotic stress. BMC Genomics 2006; 7:149. [PMID: 16772040 PMCID: PMC1539019 DOI: 10.1186/1471-2164-7-149] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 06/13/2006] [Indexed: 11/30/2022] Open
Abstract
Background Wheat is an excellent species to study freezing tolerance and other abiotic stresses. However, the sequence of the wheat genome has not been completely characterized due to its complexity and large size. To circumvent this obstacle and identify genes involved in cold acclimation and associated stresses, a large scale EST sequencing approach was undertaken by the Functional Genomics of Abiotic Stress (FGAS) project. Results We generated 73,521 quality-filtered ESTs from eleven cDNA libraries constructed from wheat plants exposed to various abiotic stresses and at different developmental stages. In addition, 196,041 ESTs for which tracefiles were available from the National Science Foundation wheat EST sequencing program and DuPont were also quality-filtered and used in the analysis. Clustering of the combined ESTs with d2_cluster and TGICL yielded a few large clusters containing several thousand ESTs that were refractory to routine clustering techniques. To resolve this problem, the sequence proximity and "bridges" were identified by an e-value distance graph to manually break clusters into smaller groups. Assembly of the resolved ESTs generated a 75,488 unique sequence set (31,580 contigs and 43,908 singletons/singlets). Digital expression analyses indicated that the FGAS dataset is enriched in stress-regulated genes compared to the other public datasets. Over 43% of the unique sequence set was annotated and classified into functional categories according to Gene Ontology. Conclusion We have annotated 29,556 different sequences, an almost 5-fold increase in annotated sequences compared to the available wheat public databases. Digital expression analysis combined with gene annotation helped in the identification of several pathways associated with abiotic stress. The genomic resources and knowledge developed by this project will contribute to a better understanding of the different mechanisms that govern stress tolerance in wheat and other cereals.
Collapse
Affiliation(s)
- Mario Houde
- Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal QC, H3C 3P8, Canada
| | - Mahdi Belcaid
- Département d'Informatique, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal QC, H3C 3P8, Canada
| | - François Ouellet
- Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal QC, H3C 3P8, Canada
| | - Jean Danyluk
- Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal QC, H3C 3P8, Canada
| | - Antonio F Monroy
- Biology Department, Concordia University, 7141 Sherbrooke Street West, Montreal QC, H4B 1R6, Canada
| | - Ani Dryanova
- Biology Department, Concordia University, 7141 Sherbrooke Street West, Montreal QC, H4B 1R6, Canada
| | - Patrick Gulick
- Biology Department, Concordia University, 7141 Sherbrooke Street West, Montreal QC, H4B 1R6, Canada
| | - Anne Bergeron
- Département d'Informatique, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal QC, H3C 3P8, Canada
| | - André Laroche
- Agriculture et Agroalimentaire Canada, Centre de recherches de Lethbridge, 5403, 1st Avenue South, C.P. 3000, Lethbridge AB, T1J 4B1, Canada
| | - Matthew G Links
- Department of Biological Sciences, University of Windsor, 401 Sunset ave, Windsor ON, N9B 3P4, Canada
| | - Luke MacCarthy
- Department of Computer Science, University of Saskatchewan, 176 Thorvaldson Building, 110 Science Place, Saskatoon SK, S7N 5C9, Canada
| | - William L Crosby
- Department of Biological Sciences, University of Windsor, 401 Sunset ave, Windsor ON, N9B 3P4, Canada
| | - Fathey Sarhan
- Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal QC, H3C 3P8, Canada
| |
Collapse
|
39
|
Abstract
Antifreeze proteins (AFPs) designate a class of proteins that are able to bind to and inhibit the growth of macromolecular ice. These proteins have been characterized from a variety of organisms. Recently, the structures of AFPs from the spruce budworm (Choristoneura fumiferana) and the yellow mealworm (Tenebrio molitor) have been determined by NMR and X-ray crystallography. Despite nonhomologous sequences, both proteins were shown to consist of beta-helices. We review the structures and dynamics data of these two insect AFPs to bring insight into the structure-function relationship and explore their beta-helical architecture. For the spruce budworm protein, the fold is a left-handed beta-helix with 15 residues per coil. The Tenebrio molitor protein consists of a right-handed beta-helix with 12 residues per coil. Mutagenesis and structural studies show that the insect AFPs present a highly rigid array of threonine residues and bound water molecules that can effectively mimic the ice lattice. Comparisons of the newly determined ryegrass and carrot AFP sequences have led to models suggesting that they might also consist of beta-helices, and indicate that the beta-helix might be used as an AFP structural motif in nonfish organisms.
Collapse
Affiliation(s)
- Steffen P Graether
- CIHR Group in Protein Structure and Function, Department of Biochemistry and Protein Engineering Network of Centres of Excellence, University of Alberta, Edmonton, Alberta, Canada.
| | | |
Collapse
|
40
|
Triunfol ML, Hines PJ. Dynamics of list-server discussion on genetically modified foods. PUBLIC UNDERSTANDING OF SCIENCE (BRISTOL, ENGLAND) 2004; 13:155-175. [PMID: 15323060 DOI: 10.1177/0963662504044110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Computer-mediated discussion lists, or list-servers, are popular tools in settings ranging from professional to personal to educational. A discussion list on genetically modified food (GMF) was created in September 2000 as part of the Forum on Genetically Modified Food developed by Science Controversies: Online Partnerships in Education (SCOPE), an educational project that uses computer resources to aid research and learning around unresolved scientific questions. The discussion list "GMF-Science" was actively supported from January 2001 to May 2002. The GMF-Science list welcomed anyone interested in discussing the controversies surrounding GMF. Here, we analyze the dynamics of the discussions and how the GMF-Science list may contribute to learning. Activity on the GMF-Science discussion list reflected some but not all the controversies that were appearing in more traditional publication formats, broached other topics not well represented in the published literature, and tended to leave undiscussed the more technical research developments.
Collapse
Affiliation(s)
- Marcia L Triunfol
- Associate editor at the American Assocation for the Advancement of Science (AAAS).
| | | |
Collapse
|
41
|
Tanghe A, Van Dijck P, Thevelein JM. Determinants of freeze tolerance in microorganisms, physiological importance, and biotechnological applications. ADVANCES IN APPLIED MICROBIOLOGY 2004; 53:129-76. [PMID: 14696318 DOI: 10.1016/s0065-2164(03)53004-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- An Tanghe
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Katholieke Universiteit Leuven, Belgium
| | | | | |
Collapse
|
42
|
Gómez G F, Sjöholm I. Applying biochemical and physiological principles in the industrial freezing of vegetables: a case study on carrots. Trends Food Sci Technol 2004. [DOI: 10.1016/j.tifs.2003.07.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Breton G, Danyluk J, Charron JBF, Sarhan F. Expression profiling and bioinformatic analyses of a novel stress-regulated multispanning transmembrane protein family from cereals and Arabidopsis. PLANT PHYSIOLOGY 2003; 132:64-74. [PMID: 12746512 PMCID: PMC166952 DOI: 10.1104/pp.102.015255] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2002] [Revised: 11/07/2002] [Accepted: 01/06/2003] [Indexed: 05/18/2023]
Abstract
Cold acclimation is a multigenic trait that allows hardy plants to develop efficient tolerance mechanisms needed for winter survival. To determine the genetic nature of these mechanisms, several cold-responsive genes of unknown function were identified from cold-acclimated wheat (Triticum aestivum). To identify the putative functions and structural features of these new genes, integrated genomic approaches of data mining, expression profiling, and bioinformatic predictions were used. The analyses revealed that one of these genes is a member of a small family that encodes two distinct groups of multispanning transmembrane proteins. The cold-regulated (COR)413-plasma membrane and COR413-thylakoid membrane groups are potentially targeted to the plasma membrane and thylakoid membrane, respectively. Further sequence analysis of the two groups from different plant species revealed the presence of a highly conserved phosphorylation site and a glycosylphosphatidylinositol-anchoring site at the C-terminal end. No homologous sequences were found in other organisms suggesting that this family is specific to the plant kingdom. Intraspecies and interspecies comparative gene expression profiling shows that the expression of this gene family is correlated with the development of freezing tolerance in cereals and Arabidopsis. In addition, several members of the family are regulated by water stress, light, and abscisic acid. Structure predictions and comparative genome analyses allow us to propose that the cor413 genes encode putative G-protein-coupled receptors.
Collapse
Affiliation(s)
- Ghislain Breton
- Département des Sciences biologiques, Université du Québec à Montréal, Case Postale 8888, succursale Centre-ville, Canada H3C 3P8
| | | | | | | |
Collapse
|
44
|
Graether SP, Gagné SM, Spyracopoulos L, Jia Z, Davies PL, Sykes BD. Spruce budworm antifreeze protein: changes in structure and dynamics at low temperature. J Mol Biol 2003; 327:1155-68. [PMID: 12662938 DOI: 10.1016/s0022-2836(03)00235-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Antifreeze proteins (AFPs) prevent the growth of ice, and are used by some organisms that live in sub-zero environments for protection against freezing. All AFPs are thought to function by an adsorption inhibition process. In order to elucidate the ice-binding mechanism, the structures of several AFPs have been determined, and have been shown to consist of different folds. Recently, the first structures of the highly active insect AFPs have been characterized. These proteins have a beta-helix structure, which adds yet another fold to the AFP family. The 90-residue spruce budworm (Choristoneura fumiferana) AFP consists of a beta-helix with 15 residues per coil. The structure contains two ranks of aligned threonine residues (known as the TXT motif), which were shown by mutagenesis experiments to be located in the ice-binding face. In our previous NMR study of this AFP at 30 degrees C, we found that the TXT face was not optimally defined because of the broadening of NMR resonances potentially due to weak oligomerization. We present here a structure of spruce budworm AFP determined at 5 degrees C, where this broadening is reduced. In addition, the 1H-15N NMR dynamics of the protein were examined at 30 degrees C and 5 degrees C. The results show that the spruce budworm AFP is more structured at 5 degrees C, and support the general observation that AFPs become more rigid as the temperature is lowered.
Collapse
Affiliation(s)
- Steffen P Graether
- Department of Biochemistry, CIHR Group in Structure and Function, University of Alberta, 713, Heritage Medical Research Building, T6G 2H7, Edmonton, Alta., Canada
| | | | | | | | | | | |
Collapse
|