1
|
Kocherlakota S, Swinkels D, Van Veldhoven PP, Baes M. Mouse Models to Study Peroxisomal Functions and Disorders: Overview, Caveats, and Recommendations. Methods Mol Biol 2023; 2643:469-500. [PMID: 36952207 DOI: 10.1007/978-1-0716-3048-8_34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
During the last three decades many mouse lines were created or identified that are deficient in one or more peroxisomal functions. Different methodologies were applied to obtain global, hypomorph, cell type selective, inducible, and knockin mice. Whereas some models closely mimic pathologies in patients, others strongly deviate or no human counterpart has been reported. Often, mice, apparently endowed with a stronger transcriptional adaptation, have to be challenged with dietary additions or restrictions in order to trigger phenotypic changes. Depending on the inactivated peroxisomal protein, several approaches can be taken to validate the loss-of-function. Here, an overview is given of the available mouse models and their most important characteristics.
Collapse
Affiliation(s)
- Sai Kocherlakota
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Daniëlle Swinkels
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Paul P Van Veldhoven
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Honsho M, Abe Y, Fujiki Y. Dysregulation of Plasmalogen Homeostasis Impairs Cholesterol Biosynthesis. J Biol Chem 2015; 290:28822-33. [PMID: 26463208 DOI: 10.1074/jbc.m115.656983] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Indexed: 11/06/2022] Open
Abstract
Plasmalogen biosynthesis is regulated by modulating fatty acyl-CoA reductase 1 stability in a manner dependent on cellular plasmalogen level. However, physiological significance of the regulation of plasmalogen biosynthesis remains unknown. Here we show that elevation of the cellular plasmalogen level reduces cholesterol biosynthesis without affecting the isoprenylation of proteins such as Rab and Pex19p. Analysis of intermediate metabolites in cholesterol biosynthesis suggests that the first oxidative step in cholesterol biosynthesis catalyzed by squalene monooxygenase (SQLE), an important regulator downstream HMG-CoA reductase in cholesterol synthesis, is reduced by degradation of SQLE upon elevation of cellular plasmalogen level. By contrast, the defect of plasmalogen synthesis causes elevation of SQLE expression, resulting in the reduction of 2,3-epoxysqualene required for cholesterol synthesis, hence implying a novel physiological consequence of the regulation of plasmalogen biosynthesis.
Collapse
Affiliation(s)
- Masanori Honsho
- From the Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuichi Abe
- From the Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yukio Fujiki
- From the Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
3
|
Cholesterol biosynthesis and ER stress in peroxisome deficiency. Biochimie 2014; 98:75-85. [DOI: 10.1016/j.biochi.2013.10.019] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/22/2013] [Indexed: 12/27/2022]
|
4
|
Kovacs WJ, Charles KN, Walter KM, Shackelford JE, Wikander TM, Richards MJ, Fliesler SJ, Krisans SK, Faust PL. Peroxisome deficiency-induced ER stress and SREBP-2 pathway activation in the liver of newborn PEX2 knock-out mice. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:895-907. [PMID: 22441164 DOI: 10.1016/j.bbalip.2012.02.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 01/20/2012] [Accepted: 02/29/2012] [Indexed: 12/26/2022]
Abstract
Disruption of the Pex2 gene leads to peroxisome deficiency and widespread metabolic dysfunction. We previously demonstrated that peroxisomes are critical for maintaining cholesterol homeostasis, using peroxisome-deficient Pex2(-/-) mice on a hybrid Swiss Webster×129S6/SvEv (SW/129) genetic background. Peroxisome deficiency activates hepatic endoplasmic reticulum (ER) stress pathways, leading to dysregulation of the endogenous sterol response mechanism. Herein, we demonstrate a more profound dysregulation of cholesterol homeostasis in newborn Pex2(-/-) mice congenic on a 129S6/SvEv (129) genetic background, and substantial differences between newborn versus postnatal Pex2(-/-) mice in factors that activate ER stress. These differences extend to relationships between activation of genes regulated by SREBP-2 versus PPARα. The SREBP-2 pathway is induced in neonatal Pex2(-/-) livers from 129 and SW/129 strains, despite normal hepatic cholesterol levels. ER stress markers are increased in newborn 129 Pex2(-/-) livers, which occurs in the absence of hepatic steatosis or accumulation of peroxins in the ER. Moreover, the induction of SREBP-2 and ER stress pathways is independent of PPARα activation in livers of newborn 129 and SW/129 Pex2(-/-) mice. Two-week-old wild-type mice treated with the peroxisome proliferator WY-14,643 show strong induction of PPARα-regulated genes and decreased expression of SREBP-2 and its target genes, further demonstrating that SREBP-2 pathway induction is not dependent on PPARα activation. Lastly, there is no activation of either SREBP-2 or ER stress pathways in kidney and lung of newborn Pex2(-/-) mice, suggesting a parallel induction of these pathways in peroxisome-deficient mice. These findings establish novel associations between SREBP-2, ER stress and PPARα pathway inductions.
Collapse
Affiliation(s)
- Werner J Kovacs
- Institute of Cell Biology, ETH Zuerich, CH-8093 Zuerich, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Peeters A, Swinnen JV, Van Veldhoven PP, Baes M. Hepatosteatosis in peroxisome deficient liver despite increased β-oxidation capacity and impaired lipogenesis. Biochimie 2011; 93:1828-38. [PMID: 21756965 DOI: 10.1016/j.biochi.2011.06.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 06/27/2011] [Indexed: 11/26/2022]
Abstract
Peroxisome deficiency in liver causes hepatosteatosis both in patients and in mice. Here, we studied the mechanisms that contribute to this lipid accumulation and to activation of peroxisome proliferator activated receptor α (PPARα) by using liver-specific Pex5(-/-) mice (L-Pex5(-/-) mice). Surprisingly, steatosis was accompanied both by increased mitochondrial β-oxidation capacity, confirming previous observations, and by impaired de novo lipid synthesis mediated by reduced expression of sterol regulatory element binding protein 1c and its targets. As a consequence, when challenged with a high fat diet, L-Pex5(-/-) mice were protected from adiposity. Hepatic fatty acid uptake was strongly increased whereas the expression of apolipoproteins and the lipoprotein assembly factor microsomal triglyceride transfer protein were markedly reduced resulting in reduced secretion of very low density lipoproteins. Most of these changes seemed to be orchestrated by the endogenous activation of PPARα, challenging the assumption that PPARα activation in hepatocytes requires fatty acid synthase dependent de novo fatty acid synthesis. Expression of cholesterol synthesizing enzymes and cholesterol levels were not affected in peroxisome deficient liver. In conclusion, increased fatty acid uptake driven by endogenous PPARα activation and reduced fatty acid secretion cause hepatosteatosis in peroxisome deficient livers.
Collapse
Affiliation(s)
- Annelies Peeters
- Laboratory of Cell Metabolism, Department of Pharmaceutical Sciences, K.U.Leuven, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
6
|
Weller S, Rosewich H, Gärtner J. Cerebral MRI as a valuable diagnostic tool in Zellweger spectrum patients. J Inherit Metab Dis 2008; 31:270-80. [PMID: 18415699 DOI: 10.1007/s10545-008-0856-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Revised: 02/08/2008] [Accepted: 02/11/2008] [Indexed: 12/21/2022]
Abstract
Patients with defects in the biogenesis of peroxisomes include those with Zellweger syndrome spectrum (ZSS), a developmental and progressive metabolic disease with a distinct dysmorphic phenotype and varying severity. The diagnosis of ZSS relies on the clinical presentation and the biochemical evaluation of peroxisomal metabolites. Mutation detection in one out of twelve genes coding for proteins involved in the biogenesis of peroxisomes confirms the diagnosis. In the absence of pronounced clinical features of ZSS, neuroradiological findings may lead the way to the diagnosis. Cerebral magnetic resonance imaging (cMRI) pathology in ZSS consists of abnormal gyration pattern including polymicrogyria and pachygyria, leukencephalopathy, germinolytic cysts and heterotopias as reported by previous systematic studies including cMRI of a total of 34 ZSS patients, only five of whom had a severe phenotype. The present study evaluated the cMRI results of additional 18 patients, 6 with a severe and 12 with a milder ZSS phenotype. It confirms and extends knowledge of the characteristic cMRI pattern in ZSS patients. Besides an abnormal gyration pattern and delayed myelination or leukencephalopathy, brain atrophy was a common finding. Polymicrogyria and pachygyria were more common in patients with severe ZSS, while leukencephalopathy increases with age in patients with longer survival. Nevertheless, an abnormal gyration pattern might be more frequent in patients with a mild ZSS than deduced from previous studies. In addition, we discuss the differential diagnosis of the ZSS cMRI pattern and review investigations on the pathogenesis of the ZSS cerebral phenotype in mouse models of the disease.
Collapse
Affiliation(s)
- S Weller
- Department of Pediatrics and Pediatric Neurology, Georg August University, Göttingen, Germany.
| | | | | |
Collapse
|
7
|
Abstract
In this review, we describe the current state of knowledge about the biochemistry of mammalian peroxisomes, especially human peroxisomes. The identification and characterization of yeast mutants defective either in the biogenesis of peroxisomes or in one of its metabolic functions, notably fatty acid beta-oxidation, combined with the recognition of a group of genetic diseases in man, wherein these processes are also defective, have provided new insights in all aspects of peroxisomes. As a result of these and other studies, the indispensable role of peroxisomes in multiple metabolic pathways has been clarified, and many of the enzymes involved in these pathways have been characterized, purified, and cloned. One aspect of peroxisomes, which has remained ill defined, is the transport of metabolites across the peroxisomal membrane. Although it is clear that mammalian peroxisomes under in vivo conditions are closed structures, which require the active presence of metabolite transporter proteins, much remains to be learned about the permeability properties of mammalian peroxisomes and the role of the four half ATP-binding cassette (ABC) transporters therein.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Disease, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | | |
Collapse
|
8
|
Baes M, Van Veldhoven PP. Generalised and conditional inactivation of Pex genes in mice. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1785-93. [PMID: 17007945 DOI: 10.1016/j.bbamcr.2006.08.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 08/17/2006] [Accepted: 08/18/2006] [Indexed: 12/28/2022]
Abstract
During the past 10 years, several Pex genes have been knocked out in the mouse with the purpose to generate models to study the pathogenesis of peroxisome biogenesis disorders and/or to investigate the physiological importance of the Pex proteins. More recently, mice with selective inactivation of a Pex gene in particular cell types were created. The metabolic abnormalities in peroxisome deficient mice paralleled to a large extent those of Zellweger patients. Several but not all of the clinical and histological features reported in patients also occurred in peroxisome deficient mice as for example hypotonia, cortical and cerebellar malformations, endochondral ossification defects, hepatomegaly, liver fibrosis and ultrastructural abnormalities of mitochondria in hepatocytes. Although the molecular origins of the observed pathologies have not yet been resolved, several new insights on the importance of peroxisomes in different tissues have emerged.
Collapse
Affiliation(s)
- Myriam Baes
- Laboratory for Cell Metabolism, Campus Gasthuisberg Onderwijs en Navorsing II, bus 823 Herestraat 49 B-3000, Department of Pharmaceutical Sciences, Katholieke Universiteit Leuven, Leuven, Belgium.
| | | |
Collapse
|
9
|
Weinhofer I, Kunze M, Stangl H, Porter FD, Berger J. Peroxisomal cholesterol biosynthesis and Smith-Lemli-Opitz syndrome. Biochem Biophys Res Commun 2006; 345:205-9. [PMID: 16678134 DOI: 10.1016/j.bbrc.2006.04.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Accepted: 04/17/2006] [Indexed: 10/24/2022]
Abstract
Smith-Lemli-Opitz syndrome (SLOS), caused by 7-dehydrocholesterol-reductase (DHCR7) deficiency, shows variable severity independent of DHCR7 genotype. To test whether peroxisomes are involved in alternative cholesterol synthesis, we used [1-(14)C]C24:0 for peroxisomal beta-oxidation to generate [1-(14)C]acetyl-CoA as cholesterol precursor inside peroxisomes. The HMG-CoA reductase inhibitor lovastatin suppressed cholesterol synthesis from [2-(14)C]acetate and [1-(14)C]C8:0 but not from [1-(14)C]C24:0, implicating a peroxisomal, lovastatin-resistant HMG-CoA reductase. In SLOS fibroblasts lacking DHCR7 activity, no cholesterol was formed from [1-(14)C]C24:0-derived [1-(14)C]acetyl-CoA, indicating that the alternative peroxisomal pathway also requires this enzyme. Our results implicate peroxisomes in cholesterol biosynthesis but provide no link to phenotypic variation in SLOS.
Collapse
Affiliation(s)
- Isabelle Weinhofer
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
10
|
Breitling R. Pathogenesis of peroxisomal deficiency disorders (Zellweger syndrome) may be mediated by misregulation of the GABAergic system via the diazepam binding inhibitor. BMC Pediatr 2004; 4:5. [PMID: 15102341 PMCID: PMC391370 DOI: 10.1186/1471-2431-4-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Accepted: 03/12/2004] [Indexed: 01/06/2023] Open
Abstract
Background Zellweger syndrome (ZS) is a fatal inherited disease caused by peroxisome biogenesis deficiency. Patients are characterized by multiple disturbances of lipid metabolism, profound hypotonia and neonatal seizures, and distinct craniofacial malformations. Median live expectancy of ZS patients is less than one year. While the molecular basis of peroxisome biogenesis and metabolism is known in considerable detail, it is unclear how peroxisome deficiency leads to the most severe neurological symptoms. Recent analysis of ZS mouse models has all but invalidated previous hypotheses. Hypothesis We suggest that a regulatory rather than a metabolic defect is responsible for the drastic impairment of brain function in ZS patients. Testing the hypothesis Using microarray analysis we identify diazepam binding inhibitor/acyl-CoA binding protein (DBI) as a candidate protein that might be involved in the pathogenic mechanism of ZS. DBI has a dual role as a neuropeptide antagonist of GABA(A) receptor signaling in the brain and as a regulator of lipid metabolism. Repression of DBI in ZS patients could result in an overactivation of GABAergic signaling, thus eventually leading to the characteristic hypotonia and seizures. The most important argument for a misregulation of GABA(A) in ZS is, however, provided by the striking similarity between ZS and "benzodiazepine embryofetopathy", a malformation syndrome observed after the abuse of GABA(A) agonists during pregnancy. Implications of the hypothesis We present a tentative mechanistic model of the effect of DBI misregulation on neuronal function that could explain some of the aspects of the pathology of Zellweger syndrome.
Collapse
Affiliation(s)
- Rainer Breitling
- Department of Biology, San Diego State University, San Diego, USA.
| |
Collapse
|
11
|
Kovacs WJ, Shackelford JE, Tape KN, Richards MJ, Faust PL, Fliesler SJ, Krisans SK. Disturbed cholesterol homeostasis in a peroxisome-deficient PEX2 knockout mouse model. Mol Cell Biol 2004; 24:1-13. [PMID: 14673138 PMCID: PMC303355 DOI: 10.1128/mcb.24.1.1-13.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We evaluated the major pathways of cholesterol regulation in the peroxisome-deficient PEX2(-/-) mouse, a model for Zellweger syndrome. Zellweger syndrome is a lethal inherited disorder characterized by severe defects in peroxisome biogenesis and peroxisomal protein import. Compared with wild-type mice, PEX2(-/-) mice have decreased total and high-density lipoprotein cholesterol levels in plasma. Hepatic expression of the SREBP-2 gene is increased 2.5-fold in PEX2(-/-) mice and is associated with increased activities and increased protein and expression levels of SREBP-2-regulated cholesterol biosynthetic enzymes. However, the upregulated cholesterogenic enzymes appear to function with altered efficiency, associated with the loss of peroxisomal compartmentalization. The rate of cholesterol biosynthesis in 7- to 9-day-old PEX2(-/-) mice is markedly increased in most tissues, except in the brain and kidneys, where it is reduced. While the cholesterol content of most tissues is normal in PEX2(-/-) mice, in the knockout mouse liver it is decreased by 40% relative to that in control mice. The classic pathway of bile acid biosynthesis is downregulated in PEX2(-/-) mice. However, expression of CYP27A1, the rate-determining enzyme in the alternate pathway of bile acid synthesis, is upregulated threefold in the PEX2(-/-) mouse liver. The expression of hepatic ATP-binding cassette (ABC) transporters (ABCA1 and ABCG1) involved in cholesterol efflux is not affected in PEX2(-/-) mice. These data illustrate the diversity in cholesterol regulatory responses among different organs in postnatal peroxisome-deficient mice and demonstrate that peroxisomes are critical for maintaining cholesterol homeostasis in the neonatal mouse.
Collapse
Affiliation(s)
- Werner J Kovacs
- Department of Biology, San Diego State University, San Diego, California 92182, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The peroxisome biogenesis disorders (PBDs) comprise 12 autosomal recessive complementation groups (CGs). The multisystem clinical phenotype varies widely in severity and results from disturbances in both development and metabolic homeostasis. Progress over the last several years has lead to identification of the genes responsible for all of these disorders and to a much improved understanding of the biogenesis and function of the peroxisome. Increasing availability of mouse models for these disorders offers hope for a better understanding of their pathophysiology and for development of therapies that might especially benefit patients at the milder end of the clinical phenotype.
Collapse
Affiliation(s)
- Sabine Weller
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
13
|
Oettl K, Höfler G, Ness GC, Sattler W, Malle E. An apparent decrease in cholesterol biosynthesis in peroxisomal-defective Chinese hamster ovary cells is related to impaired mitochondrial oxidation. Biochem Biophys Res Commun 2003; 305:957-63. [PMID: 12767923 DOI: 10.1016/s0006-291x(03)00855-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Recent data suggest that impaired mitochondrial activities in Zellweger fibroblasts are related to defective peroxisome biogenesis and vice versa. To investigate the contribution of functional mitochondria to cholesterol biosynthesis, radioactive precursor molecules that form acetyl-CoA via beta-oxidation-independent (pyruvate) or -dependent (palmitate and octanoate) pathways were used. Production of both 14C-labeled cholesterol and 14C-labeled CO(2) from these radioactive tracers was significantly impaired in peroxisomal-defective ZR-82 Chinese hamster ovary cells in comparison to controls. In contrast, cholesterol synthesis from acetate--a tracer directly converted to acetyl-CoA without the involvement of mitochondrial activities--was threefold higher in ZR-82 cells than in controls. Pathways further contributing to cellular cholesterol homeostasis, i.e., receptor-mediated binding of exogenous lipoprotein-associated cholesterol as well as intracellular mobilization of cholesteryl ester deposits were similar in ZR-82 and controls. From these findings, we propose that peroxisomal dysfunction in ZR-82 cells is tightly coupled to impaired mitochondrial activities, e.g., defective mitochondrial beta-oxidation and formation of acetyl-CoA from short chain fatty acids resulting in a decreased rate of CO(2) production, and an apparent decrease in cholesterol biosynthesis. Actually, cholesterol biosynthesis from acetate is increased in the peroxisomal-defective cells. This explains previous conflicting conclusions.
Collapse
Affiliation(s)
- Karl Oettl
- Institute of Medical Biochemistry and Molecular Biology, Karl-Franzens University Graz, Harrachgasse 21, Graz A-8010, Austria
| | | | | | | | | |
Collapse
|
14
|
Baes M, Van Veldhoven PP. Lessons from Knockout Mice. I: Phenotypes of Mice with Peroxisome Biogenesis Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 544:113-22. [PMID: 14713222 DOI: 10.1007/978-1-4419-9072-3_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Myriam Baes
- Laboratory of Clinical Chemistry, K. J. Leuven, Campus Gasthuisberg, Herestraat 49, Leuven, Belgium.
| | | |
Collapse
|
15
|
Kovacs WJ, Krisans S. Cholesterol biosynthesis and regulation: role of peroxisomes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 544:315-27. [PMID: 14713247 DOI: 10.1007/978-1-4419-9072-3_41] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Werner J Kovacs
- Department of Biology, San Diego State University, San Diego, California 92182, USA
| | | |
Collapse
|
16
|
Abstract
HMG-CoA reductase (HMGCR) catalyzes the conversion of HMG-CoA to mevalonate, the rate-limiting step of eukaryotic isoprenoid biosynthesis, and is the main target of cholesterol-lowering drugs. The classical form of the enzyme is a transmembrane-protein anchored to the endoplasmic reticulum. However, during the last years several lines of evidence pointed to the existence of a second isoform of HMGCR localized in peroxisomes, where mevalonate is converted further to farnesyl diphosphate. This finding is relevant for our understanding of the complex regulation and compartmentalization of the cholesterogenic pathway. Here we review experimental evidence suggesting that the peroxisomal activity might be due to a second HMGCR gene in mammals. We then present a comprehensive analysis of completely sequenced eukaryotic genomes, as well as the human and mouse genome drafts. Our results provide evidence for a large number of independent duplications of HMGCR in all eukaryotic kingdoms, but not for a second gene in mammals. We conclude that the peroxisomal HMGCR activity in mammals is due to alternative targeting of the ER enzyme to peroxisomes by an as yet uncharacterized mechanism.
Collapse
Affiliation(s)
- Rainer Breitling
- Department of Biology, San Diego State University, San Diego, CA, USA
| | | |
Collapse
|
17
|
Braverman N, Chen L, Lin P, Obie C, Steel G, Douglas P, Chakraborty PK, Clarke JTR, Boneh A, Moser A, Moser H, Valle D. Mutation analysis of PEX7 in 60 probands with rhizomelic chondrodysplasia punctata and functional correlations of genotype with phenotype. Hum Mutat 2002; 20:284-97. [PMID: 12325024 DOI: 10.1002/humu.10124] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PEX7 encodes the cytosolic receptor for the set of peroxisomal matrix enzymes targeted to the organelle by the peroxisome targeting signal 2 (PTS2). Mutations in PEX7 cause rhizomelic chondrodysplasia punctata (RCDP), a distinct peroxisome biogenesis disorder. In previous work we described three novel PEX7 mutant alleles, including one, L292X, with a high frequency due to a founder effect. We have now extended our analysis to 60 RCDP probands and identified a total of 24 PEX7 alleles, accounting for 95% of the mutant PEX7 genes in our sample. Of these, 50% are L292X, 13% are IVS9+1G>C, and the remainder are mostly private. IVS9+1G>C occurs on at least three different haplotypes and thus appears to result from recurrent mutation. The phenotypic spectrum of RCDP is broader than commonly recognized and includes minimally affected individuals at the mild end of the spectrum. To relate PEX7 genotype and phenotype, we evaluated the consequence of the disease mutation on PEX7 RNA by Northern analysis and RT/PCR. We evaluated the function of the encoded Pex7 protein (Pex7p) by expressing selected alleles in fibroblasts from RCDP patients and assaying their ability to restore import of a PTS2 marker protein. We find that residual activity of mutant Pex7p and reduced amounts of normal Pex7p are associated with milder and variant phenotypes.
Collapse
Affiliation(s)
- Nancy Braverman
- McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Peroxisomes contain enzymes catalyzing a number of indispensable metabolic functions mainly related to lipid metabolism. The importance of peroxisomes in man is stressed by the existence of genetic disorders in which the biogenesis of the organelle is defective, leading to complex developmental and metabolic phenotypes. The purpose of this review is to emphasize some of the recent findings related to the localization of cholesterol biosynthetic enzymes in peroxisomes and to discuss the impairment of cholesterol biosynthesis in peroxisomal deficiency diseases.
Collapse
Affiliation(s)
- Werner J Kovacs
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | | | | |
Collapse
|
19
|
Hogenboom S, Romeijn GJ, Houten SM, Baes M, Wanders RJ, Waterham HR. Absence of functional peroxisomes does not lead to deficiency of enzymes involved in cholesterol biosynthesis. J Lipid Res 2002. [DOI: 10.1016/s0022-2275(20)30191-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|