1
|
Andriambelo B, Vachon A, Dansereau MA, Laurent B, Plourde M. Providing lysophosphatidylcholine-bound omega-3 fatty acids increased eicosapentaenoic acid, but not docosahexaenoic acid, in the cortex of mice with the apolipoprotein E3 or E4 allele. Prostaglandins Leukot Essent Fatty Acids 2025; 204:102661. [PMID: 39642444 DOI: 10.1016/j.plefa.2024.102661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/18/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Several mechanisms have been proposed for the brain uptake of omega-3 fatty acids (n-3), including passive diffusion of the unesterified form and the use of Mfsd2a transporter for the lysophosphatidylcholine (LPC) form. We hypothesize that the accumulation of LPC n-3 in the brain is lower in mice carrying the apolipoprotein E ε4 allele (APOE4), a major genetic risk factor for developing sporadic Alzheimer's disease in humans. OBJECTIVE Determine whether two or four months of supplementation with LPC n-3 increases the levels of docosahexaenoic acids (DHA) and eicosapentaenoic acids (EPA) in the frontal cortex of APOE3 and APOE4 mice. METHODS APOE3 and APOE4 mice were administered LPC n-3 (9.6 mg DHA + 18.3 mg EPA) or sunflower oil (control) by oral gavage for two or four months (n = 5-8 per genotype, per treatment, and per treatment duration). At the end of the treatment period, frontal cortices were collected, and their FA profiles analyzed by gas chromatography with flame ionization detection. RESULTS After two months of gavage with LPC n-3, APOE3 mice showed increased levels of EPA in their cortex, but not DHA. In APOE4 mice, neither EPA nor DHA levels were significantly affected. After four months of LPC n-3, both APOE3 and APOE4 mice exhibited higher EPA levels, while changes in DHA levels were not statistically significant. CONCLUSION LPC n-3 supplementation increased EPA, but not DHA, levels in the frontal cortex of mice in a duration- and APOE genotype-dependent manner. Further research is needed to explore the implications for brain health.
Collapse
Affiliation(s)
- Bijou Andriambelo
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada; Institut de la Nutrition et des Aliments Fonctionnels, Université Laval, Québec, QC, Canada
| | - Annick Vachon
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada; Institut de la Nutrition et des Aliments Fonctionnels, Université Laval, Québec, QC, Canada
| | - Marc-André Dansereau
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Benoit Laurent
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada
| | - Mélanie Plourde
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada; Institut de la Nutrition et des Aliments Fonctionnels, Université Laval, Québec, QC, Canada.
| |
Collapse
|
2
|
Rice A, Zourou AC, Goodell EP, Fu R, Pastor RW, Cotten ML. Investigating How Lysophosphatidylcholine and Lysophosphatidylethanolamine Enhance the Membrane Permeabilization Efficacy of Host Defense Peptide Piscidin 1. J Phys Chem B 2025; 129:210-227. [PMID: 39681296 PMCID: PMC11816835 DOI: 10.1021/acs.jpcb.4c05845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Lysophospholipids (LPLs) and host defense peptides (HDPs) are naturally occurring membrane-active agents that disrupt key membrane properties, including the hydrocarbon thickness, intrinsic curvature, and molecular packing. Although the membrane activity of these agents has been widely examined separately, their combined effects are largely unexplored. Here, we use experimental and computational tools to investigate how lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE), an LPL of lower positive spontaneous curvature, influence the membrane activity of piscidin 1 (P1), an α-helical HDP from fish. Four membrane systems are probed: 75:25 C16:0-C18:1 PC (POPC)/C16:0-C18:1 phosphoglycerol (POPG), 50:25:25 POPC/POPG/16:0 LPC, 75:25 C16:0-C18:1 PE (POPE)/POPG, and 50:25:25 POPE/POPG/14:0 LPE. Dye leakage, circular dichroism, and NMR experiments demonstrate that while the presence of LPLs alone does not induce leakage-proficient defects, it boosts the permeabilization capability of P1, resulting in an efficacy order of POPC/POPG/16:0 LPC > POPE/POPG/14:0 LPE > POPC/POPG > POPE/POPG. This enhancement occurs without altering the membrane affinity and conformation of P1. Molecular dynamics simulations feature two types of asymmetric membranes to represent the imbalanced ("area stressed") and balanced ("area relaxed") distribution of lipids and peptides in the two leaflets. The simulations capture the membrane thinning effects of P1, LPC, and LPE, and the positive curvature strain imposed by both LPLs is reflected in the lateral pressure profiles. They also reveal a higher number of membrane defects for the P1/LPC than P1/LPE combination, congruent with the permeabilization experiments. Altogether, these results show that P1 and LPLs disrupt membranes in a concerted fashion, with LPC, the more disruptive LPL, boosting the permeabilization of P1 more than LPE. This mechanistic knowledge is relevant to understanding biological processes where multiple membrane-active agents such as HDPs and LPLs are involved.
Collapse
Affiliation(s)
- Amy Rice
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | | | - Evan P. Goodell
- Department of Applied Science, William & Mary, Williamsburg, VA 23185
| | - Riqiang Fu
- National High Field Magnetic Laboratory, Tallahassee, FL, 32310
| | - Richard W. Pastor
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Myriam L. Cotten
- Department of Applied Science, William & Mary, Williamsburg, VA 23185
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
3
|
Karalis T, Poulogiannis G. The Emerging Role of LPA as an Oncometabolite. Cells 2024; 13:629. [PMID: 38607068 PMCID: PMC11011573 DOI: 10.3390/cells13070629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024] Open
Abstract
Lysophosphatidic acid (LPA) is a phospholipid that displays potent signalling activities that are regulated in both an autocrine and paracrine manner. It can be found both extra- and intracellularly, where it interacts with different receptors to activate signalling pathways that regulate a plethora of cellular processes, including mitosis, proliferation and migration. LPA metabolism is complex, and its biosynthesis and catabolism are under tight control to ensure proper LPA levels in the body. In cancer patient specimens, LPA levels are frequently higher compared to those of healthy individuals and often correlate with poor responses and more aggressive disease. Accordingly, LPA, through promoting cancer cell migration and invasion, enhances the metastasis and dissemination of tumour cells. In this review, we summarise the role of LPA in the regulation of critical aspects of tumour biology and further discuss the available pre-clinical and clinical evidence regarding the feasibility and efficacy of targeting LPA metabolism for effective anticancer therapy.
Collapse
Affiliation(s)
| | - George Poulogiannis
- Signalling and Cancer Metabolism Laboratory, Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK;
| |
Collapse
|
4
|
Liu J, Fike KR, Dapper C, Klemba M. Metabolism of host lysophosphatidylcholine in Plasmodium falciparum-infected erythrocytes. Proc Natl Acad Sci U S A 2024; 121:e2320262121. [PMID: 38349879 PMCID: PMC10895272 DOI: 10.1073/pnas.2320262121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
The human malaria parasite Plasmodium falciparum requires exogenous fatty acids to support its growth during the pathogenic, asexual erythrocytic stage. Host serum lysophosphatidylcholine (LPC) is a significant fatty acid source, yet the metabolic processes responsible for the liberation of free fatty acids from exogenous LPC are unknown. Using an assay for LPC hydrolysis in P. falciparum-infected erythrocytes, we have identified small-molecule inhibitors of key in situ lysophospholipase activities. Competitive activity-based profiling and generation of a panel of single-to-quadruple knockout parasite lines revealed that two enzymes of the serine hydrolase superfamily, termed exported lipase (XL) 2 and exported lipase homolog (XLH) 4, constitute the dominant lysophospholipase activities in parasite-infected erythrocytes. The parasite ensures efficient exogenous LPC hydrolysis by directing these two enzymes to distinct locations: XL2 is exported to the erythrocyte, while XLH4 is retained within the parasite. While XL2 and XLH4 were individually dispensable with little effect on LPC hydrolysis in situ, loss of both enzymes resulted in a strong reduction in fatty acid scavenging from LPC, hyperproduction of phosphatidylcholine, and an enhanced sensitivity to LPC toxicity. Notably, growth of XL/XLH-deficient parasites was severely impaired when cultured in media containing LPC as the sole exogenous fatty acid source. Furthermore, when XL2 and XLH4 activities were ablated by genetic or pharmacologic means, parasites were unable to proliferate in human serum, a physiologically relevant fatty acid source, revealing the essentiality of LPC hydrolysis in the host environment and its potential as a target for anti-malarial therapy.
Collapse
Affiliation(s)
- Jiapeng Liu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
| | | | - Christie Dapper
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
| | - Michael Klemba
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
| |
Collapse
|
5
|
Harada S, Taketomi Y, Aiba T, Kawaguchi M, Hirabayashi T, Uranbileg B, Kurano M, Yatomi Y, Murakami M. The Lysophospholipase PNPLA7 Controls Hepatic Choline and Methionine Metabolism. Biomolecules 2023; 13:biom13030471. [PMID: 36979406 PMCID: PMC10046082 DOI: 10.3390/biom13030471] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
The in vivo roles of lysophospholipase, which cleaves a fatty acyl ester of lysophospholipid, remained unclear. Recently, we have unraveled a previously unrecognized physiological role of the lysophospholipase PNPLA7, a member of the Ca2+-independent phospholipase A2 (iPLA2) family, as a key regulator of the production of glycerophosphocholine (GPC), a precursor of endogenous choline, whose methyl groups are preferentially fluxed into the methionine cycle in the liver. PNPLA7 deficiency in mice markedly decreases hepatic GPC, choline, and several metabolites related to choline/methionine metabolism, leading to various symptoms reminiscent of methionine shortage. Overall metabolic alterations in the liver of Pnpla7-null mice in vivo largely recapitulate those in methionine-deprived hepatocytes in vitro. Reduction of the methyl donor S-adenosylmethionine (SAM) after methionine deprivation decreases the methylation of the PNPLA7 gene promoter, relieves PNPLA7 expression, and thereby increases GPC and choline levels, likely as a compensatory adaptation. In line with the view that SAM prevents the development of liver cancer, the expression of PNPLA7, as well as several enzymes in the choline/methionine metabolism, is reduced in human hepatocellular carcinoma. These findings uncover an unexplored role of a lysophospholipase in hepatic phospholipid catabolism coupled with choline/methionine metabolism.
Collapse
Affiliation(s)
- Sayaka Harada
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Toshiki Aiba
- Department of Radiation Effects Research, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Mai Kawaguchi
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
- Laboratory of Biomembrane, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Tetsuya Hirabayashi
- Laboratory of Biomembrane, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Baasanjav Uranbileg
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
- Correspondence: ; Tel.: +81-3-5841-1431
| |
Collapse
|
6
|
Klimentidis YC, Chen Z, Gonzalez-Garay ML, Grigoriadis D, Sackey E, Pittman A, Ostergaard P, Herbst KL. Genome-wide association study of a lipedema phenotype among women in the UK Biobank identifies multiple genetic risk factors. Eur J Hum Genet 2023; 31:338-344. [PMID: 36385154 PMCID: PMC9995497 DOI: 10.1038/s41431-022-01231-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/27/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
Lipedema is a common disorder characterized by excessive deposition of subcutaneous adipose tissue (SAT) in the legs, hips, and buttocks, mainly occurring in adult women. Although it appears to be heritable, no specific genes have yet been identified. To identify potential genetic risk factors for lipedema, we used bioelectrical impedance analysis and anthropometric data from the UK Biobank to identify women with and without a lipedema phenotype. Specifically, we identified women with both a high percentage of fat in the lower limbs and a relatively small waist, adjusting for hip circumference. We performed a genome-wide association study (GWAS) for this phenotype, and performed multiple sensitivity GWAS. In an independent case/control study of lipedema based on strict clinical criteria, we attempted to replicate our top hits. We identified 18 significant loci (p < 5 × 10-9), several of which have previously been identified in GWAS of waist-to-hip ratio with larger effects in women. Two loci (VEGFA and GRB14-COBLL1) were significantly associated with lipedema in the independent replication study. Follow-up analyses suggest an enrichment of genes expressed in blood vessels and adipose tissue, among other tissues. Our findings provide a starting point towards better understanding the genetic and physiological basis of lipedema.
Collapse
Affiliation(s)
- Yann C Klimentidis
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA.
- BIO5 Institute, University of Arizona, Arizona, AZ, USA.
| | - Zhao Chen
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | | | - Dionysios Grigoriadis
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, London, UK
| | - Ege Sackey
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, London, UK
| | - Alan Pittman
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, London, UK
| | - Pia Ostergaard
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, London, UK
| | - Karen L Herbst
- TREAT Program, College of Medicine, University of Arizona, Tucson, AZ, USA
- Total Lipedema Care, Beverly Hills, CA, USA
| |
Collapse
|
7
|
Hirabayashi T, Kawaguchi M, Harada S, Mouri M, Takamiya R, Miki Y, Sato H, Taketomi Y, Yokoyama K, Kobayashi T, Tokuoka SM, Kita Y, Yoda E, Hara S, Mikami K, Nishito Y, Kikuchi N, Nakata R, Kaneko M, Kiyonari H, Kasahara K, Aiba T, Ikeda K, Soga T, Kurano M, Yatomi Y, Murakami M. Hepatic phosphatidylcholine catabolism driven by PNPLA7 and PNPLA8 supplies endogenous choline to replenish the methionine cycle with methyl groups. Cell Rep 2023; 42:111940. [PMID: 36719796 DOI: 10.1016/j.celrep.2022.111940] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/10/2022] [Accepted: 12/19/2022] [Indexed: 01/31/2023] Open
Abstract
Choline supplies methyl groups for regeneration of methionine and the methyl donor S-adenosylmethionine in the liver. Here, we report that the catabolism of membrane phosphatidylcholine (PC) into water-soluble glycerophosphocholine (GPC) by the phospholipase/lysophospholipase PNPLA8-PNPLA7 axis enables endogenous choline stored in hepatic PC to be utilized in methyl metabolism. PNPLA7-deficient mice show marked decreases in hepatic GPC, choline, and several metabolites related to the methionine cycle, accompanied by various signs of methionine insufficiency, including growth retardation, hypoglycemia, hypolipidemia, increased energy consumption, reduced adiposity, increased fibroblast growth factor 21 (FGF21), and an altered histone/DNA methylation landscape. Moreover, PNPLA8-deficient mice recapitulate most of these phenotypes. In contrast to wild-type mice fed a methionine/choline-deficient diet, both knockout strains display decreased hepatic triglyceride, likely via reductions of lipogenesis and GPC-derived glycerol flux. Collectively, our findings highlight the biological importance of phospholipid catabolism driven by PNPLA8/PNPLA7 in methyl group flux and triglyceride synthesis in the liver.
Collapse
Affiliation(s)
- Tetsuya Hirabayashi
- Laboratory of Biomembrane, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Lipid Metabolism Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.
| | - Mai Kawaguchi
- Laboratory of Biomembrane, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Laboratory of Microenvironmental Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Sayaka Harada
- Laboratory of Microenvironmental Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Misa Mouri
- Lipid Metabolism Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Department of Biology, Faculty of Science, Ochanomizu University, Tokyo 112-8610, Japan
| | - Rina Takamiya
- Laboratory of Microenvironmental Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yoshimi Miki
- Lipid Metabolism Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Laboratory of Microenvironmental Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Hiroyasu Sato
- Lipid Metabolism Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Laboratory of Microenvironmental Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yoshitaka Taketomi
- Lipid Metabolism Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Laboratory of Microenvironmental Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kohei Yokoyama
- Laboratory of Biomembrane, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Lipid Metabolism Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Tetsuyuki Kobayashi
- Department of Biology, Faculty of Science, Ochanomizu University, Tokyo 112-8610, Japan
| | - Suzumi M Tokuoka
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yoshihiro Kita
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Life Sciences Core Facility, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Emiko Yoda
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo 142-8555, Japan
| | - Shuntaro Hara
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo 142-8555, Japan
| | - Kyohei Mikami
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yasumasa Nishito
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Norihito Kikuchi
- Laboratory of Biomembrane, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Rieko Nakata
- Department of Food Science and Nutrition, Nara Women's University, Nara, 630-8506, Japan
| | - Mari Kaneko
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Kohji Kasahara
- Laboratory of Biomembrane, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Toshiki Aiba
- Laboratory of Microenvironmental Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Kazutaka Ikeda
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Makoto Murakami
- Lipid Metabolism Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Laboratory of Microenvironmental Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan.
| |
Collapse
|
8
|
Renal lysophospholipase A1 contributes to Enterococcus faecalis-induced hypertension by enhancing sodium reabsorption. iScience 2022; 25:105403. [DOI: 10.1016/j.isci.2022.105403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/23/2022] [Accepted: 10/16/2022] [Indexed: 11/17/2022] Open
|
9
|
Multi-omics study identifies novel signatures of DNA/RNA, amino acid, peptide, and lipid metabolism by simulated diabetes on coronary endothelial cells. Sci Rep 2022; 12:12027. [PMID: 35835939 PMCID: PMC9283518 DOI: 10.1038/s41598-022-16300-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/07/2022] [Indexed: 12/14/2022] Open
Abstract
Coronary artery endothelial cells (CAEC) exert an important role in the development of cardiovascular disease. Dysfunction of CAEC is associated with cardiovascular disease in subjects with type 2 diabetes mellitus (T2DM). However, comprehensive studies of the effects that a diabetic environment exerts on this cellular type are scarce. The present study characterized the molecular perturbations occurring on cultured bovine CAEC subjected to a prolonged diabetic environment (high glucose and high insulin). Changes at the metabolite and peptide level were assessed by Liquid Chromatography–Mass Spectrometry (LC–MS2) and chemoinformatics. The results were integrated with published LC–MS2-based quantitative proteomics on the same in vitro model. Our findings were consistent with reports on other endothelial cell types and identified novel signatures of DNA/RNA, amino acid, peptide, and lipid metabolism in cells under a diabetic environment. Manual data inspection revealed disturbances on tryptophan catabolism and biosynthesis of phenylalanine-based, glutathione-based, and proline-based peptide metabolites. Fluorescence microscopy detected an increase in binucleation in cells under treatment that also occurred when human CAEC were used. This multi-omics study identified particular molecular perturbations in an induced diabetic environment that could help unravel the mechanisms underlying the development of cardiovascular disease in subjects with T2DM.
Collapse
|
10
|
Goh YQ, Cheam G, Wang Y. Understanding Choline Bioavailability and Utilization: First Step Toward Personalizing Choline Nutrition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10774-10789. [PMID: 34392687 DOI: 10.1021/acs.jafc.1c03077] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Choline is an essential macronutrient involved in neurotransmitter synthesis, cell-membrane signaling, lipid transport, and methyl-group metabolism. Nevertheless, the vast majority are not meeting the recommended intake requirement. Choline deficiency is linked to nonalcoholic fatty liver disease, skeletal muscle atrophy, and neurodegenerative diseases. The conversion of dietary choline to trimethylamine by gut microbiota is known for its association with atherosclerosis and may contribute to choline deficiency. Choline-utilizing bacteria constitutes less than 1% of the gut community and is modulated by lifestyle interventions such as dietary patterns, antibiotics, and probiotics. In addition, choline utilization is also affected by genetic factors, further complicating the impact of choline on health. This review overviews the complex interplay between dietary intakes of choline, gut microbiota and genetic factors, and the subsequent impact on health. Understanding of gut microbiota metabolism of choline substrates and interindividual variability is warranted in the development of personalized choline nutrition.
Collapse
Affiliation(s)
- Ying Qi Goh
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921
| | - Guoxiang Cheam
- School of Biological Sciences, Nanyang Technological University, Singapore 639798
| | - Yulan Wang
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921
| |
Collapse
|
11
|
Lee SC, Lin KH, Balogh A, Norman DD, Bavaria M, Kuo B, Yue J, Balázs L, Benyó Z, Tigyi G. Dysregulation of lysophospholipid signaling by p53 in malignant cells and the tumor microenvironment. Cell Signal 2020; 78:109850. [PMID: 33253914 DOI: 10.1016/j.cellsig.2020.109850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/22/2022]
Abstract
The TP53 gene has been widely studied for its roles in cell cycle control, maintaining genome stability, activating repair mechanisms upon DNA damage, and initiating apoptosis should repair mechanisms fail. Thus, it is not surprising that mutations of p53 are the most common genetic alterations found in human cancer. Emerging evidence indicates that dysregulation of lipid metabolism by p53 can have a profound impact not only on cancer cells but also cells of the tumor microenvironment (TME). In particular, intermediates of the sphingolipid and lysophospholipid pathways regulate many cellular responses common to p53 such as cell survival, migration, DNA damage repair and apoptosis. The majority of these cellular events become dysregulated in cancer as well as cell senescence. In this review, we will provide an account on the seminal contributions of Prof. Lina Obeid, who deciphered the crosstalk between p53 and the sphingolipid pathway particularly in modulating DNA damage repair and apoptosis in non-transformed as well as transformed cells. We will also provide insights on the integrative role of p53 with the lysophosphatidic acid (LPA) signaling pathway in cancer progression and TME regulation.
Collapse
Affiliation(s)
- Sue Chin Lee
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Kuan-Hung Lin
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Andrea Balogh
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA; Institute of Translational Medicine, Semmelweis University, POB 2, H-1428 Budapest, Hungary
| | - Derek D Norman
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Mitul Bavaria
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Bryan Kuo
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Junming Yue
- Department of Pathology, University of Tennessee Health Science Center Memphis, USA
| | - Louisa Balázs
- Department of Pathology, University of Tennessee Health Science Center Memphis, USA
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, POB 2, H-1428 Budapest, Hungary
| | - Gábor Tigyi
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA; Institute of Translational Medicine, Semmelweis University, POB 2, H-1428 Budapest, Hungary.
| |
Collapse
|
12
|
Weller PF, Wang H, Melo RCN. The Charcot-Leyden crystal protein revisited-A lysopalmitoylphospholipase and more. J Leukoc Biol 2020; 108:105-112. [PMID: 32272499 DOI: 10.1002/jlb.3mr0320-319rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/08/2020] [Accepted: 03/12/2020] [Indexed: 12/30/2022] Open
Abstract
The Charcot-Leyden crystal protein (CLC-P), a constituent of human and not mouse eosinophils, is one of the most abundant proteins within human eosinophils. It has a propensity to form crystalline structures, Charcot-Leyden crystals, which are hallmarks in their distinctive extracellular crystalline forms as markers of eosinophilic inflammation. The functions of CLC-P within eosinophils have been uncertain. Although the action of CLC-P as a lysophospholipase has been questioned, assays of chromatographically purified CLC-P and crystal-derived CLC-P as well as studies of transfected recombinant CLC-P have consistently documented that CLC-P endogenously expresses lysophospholipase activity, releasing free palmitate from substrate lysopalmitoylphosphatidylcholine. Rather than acting solely as a hydrolytic enzyme to release palmitate from a lysolipid substrate, some other lysophospholipases function more dominantly as acyl-protein thioesterases (APTs), enzymes that catalyze the removal of thioester-linked, long chain fatty acids, such as palmitate, from cysteine residues of proteins. As such APTs participate in palmitoylation, a post-translational modification that can affect membrane localization, vesicular transport, and secretion. CLC-P has attributes of an APT. Thus, whereas CLC-P expresses inherent lysophospholipase activity, like some other lysophospholipase enzymes, it likely also functions in regulating the dynamic palmitoylation cycle, including, given its dominant subplasmalemmal location, at the human eosinophil's plasma membrane.
Collapse
Affiliation(s)
- Peter F Weller
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Haibin Wang
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Rossana C N Melo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Laboratory of Cellular Biology, Department of Biology, ICB, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
13
|
Sunderhaus ER, Law AD, Kretzschmar D. Disease-Associated PNPLA6 Mutations Maintain Partial Functions When Analyzed in Drosophila. Front Neurosci 2019; 13:1207. [PMID: 31780887 PMCID: PMC6852622 DOI: 10.3389/fnins.2019.01207] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/25/2019] [Indexed: 12/22/2022] Open
Abstract
Mutations in patatin-like phospholipase domain-containing protein 6 (PNPLA6) have been linked with a number of inherited diseases with clinical symptoms that include spastic paraplegia, ataxia, and chorioretinal dystrophy. PNPLA6 is an evolutionary conserved protein whose ortholog in Drosophila is Swiss-Cheese (SWS). Both proteins are phospholipases hydrolyzing lysophosphatidylcholine (LPC) and phosphatidylcholine (PC). Consequently, loss of SWS/PNPLA6 in flies and mice increases both lipids and leads to locomotion deficits and neurodegeneration. PNPLA6 knock-out mice are embryonic lethal, and a mutation creating an early stop codon in human PNPLA6 has only been identified in compound heterozygote patients. In contrast, disease-causing point mutations are found in homozygous patients, with some localized in the phospholipase domain while others are in a region that contains several cNMP binding sites. To investigate how different mutations affect the function of PNPLA6 in an in vivo model, we expressed them in the Drosophila sws1 null mutant. Expressing wild-type PNPLA6 suppressed the locomotion and degenerative phenotypes in sws 1 and restored lipid levels, confirming that the human protein can replace fly SWS. In contrast, none of the mutant proteins restored lipid levels, although they suppressed the behavioral and degenerative phenotypes, at least in early stages. These results show that these mutant forms of PNPLA6 retain some biological function, indicating that disruption of lipid homeostasis is only part of the pathogenic mechanism. Furthermore, our finding that mutations in the cNMP binding sites prevented the restoration of normal lipid levels supports previous evidence that cNMP regulates the phospholipase activity of PNPLA6.
Collapse
Affiliation(s)
| | | | - Doris Kretzschmar
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
14
|
Jang JH, Bae EK, Choi YI, Lee OR. Ginseng-derived patatin-related phospholipase PgpPLAIIIβ alters plant growth and lignification of xylem in hybrid poplars. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 288:110224. [PMID: 31521213 DOI: 10.1016/j.plantsci.2019.110224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Patatin-liked phospholipase A (pPLAs) are major lipid acyl hydrolases that participate in various biological functions in plant growth and development. Previously, a ginseng-derived pPLAIII homolog was reported to reduce lignin content in Arabidopsis. This led us to evaluate its possible usefulness as a biomass source in wood plant. Herein, we report that there are six members in the pPLAIII gene family in poplar. Overexpression of pPLAIIIβ derived from ginseng resulted in a reduced plant height with radially expanded stem growth in hybrid poplars. Compared with the wild type (WT), the chlorophyll content was increased in the overexpression poplar lines, whereas the leaf size was smaller. The secondary cell wall structure in overexpression lines was also altered, exhibiting reduced lignification in the xylem. Two transcription factors, MYB92 and MYB152, which control lignin biosynthesis, were downregulated in the overexpression lines. The middle xylem of the overexpression line showed heavy thickening, making it thicker than the other xylem parts and the WT xylem, which rather could have been contributed by the presence of more cellulose in the selected surface area. Taken together, the results suggest that PgpPLAIIIβ plays a role not only in cell elongation patterns, but also in determining the secondary cell wall composition.
Collapse
Affiliation(s)
- Jin Hoon Jang
- Department of Applied Plant Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Eun-Kyung Bae
- Division of Forest Biotechnology, National Institute of Forest Science, Suwon, 441-847, Republic of Korea.
| | - Young-Im Choi
- Division of Forest Biotechnology, National Institute of Forest Science, Suwon, 441-847, Republic of Korea.
| | - Ok Ran Lee
- Department of Applied Plant Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
15
|
Sonkar K, Ayyappan V, Tressler CM, Adelaja O, Cai R, Cheng M, Glunde K. Focus on the glycerophosphocholine pathway in choline phospholipid metabolism of cancer. NMR IN BIOMEDICINE 2019; 32:e4112. [PMID: 31184789 PMCID: PMC6803034 DOI: 10.1002/nbm.4112] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/16/2019] [Accepted: 04/20/2019] [Indexed: 05/02/2023]
Abstract
Activated choline metabolism is a hallmark of carcinogenesis and tumor progression, which leads to elevated levels of phosphocholine and glycerophosphocholine in all types of cancer tested so far. Magnetic resonance spectroscopy applications have played a key role in detecting these elevated choline phospholipid metabolites. To date, the majority of cancer-related studies have focused on phosphocholine and the Kennedy pathway, which constitutes the biosynthesis pathway for membrane phosphatidylcholine. Fewer and more recent studies have reported on the importance of glycerophosphocholine in cancer. In this review article, we summarize the recent literature on glycerophosphocholine metabolism with respect to its cancer biology and its detection by magnetic resonance spectroscopy applications.
Collapse
Affiliation(s)
- Kanchan Sonkar
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vinay Ayyappan
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Caitlin M. Tressler
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Oluwatobi Adelaja
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ruoqing Cai
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Menglin Cheng
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kristine Glunde
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Sunderhaus ER, Law AD, Kretzschmar D. ER responses play a key role in Swiss-Cheese/Neuropathy Target Esterase-associated neurodegeneration. Neurobiol Dis 2019; 130:104520. [PMID: 31233884 DOI: 10.1016/j.nbd.2019.104520] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 05/01/2019] [Accepted: 06/20/2019] [Indexed: 01/08/2023] Open
Abstract
Swiss Cheese (SWS) is the Drosophila orthologue of Neuropathy Target Esterase (NTE), a phospholipase that when mutated has been shown to cause a spectrum of disorders in humans that range from intellectual disabilities to ataxia. Loss of SWS in Drosophila also causes locomotion deficits, age-dependent neurodegeneration, and an increase in lysophosphatidylcholine (LPC) and phosphatidylcholine (PC). SWS is localized to the Endoplasmic Reticulum (ER), and recently, it has been shown that perturbing the membrane lipid composition of the ER can lead to the activation of ER stress responses through the inhibition of the Sarco/Endoplasmic Reticulum Ca2+ ATPase (SERCA). To investigate whether ER stress induction occurs in NTE-associated disorders, we used the fly sws null mutant as a model. sws flies showed an activated ER stress response as determined by elevated levels of the chaperone GRP78 and by increased splicing of XBP, an ER transcription factor that activates transcriptional ER stress responses. To address whether ER stress plays a role in the degenerative and behavioral phenotypes detected in sws1, we overexpressed XBP1, or treated the flies with tauroursodeoxycholic acid (TUDCA), a chemical known to attenuate ER stress-mediated cell death. Both manipulations suppressed the locomotor deficits and neurodegeneration of sws1. In addition, sws1 flies showed reduced SERCA levels and expressing additional SERCA also suppressed the sws1-related phenotypes. This suggests that the disruption in lipid compositions and its effect on SERCA are inducing ER stress, aimed to ameliorate the deleterious effects of sws1. This includes the effects on lipid composition because XBP1 and SERCA expression also reduced the LPC levels in sws1. Promoting cytoprotective ER stress pathways may therefore provide a therapeutic approach to alleviate the neurodegeneration and motor symptoms seen in NTE-associated disorders.
Collapse
Affiliation(s)
- Elizabeth R Sunderhaus
- Oregon Institute of Occupational Health Sciences, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, United States of America
| | - Alexander D Law
- Oregon Institute of Occupational Health Sciences, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, United States of America
| | - Doris Kretzschmar
- Oregon Institute of Occupational Health Sciences, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, United States of America.
| |
Collapse
|
17
|
Lee JH, Kim D, Oh YS, Jun HS. Lysophosphatidic Acid Signaling in Diabetic Nephropathy. Int J Mol Sci 2019; 20:ijms20112850. [PMID: 31212704 PMCID: PMC6600156 DOI: 10.3390/ijms20112850] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 02/07/2023] Open
Abstract
Lysophosphatidic acid (LPA) is a bioactive phospholipid present in most tissues and body fluids. LPA acts through specific LPA receptors (LPAR1 to LPAR6) coupled with G protein. LPA binds to receptors and activates multiple cellular signaling pathways, subsequently exerting various biological functions, such as cell proliferation, migration, and apoptosis. LPA also induces cell damage through complex overlapping pathways, including the generation of reactive oxygen species, inflammatory cytokines, and fibrosis. Several reports indicate that the LPA–LPAR axis plays an important role in various diseases, including kidney disease, lung fibrosis, and cancer. Diabetic nephropathy (DN) is one of the most common diabetic complications and the main risk factor for chronic kidney diseases, which mostly progress to end-stage renal disease. There is also growing evidence indicating that the LPA–LPAR axis also plays an important role in inducing pathological alterations of cell structure and function in the kidneys. In this review, we will discuss key mediators or signaling pathways activated by LPA and summarize recent research findings associated with DN.
Collapse
Affiliation(s)
- Jong Han Lee
- College of Pharmacy, Gachon University, Incheon 21936, Korea.
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea.
| | - Donghee Kim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea.
| | - Yoon Sin Oh
- Department of Food and Nutrition, Eulji University, Seongnam 13135, Korea.
| | - Hee-Sook Jun
- College of Pharmacy, Gachon University, Incheon 21936, Korea.
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea.
- Gachon University Gil Medical Center, Gachon Medical and Convergence Institute, Incheon 21565, Korea.
| |
Collapse
|
18
|
Nilsson Å, Duan RD. Pancreatic and mucosal enzymes in choline phospholipid digestion. Am J Physiol Gastrointest Liver Physiol 2019; 316:G425-G445. [PMID: 30576217 DOI: 10.1152/ajpgi.00320.2018] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The digestion of choline phospholipids is important for choline homeostasis, lipid signaling, postprandial lipid and energy metabolism, and interaction with intestinal bacteria. The digestion is mediated by the combined action of pancreatic and mucosal enzymes. In the proximal small intestine, hydrolysis of phosphatidylcholine (PC) to 1-lyso-PC and free fatty acid (FFA) by the pancreatic phospholipase A2 IB coincides with the digestion of the dietary triacylglycerols by lipases, but part of the PC digestion is extended and must be mediated by other enzymes as the jejunoileal brush-border phospholipase B/lipase and mucosal secreted phospholipase A2 X. Absorbed 1-lyso-PC is partitioned in the mucosal cells between degradation and reacylation into chyle PC. Reutilization of choline for hepatic bile PC synthesis, and the reacylation of 1-lyso-PC into chylomicron PC by the lyso-PC-acyl-CoA-acyltransferase 3 are important features of choline recycling and postprandial lipid metabolism. The role of mucosal enzymes is emphasized by sphingomyelin (SM) being sequentially hydrolyzed by brush-border alkaline sphingomyelinase (alk-SMase) and neutral ceramidase to sphingosine and FFA, which are well absorbed. Ceramide and sphingosine-1-phosphate are generated and are both metabolic intermediates and important lipid messengers. Alk-SMase has anti-inflammatory effects that counteract gut inflammation and tumorigenesis. These may be mediated by multiple mechanisms including generation of sphingolipid metabolites and suppression of autotaxin induction and lyso-phosphatidic acid formation. Here we summarize current knowledge on the roles of pancreatic and mucosal enzymes in PC and SM digestion, and its implications in intestinal and liver diseases, bacterial choline metabolism in the gut, and cholesterol absorption.
Collapse
Affiliation(s)
- Åke Nilsson
- Department of Clow-linical Sciences Lund, Division of Medicine, Gastroenterology, Lund University , Lund , Sweden
| | - Rui-Dong Duan
- Gastroenterology and Nutrition Laboratory, Department of Clinical Sciences, Lund University , Lund , Sweden
| |
Collapse
|
19
|
Miao R, Lung SC, Li X, Li XD, Chye ML. Thermodynamic insights into an interaction between ACYL-CoA-BINDING PROTEIN2 and LYSOPHOSPHOLIPASE2 in Arabidopsis. J Biol Chem 2019; 294:6214-6226. [PMID: 30782848 DOI: 10.1074/jbc.ra118.006876] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/12/2019] [Indexed: 12/17/2022] Open
Abstract
Lysophospholipids (LPLs) are important lipid-signaling molecules in plants, of which lysophosphatidylcholine (lysoPC) is one of the most well-characterized LPLs, having important roles in plant stress responses. It is broken down by lysophospholipases, but the molecular mechanism involved in lysoPC degradation is unclear. Recombinant Arabidopsis thaliana ACYL-CoA-BINDING PROTEIN2 (AtACBP2) has been reported to bind lysoPC via its acyl-CoA-binding domain and also LYSOPHOSPHOLIPASE 2 (AtLYSOPL2) via its ankyrin repeats in vitro To investigate the interactions of AtACBP2 with AtLYSOPL2 and lysoPC in more detail, we conducted isothermal titration calorimetry with AtACBP270-354, an AtACBP2 derivative consisting of amino acids 70-354, containing both the acyl-CoA-binding domain and ankyrin repeats. We observed that the interactions of AtACBP270-354 with AtLYSOPL2 and lysoPC were both endothermic, favored by solvation entropy and opposed by enthalpy, with dissociation constants in the micromolar range. Of note, three AtLYSOPL2 catalytic triad mutant proteins (S147A, D268A, and H298A) bound lysoPC only weakly, with an exothermic burst and dissociation constants in the millimolar range. Furthermore, the binding affinity of lysoPC-premixed AtACBP270-354 to AtLYSOPL2 was 10-fold higher than that of AtACBP270-354 alone to AtLYSOPL2. We conclude that AtACBP2 may play a role in facilitating a direct interaction between AtLYSOPL2 and lysoPC. Our results suggest that AtACBP270-354 probably binds to lysoPC through a hydrophobic interface that enhances a hydrotropic interaction of AtACBP270-354 with AtLYSOPL2 and thereby facilitates AtLYSOPL2's lysophospholipase function.
Collapse
Affiliation(s)
- Rui Miao
- From the School of Biological Sciences and
| | | | - Xin Li
- Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong and
| | - Xiang David Li
- Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong and
| | - Mee-Len Chye
- From the School of Biological Sciences and .,the State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin N.T., Hong Kong, China
| |
Collapse
|
20
|
Wepy JA, Galligan JJ, Kingsley PJ, Xu S, Goodman MC, Tallman KA, Rouzer CA, Marnett LJ. Lysophospholipases cooperate to mediate lipid homeostasis and lysophospholipid signaling. J Lipid Res 2018; 60:360-374. [PMID: 30482805 DOI: 10.1194/jlr.m087890] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/05/2018] [Indexed: 12/20/2022] Open
Abstract
Lysophospholipids (LysoPLs) are bioactive lipid species involved in cellular signaling processes and the regulation of cell membrane structure. LysoPLs are metabolized through the action of lysophospholipases, including lysophospholipase A1 (LYPLA1) and lysophospholipase A2 (LYPLA2). A new X-ray crystal structure of LYPLA2 compared with a previously published structure of LYPLA1 demonstrated near-identical folding of the two enzymes; however, LYPLA1 and LYPLA2 have displayed distinct substrate specificities in recombinant enzyme assays. To determine how these in vitro substrate preferences translate into a relevant cellular setting and better understand the enzymes' role in LysoPL metabolism, CRISPR-Cas9 technology was utilized to generate stable KOs of Lypla1 and/or Lypla2 in Neuro2a cells. Using these cellular models in combination with a targeted lipidomics approach, LysoPL levels were quantified and compared between cell lines to determine the effect of losing lysophospholipase activity on lipid metabolism. This work suggests that LYPLA1 and LYPLA2 are each able to account for the loss of the other to maintain lipid homeostasis in cells; however, when both are deleted, LysoPL levels are dramatically increased, causing phenotypic and morphological changes to the cells.
Collapse
Affiliation(s)
- James A Wepy
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Chemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - James J Galligan
- Departments of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Philip J Kingsley
- Departments of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Shu Xu
- Departments of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Michael C Goodman
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Chemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Keri A Tallman
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Chemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146.,Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Carol A Rouzer
- Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146.,Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Lawrence J Marnett
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Chemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146 .,Departments of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146.,Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146.,Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146.,Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| |
Collapse
|
21
|
Metabolomics coupled with pathway analysis characterizes metabolic changes in response to BDE-3 induced reproductive toxicity in mice. Sci Rep 2018; 8:5423. [PMID: 29615664 PMCID: PMC5882662 DOI: 10.1038/s41598-018-23484-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 03/06/2018] [Indexed: 12/21/2022] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) may affect male reproductive function. 4-bromodiphenyl ether (BDE-3), the photodegradation products of higher brominated PBDEs, is the most fundamental mono-BDE in environment but is less studied. The purpose of this study was to investigate the reproductive toxicity induced by BDE-3 and explore the mechanism by metabolomics approach. In this study, mice were treated intragastrically with BDE-3 for consecutive six weeks at the dosages of 0.0015, 1.5, 10 and 30 mg/kg. The reproductive toxicity was evaluated by sperm analysis and histopathology examinations. UPLC-Q-TOF/MS was applied to profile the metabolites of testis tissue, urine and serum samples in the control and BDE-3 treated mice. Results showed the sperm count was dose-dependently decreased and percentage of abnormal sperms increased by the treatment of BDE-3. Histopathology examination also revealed changes in seminiferous tubules and epididymides in BDE-3 treated mice. Metabolomics analysis revealed that different BDE-3 groups showed metabolic disturbances to varying degrees. We identified 76, 38 and 31 differential metabolites in testis tissue, urine and serum respectively. Pathway analysis revealed several pathways including Tyrosine metabolism, Purine metabolism and Riboflavin metabolism, which may give a possible explanation for the toxic mechanism of BDE-3. This study indicates that UHPLC-Q-TOFMS-based metabolomics approach provided a better understanding of PBDEs-induced toxicity dynamically.
Collapse
|
22
|
Zhou L, Shi M, Zhao L, Lin Z, Tang Z, Sun H, Chen T, Lv Z, Xu J, Huang Y, Yu X. Clonorchis sinensis lysophospholipase A upregulates IL-25 expression in macrophages as a potential pathway to liver fibrosis. Parasit Vectors 2017. [PMID: 28623940 PMCID: PMC5474055 DOI: 10.1186/s13071-017-2228-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Liver fibrosis is an excessive wound-healing reaction that requires the participation of inflammatory cells and hepatic stellate cells (HSCs). The pathogenesis of liver fibrosis caused by viruses and alcohol has been well characterized, but the molecular mechanisms underlying liver fibrosis induced by the liver fluke Clonorchis sinensis are poorly understood. Lysophospholipase A (LysoPLA), which deacylates lysophospholipids, plays a critical role in mediating the virulence and pathogenesis of parasites and fungi; however, the roles of C. sinensis lysophospholipase A (CsLysoPLA) in C. sinensis-induced liver fibrosis remain unknown. Methods A mouse macrophage cell line (RAW264.7) was cultured and treated with CsLysoPLA. IL-25 and members of its associated signaling pathway were detected by performing quantitative real-time PCR, Western blotting and immunofluorescent staining. A human hepatic stellate cell line (LX-2) was cultured and exposed to IL-25. LX-2 cell activation markers were examined via quantitative real-time PCR, Western blotting and immunofluorescent staining. Migration was analyzed in transwell plates. Results Treating RAW264.7 cells with CsLysoPLA significantly induced IL-25 expression. Elevated PKA, B-Raf, and ERK1/2 mRNA levels and phosphorylated B-Raf and ERK1/2 were detected in CsLysoPLA-stimulated RAW264.7 cells. The PKA inhibitor H-89 weakened B-Raf and ERK1/2 phosphorylation whereas the AKT activator SC79 attenuated ERK1/2 phosphorylation in RAW264.7 cells. Both H-89 and SC79 inhibited CsLysoPLA-induced IL-25 upregulation. In addition, stimulation of LX-2 cells with IL-25 upregulated the expression of mesenchymal cell markers, including α-smooth muscle actin (α-SMA) and collagen type I (Collagen-I), and promoted cell migration. Conclusions CsLysoPLA activates HSCs by upregulating IL-25 in macrophages through the PKA-dependent B-Raf/ERK1/2 pathway and potentially promotes hepatic fibrosis during C. sinensis infection.
Collapse
Affiliation(s)
- Lina Zhou
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Mengchen Shi
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Lu Zhao
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Zhipeng Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Zeli Tang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Hengchang Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Tingjin Chen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Zhiyue Lv
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Jin Xu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Yan Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China.
| | - Xinbing Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China.
| |
Collapse
|
23
|
Zhou L, Shang M, Shi M, Zhao L, Lin Z, Chen T, Wu Y, Tang Z, Sun H, Yu J, Huang Y, Yu X. Clonorchis sinensis lysophospholipase inhibits TGF-β1-induced expression of pro-fibrogenic genes through attenuating the activations of Smad3, JNK2, and ERK1/2 in hepatic stellate cell line LX-2. Parasitol Res 2016; 115:643-50. [PMID: 26486942 DOI: 10.1007/s00436-015-4782-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/06/2015] [Indexed: 12/12/2022]
Abstract
Liver fibrosis is a wound healing response associated with chronic liver injury. Hepatic stellate cells (HSCs) activation is a key event in the development of liver fibrosis. Since helminths have the ability to live for decades in the host by establishing an adaptive relationship in the interplay with its hosts, we hypothesize that whether Clonochis sinensis LysophospholipaseA (CsLysoPLA), a component of excretory/secretory proteins, can attenuate the fibrogenic response by inhibiting activation of LX-2 cells, thereby balancing the pro-fibrotic and anti-fibrotic response during the Clonochis sinensis (C. sinensis) infection. In the present study, LX-2 cells were stimulated with CsLysoPLA in the presence of TGF-β1, and the expressions of collagen type I (COL1A1), α-smooth muscle actin (α-SMA), and matrix metalloproteinase 2 (MMP2) were decreased. In addition, CsLysoPLA significantly inhibited the proliferation and migration of LX-2 cells stimulated by TGF-β1. Pretreatment of LX-2 cells with CsLysoPLA attenuated the phosphorylation of Smad3 as well as JNK2 and ERK1/2 in response to the stimulation of TGF-β1. For the first time, our results showed an anti-fibrogenic effect of CsLysoPLA by attenuating the response of LX-2 cells to TGF-β1 through inhibiting the activations of Smad3, ERK1/2, and JNK2.
Collapse
|
24
|
Full-Length cDNA Cloning, Molecular Characterization and Differential Expression Analysis of Lysophospholipase I from Ovis aries. Int J Mol Sci 2016; 17:ijms17081206. [PMID: 27483239 PMCID: PMC5000604 DOI: 10.3390/ijms17081206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/15/2016] [Accepted: 07/19/2016] [Indexed: 01/23/2023] Open
Abstract
Lysophospholipase I (LYPLA1) is an important protein with multiple functions. In this study, the full-length cDNA of the LYPLA1 gene from Ovis aries (OaLypla1) was cloned using primers and rapid amplification of cDNA ends (RACE) technology. The full-length OaLypla1 was 2457 bp with a 5′-untranslated region (UTR) of 24 bp, a 3′-UTR of 1740 bp with a poly (A) tail, and an open reading frame (ORF) of 693 bp encoding a protein of 230 amino acid residues with a predicted molecular weight of 24,625.78 Da. Phylogenetic analysis showed that the OaLypla1 protein shared a high amino acid identity with LYPLA1 of Bos taurus. The recombinant OaLypla1 protein was expressed and purified, and its phospholipase activity was identified. Monoclonal antibodies (mAb) against OaLypla1 that bound native OaLypla1 were generated. Real-time PCR analysis revealed that OaLypla1 was constitutively expressed in the liver, spleen, lung, kidney, and white blood cells of sheep, with the highest level in the kidney. Additionally, the mRNA levels of OaLypla1 in the buffy coats of sheep challenged with virulent or avirulent Brucella strains were down-regulated compared to untreated sheep. The results suggest that OaLypla1 may have an important physiological role in the host response to bacteria. The function of OaLypla1 in the host response to bacterial infection requires further study in the future.
Collapse
|
25
|
Abstract
Acyl-CoA-binding proteins (ACBPs) play a pivotal role in fatty acid metabolism because they can transport medium- and long-chain acyl-CoA esters. In eukaryotic cells, ACBPs are involved in intracellular trafficking of acyl-CoA esters and formation of a cytosolic acyl-CoA pool. In addition to these ubiquitous functions, more specific non-redundant roles of plant ACBP subclasses are implicated by the existence of multigene families with variable molecular masses, ligand specificities, functional domains (e.g. protein-protein interaction domains), subcellular locations and gene expression patterns. In this chapter, recent progress in the characterization of ACBPs from the model dicot plant, Arabidopsis thaliana, and the model monocot, Oryza sativa, and their emerging roles in plant growth and development are discussed. The functional significance of respective members of the plant ACBP families in various developmental and physiological processes such as seed development and germination, stem cuticle formation, pollen development, leaf senescence, peroxisomal fatty acid β-oxidation and phloem-mediated lipid transport is highlighted.
Collapse
Affiliation(s)
- Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
26
|
Guillier C, Gamm M, Lucchi G, Truntzer C, Pecqueur D, Ducoroy P, Adrian M, Héloir MC. Toward the Identification of Two Glycoproteins Involved in the Stomatal Deregulation of Downy Mildew-Infected Grapevine Leaves. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:1227-1236. [PMID: 26106900 DOI: 10.1094/mpmi-05-15-0115-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Stomata remain abnormally opened and unresponsive to abscisic acid in grapevine leaves infected by downy mildew. This deregulation occurs from 3 days postinoculation and increases concomitantly with leaf colonization by the pathogen. Using epidermal peels, we demonstrated that the active compound involved in this deregulation is located in the apoplast. Biochemical assays showed that the active compound present in the apoplastic fluids isolated from Plasmopara viticola-infected grapevine leaves (IAF) is a CysCys bridge-independent, thermostable and glycosylated protein. Fractionation guided assays based on chromatography coupled to stomatal response and proteomic analysis allowed the identification of both plant and pathogen proteins in the active fraction obtained from IAF. Further in silico analysis and discriminant filtrations based on the comparison between predictions and experimental indications lead to the identification of two Vitis vinifera proteins as candidates for the observed stomatal deregulation.
Collapse
Affiliation(s)
- Christelle Guillier
- 1 CNRS, UMR1347 Agroécologie, ERL CNRS 6300, BP 86510, F-21000 Dijon, France
| | - Magdalena Gamm
- 2 Université de Bourgogne, UMR1347 Agroécologie, ERL CNRS 6300, BP 86510, F-21000 Dijon, France
| | - Géraldine Lucchi
- 3 Clinical Innovation Proteomic Platform - CLIPP, 15 Boulevard Maréchal de Lattre de Tassigny, BP37013, F-21070 Dijon cedex, France
| | - Caroline Truntzer
- 3 Clinical Innovation Proteomic Platform - CLIPP, 15 Boulevard Maréchal de Lattre de Tassigny, BP37013, F-21070 Dijon cedex, France
| | - Delphine Pecqueur
- 3 Clinical Innovation Proteomic Platform - CLIPP, 15 Boulevard Maréchal de Lattre de Tassigny, BP37013, F-21070 Dijon cedex, France
| | - Patrick Ducoroy
- 3 Clinical Innovation Proteomic Platform - CLIPP, 15 Boulevard Maréchal de Lattre de Tassigny, BP37013, F-21070 Dijon cedex, France
| | - Marielle Adrian
- 2 Université de Bourgogne, UMR1347 Agroécologie, ERL CNRS 6300, BP 86510, F-21000 Dijon, France
| | - Marie-Claire Héloir
- 2 Université de Bourgogne, UMR1347 Agroécologie, ERL CNRS 6300, BP 86510, F-21000 Dijon, France
| |
Collapse
|
27
|
Raynor A, Jantscheff P, Ross T, Schlesinger M, Wilde M, Haasis S, Dreckmann T, Bendas G, Massing U. Saturated and mono-unsaturated lysophosphatidylcholine metabolism in tumour cells: a potential therapeutic target for preventing metastases. Lipids Health Dis 2015; 14:69. [PMID: 26162894 PMCID: PMC4499168 DOI: 10.1186/s12944-015-0070-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/29/2015] [Indexed: 01/21/2023] Open
Abstract
Background Metastasis is the leading cause of mortality in malignant diseases. Patients with metastasis often show reduced Lysophosphatidylcholine (LysoPC) plasma levels and treatment of metastatic tumour cells with saturated LysoPC species reduced their metastatic potential in vivo in mouse experiments. To provide a first insight into the interplay of tumour cells and LysoPC, the interactions of ten solid epithelial tumour cell lines and six leukaemic cell lines with saturated and mono-unsaturated LysoPC species were explored. Methods LysoPC metabolism by the different tumour cells was investigated by a combination of cell culture assays, GC and MS techniques. Functional consequences of changed membrane properties were followed microscopically by detecting lateral lipid diffusion or cellular migration. Experimental metastasis studies in mice were performed after pretreatment of B16.F10 melanoma cells with LysoPC and FFA, respectively. Results In contrast to the leukaemic cells, all solid tumour cells show a very fast extracellular degradation of the LysoPC species to free fatty acids (FFA) and glycerophosphocholine. We provide evidence that the formerly LysoPC bound FFA were rapidly incorporated into the cellular phospholipids, thereby changing the FA-compositions accordingly. A massive increase of the neutral lipid amount was observed, inducing the formation of lipid droplets. Saturated LysoPC and to a lesser extent also mono-unsaturated LysoPC increased the cell membrane rigidity, which is assumed to alter cellular functions involved in metastasis. According to that, saturated and mono-unsaturated LysoPC as well as the respective FFA reduced the metastatic potential of B16.F10 cells in mice. Application of high doses of liposomes mainly consisting of saturated PC was shown to be a suitable way to strongly increase the plasma level of saturated LysoPC in mice. Conclusion These data show that solid tumours display a high activity to hydrolyse LysoPC followed by a very rapid uptake of the resulting FFA; a mechanistic model is provided. In contrast to the physiological mix of LysoPC species, saturated and mono-unsaturated LysoPC alone apparently attenuate the metastatic activity of tumours and the artificial increase of saturated and mono-unsaturated LysoPC in plasma appears as novel therapeutic approach to interfere with metastasis.
Collapse
Affiliation(s)
- Anna Raynor
- Department of Lipids & Liposomes, Tumor Biology Center, Clinical Research, Breisacher Str. 117, 79106, Freiburg, Germany.
| | | | - Thomas Ross
- Department of Pharmaceutical Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany.
| | - Martin Schlesinger
- Department of Pharmaceutical Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany.
| | - Maurice Wilde
- Department of Lipids & Liposomes, Tumor Biology Center, Clinical Research, Breisacher Str. 117, 79106, Freiburg, Germany. .,Institute for Pharmaceutical Sciences, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany.
| | - Sina Haasis
- Department of Lipids & Liposomes, Tumor Biology Center, Clinical Research, Breisacher Str. 117, 79106, Freiburg, Germany. .,Institute for Pharmaceutical Sciences, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany.
| | - Tim Dreckmann
- Department of Lipids & Liposomes, Tumor Biology Center, Clinical Research, Breisacher Str. 117, 79106, Freiburg, Germany. .,Institute for Pharmaceutical Sciences, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany.
| | - Gerd Bendas
- Department of Pharmaceutical Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany.
| | - Ulrich Massing
- Department of Lipids & Liposomes, Tumor Biology Center, Clinical Research, Breisacher Str. 117, 79106, Freiburg, Germany. .,Institute for Pharmaceutical Sciences, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany.
| |
Collapse
|
28
|
Jurkowitz MS, Patel A, Wu LC, Krautwater A, Pfeiffer DR, Bell CE. The YhhN protein of Legionella pneumophila is a Lysoplasmalogenase. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1848:742-51. [PMID: 25445671 PMCID: PMC4282143 DOI: 10.1016/j.bbamem.2014.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/25/2014] [Accepted: 11/10/2014] [Indexed: 10/24/2022]
Abstract
Lysoplasmalogenase catalyzes hydrolytic cleavage of the vinyl-ether bond of lysoplasmalogen to yield fatty aldehyde and glycerophospho-ethanolamine or glycerophospho-choline. We recently purified lysoplasmalogenase from rat liver microsomes and identified the protein as TMEM86B, an integral membrane protein that is a member of the YhhN family found in numerous species of eukaryotes and bacteria. To test the hypothesis that bacterial YhhN proteins also function as lysoplasmalogenase enzymes, we cloned the Lpg1991 gene of Legionella pneumophila, which encodes a 216 amino acid YhhN protein (LpYhhN), and expressed it in Escherichia coli as a C-terminal-GFP-His8-fusion. Membranes were solubilized and the fusion protein was purified by nickel-affinity chromatography, cleaved with Tobacco Etch Virus protease, and subjected to a reverse nickel column to purify the un-tagged LpYhhN. Both the fusion protein and un-tagged LpYhhN exhibit robust lysoplasmalogenase activity, cleaving the vinyl-ether bond of lysoplasmalogen with a Vmax of 12 µmol/min/mg protein and a Km of 45 μM. LpYhhN has no activity on diradyl plasmalogen, 1-alkenyl-glycerol, and monoacylglycerophospho-ethanolamine or monoacylglycerophospho-choline; the pH optimum is 6.5-7.0. These properties are very similar to mammalian TMEM86B. Sequence analysis suggests that YhhN proteins contain eight transmembrane helices, an N-in/C-in topology, and about 5 highly conserved amino acid residues that may form an active site. This work is the first to demonstrate a function for a bacterial YhhN protein, as a vinyl ether bond hydrolase specific for lysoplasmalogen. Since L. pneumophila does not contain endogenous plasmalogens, we hypothesize that LpYhhN may serve to protect the bacterium from lysis by lysoplasmalogen derived from plasmalogens of the host.
Collapse
Affiliation(s)
- Marianne S Jurkowitz
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| | - Aalapi Patel
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Lai-Chu Wu
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA; The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Annalise Krautwater
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Douglas R Pfeiffer
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Charles E Bell
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
29
|
Shen Q, Yang Q, Cheung HY. Hydrophilic interaction chromatography based solid-phase extraction and MALDI TOF mass spectrometry for revealing the influence of Pseudomonas fluorescens on phospholipids in salmon fillet. Anal Bioanal Chem 2014; 407:1475-84. [PMID: 25492091 DOI: 10.1007/s00216-014-8365-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/18/2014] [Accepted: 11/20/2014] [Indexed: 11/30/2022]
Abstract
Salmon is a popular food but it is easily susceptible to spoilage by contamination with microorganisms. In this study, a method using hydrophilic interaction chromatography (HILIC)-based solid-phase extraction (SPE) and matrix-assisted laser desorption and ionization time-of-flight/time-of-flight mass spectrometry was developed and applied to reveal the effect of Pseudomonas fluorescens on salmon fillet during the shelf-life period by measuring the changes in the levels of phosphatidylcholine and phosphatidylethanolamine. Fresh samples were inoculated with P. fluorescens (10(6) cfu g(-1)) for 30 s, and lipids were extracted at 0, 24, 48, and 72 h. A homemade SPE cartridge packed with HILIC sorbent (silica derivatized with 1,2-dihydroxypropane) was used for matrix cleanup prior to analysis by mass spectrometry. In total, 30 phospholipids and 16 lysophospholipids were detected and elucidated. The results revealed that the content of phospholipids decreased significantly, whereas that of lysophospholipids increased initially, followed by a gradual reduction as the cold storage time increased. The contamination by P. fluorescens negatively affected the quality of fresh salmon without obvious physical changes, but it posed a potential threat to human health. This study suggests that the well-established method could be used for detecting phospholipids in salmon fillet and perhaps other foods as well.
Collapse
Affiliation(s)
- Qing Shen
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong Special Administrative Region, China
| | | | | |
Collapse
|
30
|
Manna JD, Wepy JA, Hsu KL, Chang JW, Cravatt BF, Marnett LJ. Identification of the major prostaglandin glycerol ester hydrolase in human cancer cells. J Biol Chem 2014; 289:33741-53. [PMID: 25301951 DOI: 10.1074/jbc.m114.582353] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Prostaglandin glycerol esters (PG-Gs) are produced as a result of the oxygenation of the endocannabinoid, 2-arachidonoylglycerol, by cyclooxygenase 2. Understanding the role that PG-Gs play in a biological setting has been difficult because of their sensitivity to enzymatic hydrolysis. By comparing PG-G hydrolysis across human cancer cell lines to serine hydrolase activities determined by activity-based protein profiling, we identified lysophospholipase A2 (LYPLA2) as a major enzyme responsible for PG-G hydrolysis. The principal role played by LYPLA2 in PGE2-G hydrolysis was confirmed by siRNA knockdown. Purified recombinant LYPLA2 hydrolyzed PG-Gs in the following order of activity: PGE2-G > PGF2α-G > PGD2-G; LYPLA2 hydrolyzed 1- but not 2-arachidonoylglycerol or arachidonoylethanolamide. Chemical inhibition of LYPLA2 in the mouse macrophage-like cell line, RAW264.7, elicited an increase in PG-G production. Our data indicate that LYPLA2 serves as a major PG-G hydrolase in human cells. Perturbation of this enzyme should enable selective modulation of PG-Gs without alterations in endocannabinoids, thereby providing a means to decipher the unique functions of PG-Gs in biology and disease.
Collapse
Affiliation(s)
- Joseph D Manna
- From the A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| | - James A Wepy
- From the A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| | - Ku-Lung Hsu
- the Skaggs Institute for Chemical Biology and the Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037
| | - Jae Won Chang
- the Skaggs Institute for Chemical Biology and the Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037
| | - Benjamin F Cravatt
- the Skaggs Institute for Chemical Biology and the Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037
| | - Lawrence J Marnett
- From the A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| |
Collapse
|
31
|
Flasiński M, Wydro P, Broniatowski M. Lyso-phosphatidylcholines in Langmuir monolayers – Influence of chain length on physicochemical characteristics of single-chained lipids. J Colloid Interface Sci 2014; 418:20-30. [DOI: 10.1016/j.jcis.2013.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 11/29/2013] [Accepted: 12/01/2013] [Indexed: 01/23/2023]
|
32
|
Functional pathways altered after silencing Pnpla6 (the codifying gene of neuropathy target esterase) in mouse embryonic stem cells under differentiation. In Vitro Cell Dev Biol Anim 2013; 50:261-73. [PMID: 24142151 DOI: 10.1007/s11626-013-9691-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 09/10/2013] [Indexed: 12/15/2022]
Abstract
Neuropathy target esterase (NTE) is involved in several disorders in adult organisms and embryos. A relationship between NTE and nervous system integrity and maintenance in adult systems has been suggested. NTE-related motor neuron disease is associated with the expression of a mutant form of NTE and the inhibition and further modification of NTE by organophosphorus compounds is the trigger of a delayed neurodegenerative neuropathy. Homozygotic NTE knockout mice embryos are not viable, while heterozygotic NTE knockout mice embryos yields mice with neurological disorders, which suggest that this protein plays a critical role in embryonic development. The present study used D3 mouse embryonic stem cells with the aim of gaining mechanistic insights on the role of Pnpla6 (NTE gene encoding) in the developmental process. D3 cells were silenced by lipofectamine transfection with a specific interference RNA for Pnpla6. Silencing Pnpla6 in D3 monolayer cultures reduced NTE enzymatic activity to 50% 20 h post-treatment, while the maximum loss of Pnpla6 expression reached 80% 48 h postsilencing. Pnpla6 was silenced in embryoid bodies and 545 genes were differentially expressed regarding the control 96 h after silencing, which revealed alterations in multiple genetic pathways, such as cell motion and cell migration, vesicle regulation, and cell adhesion. These findings also allow considering that these altered pathways would impair the formation of respiratory, neural, and vascular tubes causing the deficiencies observed in the in vivo development of nervous and vascular systems. Our findings, therefore, support the previous observations made in vivo concerning lack of viability of mice embryos not expressing NTE and help to understand the biology of several neurological and developmental disorders in which NTE is involved.
Collapse
|
33
|
Extracellular lipid metabolism influences the survival of ovarian cancer cells. Biochem Biophys Res Commun 2013; 439:280-4. [PMID: 23973712 DOI: 10.1016/j.bbrc.2013.08.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 08/13/2013] [Indexed: 11/20/2022]
Abstract
Lysophosphatidic acid (LPA) is an extracellular lipid mediator consisting of a fatty acid and a phosphate group linked to the glycerol backbone. Here, we show that 1-oleoyl- and 1-palmitoyl-LPA, but not 1-stearoyl- or alkyl-LPA, enhance HNOA ovarian cancer cell survival. Other lysophospholipids with oleic or lauric acid, but not stearic acid, also induce the survival effects. HNOA cells have the lipase activities that cleave LPA to generate fatty acid. Oleic acid stimulates HNOA cell survival via increased glucose utilization. Our findings suggest that extracellular lysolipid metabolism might play an important role in HNOA cell growth.
Collapse
|
34
|
De Smet CH, Cox R, Brouwers JF, de Kroon AIPM. Yeast cells accumulate excess endogenous palmitate in phosphatidylcholine by acyl chain remodeling involving the phospholipase B Plb1p. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1167-76. [PMID: 23501167 DOI: 10.1016/j.bbalip.2013.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 03/01/2013] [Accepted: 03/04/2013] [Indexed: 11/18/2022]
Abstract
In the yeast Saccharomyces cerevisiae, the molecular species profile of the major membrane glycerophospholipid phosphatidylcholine (PC) is determined by the molecular species-selectivity of the biosynthesis routes and by acyl chain remodeling. Overexpression of the glycerol-3-phosphate acyltransferase Sct1p was recently shown to induce a strong increase in the cellular content of palmitate (C16:0). Using stable isotope labeling and mass spectrometry, the present study shows that wild type yeast overexpressing Sct1p incorporates excess C16:0 into PC via the methylation of PE, the CDP-choline route, and post-synthetic acyl chain remodeling. Overexpression of Sct1p increased the extent of remodeling of PE-derived PC, providing a novel tool to perform mechanistic studies on PC acyl chain exchange. The exchange of acyl chains occurred at both the sn-1 and sn-2 positions of the glycerol backbone of PC, and required the phospholipase B Plb1p for optimal efficiency. Sct1p-catalyzed acyl chain exchange, the acyl-CoA binding protein Acb1p, the Plb1p homologue Plb2p, and the glycerophospholipid:triacylglycerol transacylase Lro1p were not required for PC remodeling. The results indicate that PC serves as a buffer for excess cellular C16:0.
Collapse
|
35
|
Membrane-perturbing effect of fatty acids and lysolipids. Prog Lipid Res 2013; 52:130-40. [DOI: 10.1016/j.plipres.2012.09.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/20/2012] [Accepted: 09/13/2012] [Indexed: 12/13/2022]
|
36
|
Belaunzarán ML, Wilkowsky SE, Lammel EM, Giménez G, Bott E, Barbieri MA, de Isola ELD. Phospholipase A1: a novel virulence factor in Trypanosoma cruzi. Mol Biochem Parasitol 2012; 187:77-86. [PMID: 23275096 DOI: 10.1016/j.molbiopara.2012.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 12/08/2012] [Accepted: 12/12/2012] [Indexed: 10/27/2022]
Abstract
Phospholipase A1 (PLA1) has been described in the infective stages of Trypanosoma cruzi as a membrane-bound/secreted enzyme that significantly modified host cell lipid profile with generation of second lipid messengers and concomitant activation of protein kinase C. In the present work we determined higher levels of PLA1 expression in the infective amastigotes and trypomastigotes than in the non-infective epimastigotes of lethal RA strain. In addition, we found similar expression patterns but distinct PLA1 activity levels in bloodstream trypomastigotes from Cvd and RA (lethal) and K98 (non-lethal) T. cruzi strains, obtained at their corresponding parasitemia peaks. This fact was likely due to the presence of different levels of anti-T. cruzi PLA1 antibodies in sera of infected mice, that modulated the enzyme activity. Moreover, these antibodies significantly reduced in vitro parasite invasion indicating the participation of T. cruzi PLA1 in the early events of parasite-host cell interaction. We also demonstrated the presence of lysophospholipase activity in live infective stages that could account for self-protection against the toxic lysophospholipids generated by T. cruzi PLA1 action. At the genome level, we identified at least eight putative genes that codify for T. cruzi PLA1 with high amino acid sequence variability in their amino and carboxy-terminal regions; a putative PLA1 selected gene was cloned and expressed as a recombinant protein that possessed PLA1 activity. Collectively, the results presented here point out at T. cruzi PLA1 as a novel virulence factor implicated in parasite invasion.
Collapse
Affiliation(s)
- María Laura Belaunzarán
- Instituto de Microbiología y Parasitología Médica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Facultad de Medicina, Paraguay 2155, piso 13, C1121ABG, Buenos Aires, Argentina.
| | | | | | | | | | | | | |
Collapse
|
37
|
Xue F, Zhang C, He Z, Ding L, Xiao H. Analysis of critical molecules and signaling pathways in osteoarthritis and rheumatoid arthritis. Mol Med Rep 2012; 7:603-7. [PMID: 23232804 DOI: 10.3892/mmr.2012.1224] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 10/22/2012] [Indexed: 11/05/2022] Open
Abstract
Osteoarthritis (OA) and rheumatoid arthritis (RA) are the most prevalent forms of arthritis in the elderly. This study aimed to explore the molecular mechanisms of these diseases and identify underlying therapeutic targets. Using GSE1919 microarray data sets downloaded from the Gene Expression Omnibus database, we screened differentially expressed genes (DEGs) in OA and RA cells. The underlying molecular mechanisms of these crucial genes were investigated by Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Small molecule expression and SNP analysis were also conducted by searching CMap and dbSNP databases. More than 320 genes changed in the arthritic cells and there were only 196 DEGs between OA and RA. OA and RA activated the classic mitogen-activated protein kinase signaling pathway, insulin signaling pathway, antigen processing and presentation and intestinal immune network for IgA production. Graft-versus-host disease and autoimmune thyroid disease-related pathways were also activated in OA and RA. Parthenolide and alsterpaullone may be treatments for OA and RA and insulin-like growth factor 1, collagen α2(I) chain and special AT-rich sequence-binding protein 2 may be critical SNP molecules in arthritis. Our findings shed new light on the common molecular mechanisms of OA and RA and may provide theoretical support for further clinical therapeutic studies.
Collapse
Affiliation(s)
- Feng Xue
- Department of Orthopaedics, Fengxian Central Hospital, Shanghai 201400, P.R. China
| | | | | | | | | |
Collapse
|
38
|
Stage-specific expression, immunolocalization of Clonorchis sinensis lysophospholipase and its potential role in hepatic fibrosis. Parasitol Res 2012. [PMID: 23183703 DOI: 10.1007/s00436-012-3194-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lysophospholipase, belonging to the complex family of phospholipases, is supposed to play a vital role in virulence and pathogenesis of parasites and fungi. In the current study, the potential role of Clonorchis sinensis lysophospholipase (CslysoPLA) in hepatic fibrosis induced by C. sinensis was explored for the first time. In the liver of the cat infected with C. sinensis, CslysoPLA was recognized in the lumen between adult worms and surrounding bile duct epithelia together with some inside the cells by means of immunolocalization. Both Cell Counting Kit-8 (CCK-8 assay) and cell cycle analysis of human hepatic stellate cell line LX-2 showed that a higher percentage of cells were at proliferation phase after incubation with lower concentrations of recombinant CslysoPLA (rCslysoPLA). Quantitative real-time polymerase chain reaction (RT-PCR) demonstrated an upregulation in fibrogenic genes of smooth muscle α-actin, collagen III, matrix metalloproteinase 2 and tissue inhibitors of metalloproteinase II in LX-2 treated with rCslysoPLA. Moreover, human biliary epithelial cell line 5100 proliferated significantly in response to rCslysoPLA. Notably, CslysoPLA was localized in the adenomatoid hyperplastic tissue within the intrahepatic bile duct of experimentally infected rats by immunolocalization analysis. In addition, quantitative RT-PCR implied that CslysoPLA was differentially expressed at the developmental stages of C. sinensis (metacercariae, adult worms and eggs), with the highest level at metacercariae stage. Immunolocalization analysis showed that CslysoPLA was distributed in the intestine, vitelline gland, tegument and eggs in the adult worms and in the tegument and vitelline gland in the metacercariae, respectively. Collectively, it suggests that CslysoPLA might be involved in the initiation and promotion of C. sinensis-related human hepatic fibrosis and advance future studies on its promotion to C. sinensis-induced cholangiocarcinogenesis.
Collapse
|
39
|
Abstract
Phospholipase A(1) (PLA(1)) is an enzyme that hydrolyzes phospholipids and produces 2-acyl-lysophospholipids and fatty acids. This lipolytic activity is conserved in a wide range of organisms but is carried out by a diverse set of PLA(1) enzymes. Where their function is known, PLA(1)s have been shown to act as digestive enzymes, possess central roles in membrane maintenance and remodeling, or regulate important cellular mechanisms by the production of various lysophospholipid mediators, such as lysophosphatidylserine and lysophosphatidic acid, which in turn have multiple biological functions.
Collapse
Affiliation(s)
- Gregory S. Richmond
- Agilent Technologies, Molecular Separations, Santa Clara, CA 95051, USA; E-Mail:
| | - Terry K. Smith
- Centre for Biomolecular Sciences, The North Haugh, The University, St. Andrews, KY16 9ST, Scotland, UK
- To whom correspondence should be addressed; E-Mail: ; Tel.: +44-1334-463412; Fax: +44-1334-462595
| |
Collapse
|
40
|
Benjamin AM, Suchindran S, Pearce K, Rowell J, Lien LF, Guyton JR, McCarthy JJ. Gene by sex interaction for measures of obesity in the framingham heart study. J Obes 2011; 2011:329038. [PMID: 21253498 PMCID: PMC3021872 DOI: 10.1155/2011/329038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/17/2010] [Accepted: 11/22/2010] [Indexed: 01/04/2023] Open
Abstract
Obesity is an increasingly prevalent and severe health concern with a substantial heritable component and marked sex differences. We sought to determine if the effect of genetic variants also differed by sex by performing a genome-wide association study modeling the effect of genotype-by-sex interaction on obesity phenotypes. Genotype data from individuals in the Framingham Heart Study Offspring cohort were analyzed across five exams. Although no variants showed genome-wide significant gene-by-sex interaction in any individual exam, four polymorphisms displayed a consistent BMI association (P-values .00186 to .00010) across all five exams. These variants were clustered downstream of LYPLAL1, which encodes a lipase/esterase expressed in adipose tissue, a locus previously identified as having sex-specific effects on central obesity. Primary effects in males were in the opposite direction from females and were replicated in Framingham Generation 3. Our data support a sex-influenced association between genetic variation at the LYPLAL1 locus and obesity-related traits.
Collapse
Affiliation(s)
- Ashlee M. Benjamin
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708, USA
| | - Sunil Suchindran
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708, USA
| | - Kaela Pearce
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708, USA
| | - Jennifer Rowell
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Lillian F. Lien
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - John R. Guyton
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Jeanette J. McCarthy
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708, USA
- Department of Community and Family Medicine, Duke University Medical Center, Durham, NC 27710, USA
- *Jeanette J. McCarthy:
| |
Collapse
|
41
|
Ciborowski M, Javier Rupérez F, Martínez-Alcázar MP, Angulo S, Radziwon P, Olszanski R, Kloczko J, Barbas C. Metabolomic approach with LC-MS reveals significant effect of pressure on diver's plasma. J Proteome Res 2010; 9:4131-7. [PMID: 20504017 DOI: 10.1021/pr100331j] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Professional and recreational diving are growing activities in modern life. Diving has been associated with increased prevalence of stroke, hypertension, asthma, diabetes, or bone necrosis. We evaluated the effect of increased pressure equivalent to diving at 30 and 60 m for 30 min in two groups of divers using an untargeted approach with LC-MS fingerprinting of plasma. We found over 100 metabolites to be altered in plasma post exposure and after the corresponding decompression procedures. Among them, a group of lysophosphatidylcholines and lysophosphatidylethanolamines were increased, including lysoplasmalogen, a thrombosis promoter, together with changes in metabolic rate-associated molecules such as acylcarnitines and hemolysis-related compounds. Moreover, three metabolites that could be associated to bone degradation show different intensities between experimental groups. Ultimately, this nontargeted, short-term study opens the possibility of discovering markers of long-term effect of pressure that could be employed in routine health control of divers and could facilitate the development of safer decompression procedures.
Collapse
Affiliation(s)
- Michal Ciborowski
- Pharmacy Faculty, Campus Monteprincipe, San Pablo-CEU University, Boadilla del Monte. Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Bakthavatchalu V, Meka A, Sathishkumar S, Lopez MC, Verma RK, Wallet SM, Bhattacharyya I, Boyce BF, Mans JJ, Lamont RJ, Baker HV, Ebersole JL, Kesavalu L. Molecular characterization of Treponema denticola infection-induced bone and soft tissue transcriptional profiles. Mol Oral Microbiol 2010; 25:260-74. [PMID: 20618700 DOI: 10.1111/j.2041-1014.2010.00575.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Treponema denticola is associated with subgingival biofilms in adult periodontitis and with acute necrotizing ulcerative gingivitis. However, the molecular mechanisms by which T. denticola impacts periodontal inflammation and alveolar bone resorption remain unclear. Here, we examined changes in the host transcriptional profiles during a T. denticola infection using a murine calvarial model of inflammation and bone resorption. T. denticola was injected into the subcutaneous soft tissue over the calvaria of BALB/c mice for 3 days, after which the soft tissues and the calvarial bones were excised. RNA was isolated and analysed for transcript profiling using Murine GeneChip arrays. Following T. denticola infection, 2905 and 1234 genes in the infected calvarial bones and soft tissues, respectively, were differentially expressed (P <or= 0.05). Biological pathways significantly impacted by T. denticola infection in calvarial bone and calvarial tissue included leukocyte transendothelial migration, cell adhesion (immune system) molecules, cell cycle, extracellular matrix-receptor interaction, focal adhesion, B-cell receptor signaling and transforming growth factor-beta signaling pathways resulting in proinflammatory, chemotactic effects, and T-cell stimulation. In conclusion, localized T. denticola infection differentially induces transcription of a broad array of host genes, the profiles of which differed between inflamed calvarial bone and soft tissues.
Collapse
Affiliation(s)
- V Bakthavatchalu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gao W, Li HY, Xiao S, Chye ML. Protein interactors of acyl-CoA-binding protein ACBP2 mediate cadmium tolerance in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2010; 5:1025-7. [PMID: 20657176 PMCID: PMC3115187 DOI: 10.4161/psb.5.8.12294] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In our recent paper in the Plant Journal, we reported that Arabidopsis thaliana lysophospholipase 2 (lysoPL2) binds acyl-CoA-binding protein 2 (ACBP2) to mediate cadmium [Cd(II)] tolerance in transgenic Arabidopsis. ACBP2 contains ankyrin repeats that have been previously shown to mediate protein-protein interactions with an ethylene-responsive element binding protein (AtEBP) and a farnesylated protein 6 (AtFP6). Transgenic Arabidopsis ACBP2-overexpressors, lysoPL2-overexpressors and AtFP6-overexpressors all display enhanced Cd(II) tolerance, in comparison to wild type, suggesting that ACBP2 and its protein partners work together to mediate Cd(II) tolerance. Given that recombinant ACBP2 and AtFP6 can independently bind Cd(II) in vitro, they may be able to participate in Cd(II) translocation. The binding of recombinant ACBP2 to [(14)C]linoleoyl-CoA and [(14)C]linolenoyl-CoA implies its role in phospholipid repair. In conclusion, ACBP2 can mediate tolerance to Cd(II)-induced oxidative stress by interacting with two protein partners, AtFP6 and lysoPL2. Observations that ACBP2 also binds lysophosphatidylcholine (lysoPC) in vitro and that recombinant lysoPL2 degrades lysoPC, further confirm an interactive role for ACBP2 and lysoPL2 in overcoming Cd(II)-induced stress.
Collapse
Affiliation(s)
- Wei Gao
- School of Biological Sciences; The University of Hong Kong; Hong Kong, China
| | - Hong-Ye Li
- School of Biological Sciences; The University of Hong Kong; Hong Kong, China
- Department of Biotechnology; Jinan University; Shipai, Guangzhou, China
| | - Shi Xiao
- School of Biological Sciences; The University of Hong Kong; Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences; The University of Hong Kong; Hong Kong, China
| |
Collapse
|
44
|
Gao W, Li HY, Xiao S, Chye ML. Acyl-CoA-binding protein 2 binds lysophospholipase 2 and lysoPC to promote tolerance to cadmium-induced oxidative stress in transgenic Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:989-1003. [PMID: 20345607 DOI: 10.1111/j.1365-313x.2010.04209.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Lysophospholipids are intermediates of phospholipid metabolism resulting from stress and lysophospholipases detoxify lysophosphatidylcholine (lysoPC). Many lysophospholipases have been characterized in mammals and bacteria, but few have been reported from plants. Arabidopsis thaliana lysophospholipase 2 (lysoPL2) (At1g52760) was identified as a protein interactor of acyl-CoA-binding protein 2 (ACBP2) in yeast two-hybrid analysis and co-immunoprecipitation assays. BLASTP analysis indicated that lysoPL2 showed approximately 35% amino acid identity to the lysoPL1 family. Co-localization of autofluorescence-tagged lysoPL2 and ACBP2 by confocal microscopy in agroinfiltrated tobacco suggests the plasma membrane as a site for their subcellular interaction. LysoPL2 mRNA was induced by zinc (Zn) and hydrogen peroxide (H(2)O(2)), and lysoPL2 knockout mutants showed enhanced sensitivity to Zn and H(2)O(2) in comparison to wild type. LysoPL2-overexpressing Arabidopsis was more tolerant to H(2)O(2) and cadmium (Cd) than wild type, suggesting involvement of lysoPL2 in phospholipid repair following lipid peroxidation arising from metal-induced stress. Lipid hydroperoxide (LOOH) contents in ACBP2-overexpressors and lysoPL2-overexpressors after Cd-treatment were lower than wild type, indicating that ACBP2 and lysoPL2 confer protection during oxidative stress. A role for lysoPL2 in lysoPC detoxification was demonstrated when recombinant lysoPL2 was observed to degrade lysoPC in vitro. Filter-binding assays and Lipidex competition assays showed that (His)(6)-ACBP2 binds lysoPC in vitro. Binding was disrupted in a (His)(6)-ACBP2 derivative lacking the acyl-CoA-binding domain, confirming that this domain confers lysoPC binding. These results suggest that ACBP2 can bind both lysoPC and lysoPL2 to promote the degradation of lysoPC in response to Cd-induced oxidative stress.
Collapse
Affiliation(s)
- Wei Gao
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | | | | |
Collapse
|
45
|
Hsu KH, Wang SY, Chu FH, Shaw JF. Characterization and heterologous expression of a novel lysophospholipase gene fromAntrodia cinnamomea. J Appl Microbiol 2010; 108:1712-22. [DOI: 10.1111/j.1365-2672.2009.04569.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
46
|
Influence of lysophospholipid hydrolysis by the catalytic domain of neuropathy target esterase on the fluidity of bilayer lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1533-9. [PMID: 20346913 DOI: 10.1016/j.bbamem.2010.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Revised: 03/12/2010] [Accepted: 03/17/2010] [Indexed: 11/20/2022]
Abstract
Neuropathy target esterase (NTE) is an integral membrane protein localized in the endoplasmic reticulum in neurons. Irreversible inhibition of NTE by certain organophosphorus compounds produces a paralysis known as organophosphorus compound-induced delayed neuropathy. In vitro, NTE has phospholipase/lysophospholipase activity that hydrolyses exogenously added single-chain lysophospholipids in preference to dual-chain phospholipids, and NTE mutations have been associated with motor neuron disease. NTE's physiological role is not well understood, although recent studies suggest that it may control the cytotoxic accumulation of lysophospholipids in membranes. We used the NTE catalytic domain (NEST) to hydrolyze palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (p-lysoPC) to palmitic acid in bilayer membranes comprising 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and the fluorophore 1-oleoyl-2-[12-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]dodecanoyl]-sn-glycero-3-phosphocholine (NBD-PC). Translational diffusion coefficients (D(L)) in supported bilayer membranes were measured by fluorescence recovery after pattern photobleaching (FRAPP). The average D(L) for DOPC/p-lysoPC membranes without NEST was 2.44 microm(2)s(-1)+/-0.09; the D(L) for DOPC/p-lysoPC membranes containing NEST and diisopropylphosphorofluoridate, an inhibitor, was nearly identical at 2.45+/-0.08. By contrast, the D(L) for membranes comprising NEST, DOPC, and p-lysoPC was 2.28+/-0.07, significantly different from the system with inhibited NEST, due to NEST hydrolysis. Likewise, a system without NEST containing the amount of palmitic acid that would have been produced by NEST hydrolysis of p-lysoPC was identical at 2.26+/-0.06. These results indicate that NTE's catalytic activity can alter membrane fluidity.
Collapse
|
47
|
Shin JA, Lee CR, Byun MK, Chang YS, Kim SK, Chang J, Ahn CM, Kim HJ. The Clinical and Pathologic Features according to Expression of Acyl Protein Thioesterase-1 (APT1) in Stage I Non-small Cell Lung Cancer. Tuberc Respir Dis (Seoul) 2010. [DOI: 10.4046/trd.2010.68.4.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Jung Ar Shin
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Chang Ryul Lee
- Department of Internal Medicine, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Korea
| | - Min Kwang Byun
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon Soo Chang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Se Kyu Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Joon Chang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Chul Min Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hyung Jung Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
48
|
Hirano T, Kishi M, Sugimoto H, Taguchi R, Obinata H, Ohshima N, Tatei K, Izumi T. Thioesterase activity and subcellular localization of acylprotein thioesterase 1/lysophospholipase 1. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:797-805. [PMID: 19439193 DOI: 10.1016/j.bbalip.2009.05.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 04/18/2009] [Accepted: 05/04/2009] [Indexed: 11/29/2022]
Abstract
Acylprotein thioesterase 1 (APT1), also known as lysophospholipase 1, is an important enzyme responsible for depalmitoylation of palmitoyl proteins. To clarify the substrate selectivity and the intracellular function of APT1, we performed kinetic analyses and competition assays using a recombinant human APT1 (hAPT1) and investigated the subcellular localization. For this purpose, an assay for thioesterase activity against a synthetic palmitoyl peptide using liquid chromatography/mass spectrometry was established. The thioesterase activity of hAPT1 was most active at neutral pH, and did not require Ca(2+) for its maximum activity. The K(M) values for thioesterase and lysophospholipase (against lysophosphatidylcholine) activities were 3.49 and 27.3 microM, and the V(max) values were 27.3 and 1.62 micromol/min/mg, respectively. Thus, hAPT1 revealed much higher thioesterase activity than lysophospholipase activity. One activity was competitively inhibited by another substrate in the presence of both substrates. Immunocytochemical and Western blot analyses revealed that endogenous and overexpressed hAPT1 were mainly localized in the cytosol, while some signals were detected in the plasma membrane, the nuclear membrane and ER in HEK293 cells. These results suggest that eliminating palmitoylated proteins and lysophospholipids from cytosol is one of the functions of hAPT1.
Collapse
Affiliation(s)
- Tohko Hirano
- Department of Biochemistry, Gunma University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Hou WY, Long DX, Wu YJ. The homeostasis of phosphatidylcholine and lysophosphatidylcholine in nervous tissues of mice was not disrupted after administration of tri-o-cresyl phosphate. Toxicol Sci 2009; 109:276-85. [PMID: 19349639 DOI: 10.1093/toxsci/kfp068] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Neuropathy target esterase (NTE) is proven to act as a lysophospholipase (LysoPLA) in mice and phospholipase B (PLB) in cultured mammalian cells. In sensitive species, organophosphate (OP)-induced delayed neurotoxicity is initiated when NTE is inhibited by > 70% and then aged. It is hypothesized that homeostasis of phosphatidylcholine (PC) and/or lysophosphatidylcholine (LPC) in mice might be disrupted by the OPs since NTE and other phospholipases could be inhibited. To test this hypothesis, we treated mice using tri-o-cresyl phosphate (TOCP), which can inhibit and age NTE. Phenylmethylsulfonyl fluoride (PMSF), which inhibits NTE but cannot age, was used as a negative control. Effects on activity of NTE, LysoPLA, and PLB, the levels of PC, LPC, and glycerophosphocholine (GPC), and the aging of NTE in the brain, spinal cord, and sciatic nerve were examined. The results showed that the activities of NTE, NTE-LysoPLA, LysoPLA, NTE-PLB, and PLB were significantly inhibited in both TOCP- and PMSF-treated mice, and the inhibition of NTE and NTE-LysoPLA or NTE-PLB showed a high correlation coefficient. The NTE inhibited by TOCP was of the aged type, while nearly all NTE inhibited by PMSF was of the unaged type. Although the GPC level was remarkedly decreased, no significant change of PC and LPC levels was observed. However, the inhibition of these enzymes in mice by TOCP exhibited different characteristics from the TOCP-treated hens that we previously reported, which indicates that these enzymes were inhibited and then recovered more rapidly in mice than in hens. All results suggest that PC and LPC homeostasis was not disrupted in mice after exposure to TOCP. Differences in inhibition of NTE, LysoPLA, and PLB activities by TOCP between mice and hens may elucidate why these two species display different signs after exposure to the same neuropathic OPs.
Collapse
Affiliation(s)
- Wei-Yuan Hou
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | | | | |
Collapse
|
50
|
Zhao Y, Natarajan V. Lysophosphatidic acid signaling in airway epithelium: role in airway inflammation and remodeling. Cell Signal 2009; 21:367-77. [PMID: 18996473 PMCID: PMC2660380 DOI: 10.1016/j.cellsig.2008.10.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 09/27/2008] [Accepted: 10/21/2008] [Indexed: 02/07/2023]
Abstract
Lysophosphatidic acid (LPA), a potent bioactive phospholipid, induces diverse cellular responses, including cell proliferation, migration, and cytokine release. LPA can be generated intracellularly and extracellularly through multiple synthetic pathways by action of various enzymes, such as phospholipase A(1/2) (PLA(1/2)), phospholipase D (PLD), acylglycerol kinase (AGK), and lysophospholipase D (lysoPLD). Metabolism of LPA is regulated by a family of lipid phosphate phosphatases (LPPs). Significant amounts of LPA have been detected in various biological fluids, including serum, saliva, and bronchoalveolar lavage fluid (BALF). The most significant effects of LPA appear to be through activation of the G-protein-coupled receptors (GPCRs), termed LPA(1-6). LPA regulates gene expression through activation of several transcriptional factors, such as nuclear factor-kappaB (NF-kappaB), AP-1, and C/EBPbeta. In addition to GPCRs, cross-talk between LPA receptors and receptor tyrosine kinases (RTKs) partly regulates LPA-induced intracellular signaling and cellular responses. Airway epithelial cells participate in innate immunity through the release of cytokines, chemokines, lipid mediators, other inflammatory mediators and an increase in barrier function in response to a variety of inhaled stimuli. Expression of LPA receptors has been demonstrated in airway epithelial cells. This review summarizes our recent observations of the role of LPA/LPA-Rs in regulation of airway epithelium, especially in relation to the secretion of pro- and anti-inflammatory mediators and regulation of airway barrier function.
Collapse
Affiliation(s)
- Yutong Zhao
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|