1
|
Yao YY, Ling EA, Lu D. Microglia mediated neuroinflammation - signaling regulation and therapeutic considerations with special reference to some natural compounds. Histol Histopathol 2020; 35:1229-1250. [PMID: 32662061 DOI: 10.14670/hh-18-239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neuroinflammation plays a central role in multiple neurodegenerative diseases and neurological disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), cerebral ischemic injury etc. In this connection, microglia, the key players in the central nervous system, mediate the inflammatory response process. In brain injuries, activated microglia can clear the cellular debris and invading pathogens and release neurotrophic factors; however, prolonged microglia activation may cause neuronal death through excessive release of inflammatory mediators. Therefore, it is of paramount importance to understand the underlying molecular mechanisms of microglia activation to design an effective therapeutic strategy to alleviate neuronal injury. Recent studies have shown that some natural compounds and herbal extracts possess anti-inflammatory properties that may suppress microglial activation and ameliorate neuroinflammation and hence are neuroprotective. In this review, we will update some of the common signaling pathways that regulate microglia activation. Among the various signaling pathways, the Notch-1, mitogen-activated protein kinases (MAPKs), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) have been reported to exacerbate microglia mediated neuroinflammation that is implicated in different neuropathological diseases. The search for natural compounds or agents, specifically those derived from natural herbal extracts such as Gastrodin, scutellarin, RG1 etc. has been the focus of many of our recent studies because they have been found to regulate microglia activation. The pharmacological effects of these agents and their potential mechanisms for regulating microglia activation are systematically reviewed here for a fuller understanding of their biochemical action and therapeutic potential for treatment of microglia mediated neuropathological diseases.
Collapse
Affiliation(s)
- Yue-Yi Yao
- Technology Transfer Center, Kunming Medical University, Kunming, China
| | - Eng-Ang Ling
- Department of Anatomy, Young Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Di Lu
- Technology Transfer Center, Kunming Medical University, Kunming, China.
| |
Collapse
|
2
|
Emmanouilidi A, Lattanzio R, Sala G, Piantelli M, Falasca M. The role of phospholipase Cγ1 in breast cancer and its clinical significance. Future Oncol 2017; 13:1991-1997. [DOI: 10.2217/fon-2017-0125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Breast cancer, the most common malignancy among women, is usually detected at an early stage and has a low risk of relapse. Nevertheless, a significant number of patients cannot be cured solely by local treatment. Distinguishing between patients who are of low risk of relapse from those who are of high risk may have important implications to improve treatment outcomes. The PLC-γ1 signaling pathway promotes many physiological processes, including cell migration and invasion. Increasing evidence shows aberrant PLC-γ1 signaling implication in carcinogenesis including breast cancer. In this review, the role of PLC-γ1 in breast cancer and its clinical implications will be discussed, as well as its potential as a prognostic factor and a therapeutic target.
Collapse
Affiliation(s)
- Aikaterini Emmanouilidi
- Curtin Health Innovation Research Institute, School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
| | - Rossano Lattanzio
- Department of Medical, Oral & Biotechnological Sciences, G. d'Annunzio University, Chieti, Italy
| | - Gianluca Sala
- Department of Medical, Oral & Biotechnological Sciences, G. d'Annunzio University, Chieti, Italy
| | - Mauro Piantelli
- Department of Medical, Oral & Biotechnological Sciences, G. d'Annunzio University, Chieti, Italy
| | - Marco Falasca
- Curtin Health Innovation Research Institute, School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
3
|
Chen XG, Liu YM, Lv QX, Ma J. Enhancement or inhibition of PLCγ2 expression in rat hepatocytes by recombinant adenoviral vectors that contain full-length gene or siRNA. Biotech Histochem 2017; 92:436-444. [PMID: 28836860 DOI: 10.1080/10520295.2017.1355475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
We investigated the effects of recombinant adenovirus vectors that overexpress or silence PLCγ2 on the expression of this gene during hepatocyte proliferation. Hepatocytes were isolated, identified by immunofluorescent cytochemical staining and infected by previously constructed Ad-PLCγ2 and Ad-PLCγ2 siRNA1, siRNA2 and siRNA3. Green fluorescent protein (GFP) expression was observed by fluorescence microscopy. Infection percentage was calculated by flow cytometry. mRNA and protein levels of PLCγ2 were detected by quantitative reverse transcription-PCR (qRT-PCR) and western blotting, respectively. The viability of the infected hepatocytes was measured by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. We found that nearly 97% of cells were positive for the hepatocyte marker, CK18. After infection of Ad-PLCγ2 and Ad-PLCγ2 siRNA, more than 99% of hepatocytes expressed GFP significantly, and mRNA and protein expression of PLCγ2 was up-regulated significantly in Ad-PLCγ2 infected hepatocytes, but down-regulated in Ad-PLCγ2 siRNA2 infected cells. The cell proliferation rate decreased in PLCγ2-overexpressing cells, while the rate increased in PLCγ2-silencing cells. We verified that recombinant Ad-PLCγ2 and Ad-PLCγ2 siRNA2 were constructed successfully. These two recombinant vectors promoted or decreased the expression of PLCγ2 in rat hepatocytes and affected the cell proliferation rate, which provides a useful tool for further investigation of the role of PLCγ2 in hepatocyte apoptosis.
Collapse
Affiliation(s)
- X G Chen
- a Animal Science and Technology School , Henan University of Science and Technology , Luoyang , China
| | - Y M Liu
- a Animal Science and Technology School , Henan University of Science and Technology , Luoyang , China
| | - Q X Lv
- a Animal Science and Technology School , Henan University of Science and Technology , Luoyang , China
| | - J Ma
- a Animal Science and Technology School , Henan University of Science and Technology , Luoyang , China
| |
Collapse
|
4
|
Sase H, Watabe T, Kawasaki K, Miyazono K, Miyazawa K. VEGFR2-PLCgamma1 axis is essential for endothelial specification of VEGFR2+ vascular progenitor cells. J Cell Sci 2009; 122:3303-11. [PMID: 19706681 DOI: 10.1242/jcs.049908] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vascular endothelial growth factor receptor 2 (VEGFR2) plays crucial roles in vasculogenesis, a process involving cell proliferation, migration and differentiation. However, the molecular mechanism by which VEGFR2 signaling directs vascular endothelial differentiation of VEGFR2(+) mesodermal progenitors is not well understood. In this study, we examined the signal transduction pathway downstream of VEGFR2 for endothelial differentiation using an in vitro differentiation system of mouse embryonic stem-cell-derived VEGFR2(+) cells. Using chimeric receptors composed of VEGFR2 and VEGFR3, the third member of the VEGFR family, we found that signaling through tyrosine 1175 (Y1175, corresponding to mouse Y1173) of VEGFR2 is crucial for two processes of endothelial differentiation: endothelial specification of VEGFR2(+) progenitors, and subsequent survival of endothelial cells (ECs). Furthermore, we found that phospholipase Cgamma1 (PLCgamma1), which interacts with VEGFR2 through phosphorylated Y1175, is an inducer of endothelial specification. In contrast to VEGFR2, VEGFR3 does not transmit a signal for endothelial differentiation of VEGFR2(+) cells. We found that VEGFR3 does not activate PLCgamma1, although VEGFR3 has the ability to support endothelial cell survival. Taken together, these findings indicate that VEGFR2-PLCgamma1 signal relay gives rise to the unique function of VEGFR2, thus enabling endothelial differentiation from vascular progenitors.
Collapse
Affiliation(s)
- Hitoshi Sase
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Hongo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
5
|
Yuan W, Guo J, Li X, Zou Z, Chen G, Sun J, Wang T, Lu D. Hydrogen peroxide induces the activation of the phospholipase C-gamma1 survival pathway in PC12 cells: protective role in apoptosis. Acta Biochim Biophys Sin (Shanghai) 2009; 41:625-30. [PMID: 19657563 DOI: 10.1093/abbs/gmp050] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
It has been reported that phospholipase C-gamma1 (PLC-gamma1) plays an important protective role in hydrogen peroxide (H(2)O(2))-induced pheochromocytoma (PC) 12 cells death. However, most studies have used high doses of H2O2 and the downstream targets of PLC-gamma1 activation remain to be identified. The present study was designed to examine the roles of PLC-gamma1 signaling pathway in the apoptosis of PC12 cells induced by low dose of H(2)O(2), as well as the downstream factors involved in this pathway. Low-dose treatment of H(2)O(2) resulted in PLC-gamma1 tyrosine phosphorylation in a time-dependent manner and H(2)O(2) killed the PC12 cells by inducing necrosis. In contrast, pretreatment of PC12 cells with U73122, a specific inhibitor of PLC, markedly increased the percentage of dead cells. The mode of cell death was converted to apoptosis as determined by Hoechst/PI nuclear staining and fluorescence microscopy. Western blot analysis demonstrated that the expression of Bcl-2 protein and the activation of pro-caspase-3 were not significantly affected by low dose of H(2)O(2) alone. However, after pretreatment with U73122, Bcl-2 protein expression was dramatically decreased and the activation of pro-caspase-3 was significantly increased. We concluded that PLC-gamma1 plays an important protective role in H(2)O(2)-induced PC12 cells death. Bcl-2 and caspase-3 probably participate in the signaling pathway as downstream factors.
Collapse
Affiliation(s)
- Wenli Yuan
- Department of Anatomy, Kunming Medical University, Kunming, China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Beloueche-Babari M, Peak JC, Jackson LE, Tiet MY, Leach MO, Eccles SA. Changes in choline metabolism as potential biomarkers of phospholipase C{gamma}1 inhibition in human prostate cancer cells. Mol Cancer Ther 2009; 8:1305-11. [PMID: 19417158 DOI: 10.1158/1535-7163.mct-09-0039] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phosphoinositide-specific phospholipase Cγ1 (PLCγ1) is activated downstream of many receptor tyrosine kinases to promote cell motility. Inhibition of this protein is being explored as a therapeutic strategy for blocking cancer cell invasion and metastasis. The clinical development of such cytostatic therapies requires the implementation of pharmacodynamic biomarkers of target modulation. In this study, we use magnetic resonance spectroscopy to explore metabolic biomarkers of PLCγ1 down-regulation in PC3LN3 prostate cancer cells. We show that inhibition of PLCγ1 via an inducible short hairpin RNA system causes a reduction in phosphocholine levels by up to 50% relative to the control as detected by (1)H and (31)P magnetic resonance spectroscopy analyses. This correlated with a rounded-up morphology and reduced cell migration. Interestingly, the fall in phosphocholine levels was not recorded in cells with constitutive PLCγ1 knockdown where the rounded-up phenotype was no longer apparent. This study reveals alterations in metabolism that accompany the cellular effects of PLCγ1 knockdown and highlights phosphocholine as a potential pharmacodynamic biomarker for monitoring the action of inhibitors targeting PLCγ1 signaling.
Collapse
Affiliation(s)
- Mounia Beloueche-Babari
- Cancer Research UK Clinical Magnetic Resonance Research Group, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom.
| | | | | | | | | | | |
Collapse
|
7
|
Peng Z, Arendshorst WJ. Activation of phospholipase C gamma 1 protects renal arteriolar VSMCs from H2O2-induced cell death. Kidney Blood Press Res 2007; 31:1-9. [PMID: 18004076 DOI: 10.1159/000111020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 07/06/2007] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND We evaluated the effect of hydrogen peroxide (H2O2) on viability of vascular smooth muscle cells (VSMCs) of renal resistance arterioles and determined whether responses are modulated by activation of PLCgamma1. METHODS Phospholipase C (PLC)-isozyme protein levels and activity were measured using Western blot analysis and enzymatic production of phosphoinositol 1,4,5-trisphosphate (IP3), respectively. Stimulation of PLCgamma1 was assessed by immunoblots of tyrosine phosphorylation. RESULTS Cytotoxicity of H2O2 exposure was concentration-dependent (30% death with 250 microM; 87% with 500 microM at 8 h) and time-dependent (7% at 1 h; 30% at 8 h with 250 microM H2O2. Catalase abolished such relations. H2O2 increased PLCgamma1 expression more than that of PLCdelta1 and almost doubled total PLC enzymatic activity between 2 and 8 h, changes prevented by catalase. The PLC inhibitor U73112 (3 microM) enhanced the cytotoxic concentration and time effects of H2O2. In acute studies, H2O2 rapidly caused tyrosine phosphorylation of PLCgamma1. CONCLUSION H2O2 increased PLCgamma1 expression and almost doubled total PLC activity, changes abolished by catalase. We conclude that H2O2 is cytotoxic to cultured VSMCs of renal preglomerular arterioles, a process that is attenuated by compensatory increases in PLCgamma1 protein level, tyrosine phosphorylation of PLCgamma1 and PLC enzymatic activity to generate IP3.
Collapse
Affiliation(s)
- Zhangping Peng
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7545, USA
| | | |
Collapse
|
8
|
Mangat R, Singal T, Dhalla NS, Tappia PS. Inhibition of phospholipase C-γ1augments the decrease in cardiomyocyte viability by H2O2. Am J Physiol Heart Circ Physiol 2006; 291:H854-60. [PMID: 16501016 DOI: 10.1152/ajpheart.01205.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was conducted to examine the role of a major cardiac phospholipase C (PLC) isozyme, PLC-γ1, in cardiomyocytes during oxidative stress. Left ventricular cardiomyocytes were isolated by collagenase digestion from adult male Sprague-Dawley rats (250–300 g) and treated with 20, 50, and 100 μM H2O2for 15 min. A concentration-dependent (up to 50 μM) increase in the mRNA level and membrane protein content of PLC-γ1was observed with H2O2treatment. Furthermore, PLC-γ1was activated in response to H2O2, as revealed by an increase in the phosphorylation of its tyrosine residues. There was a marked increase in the phosphorylation of the antiapoptotic protein Bcl-2 by H2O2; this change was attenuated by a PLC inhibitor, U-73122. Although both protein kinase C (PKC)-δ and -ε protein contents were increased in the cardiomyocyte membrane fraction in response to H2O2, PKC-ε activation, unlike PKC-δ, was attenuated by U-73122 (2 μM). Inhibition of PKC-ε with inhibitory peptide (0.1 μM) prevented Bcl-2 phosphorylation. Moreover, different concentrations (0.05, 0.1, and 0.2 μM) of this peptide augmented the decrease in cardiomyocyte viability in response to H2O2. In addition, a decrease in cardiomyocyte viability, as assessed by trypan blue exclusion, due to H2O2was also seen when cells were pretreated with U-73122 and was as a result of increased apoptosis. It is therefore suggested that PLC-γ1may play a role in cardiomyocyte survival during oxidative stress via PKC-ε and phosphorylation of Bcl-2.
Collapse
Affiliation(s)
- Rabban Mangat
- Department of Human Nutritional Sciences, Faculty of Human Ecology, University of Manitoba, and Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Winnipeg, Canada
| | | | | | | |
Collapse
|
9
|
Ye K. PIKE GTPase-mediated nuclear signalings promote cell survival. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:570-6. [PMID: 16567124 DOI: 10.1016/j.bbalip.2006.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 02/19/2006] [Accepted: 02/20/2006] [Indexed: 10/24/2022]
Abstract
The nuclear GTPase PIKE (PI 3-kinase Enhancer) binds PI 3-kinase and enhances it lipid kinase activity. PIKE predominantly distributes in the brain, and nerve growth factor stimulation triggers PIKE activation by provoking nuclear translocation of PLC-gamma1, which acts as a physiologic guanine nucleotide exchange factor (GEF) for PIKE through its SH3 domain. PIKE contains GTPase and ArfGAP domains, which are separated by a PH domain. C-terminal ArfGAP domain activates its internal GTPase activity, and this process is regulated by the interaction between phosphatidylinositols and PH domain. PI 3-kinase occurs in the nuclei of a broad range of cell types, and various stimuli elicit its nuclear translocation. The nuclei from NGF-treated PC12 cells are resistant to DNA fragmentation initiated by activated cell-free apoptosome, for which PIKE/nuclear PI 3-kinase signaling through nuclear PI(3,4,5)P(3) and Akt plays an essential role. As a nuclear receptor for PI(3,4,5)P(3,) B23 binds to PI(3,4,5)P(3) in an NGF-dependent way. The PI(3,4,5)P(3)/B23 complex inhibits DNA fragmentation activity of CAD. Nuclear Akt regulation of apoptosis is dependent on its phosphorylation of key substrates in the nucleus, but the identities of these substrates are unknown. Identification of its nuclear substrates will further our understanding of the physiological roles of nuclear PI 3-kinase/Akt signaling.
Collapse
Affiliation(s)
- Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
10
|
Shima Y, Tajiri T, Taguchi T, Suita S. Increased expression of c-fos and c-jun in the rat small intestinal epithelium after ischemia-reperfusion injury: a possible correlation with the proliferation or apoptosis of intestinal epithelial cells. J Pediatr Surg 2006; 41:830-6. [PMID: 16567203 DOI: 10.1016/j.jpedsurg.2005.12.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND AND PURPOSE An increased expression of immediate early genes, such as the c-fos and c-jun, is observed in some organs after ischemia-reperfusion (I/R) injury. These factors have been revealed to potentially induce apoptosis and proliferation of the postischemic cells. The purpose of this study is to analyze the relationship between the expression patterns of such immediate early genes and the cellular responses in the intestinal epithelial cells (IECs) after I/R stress. METHODS The rat small intestine was reperfused after 30 minutes ischemia. Semiquantitative reverse transcription-polymerase chain reaction was used to quantify c-fos and c-jun messenger RNAs. The proliferation and apoptosis of IECs were detected by immunohistochemistry and the in situ terminal deoxynucleotidyl transferase-mediated dUTP biotin nick-end labeling method, respectively. RESULTS The messenger RNA levels of the c-fos and c-jun showed characteristic patterns in the IECs after the I/R stress. The proliferation of the cells was initially observed after the I/R stress, followed by apoptosis of the cells. CONCLUSIONS The sequential expression patterns of these factors are possibly related to the proliferation and apoptosis of the IECs.
Collapse
Affiliation(s)
- Yuichi Shima
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | |
Collapse
|
11
|
Abstract
PI 3-kinase enhancer (PIKE) is a nuclear GTPase that enhances PI 3-kinase (PI3K) activity. Nerve growth factor (NGF) treatment leads to PIKE activation by triggering the nuclear translocation of PLC-gamma1, which acts as a physiological guanine nucleotide exchange factor (GEF) for PIKE. PI3K occurs in the nuclei of a broad range of cell types, and various stimuli elicit PI3K nuclear translocation. While cytoplasmic PI3K has been well characterized, little is known about the biological function of nuclear PI3K. Surprisingly, nuclei from 30 min NGF-treated PC12 cells are resistant to DNA fragmentation initiated by the activated cell-free apoptosome, and both PIKE and nuclear PI3K are sufficient and necessary for this effect. Moreover, pretreatment of the control nucleus with PI(3,4,5)P3 alone mimics the anti-apoptotic activity of NGF by selectively preventing apoptosis, for which nuclear Akt is required but not sufficient. Recently, a nuclear PI(3,4,5)P3 receptor, nucleophosmin/B23, has been identified from NGF-treated PC12 nuclear extract. PI(3,4,5)P3/B23 complex mediates the anti-apoptotic effects of NGF by inhibiting DNA fragmentation activity of caspase-activated DNase (CAD). Thus, PI(3,4,5)P3/B23 complex and nuclear Akt effectors might coordinately mediate PIKE/nuclear PI3K signaling in promoting cell survival by NGF.
Collapse
Affiliation(s)
- Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| |
Collapse
|
12
|
Liu X, Ye K. Src homology domains in phospholipase C-gamma1 mediate its anti-apoptotic action through regulating the enzymatic activity. J Neurochem 2005; 93:892-8. [PMID: 15857392 DOI: 10.1111/j.1471-4159.2005.03064.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Phospholipase-gamma1 (PLC-gamma1) prevents programmed cell death, for which the enzymatic activity has been implicated. However, the biological function of Src homology (SH) domains of PLC-gamma1 in promoting cell survival remains elusive. Here, we showed that deletion of the N-SH2 domain or both N-SH2 and C-SH2 domains, but not the SH3 domain, abolished the anti-apoptotic activity of PLC-gamma1. Surprisingly, removal of the whole SH domain inhibited apoptosis. The lipase-inactive PLC-gamma1 mutant (LIM) failed to suppress apoptosis. Moreover, the phospholipase activity in SH3- or whole SH domain-deleted cells was comparable to that of wild-type cells. By contrast, the enzymatic activity was substantially ablated in SH2 domain-deleted or LIM cells. A pharmacological inhibitor of PLC-gamma1 robustly diminished the anti-apoptotic action in wild-type, SH3- or whole SH domain-deleted cells, whereas pretreatment of SH2 domain-deleted or LIM cells with agents activating PKC and calcium mobilization markedly promoted cell survival. These results indicate that SH domains in PLC-gamma1 might mediate its anti-apoptotic action by regulating the enzymatic activity.
Collapse
Affiliation(s)
- Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
13
|
Evdonin AL, Guzhova IV, Margulis BA, Medvedeva ND. Phospholipse c inhibitor, u73122, stimulates release of hsp-70 stress protein from A431 human carcinoma cells. Cancer Cell Int 2004; 4:2. [PMID: 14989758 PMCID: PMC385244 DOI: 10.1186/1475-2867-4-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2003] [Accepted: 02/27/2004] [Indexed: 11/30/2022] Open
Abstract
Background Accumulating evidences suggest that Hsp 70, the inducible component of Hsp70 family, might release from a living cell. Here we show that a pharmacological inhibitor of phospholipase C activity U73122 caused a 2–4 fold reduction of an intracellular level of Hsp70 in A431 human carcinoma cells. Results A depletion of Hsp70 under U73122 was a result of the protein release since it was detected in cell culture medium, as was established by immunoprecipitation and precipitation with ATP-agarose. The reduction of Hsp70 level was specifically attributed to the inhibition of PLC, since the non-active inhibitor, U73343, had no effect on Hsp70 level. The PLC-dependent decrease of Hsp70 intracellular level was accompanied by the enhanced sensitivity of A431 cells to the apoptogenic effect of hydrogen peroxide. Here for the first time we demonstrated one of the possibilities for a cell to export Hsp70 in PLC-dependent manner. Conclusion From our data we suggest that phospholipase C inhibition is one of the possible mechanisms of Hsp70 release from cells.
Collapse
|
14
|
Zhang B, Wu Q, Ye XF, Liu S, Lin XF, Chen MC. Roles of PLC-γ2 and PKCα in TPA-induced apoptosis of gastric cancer cells. World J Gastroenterol 2003; 9:2413-8. [PMID: 14606067 PMCID: PMC4656512 DOI: 10.3748/wjg.v9.i11.2413] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the roles of PLCγ2 and PKCα in TPA-induced apoptosis of gastric cancer cells.
METHODS: Human gastric cancer cell line MGC80-3 was used. Protein expression levels of PLCγ2 and PKCα were detected by Western blot. Protein localization of PLCγ2 and PKCα was shown by immunofluoscence analysis under laser-scanning confocal microscope. Apoptotic morphology was observed by DAPI fluorescence staining, and apoptotic index was counted among 1000 cells randomly.
RESULTS: Treatment of gastric cancer cells MGC80-3 with TPA not only up-regulated expression of PLC-γ2 protein, but also induced PLC-γ2 translocation from the cytoplasm to the nucleus. However, this process was not directly associated with apoptosis induction. Further investigation showed that PKCα translocation from the cytoplasm to the nucleus was correlated with initiation of apoptosis. To explore the inevitable linkage between PLC-γ2 and PKCα during apoptosis induction, PLC inhibitor U73122 was used to block PLC-γ2 translocation, in which neither stimulating PKCα translocation nor inducing apoptosis occurred in MGC80-3 cells. However, when U73122-treated cells were exposed to TPA, not only PLC-γ2, but also PKCα was redistributed. On the other hand, when cells were treated with PKC inhibitor alone, PLC-γ2 protein was still located in the cytoplasm. However, redistribution of PLC-γ2 protein occurred in the presence of TPA, no matter whether PKC inhibitor existed or not.
CONCLUSION: PLC-γ2 translocation is critical in transmitting TPA signal to its downstream molecule PKCα. As an effector, PKCα directly promotes apoptosis of MGC80-3 cells. Therefore, protein translocation of PLCγ2 and PKCα is critical event in the process of apoptosis induction.
Collapse
Affiliation(s)
- Bing Zhang
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian Province, China
| | | | | | | | | | | |
Collapse
|
15
|
Kit signaling inhibits the sphingomyelin-ceramide pathway through PLCγ1: implication in stem cell factor radioprotective effect. Blood 2002. [DOI: 10.1182/blood.v100.4.1294.h81602001294_1294_1301] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies demonstrated that Kit activation confers radioprotection. However, the mechanism by which Kit signaling interferes with cellular response to ionizing radiation (IR) has not been firmly established. Based on the role of the sphingomyelin (SM) cycle apoptotic pathway in IR-induced apoptosis, we hypothesized that one of the Kit signaling components might inhibit IR-induced ceramide production or ceramide-induced apoptosis. Results show that, in both Ba/F3 and 32D murine cell lines transfected with wild-type c-kit, stem cell factor (SCF) stimulation resulted in a significant reduction of IR-induced apoptosis and cytotoxicity, whereas DNA repair remained unaffected. Moreover, SCF stimulation inhibited IR-induced neutral sphingomyelinase (N-SMase) stimulation and ceramide production. The SCF inhibitory effect on SM cycle was not influenced by wortmannin, a phosphoinositide-3 kinase (PI3K) inhibitor. The SCF protective effect was maintained in 32D-KitYF719 cells in which the PI3K/Akt signaling pathway is abolished due to mutation in Kit docking site for PI3K. In contrast, phospholipase C γ (PLCγ) inhibition by U73122 totally restored IR-induced N-SMase stimulation, ceramide production, and apoptosis in Kit-activated cells. Moreover, SCF did not protect 32D-KitYF728 cells (lacking a functional docking site for PLCγ1), from IR-induced SM cycle. Finally, SCF-induced radioprotection of human CD34+ bone marrow cells was also inhibited by U73122. Altogether, these results suggest that SCF radioprotection is due to PLCγ1-dependent negative regulation of IR-induced N-SMase stimulation. Beyond the scope of Kit-expressing cells, it suggests that PLCγ1 status could greatly influence the post-DNA damage cellular response to IR, and perhaps, to other genotoxic agents.
Collapse
|
16
|
Martindale JL, Holbrook NJ. Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 2002; 192:1-15. [PMID: 12115731 DOI: 10.1002/jcp.10119] [Citation(s) in RCA: 1699] [Impact Index Per Article: 73.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Reactive oxygen species (ROS), whether produced endogenously as a consequence of normal cell functions or derived from external sources, pose a constant threat to cells living in an aerobic environment as they can result in severe damage to DNA, protein, and lipids. The importance of oxidative damage to the pathogenesis of many diseases as well as to degenerative processes of aging has becoming increasingly apparent over the past few years. Cells contain a number of antioxidant defenses to minimize fluctuations in ROS, but ROS generation often exceeds the cell's antioxidant capacity, resulting in a condition termed oxidative stress. Host survival depends upon the ability of cells and tissues to adapt to or resist the stress, and repair or remove damaged molecules or cells. Numerous stress response mechanisms have evolved for these purposes, and they are rapidly activated in response to oxidative insults. Some of the pathways are preferentially linked to enhanced survival, while others are more frequently associated with cell death. Still others have been implicated in both extremes depending on the particular circumstances. In this review, we discuss the various signaling pathways known to be activated in response to oxidative stress in mammalian cells, the mechanisms leading to their activation, and their roles in influencing cell survival. These pathways constitute important avenues for therapeutic interventions aimed at limiting oxidative damage or attenuating its sequelae.
Collapse
Affiliation(s)
- Jennifer L Martindale
- Cell Stress and Aging Section, Laboratory of Cellular and Molecular Biology, National Institute on Aging, Baltimore, Maryland, USA
| | | |
Collapse
|
17
|
Liao HJ, Kume T, McKay C, Xu MJ, Ihle JN, Carpenter G. Absence of erythrogenesis and vasculogenesis in Plcg1-deficient mice. J Biol Chem 2002; 277:9335-41. [PMID: 11744703 DOI: 10.1074/jbc.m109955200] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mice nullizygous for Plcg1 cease growing at early to mid-gestation. An examination of carefully preserved wild-type embryos shows clear evidence of erythropoiesis, but erythropoiesis is not evident in Plcg1 nullizygous embryos at the same stage. The analyses of embryonic materials demonstrate that in the absence of Plcg1, erythroid progenitors cannot be detected in the yolk sac or embryo body by three different assays, burst-forming units, colony-forming units, and analysis for the developmental marker Ter119. However, non-erythroid granulocyte/macrophage colonies are produced by Plcg1 null embryos. Further analysis of these embryos demonstrates significantly diminished vasculogenesis in Plcg1 nullizygous embryos based on the lack of expression of the endothelial marker platelet endothelial cell adhesion molecule-1. In addition, Plcg1 nullizygous embryos express a greatly reduced level of vascular endothelial growth factor receptor-2/Flk-1, consistent with significantly impaired vasculogenesis and erythropoiesis. Interestingly, these early embryos do express phospholipase C-gamma2, however, it is unable to substitute for the absence of phospholipase C-gamma1, which can be detected in its tyrosine-phosphorylated state.
Collapse
Affiliation(s)
- Hong-Jun Liao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232,USA
| | | | | | | | | | | |
Collapse
|
18
|
Hoffmann B, Valerius O, Andermann M, Braus GH. Transcriptional autoregulation and inhibition of mRNA translation of amino acid regulator gene cpcA of filamentous fungus Aspergillus nidulans. Mol Biol Cell 2001; 12:2846-57. [PMID: 11553722 PMCID: PMC59718 DOI: 10.1091/mbc.12.9.2846] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The CPCA protein of the filamentous fungus Aspergillus nidulans is a member of the c-Jun-like transcriptional activator family. It acts as central transcription factor of the cross-pathway regulatory network of amino acid biosynthesis and is functionally exchangeable for the general control transcriptional activator Gcn4p of Saccharomyces cerevisiae. In contrast to GCN4, expression of cpcA is strongly regulated by two equally important mechanisms with additive effects that lead to a fivefold increased CPCA protein amount under amino acid starvation conditions. One component of cpcA regulation involves a transcriptional autoregulatory mechanism via a CPCA recognition element (CPRE) in the cpcA promoter that causes a sevenfold increased cpcA mRNA level when cells are starved for amino acids. Point mutations in the CPRE cause a constitutively low mRNA level of cpcA and a halved protein level when amino acids are limited. Moreover, two upstream open reading frames (uORFs) in the 5' region of the cpcA mRNA are important for a translational regulatory mechanism. Destruction of both short uORFs results in a sixfold increased CPCA protein level under nonstarvation conditions and a 10-fold increase under starvation conditions. Mutations in both the CPRE and uORF regulatory elements lead to an intermediate effect, with a low cpcA mRNA level but a threefold increased CPCA protein level independent of amino acid availability. These data argue for a combined regulation of cpcA that includes a translational regulation like that of yeast GCN4 as well as a transcriptional regulation like that of the mammalian jun and fos genes.
Collapse
Affiliation(s)
- B Hoffmann
- Institute of Microbiology and Genetics, Georg-August University, D-37077 Göttingen, Germany
| | | | | | | |
Collapse
|
19
|
Wang XT, McCullough KD, Wang XJ, Carpenter G, Holbrook NJ. Oxidative stress-induced phospholipase C-gamma 1 activation enhances cell survival. J Biol Chem 2001; 276:28364-71. [PMID: 11350969 DOI: 10.1074/jbc.m102693200] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholipase C-gamma1 (PLC-gamma1) is rapidly activated in response to growth factor stimulation and plays an important role in regulating cell proliferation and differentiation through the generation of the second messengers diacylglycerol and inositol 1,4,5-trisphosphate, leading to the activation of protein kinase C (PKC) and increased levels of intracellular calcium, respectively. Given the existing overlap between signaling pathways that are activated in response to oxidant injury and those involved in responding to proliferative stimuli, we investigated the role of PLC-gamma1 during the cellular response to oxidative stress. Treatment of normal mouse embryonic fibroblasts (MEF) with H2O2 resulted in time- and concentration-dependent tyrosine phosphorylation of PLC-gamma1. Phosphorylation could be blocked by pharmacological inhibitors of Src family tyrosine kinases or the epidermal growth factor receptor tyrosine kinase, but not by inhibitors of the platelet-derived growth factor receptor or phosphatidylinositol 3-kinase. To investigate the physiologic relevance of H2O2-induced tyrosine phosphorylation of PLC-gamma1, we compared survival of normal MEF and PLC-gamma1-deficient MEF following exposure to H2O2. Treatment of PLC-gamma1-deficient MEF with H2O2 resulted in rapid cell death, whereas normal MEF were resistant to the stress. Pretreatment of normal MEF with a selective pharmacological inhibitor of PLC-gamma1, or inhibitors of inositol trisphosphate receptors and PKC, increased their sensitivity to H2O2, whereas treatment of PLC-gamma1-deficient MEF with agents capable of directly activating PKC and enhancing calcium mobilization significantly improved their survival. Finally, reconstitution of PLC-gamma1 protein expression in PLC-gamma1-deficient MEF restored cell survival following H2O2 treatment. These findings suggest an important protective function for PLC-gamma1 activation during the cellular response to oxidative stress.
Collapse
Affiliation(s)
- X T Wang
- Cell Stress and Aging Section, Laboratory of Cellular and Molecular Biology, NIA, National Institutes of Health, Baltimore, Maryland 21224-6825, USA
| | | | | | | | | |
Collapse
|