1
|
Asai R, Yabe H, Hiruma T, Matsuoka T, Asai H, Hara E, Mori Y, Suzutani K, Hoshino H, Shiga T, Miura I, Hirata K, Kaneko S. Abnormal Temporal Window of Integration in Auditory Sensory Memory in Schizophrenia. Clin EEG Neurosci 2025; 56:100-105. [PMID: 39034275 DOI: 10.1177/15500594241263378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Mismatch negativity (MMN) is automatically elicited by incoming sound deviation compared to the neural representation of preceding homogenous sounds stored in the brain's auditory sensory memory. This study aimed to assess time-functional deviation sensitivity in auditory sensory memory associated with a temporal window of integration (TWI) of 160-170 msec in patients with schizophrenia. To this end, we measured the magnetic counterpart of the MMN (MMNm) in 20 patients with schizophrenia on medication and 20 healthy age-matched adults as a control group responding to an omitted tone segment incorporated into a complex sound of 176 ms duration corresponding to the TWI duration. Overall, the magnitude of the MMNm was smaller in the patients with schizophrenia than in the healthy control group. The peak latency of the MMNm was prolonged in the latter omitted segments for both groups, but to a greater extent in patients with schizophrenia. These results indicate that deviation detection is impaired in the later part of the TWI, corresponding to the duration of auditory sensory memory in patients with schizophrenia. Thus, the specific impairment of MMN in response to duration deviants (duration MMN), as previously reported, might result from a damaged mechanism in the later part of the TWI of sensory memory, suggesting that a decline in sensory memory causes distorted perception or disturbances in cognitive function in patients with schizophrenia.
Collapse
Affiliation(s)
- Ren Asai
- Department of Neuropsychiatry, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, Hirosaki University School of Medicine, Hirosaki, Japan
- Department of Mind & Brain Medicine, Fukushima Medical University, Fukushima, Japan
| | - Tomiharu Hiruma
- Department of Neuropsychiatry, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Takashi Matsuoka
- Department of Neuropsychiatry, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Haruko Asai
- Department of Neuropsychiatry, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Etsuko Hara
- Department of Neuropsychiatry, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Yuhei Mori
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| | - Ken Suzutani
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| | - Hiroshi Hoshino
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| | - Tetsuya Shiga
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
- Department of Neuropsychiatry, Aizu Medical Center, Fukushima Medical School, Aizuwakamatsu, Japan
| | - Itaru Miura
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| | - Koichi Hirata
- Department of Neurology, Dokkyo Medical University, Mibu Tochigi, Japan
| | - Sunao Kaneko
- Department of Neuropsychiatry, Hirosaki University School of Medicine, Hirosaki, Japan
| |
Collapse
|
2
|
Valt C, López-Caballero F, Tavella A, Altamura M, Bellomo A, Barrasso G, Coffman B, Iovine F, Rampino A, Saponaro A, Seebold D, Selvaggi P, Semisa D, Stolfa G, Bertolino A, Pergola G, Salisbury DF. Abnormal inter-hemispheric effective connectivity from left to right auditory regions during Mismatch Negativity (MMN) tasks in psychosis. Psychiatry Res 2024; 342:116189. [PMID: 39321639 DOI: 10.1016/j.psychres.2024.116189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/19/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
Anomalous Mismatch Negativity (MMN) in psychosis could be a consequence of disturbed neural oscillatory activity at sensory/perceptual stages of stimulus processing. This study investigated effective connectivity within and between the auditory regions during auditory odd-ball deviance tasks. The analyses were performed on two magnetoencephalography (MEG) datasets: one on duration MMN in a cohort with various diagnoses within the psychosis spectrum and neurotypical controls, and one on duration and pitch MMN in first-episode psychosis patients and matched neurotypical controls. We applied spectral Granger causality to MEG source-reconstructed signals to compute effective connectivity within and between the left and right auditory regions. Both experiments showed that duration-deviance detection was associated with early increases of effective connectivity in the beta band followed by increases in the alpha and theta bands, with the connectivity strength linked to the laterality of the MMN amplitude. Compared to controls, people with psychosis had overall smaller effective connectivity, particularly from left to right auditory regions, in the pathway where bilateral information converges toward lateralized processing, often rightward. Blunted MMN in psychosis might reflect a deficit in inter-hemispheric communication between auditory regions, highlighting a "dysconnection" already at preattentive stages of stimulus processing as a model system of widespread pathophysiology.
Collapse
Affiliation(s)
- Christian Valt
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Fran López-Caballero
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Angelantonio Tavella
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy; Department of Mental Health, ASL Bari, Bari, Italy
| | - Mario Altamura
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonello Bellomo
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giuseppe Barrasso
- Department of Mental Health, ASL Barletta-Andria-Trani, Andria, Italy
| | - Brian Coffman
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Filippo Iovine
- Department of Mental Health, ASL Barletta-Andria-Trani, Andria, Italy
| | - Antonio Rampino
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy; Department of Psychiatry, Bari University Hospital, Bari, Italy
| | | | - Dylan Seebold
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Pierluigi Selvaggi
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy; Department of Psychiatry, Bari University Hospital, Bari, Italy
| | | | - Giuseppe Stolfa
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Alessandro Bertolino
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy; Department of Psychiatry, Bari University Hospital, Bari, Italy
| | - Giulio Pergola
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy; Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, United States; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| | - Dean F Salisbury
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
3
|
Deng J, Zhang Y, Lu L, Ou Y, Lai X, Chen S, Ye Y. Duration mismatch negativity under varying deviant conditions in individuals with high schizotypal traits. Front Psychiatry 2024; 15:1428814. [PMID: 39165502 PMCID: PMC11333253 DOI: 10.3389/fpsyt.2024.1428814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
Background Although impaired auditory mismatch negativity (MMN) has consistently been found in individuals with schizophrenia, there are few and inconsistent reports on nonclinical individuals with schizotypy. To date, no studies have thoroughly assessed MMN with different degrees of deviant oddballs in nonclinical schizotypal samples. The aim of this study was to examine the extent of duration MMN (dMMN) amplitudes under two deviant duration conditions (large and small) in nonclinical participants with high schizotypal traits. Methods An extreme-group design was utilized, in which 63 participants from the schizotypy and control groups were selected from a pool of 1519 young adults using the Schizotypal Personality Questionnaire (SPQ). MMN was measured using passive duration oddball paradigms. Basic demographic information and musical backgrounds were assessed and matched, while depression and anxiety were evaluated and controlled for. The repeated measures analysis of covariance was utilized to evaluate differences in dMMN between groups. The Bonferroni correction was applied for multiple comparisons. Partial correlation and multiple linear regression analyses were conducted to investigate the association between dMMN amplitudes and SPQ scores. Results The amplitudes of dMMN at Cz were significantly increased under the large deviance condition in nonclinical schizotypal individuals (F = 4.36, p = .04). Large-deviance dMMN amplitudes at Fz were positively correlated with mild cognitive-perceptual symptoms in the control group (rp = .42, p = .03). However, as schizophrenia-like symptoms worsened and approached the clinical threshold for schizophrenia, small-deviance dMMN amplitudes at Cz showed negative associations with the cognitive-perceptual factor in the schizotypy group (rp = -.40, p = .04). Conclusion These results suggest the importance of considering the degree of deviation in duration when implementing the auditory oddball paradigm among nonclinical participants with schizotypal traits. In addition, our findings reveal a potential non-linear relationship between bottom-up auditory processing and the positive dimension of the schizophrenia spectrum.
Collapse
Affiliation(s)
- Jue Deng
- Cognitive Neuroscience and Abnormal Psychology Laboratory, Department of Penalty Execution, Fujian Police College, Fuzhou, China
- School of Psychology, Fujian Normal University, Fuzhou, China
| | - Yuanjun Zhang
- School of Psychology, Fujian Normal University, Fuzhou, China
| | - Liqin Lu
- Department of Forensic Science, Fujian Police College, Fuzhou, China
| | - Yuanhua Ou
- Cognitive Neuroscience and Abnormal Psychology Laboratory, Department of Penalty Execution, Fujian Police College, Fuzhou, China
| | - Xianghui Lai
- Department of Basic Courses, Fujian Police College, Fuzhou, China
| | - Siwei Chen
- School of Psychology, Fujian Normal University, Fuzhou, China
| | - Yiduo Ye
- School of Psychology, Fujian Normal University, Fuzhou, China
| |
Collapse
|
4
|
Molnár H, Marosi C, Becske M, Békési E, Farkas K, Stefanics G, Czigler I, Csukly G. A comparison of visual and acoustic mismatch negativity as potential biomarkers in schizophrenia. Sci Rep 2024; 14:992. [PMID: 38200103 PMCID: PMC10782025 DOI: 10.1038/s41598-023-49983-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Mismatch negativity (MMN) is an event-related potential (ERP) component generated when an unexpected deviant stimulus occurs in a pattern of standard stimuli. Several studies showed that the MMN response to both auditory and visual stimuli is attenuated in schizophrenia. While previous studies investigated auditory and visual MMN in different cohorts, here we examined the potential clinical utility of MMN responses to auditory and visual stimuli within the same group of patients. Altogether 39 patients with schizophrenia and 39 healthy controls matched in age, gender, and education were enrolled. We recorded EEG using 64 channels in eight experimental blocks where we presented auditory and visual stimulus sequences. Mismatch responses were obtained by subtracting responses to standard from the physically identical deviant stimuli. We found a significant MMN response to the acoustic stimuli in the control group, whereas no significant mismatch response was observed in the patient group. The group difference was significant for the acoustic stimuli. The 12 vane windmill pattern evoked a significant MMN response in the early time window in the control group but not in the patient group. The 6 vane windmill pattern evoked MMN only in the patient group. However, we found no significant difference between the groups. Furthermore, we found no correlation between the clinical variables and the MMN amplitudes. Our results suggest that predictive processes underlying mismatch generation in patients with schizophrenia may be more affected in the acoustic compared to the visual domain. Acoustic MMN tends to be a more promising biomarker in schizophrenia.
Collapse
Affiliation(s)
- Hajnalka Molnár
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Csilla Marosi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Melinda Becske
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Emese Békési
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Kinga Farkas
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Gábor Stefanics
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - István Czigler
- Institute of Cognitive Neuroscience and Psychology, RCNS, HU-RES, Budapest, Hungary
| | - Gábor Csukly
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
5
|
Hua JPY, Roach BJ, Ford JM, Mathalon DH. Mismatch Negativity and Theta Oscillations Evoked by Auditory Deviance in Early Schizophrenia. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:1186-1196. [PMID: 36931469 DOI: 10.1016/j.bpsc.2023.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 02/07/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
BACKGROUND Amplitude reduction of mismatch negativity (MMN), an event-related potential component indexing NMDA receptor-dependent auditory echoic memory and predictive coding, is widely replicated in schizophrenia. Time-frequency analyses of single-trial electroencephalography epochs suggest that theta oscillation abnormalities underlie MMN deficits in schizophrenia. However, this has received less attention in early schizophrenia (ESZ). METHODS Patients with ESZ (n = 89), within 5 years of illness onset, and healthy control subjects (n = 105) completed an electroencephalography MMN paradigm (duration-deviant, pitch-deviant, duration + pitch double-deviant). Repeated measures analyses of variance assessed group differences in MMN, theta intertrial phase coherence (ITC), and theta total power from frontocentral electrodes, after normal age adjustment. Group differences were retested after covarying MMN and theta measures. RESULTS Relative to healthy control subjects, patients with ESZ showed auditory deviance deficits. Patients with ESZ had MMN deficits for duration-deviants (p = .041), pitch-deviants (ps = .007), and double-deviants (ps < .047). Patients with ESZ had reduced theta ITC for standards (ps < .040) and duration-deviants (ps < .030). Furthermore, patients with ESZ had reduced theta power across deviants at central electrodes (p = .013). MMN group deficits were not fully accounted for by theta ITC and power, and neither were theta ITC group deficits fully accounted for by MMN. Group differences in theta total power were no longer significant after covarying for MMN. CONCLUSIONS Patients with ESZ showed reduced MMN and theta total power for all deviant types. Theta ITC showed a relatively specific reduction for duration-deviants. Although MMN and theta ITC were correlated in ESZ, covarying for one did not fully account for deficits in the other, raising the possibility of their sensitivity to dissociable pathophysiological processes.
Collapse
Affiliation(s)
- Jessica P Y Hua
- Sierra Pacific Mental Illness Research Education and Clinical Centers, San Francisco, California; San Francisco VA Medical Center, San Francisco, California; Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, California
| | - Brian J Roach
- San Francisco VA Medical Center, San Francisco, California; Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, California
| | - Judith M Ford
- San Francisco VA Medical Center, San Francisco, California; Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, California
| | - Daniel H Mathalon
- San Francisco VA Medical Center, San Francisco, California; Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, California.
| |
Collapse
|
6
|
Okazaki M, Yumoto M, Kaneko Y, Maruo K. Correlation of motor-auditory cross-modal and auditory unimodal N1 and mismatch responses of schizophrenic patients and normal subjects: an MEG study. Front Psychiatry 2023; 14:1217307. [PMID: 37886112 PMCID: PMC10598755 DOI: 10.3389/fpsyt.2023.1217307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction It has been suggested that the positive symptoms of schizophrenic patients (hallucinations, delusions, and passivity experience) are caused by dysfunction of their internal and external sensory prediction errors. This is often discussed as related to dysfunction of the forward model that executes self-monitoring. Several reports have suggested that dysfunction of the forward model in schizophrenia causes misattributions of self-generated thoughts and actions to external sources. There is some evidence that the forward model can be measured using the electroencephalography (EEG) and magnetoencephalography (MEG) components such as N1 (m) and mismatch negativity (MMN) (m). The objective in this MEG study is to investigate differences in the N1m and MMNm-like activity generated in motor-auditory cross-modal tasks in normal control (NC) subjects and schizophrenic (SC) patients, and compared that activity with N1m and MMNm in the auditory unimodal task. Methods The N1m and MMNm/MMNm-like activity were recorded in 15 SC patients and 12 matched NC subjects. The N1m-attenuation effects and peak amplitude of MMNm/MMNm-like activity of the NC and SC groups were compared. Additionally, correlations between MEG measures (N1m suppression rate, MMNm, and MMNm-like activity) and clinical variables (Positive and Negative Syndrome Scale (PANSS) scores and antipsychotic drug (APD) dosages) in SC patients were investigated. Results It was found that (i) there was no significant difference in N1m-attenuation for the NC and SC groups, and that (ii) MMNm in the unimodal task in the SC group was significantly smaller than that in the NC group. Further, the MMNm-like activity in the cross-modal task was smaller than that of the MMNm in the unimodal task in the NC group, but there was no significant difference in the SC group. The PANSS positive symptoms and general psychopathology score were moderately negatively correlated with the amplitudes of the MMNm-like activity, and the APD dosage was moderately negatively correlated with the N1m suppression rate. However, none of these correlations reached statistical significance. Discussion The findings suggest that schizophrenic patients perform altered predictive processes differently from healthy subjects in latencies reflecting MMNm, depending on whether they are under forward model generation or not. This may support the hypothesis that schizophrenic patients tend to misattribute their inner experience to external agents, thus leading to the characteristic schizophrenia symptoms.
Collapse
Affiliation(s)
- Mitsutoshi Okazaki
- Department of Psychiatry, National Center Hospital of Neurology and Psychiatry, Kodaira, Japan
- Department of Psychiatry, Ome Municipal General Hospital, Ome, Japan
| | - Masato Yumoto
- Department of Clinical Engineering, Faculty of Medical Science and Technology, Gunma Paz University, Takasaki, Japan
| | - Yuu Kaneko
- Department of Neurosurgery, National Center Hospital of Neurology and Psychiatry, Kodaira, Japan
| | - Kazushi Maruo
- Department of Biostatistics, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
7
|
Valt C, Quarto T, Tavella A, Romanelli F, Fazio L, Arcara G, Altamura M, Barrasso G, Bellomo A, Blasi G, Brudaglio F, Carofiglio A, D'Ambrosio E, Padalino FA, Rampino A, Saponaro A, Semisa D, Suma D, Pergola G, Bertolino A. Reduced magnetic mismatch negativity: a shared deficit in psychosis and related risk. Psychol Med 2023; 53:6037-6045. [PMID: 36321391 DOI: 10.1017/s003329172200321x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Abnormal auditory processing of deviant stimuli, as reflected by mismatch negativity (MMN), is often reported in schizophrenia (SCZ). At present, it is still under debate whether this dysfunctional response is specific to the full-blown SCZ diagnosis or rather a marker of psychosis in general. The present study tested MMN in patients with SCZ, bipolar disorder (BD), first episode of psychosis (FEP), and in people at clinical high risk for psychosis (CHR). METHODS Source-based MEG activity evoked during a passive auditory oddball task was recorded from 135 patients grouped according to diagnosis (SCZ, BD, FEP, and CHR) and 135 healthy controls also divided into four subgroups, age- and gender-matched with diagnostic subgroups. The magnetic MMN (mMMN) was analyzed as event-related field (ERF), Theta power, and Theta inter-trial phase coherence (ITPC). RESULTS The clinical group as a whole showed reduced mMMN ERF amplitude, Theta power, and Theta ITPC, without any statistically significant interaction between diagnosis and mMMN reductions. The mMMN subgroup contrasts showed lower ERF amplitude in all the diagnostic subgroups. In the analysis of Theta frequency, SCZ showed significant power and ITPC reductions, while only indications of diminished ITPC were observed in CHR, but no significant decreases characterized BD and FEP. CONCLUSIONS Significant mMMN alterations in people experiencing psychosis, also for diagnoses other than SCZ, suggest that this neurophysiological response may be a feature shared across psychotic disorders. Additionally, reduced Theta ITPC may be associated with risk for psychosis.
Collapse
Affiliation(s)
- Christian Valt
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Tiziana Quarto
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Department of Humanities, University of Foggia, Foggia, Italy
| | | | | | - Leonardo Fazio
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Department of Medicine and Surgery, LUM University, Casamassima, Italy
| | | | - Mario Altamura
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giuseppe Barrasso
- Department of Mental Health, ASL Barletta-Andria-Trani, Andria, Italy
| | - Antonello Bellomo
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giuseppe Blasi
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Bari University Hospital, Bari, Italy
| | - Flora Brudaglio
- Department of Mental Health, ASL Barletta-Andria-Trani, Andria, Italy
| | | | - Enrico D'Ambrosio
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Bari University Hospital, Bari, Italy
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience - King's College London, London, UK
| | | | - Antonio Rampino
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Bari University Hospital, Bari, Italy
| | | | | | - Domenico Suma
- Department of Mental Health, ASL Brindisi, Brindisi, Italy
| | - Giulio Pergola
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Alessandro Bertolino
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Bari University Hospital, Bari, Italy
| |
Collapse
|
8
|
Donaldson KR, Jonas K, Foti D, Larsen EM, Mohanty A, Kotov R. Mismatch negativity and clinical trajectories in psychotic disorders: Five-year stability and predictive utility. Psychol Med 2023; 53:5818-5828. [PMID: 36226640 PMCID: PMC10782876 DOI: 10.1017/s0033291722003075] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Mismatch negativity (MMN) amplitude is reduced in psychotic disorders and associated with symptoms and functioning. Due to these robust associations, it is often considered a biomarker for psychotic illness. The relationship between MMN and clinical outcomes has been examined well in early onset psychotic illness; however, its stability and predictive utility in chronic samples are not clear. METHOD We examined the five-year stability of MMN amplitude over two timepoints in individuals with established psychotic disorders (cases; N = 132) and never-psychotic participants (NP; N = 170), as well as longitudinal associations with clinical symptoms and functioning. RESULTS MMN amplitude exhibited good temporal stability (cases, r = 0.53; never-psychotic, r = 0.52). In cases, structural equation models revealed MMN amplitude to be a significant predictor of worsening auditory hallucinations (β = 0.19), everyday functioning (β = -0.13), and illness severity (β = -0.12) at follow-up. Meanwhile, initial IQ (β = -0.24), negative symptoms (β = 0.23), and illness severity (β = -0.16) were significant predictors of worsening MMN amplitude five years later. CONCLUSIONS These results imply that MMN measures a neural deficit that is reasonably stable up to five years. Results support disordered cognition and negative symptoms as preceding reduced MMN, which then may operate as a mechanism driving reductions in everyday functioning and the worsening of auditory hallucinations in chronic psychotic disorders. This pattern may inform models of illness course, clarifying the relationships amongst biological mechanisms of predictive processing and clinical deficits in chronic psychosis and allowing us to better understand the mechanisms driving such impairments over time.
Collapse
Affiliation(s)
| | | | - Dan Foti
- Purdue University, Department of Psychological Sciences
| | | | | | - Roman Kotov
- Stony Brook Medicine, Department of Psychiatry
| |
Collapse
|
9
|
Francisco AA, Foxe JJ, Molholm S. Event-related potential (ERP) markers of 22q11.2 deletion syndrome and associated psychosis. J Neurodev Disord 2023; 15:19. [PMID: 37328766 PMCID: PMC10273715 DOI: 10.1186/s11689-023-09487-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/07/2023] [Indexed: 06/18/2023] Open
Abstract
22q11.2 deletion syndrome (22q11.2DS) is a multisystemic disorder characterized by a wide range of clinical features, ranging from life-threatening to less severe conditions. One-third of individuals with the deletion live with mild to moderate intellectual disability; approximately 60% meet criteria for at least one psychiatric condition.22q11.2DS has become an important model for several medical, developmental, and psychiatric disorders. We have been particularly interested in understanding the risk for psychosis in this population: Approximately 30% of the individuals with the deletion go on to develop schizophrenia. The characterization of cognitive and neural differences between those individuals who develop schizophrenia and those who do not, despite being at genetic risk, holds important promise in what pertains to the clarification of paths to disease and to the development of tools for early identification and intervention.Here, we review our previous event-related potential (ERP) findings as potential markers for 22q11.2DS and the associated risk for psychosis, while discussing others' work. We focus on auditory processing (auditory-evoked potentials, auditory adaptation, and auditory sensory memory), visual processing (visual-evoked potentials and visual adaptation), and inhibition and error monitoring.The findings discussed suggest basic mechanistic and disease process effects on neural processing in 22q11.2DS that are present in both early sensory and later cognitive processing, with possible implications for phenotype. In early sensory processes, both during auditory and visual processing, two mechanisms that impact neural responses in opposite ways seem to coexist-one related to the deletion, which increases brain responses; another linked to psychosis, decreasing neural activity. Later, higher-order cognitive processes may be equally relevant as markers for psychosis. More specifically, we argue that components related to error monitoring may hold particular promise in the study of risk for schizophrenia in the general population.
Collapse
Affiliation(s)
- Ana A Francisco
- Department of Pediatrics, The Cognitive Neurophysiology Laboratory, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - John J Foxe
- Department of Pediatrics, The Cognitive Neurophysiology Laboratory, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, The Frederick J. and Marion A, Schindler Cognitive Neurophysiology Laboratory, The Ernest J. Del Monde Institute for Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA
| | - Sophie Molholm
- Department of Pediatrics, The Cognitive Neurophysiology Laboratory, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Neuroscience, The Frederick J. and Marion A, Schindler Cognitive Neurophysiology Laboratory, The Ernest J. Del Monde Institute for Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
10
|
Riel H, Rudolph ED, MacPhee C, Tibbo PG, Fisher DJ. Reduced duration mismatch negativity elicited by the multi-feature 'optimal' paradigm in early-phase psychosis. Biol Psychol 2023; 180:108570. [PMID: 37116608 DOI: 10.1016/j.biopsycho.2023.108570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 03/30/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND MMN and P3a are EEG-derived event related potentials that are thought to be prospective biomarkers for schizophrenia and, potentially, early-phase psychosis (EPP). METHODS EPP (n = 12) and healthy control (n = 35) participants listened to a multi-feature optimal paradigm with five deviant types (gap, duration, location, intensity, and frequency). RESULTS There was a significant amplitude difference between the EPP and HC group with duration MMN (p =.02). No significant amplitude differences between groups were found for the P3a waveform. There were several correlations for the EPP group with the BNSS, SOFAS, and PANSS-general questionnaires. Length of illness was not associated with MMN or P3a. CONCLUSIONS The optimal paradigm is suitable for eliciting multiple deviant types within a short amount of time in both clinical and healthy populations. This study confirms duration MMN deficits within an EPP group and that MMN is related to functional outcomes and positive and negative symptomology.
Collapse
Affiliation(s)
- Hayley Riel
- Department of Psychiatry, Dalhousie University, Halifax NS, Canada
| | - Erica D Rudolph
- Department of Psychology, Saint Mary's University, Halifax NS, Canada
| | - Catrina MacPhee
- Department of Psychiatry, Dalhousie University, Halifax NS, Canada
| | - Philip G Tibbo
- Department of Psychiatry, Dalhousie University, Halifax NS, Canada
| | - Derek J Fisher
- Department of Psychiatry, Dalhousie University, Halifax NS, Canada; Department of Psychology, Saint Mary's University, Halifax NS, Canada; Department of Psychology, Mount Saint Vincent University, Halifax NS, Canada.
| |
Collapse
|
11
|
Herrera-Diaz A, Boshra R, Tavakoli P, Lin CYA, Pajankar N, Bagheri E, Kolesar R, Fox-Robichaud A, Hamielec C, Reilly JP, Connolly JF. Tracking auditory mismatch negativity responses during full conscious state and coma. Front Neurol 2023; 14:1111691. [PMID: 36970526 PMCID: PMC10036371 DOI: 10.3389/fneur.2023.1111691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
The mismatch negativity (MMN) is considered the electrophysiological change-detection response of the brain, and therefore a valuable clinical tool for monitoring functional changes associated with return to consciousness after severe brain injury. Using an auditory multi-deviant oddball paradigm, we tracked auditory MMN responses in seventeen healthy controls over a 12-h period, and in three comatose patients assessed over 24 h at two time points. We investigated whether the MMN responses show fluctuations in detectability over time in full conscious awareness, or whether such fluctuations are rather a feature of coma. Three methods of analysis were utilized to determine whether the MMN and subsequent event-related potential (ERP) components could be identified: traditional visual analysis, permutation t-test, and Bayesian analysis. The results showed that the MMN responses elicited to the duration deviant-stimuli are elicited and reliably detected over the course of several hours in healthy controls, at both group and single-subject levels. Preliminary findings in three comatose patients provide further evidence that the MMN is often present in coma, varying within a single patient from easily detectable to undetectable at different times. This highlights the fact that regular and repeated assessments are extremely important when using MMN as a neurophysiological predictor of coma emergence.
Collapse
Affiliation(s)
- Adianes Herrera-Diaz
- Centre for Advanced Research in Experimental and Applied Linguistics (ARiEAL), McMaster University, Hamilton, ON, Canada
- Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada
- *Correspondence: Adianes Herrera-Diaz
| | - Rober Boshra
- Princenton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Paniz Tavakoli
- Centre for Advanced Research in Experimental and Applied Linguistics (ARiEAL), McMaster University, Hamilton, ON, Canada
| | - Chia-Yu A. Lin
- Centre for Advanced Research in Experimental and Applied Linguistics (ARiEAL), McMaster University, Hamilton, ON, Canada
| | - Netri Pajankar
- Centre for Advanced Research in Experimental and Applied Linguistics (ARiEAL), McMaster University, Hamilton, ON, Canada
- Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Elham Bagheri
- Centre for Advanced Research in Experimental and Applied Linguistics (ARiEAL), McMaster University, Hamilton, ON, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Richard Kolesar
- Department of Anesthesia, McMaster University, Hamilton, ON, Canada
| | - Alison Fox-Robichaud
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Critical Care Medicine, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Cindy Hamielec
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Critical Care Medicine, Hamilton Health Sciences, Hamilton, ON, Canada
| | - James P. Reilly
- Centre for Advanced Research in Experimental and Applied Linguistics (ARiEAL), McMaster University, Hamilton, ON, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - John F. Connolly
- Centre for Advanced Research in Experimental and Applied Linguistics (ARiEAL), McMaster University, Hamilton, ON, Canada
- Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Department of Anesthesia, McMaster University, Hamilton, ON, Canada
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
- VoxNeuro, Inc., Toronto, ON, Canada
| |
Collapse
|
12
|
Chang Q, Li C, Tian Q, Bo Q, Zhang J, Xiong Y, Wang C. Classification of First-Episode Schizophrenia, Chronic Schizophrenia and Healthy Control Based on Brain Network of Mismatch Negativity by Graph Neural Network. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1784-1794. [PMID: 34406943 DOI: 10.1109/tnsre.2021.3105669] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mismatch negativity (MMN) has been consistently found deficit in schizophrenia, which was considered as a promising biomarker for assessing the impairments in pre-attentive auditory processing. However, the functional connectivity between brain regions based on MMN is not clear. This study provides an in-depth investigation in brain functional connectivity during MMN process among patients with first-episode schizophrenia (FESZ), chronic schizophrenia (CSZ) and healthy control (HC). Electroencephalography (EEG) data of 128 channels is recorded during frequency and duration MMN in 40 FESZ, 40 CSZ patients and 40 matched HC subjects. We reconstruct the cortical endogenous electrical activity from EEG recordings using exact low-resolution electromagnetic tomography and build functional brain networks based on source-level EEG data. Then, graph-theoretic features are extracted from the brain networks with the support vector machine (SVM) to classify FESZ, CSZ and HC groups, since the SVM has good generalization ability and robustness as a universally applicable nonlinear classifier. Furthermore, we introduce the graph neural network (GNN) model to directly learn for the network topology of brain network. Compared to HC, the damaged brain areas of CSZ are more extensive than FESZ, and the damaged area involved the auditory cortex. These results demonstrate the heterogeneity of the impacts of schizophrenia for different disease courses and the association between MMN and the auditory cortex. More importantly, the GNN classification results are significantly better than those of SVM, and hence the EEG-based GNN model of brain networks provides an effective method for discriminating among FESZ, CSZ and HC groups.
Collapse
|
13
|
Tateno T, Higuchi Y, Nakajima S, Sasabayashi D, Nakamura M, Ueno M, Mizukami Y, Nishiyama S, Takahashi T, Sumiyoshi T, Suzuki M. Features of Duration Mismatch Negativity Around the Onset of Overt Psychotic Disorders: A Longitudinal Study. Cereb Cortex 2021; 31:2416-2424. [PMID: 33341873 DOI: 10.1093/cercor/bhaa364] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 01/29/2023] Open
Abstract
Reduced amplitude of duration mismatch negativity (dMMN) has been reported in psychotic disorders and at-risk mental state (ARMS); however, few longitudinal MMN studies have examined the amplitude changes during the course of psychosis. We compared dMMN amplitude between ARMS individuals with later psychosis onset and those without, and we longitudinally examined potential dMMN changes around psychosis onset. Thirty-nine ARMS subjects and 22 healthy controls participated in this study. Of the 39 ARMS subjects, 11 transitioned to psychosis (at-risk mental state with later psychosis onset [ARMS-P]) during follow-up and 28 did not (at-risk mental state without later psychosis onset [ARMS-NP]). dMMN was measured twice using an auditory oddball paradigm with a mean interval of 2 years. Follow-up dMMN data were available for all but four ARMS-P subjects. dMMN amplitude at baseline was smaller in ARMS-P subjects compared with control and ARMS-NP subjects. Additionally, ARMS-P subjects displayed a longitudinal decline in dMMN amplitude, which was not present in control and ARMS-P subjects. We also observed a progressive decline in dMMN amplitude during the transition period, suggesting dynamic brain changes associated with the psychosis onset. Our findings implicate dMMN amplitude as a biological predictor of future psychosis onset in high-risk individuals, which may be used for early detection and intervention of psychosis.
Collapse
Affiliation(s)
- Takahiro Tateno
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, 930-0194, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
| | - Yuko Higuchi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, 930-0194, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan.,Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan
| | - Suguru Nakajima
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, 930-0194, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, 930-0194, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
| | - Mihoko Nakamura
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, 930-0194, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
| | - Maya Ueno
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, 930-0194, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
| | - Yuko Mizukami
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, 930-0194, Japan
| | - Shimako Nishiyama
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, 930-0194, Japan.,Center for Health Care and Human Sciences, University of Toyama, Toyama, 930-8555, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, 930-0194, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
| | - Tomiki Sumiyoshi
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, 930-0194, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
| |
Collapse
|
14
|
O'Reilly JA, Conway BA. Classical and controlled auditory mismatch responses to multiple physical deviances in anaesthetised and conscious mice. Eur J Neurosci 2020; 53:1839-1854. [DOI: 10.1111/ejn.15072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/16/2020] [Accepted: 11/26/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Jamie A. O'Reilly
- College of Biomedical Engineering Rangsit University Pathum Thani Thailand
| | - Bernard A. Conway
- Department of Biomedical Engineering University of Strathclyde Glasgow UK
| |
Collapse
|
15
|
Del Re EC, Maekawa T, Mesholam-Gately RI, Wojcik J, Seidman LJ, McCarley RW, Niznikiewicz MA. Abnormal Frequency Mismatch Negativity in Early Psychosis Outpatient Subjects. Clin EEG Neurosci 2020; 51:207-214. [PMID: 31826666 DOI: 10.1177/1550059419886691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background. Abnormalities of mismatch negativity (MMN), an event-related potential, indexing preattentive mechanisms, are consistently reported in schizophrenia (SZ). MMN abnormalities elicited to different deviant types have been recently shown to distinguish among patients according to length of their illness as well as inpatient versus outpatient status, and to be modulated by premorbid IQ. The objective of this study was to evaluate the MMN elicited by both frequency and duration deviant stimuli in patients with early schizophrenia (EP) recruited from an outpatient clinic in Boston, Massachusetts. Methods. Twenty-two healthy controls (HC) and 22 age-, handedness-, and gender-matched EP were tested using a frequency and duration MMN paradigm. Clinical data were also collected. Results. Frequency MMN amplitude but not duration MMN was significantly reduced in EP relative to HC subjects (P = .015). Conclusions. These results indicate that in this sample of early psychosis outpatient group, reductions in frequency MMN but not in duration MMN index clinical status. The relationship between age at first hospitalization and MMN frequency and duration amplitude and latency indicates that neurodevelopmental stage, auditory function, and clinical status are tightly linked.
Collapse
Affiliation(s)
- Elisabetta C Del Re
- VA Boston Healthcare System, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA
| | - Toshihiko Maekawa
- VA Boston Healthcare System, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Okinawa, Japan
| | - Raquelle I Mesholam-Gately
- Harvard Medical School, Boston, MA, USA.,Massachusetts Mental Health Center, Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Joanne Wojcik
- Harvard Medical School, Boston, MA, USA.,Massachusetts Mental Health Center, Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Larry J Seidman
- Harvard Medical School, Boston, MA, USA.,Massachusetts Mental Health Center, Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Robert W McCarley
- VA Boston Healthcare System, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
16
|
Jalewa J, Todd J, Michie PT, Hodgson DM, Harms L. Do rat auditory event related potentials exhibit human mismatch negativity attributes related to predictive coding? Hear Res 2020; 399:107992. [PMID: 32571607 DOI: 10.1016/j.heares.2020.107992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 01/11/2023]
Abstract
Rodent models play a significant role in understanding disease mechanisms and the screening of new treatments. With regard to psychiatric disorders such as schizophrenia, however, it is difficult to replicate the human symptoms in rodents because these symptoms are often either 'uniquely human' or are only conveyed via self-report. There is a growing interest in rodent mismatch responses (MMRs) as a translatable 'biomarker' for disorders such as schizophrenia. In this review, we will summarize the attributes of human MMN, and discuss the scope of exploring the attributes of human MMN in rodents. Here, we examine how reliably MMRs that are measured in rats mimic human attributes, and present original data examining whether manipulations of stimulus conditions known to modulate human MMN, do the same for rat MMRs. Using surgically-implanted epidural electroencephalographic electrodes and wireless telemetry in freely-moving rats, we observed human-like modulations of MMRs, namely that larger MMRs were elicited to unexpected (deviant) stimuli that a) had a larger change in pitch compared to the expected (standard) stimulus, b) were less frequently presented (lower probability), and c) had no jitter (stable stimulus onset asynchrony) compared to high jitter. Overall, these findings contribute to the mounting evidence for rat MMRs as a good analogue of human MMN, bolstering the development of a novel approach in future to validate the preclinical models based on a translatable biomarker, MMN.
Collapse
Affiliation(s)
- Jaishree Jalewa
- School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia
| | - Juanita Todd
- School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, New South Wales, Australia; Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Patricia T Michie
- School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, New South Wales, Australia; Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Deborah M Hodgson
- School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, New South Wales, Australia; Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Lauren Harms
- Priority Research Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, New South Wales, Australia; Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.
| |
Collapse
|
17
|
Francisco AA, Foxe JJ, Horsthuis DJ, DeMaio D, Molholm S. Assessing auditory processing endophenotypes associated with Schizophrenia in individuals with 22q11.2 deletion syndrome. Transl Psychiatry 2020; 10:85. [PMID: 32139692 PMCID: PMC7058163 DOI: 10.1038/s41398-020-0764-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/21/2020] [Indexed: 12/19/2022] Open
Abstract
22q11.2 Deletion Syndrome (22q11.2DS) is the strongest known molecular risk factor for schizophrenia. Brain responses to auditory stimuli have been studied extensively in schizophrenia and described as potential biomarkers of vulnerability to psychosis. We sought to understand whether these responses might aid in differentiating individuals with 22q11.2DS as a function of psychotic symptoms, and ultimately serve as signals of risk for schizophrenia. A duration oddball paradigm and high-density electrophysiology were used to test auditory processing in 26 individuals with 22q11.2DS (13-35 years old, 17 females) with varying degrees of psychotic symptomatology and in 26 age- and sex-matched neurotypical controls (NT). Presentation rate varied across three levels, to examine the effect of increasing demands on memory and the integrity of sensory adaptation. We tested whether N1 and mismatch negativity (MMN), typically reduced in schizophrenia, related to clinical/cognitive measures, and how they were affected by presentation rate. N1 adaptation effects interacted with psychotic symptomatology: Compared to an NT group, individuals with 22q11.2DS but no psychotic symptomatology presented larger adaptation effects, whereas those with psychotic symptomatology presented smaller effects. In contrast, individuals with 22q11.2DS showed increased effects of presentation rate on MMN amplitude, regardless of the presence of symptoms. While IQ and working memory were lower in the 22q11.2DS group, these measures did not correlate with the electrophysiological data. These findings suggest the presence of two distinct mechanisms: One intrinsic to 22q11.2DS resulting in increased N1 and MMN responses; another related to psychosis leading to a decreased N1 response.
Collapse
Affiliation(s)
- Ana A Francisco
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - John J Foxe
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, NY, USA
- The Cognitive Neurophysiology Laboratory, Department of Neuroscience, The Ernest J. Del Monde Institute for Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Douwe J Horsthuis
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Danielle DeMaio
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sophie Molholm
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, NY, USA.
- The Cognitive Neurophysiology Laboratory, Department of Neuroscience, The Ernest J. Del Monde Institute for Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
18
|
Inaba H, Namba H, Sotoyama H, Narihara I, Jodo E, Yabe H, Eifuku S, Nawa H. Sound frequency dependence of duration mismatch negativity recorded from awake rats. Neuropsychopharmacol Rep 2019; 40:96-101. [PMID: 31788981 PMCID: PMC7292213 DOI: 10.1002/npr2.12090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/17/2022] Open
Abstract
Aims The brain function that detects deviations in the acoustic environment can be evaluated with mismatch negativity (MMN). MMN to sound duration deviance has recently drawn attention as a biomarker for schizophrenia. Nonhuman animals, including rats, also exhibit MMN‐like potentials. Therefore, MMN research in nonhuman animals can help to clarify the neural mechanisms underlying MMN production. However, results from preclinical MMN studies on duration deviance have been conflicting. We investigated the effect of sound frequency on MMN‐like potentials to duration deviance in rats. Methods Event‐related potentials were recorded from an electrode placed on the primary auditory cortex of free‐moving rats using an oddball paradigm consisting of 50‐ms duration tones (standards) and 150‐ms duration tones (deviants) at a 500‐ms stimulus onset asynchrony. The sound frequency was set to three conditions: 3, 12, and 50 kHz. Results MMN‐like potentials that depended on the short‐term stimulus history of background regularity were only observed in the 12‐kHz tone frequency condition. Conclusions MMN‐like potentials to duration deviance are subject to tone frequency of the oddball paradigm in rats, suggesting that rats have distinct sound duration recognition ability. We investigated the effect of sound frequency on mismatch negativity (MMN)‐like potentials to duration deviance in rats. The sound frequency was set to three conditions: 3, 12, and 50 kHz. As a result, MMN‐like potentials that depended on the short‐term stimulus history of background regularity were only observed in the 12‐kHz tone frequency condition.![]()
Collapse
Affiliation(s)
- Hiroyoshi Inaba
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hisaaki Namba
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hidekazu Sotoyama
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Itaru Narihara
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Eiichi Jodo
- Department of Systems Neuroscience, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Satoshi Eifuku
- Department of Systems Neuroscience, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
19
|
Sardari S, Pourrahimi AM, Talebi H, Mazhari S. Symmetrical electrophysiological brain responses to unilateral and bilateral auditory stimuli suggest disrupted spatial processing in schizophrenia. Sci Rep 2019; 9:16454. [PMID: 31712599 PMCID: PMC6848080 DOI: 10.1038/s41598-019-52931-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/26/2019] [Indexed: 11/08/2022] Open
Abstract
Research has found auditory spatial processing deficits in patients with schizophrenia (SCZ), but no study has examined SCZ patients' auditory spatial processing at both pre-attentional and attentional stages. To address this gap, we investigated schizophrenics' brain responses to sounds originating from different locations (right, left, and bilateral sources). The event-related potentials (ERPs) of 25 chronic schizophrenic patients and 25 healthy subjects were compared. Mismatch negativity (MMN) in response to frequency and duration deviants was assessed. Two P3 components (P3a and P3b) were elicited via a frequency discrimination task, and MMN and P3 were recorded through separate monaural and dichotic stimulation paradigms. Our results corroborated the previously published finding that MMN, P3a, and P3b amplitudes are reduced in SCZ patients, but they showed no significant effect of stimulus location on either MMN or P3. These results indicated similarity between the SCZ patients and healthy individuals as regards patterns of ERP responses to stimuli that come from different directions. No evidence of auditory hemispatial bias in the SCZ patients was found, supporting the existence of non-lateralized spatial processing deficits in such patients and suggesting compensatory changes in the hemispheric laterality of patients' brains.
Collapse
Affiliation(s)
- Sara Sardari
- Neuroscience Research center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Mohammad Pourrahimi
- Neuroscience Research center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Talebi
- Audiology department, Rehabilitation faculty, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahrzad Mazhari
- Neuroscience Research center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Psychiatry, Medical School, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
20
|
Niemantsverdriet MBA, Slotema CW, van der Veen FM, van der Gaag M, Sommer IEC, Deen M, Franken IHA. Sensory processing deficiencies in patients with borderline personality disorder who experience auditory verbal hallucinations. Psychiatry Res 2019; 281:112545. [PMID: 31536946 DOI: 10.1016/j.psychres.2019.112545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 11/25/2022]
Abstract
Auditory verbal hallucinations (AVH) are common in patients with borderline personality disorder (BPD). We examined two candidate mechanisms of AVH in patients with BPD, suggested to underlie sensory processing systems that contribute to psychotic symptoms in patients with schizophrenia; sensory gating (P50 ratio and P50 difference) and change detection (mismatch negativity; MMN). Via electroencephalographic recordings P50 amplitude, P50 ratio, P50 difference and MMN amplitude were compared between 23 borderline patients with and 25 without AVH, and 26 healthy controls. Borderline patients with AVH had a significantly lower P50 difference compared with healthy controls, whereas no difference was found between borderline patients without AVH and healthy controls. The groups did not differ on MMN amplitude. The impaired sensory gating in patients with borderline personality disorder who experience AVH implies that P50 sensory gating deficiencies may underlie psychotic vulnerability in this specific patient group. Patients with borderline personality disorder with or without AVH did not have problems with auditory change detection. This may explain why they are spared from the poor outcome associated with negative symptoms and symptoms of disorganization in patients with chronic schizophrenia.
Collapse
Affiliation(s)
- Maria B A Niemantsverdriet
- Department of Personality Disorders, Parnassia Psychiatric Institute, Lijnbaan 4, The Hague, VA, 2512, the Netherlands.
| | - Christina W Slotema
- Department of Personality Disorders, Parnassia Psychiatric Institute, Lijnbaan 4, The Hague, VA, 2512, the Netherlands
| | - Frederik M van der Veen
- Institute of Psychology, Erasmus University Rotterdam, Mandeville Building, Rotterdam, DR, 1738, 3000, the Netherlands
| | - Mark van der Gaag
- Department of Clinical Psychology and Amsterdam Public Health Research Institute, VU University, Van der Boechorststraat 7, Amsterdam, BT, 1081, the Netherlands
| | - Iris E C Sommer
- Department of Neuroscience, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, AD, 9700, the Netherlands
| | - Mathijs Deen
- Department of Personality Disorders, Parnassia Psychiatric Institute, Lijnbaan 4, The Hague, VA, 2512, the Netherlands
| | - Ingmar H A Franken
- Institute of Psychology, Erasmus University Rotterdam, Mandeville Building, Rotterdam, DR, 1738, 3000, the Netherlands
| |
Collapse
|
21
|
Double-epoch subtraction reveals long-latency mismatch response in urethane-anaesthetized mice. J Neurosci Methods 2019; 326:108375. [DOI: 10.1016/j.jneumeth.2019.108375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 11/21/2022]
|
22
|
Doelling KB, Assaneo MF, Bevilacqua D, Pesaran B, Poeppel D. An oscillator model better predicts cortical entrainment to music. Proc Natl Acad Sci U S A 2019; 116:10113-10121. [PMID: 31019082 PMCID: PMC6525506 DOI: 10.1073/pnas.1816414116] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A body of research demonstrates convincingly a role for synchronization of auditory cortex to rhythmic structure in sounds including speech and music. Some studies hypothesize that an oscillator in auditory cortex could underlie important temporal processes such as segmentation and prediction. An important critique of these findings raises the plausible concern that what is measured is perhaps not an oscillator but is instead a sequence of evoked responses. The two distinct mechanisms could look very similar in the case of rhythmic input, but an oscillator might better provide the computational roles mentioned above (i.e., segmentation and prediction). We advance an approach to adjudicate between the two models: analyzing the phase lag between stimulus and neural signal across different stimulation rates. We ran numerical simulations of evoked and oscillatory computational models, showing that in the evoked case,phase lag is heavily rate-dependent, while the oscillatory model displays marked phase concentration across stimulation rates. Next, we compared these model predictions with magnetoencephalography data recorded while participants listened to music of varying note rates. Our results show that the phase concentration of the experimental data is more in line with the oscillatory model than with the evoked model. This finding supports an auditory cortical signal that (i) contains components of both bottom-up evoked responses and internal oscillatory synchronization whose strengths are weighted by their appropriateness for particular stimulus types and (ii) cannot be explained by evoked responses alone.
Collapse
Affiliation(s)
- Keith B Doelling
- Department of Psychology, New York University, New York, NY 10003;
| | | | - Dana Bevilacqua
- Department of Psychology, New York University, New York, NY 10003
| | - Bijan Pesaran
- Center for Neural Science, New York University, New York, NY 10003
| | - David Poeppel
- Department of Psychology, New York University, New York, NY 10003
- Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, 60322 Frankfurt am Main, Germany
| |
Collapse
|
23
|
McCleery A, Mathalon DH, Wynn JK, Roach BJ, Hellemann GS, Marder SR, Green MF. Parsing components of auditory predictive coding in schizophrenia using a roving standard mismatch negativity paradigm. Psychol Med 2019; 49:1195-1206. [PMID: 30642411 PMCID: PMC6499668 DOI: 10.1017/s0033291718004087] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Mismatch negativity (MMN) is an event-related potential (ERP) component reflecting auditory predictive coding. Repeated standard tones evoke increasing positivity ('repetition positivity'; RP), reflecting strengthening of the standard's memory trace and the prediction it will recur. Likewise, deviant tones preceded by more standard repetitions evoke greater negativity ('deviant negativity'; DN), reflecting stronger prediction error signaling. These memory trace effects are also evident in MMN difference wave. Here, we assess group differences and test-retest reliability of these indices in schizophrenia patients (SZ) and healthy controls (HC). METHODS Electroencephalography was recorded twice, 2 weeks apart, from 43 SZ and 30 HC, during a roving standard paradigm. We examined ERPs to the third, eighth, and 33rd standards (RP), immediately subsequent deviants (DN), and the corresponding MMN. Memory trace effects were assessed by comparing amplitudes associated with the three standard repetition trains. RESULTS Compared with controls, SZ showed reduced MMNs and DNs, but normal RPs. Both groups showed memory trace effects for RP, MMN, and DN, with a trend for attenuated DNs in SZ. Intraclass correlations obtained via this paradigm indicated good-to-moderate reliabilities for overall MMN, DN and RP, but moderate to poor reliabilities for components associated with short, intermediate, and long standard trains, and poor reliability of their memory trace effects. CONCLUSION MMN deficits in SZ reflected attenuated prediction error signaling (DN), with relatively intact predictive code formation (RP) and memory trace effects. This roving standard MMN paradigm requires additional development/validation to obtain suitable levels of reliability for use in clinical trials.
Collapse
Affiliation(s)
- Amanda McCleery
- Semel Institute for Neuroscience and Human Behavior, UCLA
- Veterans Affairs Greater Los Angeles Healthcare System
| | - Daniel H. Mathalon
- Veterans Affairs San Francisco Healthcare System
- Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco
| | - Jonathan K. Wynn
- Semel Institute for Neuroscience and Human Behavior, UCLA
- Veterans Affairs Greater Los Angeles Healthcare System
| | | | - Gerhard S. Hellemann
- Semel Institute for Neuroscience and Human Behavior, UCLA
- Veterans Affairs Greater Los Angeles Healthcare System
| | - Stephen R. Marder
- Semel Institute for Neuroscience and Human Behavior, UCLA
- Veterans Affairs Greater Los Angeles Healthcare System
| | - Michael F. Green
- Semel Institute for Neuroscience and Human Behavior, UCLA
- Veterans Affairs Greater Los Angeles Healthcare System
| |
Collapse
|
24
|
Fisher DJ, Campbell DJ, Abriel SC, Ells EML, Rudolph ED, Tibbo PG. Auditory Mismatch Negativity and P300a Elicited by the "Optimal" Multi-feature Paradigm in Early Schizophrenia. Clin EEG Neurosci 2018; 49:238-247. [PMID: 29502452 DOI: 10.1177/1550059418761459] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The mismatch negativity (MMN) is an EEG-derived event-related potential (ERP) elicited by any violation of a predicted auditory "rule," regardless of whether one is attending to the stimuli and is thought to reflect updating of the stimulus context. Redirection of attention toward a rare, distracting stimulus event, however, can be measured by the subsequent P3a component of the P300. Chronic schizophrenia patients exhibit robust MMN deficits, as well as reductions in P3a amplitude. While, the substantial literature on the MMN in first-episode and early phase schizophrenia in this population reports reduced amplitudes, there also exist several contradictory studies. Conversely, P3a reduction in this population is relatively consistent, although the literature investigating this is small. The primary goal of this study was to contribute to our understanding of whether auditory change detection mechanisms are altered in early phase schizophrenia and, if so, under what conditions. Event-related potentials elicited by duration, frequency, gap, intensity, and location deviants (as elicited by the "optimal" multi-feature paradigm) were recorded in 14 early phase schizophrenia (EP) patients and 17 healthy controls (HCs). Electrical activity was recorded from 15 scalp electrodes. MMN/P3a amplitudes and latencies for each deviant were compared between groups and were correlated with clinical measures in EPs. There were no significant group differences for MMN amplitudes or latencies, though EPs did exhibit reduced P3a amplitudes to gap and duration deviants. Furthermore, PANSS (Positive and Negative Syndrome Scale) positive symptom scores were correlated with intensity MMN latencies and duration P3a amplitudes in EPs. These findings suggest that MMNs may not be as robustly reduced in early phase schizophrenia (relative to chronic illness), but that alterations may be more likely in patients with increased positive symptomatology. Furthermore, these findings offer further support to previous work suggesting that the understudied P3a may have good complementary utility as a marker of early cortical dysfunction in psychosis.
Collapse
Affiliation(s)
- Derek J Fisher
- 1 Department of Psychology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada.,2 Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada.,3 Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| | - Debra J Campbell
- 1 Department of Psychology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| | - Shelagh C Abriel
- 1 Department of Psychology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| | - Emma M L Ells
- 1 Department of Psychology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| | - Erica D Rudolph
- 1 Department of Psychology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| | - Philip G Tibbo
- 2 Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada.,3 Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| |
Collapse
|
25
|
Ford TC, Woods W, Crewther DP. Magnetoencephalography reveals an increased non-target P3a, but not target P3b, that is associated with high non-clinical psychosocial deficits. Psychiatry Res Neuroimaging 2018; 271:1-7. [PMID: 29182941 DOI: 10.1016/j.pscychresns.2017.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 12/17/2022]
Abstract
Auditory processing deficits are frequently identified in autism and schizophrenia, and the two disorders have been shown to share psychosocial difficulties. This study used magnetoencephalography to investigate auditory processing differences for those with a high degree of a non-clinical autistic and schizotypal trait phenotype, Social Disorganisation (SD). Participants were 18 low (9 female) and 19 high (9 female) SD scorers (18-40 years) who completed a three-stimulus auditory oddball paradigm of speech sounds (standard: 100ms 'o', deviant: 150ms 'o', novel: 150ms 'e'). Spatio-temporal cluster analysis revealed increased amplitude for the high SD group in a left (p = 0.006) and a right (p = 0.020) hemisphere cluster in response to the novel non-target. No cluster differences were found in response to the target deviant. These findings suggest that those with a high degree of the SD phenotype recruit more cortical resources when processing unattended, novel speech stimuli, which may lead to psychosocial deficits.
Collapse
Affiliation(s)
- Talitha C Ford
- Centre for Human Psychopharmacology, Faculty of Heath, Arts and Design, Swinburne University of Technology, Melbourne, Victoria, Australia.
| | - Will Woods
- Centre for Mental Health, Faculty of Heath, Arts and Design, Swinburne University of Technology, Melbourne, Victoria, Australia.
| | - David P Crewther
- Centre for Human Psychopharmacology, Faculty of Heath, Arts and Design, Swinburne University of Technology, Melbourne, Victoria, Australia.
| |
Collapse
|
26
|
Parker EM, Sweet RA. Stereological Assessments of Neuronal Pathology in Auditory Cortex in Schizophrenia. Front Neuroanat 2018; 11:131. [PMID: 29375326 PMCID: PMC5767177 DOI: 10.3389/fnana.2017.00131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/18/2017] [Indexed: 12/21/2022] Open
Abstract
It has long been known that auditory processing is disrupted in schizophrenia. More recently, postmortem studies have provided direct evidence that morphological alterations to neurons in auditory cortex are implicated in the pathophysiology of this illness, confirming previous predictions. Potential neural substrates for auditory impairment and gray matter loss in auditory cortex in schizophrenia have been identified, described, and are the focus of this review article. Pyramidal cell somal volume is reduced in auditory cortex, as are dendritic spine density and number in schizophrenia. Pyramidal cells are not lost in this region in schizophrenia, indicating that dendritic spine reductions reflect fewer spines per pyramidal cell, consistent with the reduced neuropil hypothesis of schizophrenia. Stereological methods have aided in the proper collection, reporting and interpretation of this data. Mechanistic studies exploring relationships between genetic risk for schizophrenia and altered dendrite morphology represent an important avenue for future research in order to further elucidate cellular pathology in auditory cortex in schizophrenia.
Collapse
Affiliation(s)
- Emily M Parker
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Robert A Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States.,VISN 4 Mental Illness Research, Education and Clinical Center (MIRECC), VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
| |
Collapse
|
27
|
Perrin MA, Kantrowitz JT, Silipo G, Dias E, Jabado O, Javitt DC. Mismatch negativity (MMN) to spatial deviants and behavioral spatial discrimination ability in the etiology of auditory verbal hallucinations and thought disorder in schizophrenia. Schizophr Res 2018; 191:140-147. [PMID: 28532686 DOI: 10.1016/j.schres.2017.05.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 02/02/2023]
Abstract
UNLABELLED Persistent auditory verbal hallucinations (AVH) in schizophrenia are increasingly tied to dysfunction at the level of auditory cortex. AVH may reflect in part misattribution of internally generated thoughts to external spatial locations. Here, we investigated the association between persistent AVH and spatial localization abilities assessed both behaviorally and by mismatch negativity (MMN) to location deviants. METHODS Spatial- and tonal- discrimination abilities were assessed in patients (n=20) and controls (n=20) using free-field tones. MMN was assessed to spatial-location-, pitch- and duration-deviants. AVH and thought disorder were assessed using clinical evaluation. RESULTS As predicted, patients showed significant reductions in behavioral spatial-discrimination (p<0.0001) and tone-matching (p<0.001) ability, along with impaired MMN generation to location (p<0.03) and pitch (p<0.05) deviants. Hallucinating (AVH+) and non-hallucinating (AVH-) subjects showed similar deficits in location MMN to left-hemifield stimuli (p<0.0001 vs. control). By contrast, AVH- patients differed significantly from controls (p=0.009) and AVH+ patients (p=0.018) for MMN to right-lateral hemifield (left auditory cortex) stimuli, whereas AVH+ patients showed paradoxically preserved MMN generation (p=0.99 vs. controls). Severity of thought disorder correlated with impaired spatial discrimination, especially to right-hemifield stimuli (p=0.013), but did not correlate significantly with MMN or tone matching deficits. CONCLUSION These findings demonstrate a significant relationship between auditory cortical spatial localization abilities and AVH susceptibility, with relatively preserved function of left vs. right auditory cortex predisposing to more severe AVH, and support models that attribute persistent AVH to impaired source-monitoring. The findings suggest new approaches for therapeutic intervention for both AVH and thought disorder in schizophrenia.
Collapse
Affiliation(s)
- Megan A Perrin
- Schizophrenia Research Center, Nathan Kline Institute for Psychiatric Research, United States; Department of Clinical Neuropsychology, Queens College, United States; The Graduate Center, City University of New York, United States
| | - Joshua T Kantrowitz
- Schizophrenia Research Center, Nathan Kline Institute for Psychiatric Research, United States; Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, United States
| | - Gail Silipo
- Schizophrenia Research Center, Nathan Kline Institute for Psychiatric Research, United States
| | - Elisa Dias
- Schizophrenia Research Center, Nathan Kline Institute for Psychiatric Research, United States
| | - Omar Jabado
- Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, United States
| | - Daniel C Javitt
- Schizophrenia Research Center, Nathan Kline Institute for Psychiatric Research, United States; Department of Psychiatry, Columbia College of Physicians and Surgeons, United States.
| |
Collapse
|
28
|
Avissar M, Xie S, Vail B, Lopez-Calderon J, Wang Y, Javitt DC. Meta-analysis of mismatch negativity to simple versus complex deviants in schizophrenia. Schizophr Res 2018; 191:25-34. [PMID: 28709770 PMCID: PMC5745291 DOI: 10.1016/j.schres.2017.07.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/29/2017] [Accepted: 07/04/2017] [Indexed: 12/23/2022]
Abstract
Mismatch negativity (MMN) deficits in schizophrenia (SCZ) have been studied extensively since the early 1990s, with the vast majority of studies using simple auditory oddball task deviants that vary in a single acoustic dimension such as pitch or duration. There has been a growing interest in using more complex deviants that violate more abstract rules to probe higher order cognitive deficits. It is still unclear how sensory processing deficits compare to and contribute to higher order cognitive dysfunction, which can be investigated with later attention-dependent auditory event-related potential (ERP) components such as a subcomponent of P300, P3b. In this meta-analysis, we compared MMN deficits in SCZ using simple deviants to more complex deviants. We also pooled studies that measured MMN and P3b in the same study sample and examined the relationship between MMN and P3b deficits within study samples. Our analysis reveals that, to date, studies using simple deviants demonstrate larger deficits than those using complex deviants, with effect sizes in the range of moderate to large. The difference in effect sizes between deviant types was reduced significantly when accounting for magnitude of MMN measured in healthy controls. P3b deficits, while large, were only modestly greater than MMN deficits (d=0.21). Taken together, our findings suggest that MMN to simple deviants may still be optimal as a biomarker for SCZ and that sensory processing dysfunction contributes significantly to MMN deficit and disease pathophysiology.
Collapse
Affiliation(s)
- Michael Avissar
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, United States.
| | - Shanghong Xie
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Blair Vail
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, United States
| | - Javier Lopez-Calderon
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, United States
| | - Yuanjia Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Daniel C Javitt
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, United States; Program in Cognitive Neuroscience and Schizophrenia, Nathan Kline Institute, Orangeburg, NY, United States
| |
Collapse
|
29
|
Oranje B, Aggernaes B, Rasmussen H, Ebdrup BH, Glenthøj BY. Selective attention and mismatch negativity in antipsychotic-naïve, first-episode schizophrenia patients before and after 6 months of antipsychotic monotherapy. Psychol Med 2017; 47:2155-2165. [PMID: 28443529 DOI: 10.1017/s0033291717000599] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Attention deficits have been frequently reported in schizophrenia. It has been suggested that treatment with second-generation antipsychotics can ameliorate these deficits. In this study, the influence of 6 months treatment with quetiapine, a compound with less affinity for dopamine D2 receptors than for serotonergic 5-HT2A receptors, on electrophysiological parameters of attention was investigated in a group of antipsychotic-naïve, first-episode schizophrenia patients compared with a group of age- and gender-matched healthy controls. METHOD A total of 34 first-episode, antipsychotic-naïve patients with schizophrenia and an equal number of healthy controls were tested in a selective attention and a typical mismatch negativity (MMN) paradigm at baseline and after 6 months. The patients were treated with quetiapine according to their clinical needs during the period between baseline and follow-up, whereas controls received no treatment. RESULTS Patients showed lower MMN and P200 amplitude than healthy controls in the selective attention paradigm at baseline, while this was not the case for MMN of the typical MMN paradigm. Interestingly, after 6 months treatment, this MMN deficit was only ameliorated in patients treated with above median dosages of quetiapine. Patients had lower P3B amplitude, yet showed similar levels of processing negativity and N100 amplitude compared with healthy controls, both at baseline and follow-up. CONCLUSIONS The results indicate that deficits in MMN, P200 and P3B amplitude are present at early stages of schizophrenia, although depending on the paradigm used. Furthermore, the results indicate that 6 months quetiapine treatment ameliorates MMN but not P3B deficits, and only in those subjects on higher dosages.
Collapse
Affiliation(s)
- B Oranje
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Services Glostrup,Capital Region Denmark, Glostrup,Denmark
| | - B Aggernaes
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Services Glostrup,Capital Region Denmark, Glostrup,Denmark
| | - H Rasmussen
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Services Glostrup,Capital Region Denmark, Glostrup,Denmark
| | - B H Ebdrup
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Services Glostrup,Capital Region Denmark, Glostrup,Denmark
| | - B Y Glenthøj
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Services Glostrup,Capital Region Denmark, Glostrup,Denmark
| |
Collapse
|
30
|
Haigh SM, Matteis MD, Coffman BA, Murphy TK, Butera CD, Ward KL, Leiter-McBeth JR, Salisbury DF. Mismatch negativity to pitch pattern deviants in schizophrenia. Eur J Neurosci 2017; 46:2229-2239. [PMID: 28833772 PMCID: PMC5768303 DOI: 10.1111/ejn.13660] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/25/2017] [Accepted: 08/08/2017] [Indexed: 12/26/2022]
Abstract
Simple mismatch negativity (MMN) to infrequent pitch deviants is impaired in individuals with long-term schizophrenia (Sz). The complex MMN elicited by pattern deviance often manifes is cut from here]->ts later after deviant onset than simple MMN and can ascertain deficits in abstracting relationships between stimuli. Sz exhibit reduced complex MMN, but so far this has only been measured when deviance detection relies on a grouping rule. We measured MMN to deviants in pitch-based rules to see whether MMN is also abnormal in Sz under these conditions. Three experiments were conducted. Twenty-seven Sz and 28 healthy matched controls (HC) participated in Experiments 1 and 2, and 24 Sz and 26 HC participated in Experiment 3. Experiment 1 was a standard pitch MMN task, and Sz showed the expected MMN reduction (~ 115 ms) in the simple pitch deviant compared to HC. Experiment 2 comprised standard groups of six tones that ascended in pitch, and deviant groups where the last tone descended in pitch. Complex MMN was late (~ 510 ms) and significantly blunted in Sz. Experiment 3 comprised standard groups of 12 tones (six tones ascending in pitch followed by six tones descending in pitch, like a scale), and deviant groups containing two repetitions of six ascending tones (the scale restarted midstream). Complex MMN was also late (~ 460 ms) and significantly blunted in Sz. These results identify a late pitch pattern deviance-related MMN that is deficient in schizophrenia. This suggests specific deficits in later more complex deviance detection in schizophrenia for abstract patterns.
Collapse
Affiliation(s)
- Sarah M Haigh
- Clinical Neurophysiology Research Laboratory, Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Oxford Building, 3501 Forbes Avenue Suite 420, Pittsburgh, PA, 15213, USA
| | - Mario De Matteis
- Clinical Neurophysiology Research Laboratory, Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Oxford Building, 3501 Forbes Avenue Suite 420, Pittsburgh, PA, 15213, USA
| | - Brian A Coffman
- Clinical Neurophysiology Research Laboratory, Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Oxford Building, 3501 Forbes Avenue Suite 420, Pittsburgh, PA, 15213, USA
| | - Timothy K Murphy
- Clinical Neurophysiology Research Laboratory, Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Oxford Building, 3501 Forbes Avenue Suite 420, Pittsburgh, PA, 15213, USA
| | - Christiana D Butera
- Clinical Neurophysiology Research Laboratory, Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Oxford Building, 3501 Forbes Avenue Suite 420, Pittsburgh, PA, 15213, USA
| | - Kayla L Ward
- Clinical Neurophysiology Research Laboratory, Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Oxford Building, 3501 Forbes Avenue Suite 420, Pittsburgh, PA, 15213, USA
| | - Justin R Leiter-McBeth
- Clinical Neurophysiology Research Laboratory, Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Oxford Building, 3501 Forbes Avenue Suite 420, Pittsburgh, PA, 15213, USA
| | - Dean F Salisbury
- Clinical Neurophysiology Research Laboratory, Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Oxford Building, 3501 Forbes Avenue Suite 420, Pittsburgh, PA, 15213, USA
| |
Collapse
|
31
|
Vlaskamp C, Oranje B, Madsen GF, Møllegaard Jepsen JR, Durston S, Cantio C, Glenthøj B, Bilenberg N. Auditory processing in autism spectrum disorder: Mismatch negativity deficits. Autism Res 2017. [DOI: 10.1002/aur.1821] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Chantal Vlaskamp
- NICHE Lab; Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht; Utrecht The Netherlands
| | - Bob Oranje
- NICHE Lab; Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht; Utrecht The Netherlands
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Psychiatric Center Glostrup; Glostrup Denmark
| | - Gitte Falcher Madsen
- Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Jens Richardt Møllegaard Jepsen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Psychiatric Center Glostrup; Glostrup Denmark
- Department of Child and Adolescent Mental Health Odense; Research Unit, Mental Health Services in Region of Southern Denmark, Faculty of Health Sciences, University of Southern Denmark, Center for Child and Adolescent Mental Health Capital Region; Copenhagen Denmark
| | - Sarah Durston
- NICHE Lab; Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht; Utrecht The Netherlands
| | - Cathriona Cantio
- Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Birte Glenthøj
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Psychiatric Center Glostrup; Glostrup Denmark
| | - Niels Bilenberg
- Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
32
|
Spatio-temporal source cluster analysis reveals fronto-temporal auditory change processing differences within a shared autistic and schizotypal trait phenotype. NEUROIMAGE-CLINICAL 2017; 16:383-389. [PMID: 28861339 PMCID: PMC5568880 DOI: 10.1016/j.nicl.2017.04.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/19/2017] [Accepted: 04/22/2017] [Indexed: 11/20/2022]
Abstract
Social Disorganisation (SD) is a shared autistic and schizotypal phenotype that is present in the subclinical population. Auditory processing deficits, particularly in mismatch negativity/field (MMN/F) have been reported across both spectrum disorders. This study investigates differences in MMN/F cortical spatio-temporal source activity between higher and lower quintiles of the SD spectrum. Sixteen low (9 female) and 19 high (9 female) SD subclinical adults (18–40years) underwent magnetoencephalography (MEG) during an MMF paradigm where standard tones (50ms) were interrupted by infrequent duration deviants (100ms). Spatio-temporal source cluster analysis with permutation testing revealed no difference between the groups in source activation to the standard tone. To the deviant tone however, there was significantly reduced right hemisphere fronto-temporal and insular cortex activation for the high SD group (p= 0.038). The MMF, as a product of the cortical response to the deviant minus that to the standard, did not differ significantly between the high and low Social Disorganisation groups. These data demonstrate a deficit in right fronto-temporal processing of an auditory change for those with more of the shared SD phenotype, indicating that right fronto-temporal auditory processing may be associated with psychosocial functioning. Autism and schizotypal spectra share a trait phenotype, Social Disorganisation (SD). Auditory mismatch paradigm demonstrates processing differences between high and low SD. High SD scorers have reduced fronto-temporal response to auditory change. Reduced fronto-temporal source activation in high SD is right lateralised. Psychosocial function is related to auditory deviant processing.
Collapse
|
33
|
Ford TC, Woods W, Crewther DP. Mismatch field latency, but not power, may mark a shared autistic and schizotypal trait phenotype. Int J Psychophysiol 2017; 116:60-67. [PMID: 28235554 DOI: 10.1016/j.ijpsycho.2017.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 01/07/2023]
Abstract
The auditory mismatch negativity (MMN), a preattentive processing potential, and its magnetic counterpart (MMF) are consistently reported as reduced in schizophrenia and autism spectrum disorders. This study investigates whether MMF characteristics differ between subclinically high and low scorers on the recently discovered shared autism and schizophrenia phenotype, Social Disorganisation. A total of 18 low (10 females) and 19 high (9 females) Social Disorganisation scorers underwent magnetoencephalography (MEG) during a MMF paradigm of 50ms standard (1000Hz, 85%) and 100ms duration deviant tones. MMF was measured from the strongest active magnetometer over the right and left hemispheres (consistent across groups) after 100ms. No differences in MMF power were found, however there was a significant delay in the MMF peak (p=0.007). The P3am (following the MMF) was significantly reduced across both hemispheres for the high Social Disorganisation group (p=0.025), there were no specific hemispheric differences in P3am power or latency. Right MMF peak latency increased with higher scores on the schizotypal subscales Odd Speech, Odd Behaviour and Constricted Affect. Findings suggest that MMF peak latency delay marks a convergence of the autism and schizophrenia spectra at a subclinical. These findings have significant implications for future research methodology, as well as clinical practice.
Collapse
Affiliation(s)
- Talitha C Ford
- Centre for Human Psychopharmacology, Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, Victoria, Australia.
| | - Will Woods
- Brain and Psychological Science Research Centre, Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, Victoria, Australia.
| | - David P Crewther
- Centre for Human Psychopharmacology, Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, Victoria, Australia.
| |
Collapse
|
34
|
Atkinson RJ, Fulham WR, Michie PT, Ward PB, Todd J, Stain H, Langdon R, Thienel R, Paulik G, Cooper G, Schall U. Electrophysiological, cognitive and clinical profiles of at-risk mental state: The longitudinal Minds in Transition (MinT) study. PLoS One 2017; 12:e0171657. [PMID: 28187217 PMCID: PMC5302824 DOI: 10.1371/journal.pone.0171657] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 01/24/2017] [Indexed: 12/22/2022] Open
Abstract
The onset of schizophrenia is typically preceded by a prodromal period lasting several years during which sub-threshold symptoms may be identified retrospectively. Clinical interviews are currently used to identify individuals who have an ultra-high risk (UHR) of developing a psychotic illness with a view to provision of interventions that prevent, delay or reduce severity of future mental health issues. The utility of bio-markers as an adjunct in the identification of UHR individuals is not yet established. Several event-related potential measures, especially mismatch-negativity (MMN), have been identified as potential biomarkers for schizophrenia. In this 12-month longitudinal study, demographic, clinical and neuropsychological data were acquired from 102 anti-psychotic naive UHR and 61 healthy controls, of whom 80 UHR and 58 controls provided valid EEG data during a passive auditory task at baseline. Despite widespread differences between UHR and controls on demographic, clinical and neuropsychological measures, MMN and P3a did not differ between these groups. Of 67 UHR at the 12-month follow-up, 7 (10%) had transitioned to a psychotic illness. The statistical power to detect differences between those who did or did not transition was limited by the lower than expected transition rate. ERPs did not predict transition, with trends in the opposite direction to that predicted. In exploratory analysis, the strongest predictors of transition were measures of verbal memory and subjective emotional disturbance.
Collapse
Affiliation(s)
- Rebbekah J. Atkinson
- Centre for Brain and Mental Health Research, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
| | - W. Ross Fulham
- Centre for Brain and Mental Health Research, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- * E-mail:
| | - Patricia T. Michie
- Centre for Brain and Mental Health Research, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- School of Psychology, University of Newcastle, Newcastle, New South Wales, Australia
| | - Philip B. Ward
- School of Medicine and Population Health, University of New South Wales, Sydney, New South Wales, Australia
- Schizophrenia Research Unit, South Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Juanita Todd
- Centre for Brain and Mental Health Research, University of Newcastle, Newcastle, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- School of Psychology, University of Newcastle, Newcastle, New South Wales, Australia
| | - Helen Stain
- Centre for Rural and Remote Mental Health, Bloomfield Hospital, Orange, New South Wales, Australia
- School of Social and Health Sciences, Leeds Trinity University, Horsforth Leeds, United Kingdom
| | - Robyn Langdon
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- ARC Centre of Excellence in Cognition and Its Disorders, Macquarie University, Sydney, New South Wales, Australia
- Department of Cognitive Science, Macquarie University, Sydney, New South Wales, Australia
| | - Renate Thienel
- Centre for Brain and Mental Health Research, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- Hunter Institute for Mental Health, Newcastle, New South Wales, Australia
| | - Georgie Paulik
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- School of Psychology, University of Western Australia, Nedlands, Western Australia, Australia
- School of Psychology and Exercise Science, Murdoch University, Murdoch, Western Australia, Australia
| | - Gavin Cooper
- Centre for Brain and Mental Health Research, University of Newcastle, Newcastle, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
| | | | - Ulrich Schall
- Centre for Brain and Mental Health Research, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- Hunter New England Health, Newcastle, Australia
| |
Collapse
|
35
|
Nishimura Y, Kawakubo Y, Suga M, Hashimoto K, Takei Y, Takei K, Inoue H, Yumoto M, Takizawa R, Kasai K. Familial Influences on Mismatch Negativity and Its Association with Plasma Glutamate Level: A Magnetoencephalographic Study in Twins. MOLECULAR NEUROPSYCHIATRY 2016; 2:161-172. [PMID: 27867941 DOI: 10.1159/000449426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 08/25/2016] [Indexed: 11/19/2022]
Abstract
Mismatch negativity (MMN) or its magnetic counterpart (magnetic mismatch negativity; MMNm) is regarded as a promising biomarker for schizophrenia. Previous electroencephalographic studies of MMN have demonstrated a moderate-to-high heritability for MMN amplitudes. N-methyl-D-aspartate receptor-dependent glutamatergic neurotransmission is implicated in MMN generation. We hypothesized that the differences between identical twins in MMNm variables might be associated with differences in plasma levels of amino acids involved in glutamatergic neurotransmission. Thirty-three pairs of monozygotic (MZ) and 10 pairs of dizygotic (DZ) twins underwent MMNm recording. The MMNm in response to tone duration changes, tone frequency changes, and phonemic changes was recorded using 204-channel magnetoencephalography. Of these, 26 MZ and 7 DZ twin pairs underwent blood sampling for determination of plasma amino acid levels. MMNm peak strength showed relatively high correlations in both MZ and DZ twin pairs. The differences in MMNm latencies tended to correlate with the differences in plasma amino acid levels within MZ pairs, while no significant correlation was observed after the Bonferroni correction. We observed a familial trait in MMNm strength. The differences in MMN latency in MZ twins might be influenced by changes in glutamate levels and glutamate-glutamine cycling; however, the results need to be replicated.
Collapse
Affiliation(s)
- Yukika Nishimura
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuki Kawakubo
- Department of Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Motomu Suga
- Department of Rehabilitation, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenji Hashimoto
- Department of Division of Clinical Neuroscience, Chiba University Centre for Forensic Mental Health, Chiba, Japan
| | - Yuichi Takei
- Department of Psychiatry and Neuroscience, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Kunio Takei
- Department of Office for Mental Health Support, Division for Counselling and Support, The University of Tokyo, Tokyo, Japan
| | - Hideyuki Inoue
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masato Yumoto
- Department of Department of Clinical Laboratory, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryu Takizawa
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
36
|
Suga M, Nishimura Y, Kawakubo Y, Yumoto M, Kasai K. Magnetoencephalographic recording of auditory mismatch negativity in response to duration and frequency deviants in a single session in patients with schizophrenia. Psychiatry Clin Neurosci 2016; 70:295-302. [PMID: 27162140 DOI: 10.1111/pcn.12397] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/30/2016] [Accepted: 05/06/2016] [Indexed: 12/29/2022]
Abstract
AIM Auditory mismatch negativity (MMN) and its magnetoencephalographic (MEG) counterpart (MMNm) are an established biological index in schizophrenia research. MMN in response to duration and frequency deviants may have differential relevance to the pathophysiology and clinical stages of schizophrenia. MEG has advantage in that it almost purely detects MMNm arising from the auditory cortex. However, few previous MEG studies on schizophrenia have simultaneously assessed MMNm in response to duration and frequency deviants or examined the effect of chronicity on the group difference. METHODS Forty-two patients with chronic schizophrenia and 74 matched control subjects participated in the study. Using a whole-head MEG, MMNm in response to duration and frequency deviants of tones was recorded while participants passively listened to an auditory sequence. RESULTS Compared to healthy subjects, patients with schizophrenia exhibited significantly reduced powers of MMNm in response to duration deviant in both hemispheres, whereas MMNm in response to frequency deviant did not differ between the two groups. These results did not change according to the chronicity of the illness. CONCLUSION These results, obtained by using a sequence-enabling simultaneous assessment of both types of MMNm, suggest that MEG recording of MMN in response to duration deviant may be a more sensitive biological marker of schizophrenia than MMN in response to frequency deviant. Our findings represent an important first step towards establishment of MMN as a biomarker for schizophrenia in real-world clinical psychiatry settings.
Collapse
Affiliation(s)
- Motomu Suga
- Department of Rehabilitation, The University of Tokyo, Tokyo, Japan
| | - Yukika Nishimura
- Department of Neuropsychiatry, The University of Tokyo, Tokyo, Japan
| | - Yuki Kawakubo
- Department of Child Neuropsychiatry, The University of Tokyo, Tokyo, Japan
| | - Masato Yumoto
- Department of Clinical Laboratory, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
37
|
Catts VS, Lai YL, Weickert CS, Weickert TW, Catts SV. A quantitative review of the postmortem evidence for decreased cortical N-methyl-d-aspartate receptor expression levels in schizophrenia: How can we link molecular abnormalities to mismatch negativity deficits? Biol Psychol 2016; 116:57-67. [DOI: 10.1016/j.biopsycho.2015.10.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 10/19/2015] [Accepted: 10/30/2015] [Indexed: 02/06/2023]
|
38
|
Ciullo V, Spalletta G, Caltagirone C, Jorge RE, Piras F. Explicit Time Deficit in Schizophrenia: Systematic Review and Meta-Analysis Indicate It Is Primary and Not Domain Specific. Schizophr Bull 2016; 42:505-18. [PMID: 26253596 PMCID: PMC4753592 DOI: 10.1093/schbul/sbv104] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Although timing deficits are a robust finding in schizophrenia (SZ), the notion of a genuine time perception disorder in SZ is still being debated because distortions in timing might depend on neuropsychological deficits that are characteristics of the illness. Here we used meta-analytic methods to summarize the evidence of timing deficits in SZ and moderator analyses to determine whether defective timing in SZ arises from nontemporal sources or from defective time perception. PubMed Services, PsycNET, and Scopus were searched through March 2015, and all references in articles were investigated to find other relevant studies. Studies were selected if they included subjects with a primary diagnosis of SZ compared to a healthy control (HC) group and if they reported behavioral measures of duration estimation (perceptual and motor explicit timing). Data from 24 studies published from 1956 to 2015, which comprised 747 SZ individuals and 808 HC, were included. Results indicate that SZ individuals are less accurate than HC in estimating time duration across a wide range of tasks. Subgroup analyses showed that the fundamental timing deficit in SZ is independent from the length of the to-be-timed duration (automatic and cognitively controlled timing) and from methods of stimuli estimation (perceptual and motor timing). Thus, time perception per se is disturbed in SZ (not just task-specific timing processes) and this perturbation is independent from more generalized cognitive impairments. Behavioral evidence of disturbed automatic timing should be more thoroughly investigated with the aim of defining it as a cognitive phenotype for more homogeneous diagnostic subgrouping.
Collapse
Affiliation(s)
- Valentina Ciullo
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Gianfranco Spalletta
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX;
| | - Carlo Caltagirone
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Ricardo E Jorge
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX
| | - Federica Piras
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
39
|
Döring C, Müller M, Hagenmuller F, Ajdacic-Gross V, Haker H, Kawohl W, Rössler W, Heekeren K. Mismatch negativity: Alterations in adults from the general population who report subclinical psychotic symptoms. Eur Psychiatry 2016; 34:9-16. [PMID: 26928341 DOI: 10.1016/j.eurpsy.2016.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 11/29/2015] [Accepted: 01/03/2016] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND Deficits of mismatch negativity (MMN) in schizophrenia and individuals at risk for psychosis have been replicated many times. Several studies have also demonstrated the occurrence of subclinical psychotic symptoms within the general population. However, none has yet investigated MMN in individuals from the general population who report subclinical psychotic symptoms. METHODS The MMN to duration-, frequency-, and intensity deviants was recorded in 217 nonclinical individuals classified into a control group (n=72) and three subclinical groups: paranoid (n=44), psychotic (n=51), and mixed paranoid-psychotic (n=50). Amplitudes of MMN at frontocentral electrodes were referenced to average. Based on a three-source model of MMN generation, we conducted an MMN source analysis and compared the amplitudes of surface electrodes and sources among groups. RESULTS We found no significant differences in MMN amplitudes of surface electrodes. However, significant differences in MMN generation among the four groups were revealed at the frontal source for duration-deviant stimuli (P=0.01). We also detected a trend-level difference (P=0.05) in MMN activity among those groups for frequency deviants at the frontal source. CONCLUSIONS Individuals from the general population who report psychotic symptoms are a heterogeneous group. However, alterations exist in their frontal MMN activity. This increased activity might be an indicator of more sensitive perception regarding changes in the environment for individuals with subclinical psychotic symptoms.
Collapse
Affiliation(s)
- C Döring
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric Hospital, University of Zurich, Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - M Müller
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric Hospital, University of Zurich, Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - F Hagenmuller
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric Hospital, University of Zurich, Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - V Ajdacic-Gross
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric Hospital, University of Zurich, Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - H Haker
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric Hospital, University of Zurich, Zurich, Switzerland; Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - W Kawohl
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric Hospital, University of Zurich, Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - W Rössler
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric Hospital, University of Zurich, Zurich, Switzerland; Institute of Psychiatry, Laboratory of Neuroscience (LIM 27), University of Sao Paulo, Sao Paulo, Brazil
| | - K Heekeren
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric Hospital, University of Zurich, Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
40
|
Hierarchical Organization of Frontotemporal Networks for the Prediction of Stimuli across Multiple Dimensions. J Neurosci 2015; 35:9255-64. [PMID: 26109651 DOI: 10.1523/jneurosci.5095-14.2015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Brain function can be conceived as a hierarchy of generative models that optimizes predictions of sensory inputs and minimizes "surprise." Each level of the hierarchy makes predictions of neural events at a lower level in the hierarchy, which returns a prediction error when these expectations are violated. We tested the generalization of this hypothesis to multiple sequential deviations, and we identified the most likely organization of the network that accommodates deviations in temporal structure of stimuli. Magnetoencephalography of healthy human participants during an auditory paradigm identified prediction error responses in bilateral primary auditory cortex, superior temporal gyrus, and lateral prefrontal cortex for deviation by frequency, intensity, location, duration, and silent gap. We examined the connectivity between cortical sources using a set of 21 generative models that embedded alternate hypotheses of frontotemporal network dynamics. Bayesian model selection provided evidence for two new features of functional network organization. First, an expectancy signal provided input to the prefrontal cortex bilaterally, related to the temporal structure of stimuli. Second, there are functionally significant lateral connections between superior temporal and/or prefrontal cortex. The results support a predictive coding hypothesis but go beyond previous work in demonstrating the generalization to multiple concurrent stimulus dimensions and the evidence for a temporal expectancy input at the higher level of the frontotemporal hierarchy. We propose that this framework for studying the brain's response to unexpected events is not limited to simple sensory tasks but may also apply to the neurocognitive mechanisms of higher cognitive functions and their disorders.
Collapse
|
41
|
Preliminary evidence for reduced auditory lateral suppression in schizophrenia. Schizophr Res 2015; 162:269-75. [PMID: 25583249 PMCID: PMC4339496 DOI: 10.1016/j.schres.2014.12.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 12/18/2014] [Accepted: 12/22/2014] [Indexed: 11/21/2022]
Abstract
BACKGROUND Well-documented auditory processing deficits such as impaired frequency discrimination and reduced suppression of auditory brain responses in schizophrenia (SZ) may contribute to abnormal auditory functioning in everyday life. Lateral suppression of non-stimulated neurons by stimulated neurons has not been extensively assessed in SZ and likely plays an important role in precise encoding of sounds. Therefore, this study evaluated whether lateral suppression of activity in auditory cortex is impaired in SZ. METHODS SZ participants and control participants watched a silent movie with subtitles while listening to trials composed of a 0.5s control stimulus (CS), a 3s filtered masking noise (FN), and a 0.5s test stimulus (TS). The CS and TS were identical on each trial and had energy corresponding to the high energy (recurrent suppression) or low energy (lateral suppression) portions of the FN. Event-related potentials were recorded and suppression was measured as the amplitude change between CS and TS. RESULTS Peak amplitudes of the auditory P2 component (160-260ms) showed reduced lateral but not recurrent suppression in SZ participants. CONCLUSIONS Reduced lateral suppression in SZ participants may lead to overlap of neuronal populations representing different auditory stimuli. Such imprecise neural representations may contribute to the difficulties SZ participants have in discriminating complex stimuli in everyday life.
Collapse
|
42
|
Hay RA, Roach BJ, Srihari VH, Woods SW, Ford JM, Mathalon DH. Equivalent mismatch negativity deficits across deviant types in early illness schizophrenia-spectrum patients. Biol Psychol 2015; 105:130-7. [PMID: 25603283 DOI: 10.1016/j.biopsycho.2015.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 01/08/2015] [Accepted: 01/12/2015] [Indexed: 11/17/2022]
Abstract
Neurophysiological abnormalities in auditory deviance processing, as reflected by the mismatch negativity (MMN), have been observed across the course of schizophrenia. Studies in early schizophrenia patients have typically shown varying degrees of MMN amplitude reduction for different deviant types, suggesting that different auditory deviants are uniquely processed and may be differentially affected by duration of illness. To explore this further, we examined the MMN response to 4 auditory deviants (duration, frequency, duration+frequency "double deviant", and intensity) in 24 schizophrenia-spectrum patients early in the illness (ESZ) and 21 healthy controls. ESZ showed significantly reduced MMN relative to healthy controls for all deviant types (p<0.05), with no significant interaction with deviant type. No correlations with clinical symptoms were present (all ps>0.05). These findings support the conclusion that neurophysiological mechanisms underlying processing of auditory deviants are compromised early in illness, and these deficiencies are not specific to the type of deviant presented.
Collapse
Affiliation(s)
- Rachel A Hay
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
| | - Brian J Roach
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
| | - Vinod H Srihari
- Yale University School of Medicine, New Haven, CT, United States
| | - Scott W Woods
- Yale University School of Medicine, New Haven, CT, United States
| | - Judith M Ford
- University of California, San Francisco, CA, United States; San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
| | - Daniel H Mathalon
- University of California, San Francisco, CA, United States; San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States.
| |
Collapse
|
43
|
Fulham WR, Michie PT, Ward PB, Rasser PE, Todd J, Johnston PJ, Thompson PM, Schall U. Mismatch negativity in recent-onset and chronic schizophrenia: a current source density analysis. PLoS One 2014; 9:e100221. [PMID: 24949859 PMCID: PMC4064992 DOI: 10.1371/journal.pone.0100221] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 05/23/2014] [Indexed: 01/09/2023] Open
Abstract
Mismatch negativity (MMN) is a component of the event-related potential elicited by deviant auditory stimuli. It is presumed to index pre-attentive monitoring of changes in the auditory environment. MMN amplitude is smaller in groups of individuals with schizophrenia compared to healthy controls. We compared duration-deviant MMN in 16 recent-onset and 19 chronic schizophrenia patients versus age- and sex-matched controls. Reduced frontal MMN was found in both patient groups, involved reduced hemispheric asymmetry, and was correlated with Global Assessment of Functioning (GAF) and negative symptom ratings. A cortically-constrained LORETA analysis, incorporating anatomical data from each individual's MRI, was performed to generate a current source density model of the MMN response over time. This model suggested MMN generation within a temporal, parietal and frontal network, which was right hemisphere dominant only in controls. An exploratory analysis revealed reduced CSD in patients in superior and middle temporal cortex, inferior and superior parietal cortex, precuneus, anterior cingulate, and superior and middle frontal cortex. A region of interest (ROI) analysis was performed. For the early phase of the MMN, patients had reduced bilateral temporal and parietal response and no lateralisation in frontal ROIs. For late MMN, patients had reduced bilateral parietal response and no lateralisation in temporal ROIs. In patients, correlations revealed a link between GAF and the MMN response in parietal cortex. In controls, the frontal response onset was 17 ms later than the temporal and parietal response. In patients, onset latency of the MMN response was delayed in secondary, but not primary, auditory cortex. However amplitude reductions were observed in both primary and secondary auditory cortex. These latency delays may indicate relatively intact information processing upstream of the primary auditory cortex, but impaired primary auditory cortex or cortico-cortical or thalamo-cortical communication with higher auditory cortices as a core deficit in schizophrenia.
Collapse
Affiliation(s)
- W. Ross Fulham
- Centre for Translational Neuroscience and Mental Health, The University of Newcastle, Newcastle, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Patricia T. Michie
- Centre for Translational Neuroscience and Mental Health, The University of Newcastle, Newcastle, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- School of Psychology, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Philip B. Ward
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
- Schizophrenia Research Unit, South Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Paul E. Rasser
- Centre for Translational Neuroscience and Mental Health, The University of Newcastle, Newcastle, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Juanita Todd
- Centre for Translational Neuroscience and Mental Health, The University of Newcastle, Newcastle, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- School of Psychology, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Patrick J. Johnston
- Department of Psychology and York Neuroimaging Centre, University of York, Heslington, United Kingdom
| | - Paul M. Thompson
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Departments of Neurology, Psychiatry, Radiology, Engineering, Pediatrics, and Ophthalmology, University of Southern California, Los Angeles, California, United States of America
| | - Ulrich Schall
- Centre for Translational Neuroscience and Mental Health, The University of Newcastle, Newcastle, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| |
Collapse
|
44
|
Fisher DJ, Smith DM, Labelle A, Knott VJ. Attenuation of mismatch negativity (MMN) and novelty P300 in schizophrenia patients with auditory hallucinations experiencing acute exacerbation of illness. Biol Psychol 2014; 100:43-9. [PMID: 24865523 DOI: 10.1016/j.biopsycho.2014.05.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 10/25/2022]
Abstract
This study examined measures of early auditory feature analysis, including the mismatch negativity (MMN) and novelty P300 (NP3) in schizophrenia patients (SZ) with persistent auditory hallucinations (AH) during an acute psychotic episode requiring hospitalisation. Neuroelectric activity was recorded in 10 SZ patients and 13 healthy controls (HC) during a passive auditory oddball task including novel environmental sounds. MMN/NP3 amplitudes and latencies were compared between groups and were correlated with trait (PSYRATS) and state measures of AH severity as well as clinical symptom ratings in SZs.SZ patients (vs. HCs) exhibited reduced MMN amplitudes to both rare deviant and novel stimuli, as well as reduced NP3 amplitudes. Additionally, while novelty MMN amplitudes were correlated with measures of hallucinatory trait, NP3 amplitudes were correlated with measures of hallucinatory state. Therefore, in acutely ill SZ patients, individual components of the auditory novelty detection mechanism may be differentially sensitive to varying aspects of AHs.
Collapse
Affiliation(s)
- Derek J Fisher
- Department of Psychology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada; Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada; University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada.
| | - Dylan M Smith
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Alain Labelle
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada; Royal Ottawa Mental Health Centre, Ottawa, Ontario, Canada
| | - Verner J Knott
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada; Royal Ottawa Mental Health Centre, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
45
|
Kim M, Kim SN, Lee S, Byun MS, Shin KS, Park HY, Jang JH, Kwon JS. Impaired mismatch negativity is associated with current functional status rather than genetic vulnerability to schizophrenia. Psychiatry Res 2014; 222:100-6. [PMID: 24650450 DOI: 10.1016/j.pscychresns.2014.02.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/25/2013] [Accepted: 02/21/2014] [Indexed: 12/18/2022]
Abstract
The aim of this study is to investigate whether mismatch negativity (MMN) is associated with functional status or is a state-independent trait for schizophrenia. We assessed MMN in 26 patients with schizophrenia, 20 healthy subjects with high genetic loading, and 48 healthy controls. Repeated measures analysis of variance and Pearson׳s correlations were used to test the hypothesis that MMN is not state-independent. We found a significant main effect of group, indicating differences in the peak amplitudes of the MMN among the three groups. Post-hoc analyses revealed that schizophrenia patients showed a significant reduction in the peak amplitude of MMN, but subjects at high genetic risk and healthy controls did not. Additionally, significant correlations between Global Assessment of Functioning scores and MMN peak amplitude at Fz and Cz were found in patients with schizophrenia. These findings suggest that MMN may reflect current functional status rather than a genetic risk for schizophrenia.
Collapse
Affiliation(s)
- Minah Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung Nyun Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human Behavioral Sciences, Seoul National University, Medical Research Center, Seoul, Republic of Korea
| | - Suji Lee
- Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Min Soo Byun
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human Behavioral Sciences, Seoul National University, Medical Research Center, Seoul, Republic of Korea
| | - Kyung Soon Shin
- Institute of Human Behavioral Sciences, Seoul National University, Medical Research Center, Seoul, Republic of Korea
| | - Hye Youn Park
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Joon Hwan Jang
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human Behavioral Sciences, Seoul National University, Medical Research Center, Seoul, Republic of Korea; Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Republic of Korea.
| |
Collapse
|
46
|
Greenwood LM, Broyd SJ, Croft R, Todd J, Michie PT, Johnstone S, Murray R, Solowij N. Chronic effects of cannabis use on the auditory mismatch negativity. Biol Psychiatry 2014; 75:449-58. [PMID: 23830666 DOI: 10.1016/j.biopsych.2013.05.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 05/26/2013] [Accepted: 05/30/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND Cannabis use is associated with the development of psychotic symptoms and increased risk for schizophrenia. The mismatch negativity (MMN) is a brain event-related potential marker of change detection thought to index glutamatergic N-methyl-D-aspartate receptor-mediated neurotransmission, which is known to be deficient in schizophrenia. This study examined auditory MMN in otherwise healthy chronic cannabis users compared with nonuser control subjects. METHODS Forty-two chronic cannabis users and 44 nonuser healthy control subjects completed a multi-feature MMN paradigm, which included duration, frequency, and intensity deviants (deviants 6%; standards 82%). The MMN was compared between users and control subjects as well as between long- and short-term users and age- and gender-matched control subjects. Associations between MMN, cannabis use measures, and symptoms were examined. RESULTS The MMN amplitude was significantly reduced to frequency but not duration or intensity deviants in overall cannabis users relative to control subjects. Frequency MMN was similarly attenuated in short- and long-term users relative to control subjects. Long-term users also exhibited reduced duration MMN relative to control subjects and short-term users and this was correlated with increased duration of exposure to cannabis and increased psychotic-like experiences during intoxication. In short-term users, a younger age of onset of regular cannabis use and greater frequency of use were associated with greater psychotic-like experiences and symptomatic distress. CONCLUSIONS These results suggest impaired sensory memory that might reflect N-methyl-D-aspartate receptor dysfunction in chronic cannabis users. The pattern of MMN alterations in cannabis users differed from that typically observed in patients with schizophrenia, indicating overlapping but distinct underlying pathology.
Collapse
Affiliation(s)
- Lisa-Marie Greenwood
- School of Psychology and ψ-P3: Centre for Psychophysics, Psychophysiology and Psychopharmacology, University of Wollongong, Wollongong
| | - Samantha J Broyd
- School of Psychology and ψ-P3: Centre for Psychophysics, Psychophysiology and Psychopharmacology, University of Wollongong, Wollongong
| | - Rodney Croft
- School of Psychology and ψ-P3: Centre for Psychophysics, Psychophysiology and Psychopharmacology, University of Wollongong, Wollongong
| | - Juanita Todd
- School of Psychology and Priority Research Centre for Translational Neuroscience and Mental Health, University of Newcastle, Newcastle; Schizophrenia Research Institute, Sydney, New South Wales, Australia
| | - Patricia T Michie
- School of Psychology and Priority Research Centre for Translational Neuroscience and Mental Health, University of Newcastle, Newcastle; Schizophrenia Research Institute, Sydney, New South Wales, Australia
| | - Stuart Johnstone
- School of Psychology and ψ-P3: Centre for Psychophysics, Psychophysiology and Psychopharmacology, University of Wollongong, Wollongong
| | - Robin Murray
- Institute of Psychiatry, Kings College, London, United Kingdom
| | - Nadia Solowij
- School of Psychology and ψ-P3: Centre for Psychophysics, Psychophysiology and Psychopharmacology, University of Wollongong, Wollongong; Schizophrenia Research Institute, Sydney, New South Wales, Australia.
| |
Collapse
|
47
|
Perez VB, Woods SW, Roach BJ, Ford JM, McGlashan TH, Srihari VH, Mathalon DH. Automatic auditory processing deficits in schizophrenia and clinical high-risk patients: forecasting psychosis risk with mismatch negativity. Biol Psychiatry 2014; 75:459-69. [PMID: 24050720 PMCID: PMC4028131 DOI: 10.1016/j.biopsych.2013.07.038] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 07/02/2013] [Accepted: 07/29/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND Only about one third of patients at high risk for psychosis based on current clinical criteria convert to a psychotic disorder within a 2.5-year follow-up period. Targeting clinical high-risk (CHR) individuals for preventive interventions could expose many to unnecessary treatments, underscoring the need to enhance predictive accuracy with nonclinical measures. Candidate measures include event-related potential components with established sensitivity to schizophrenia. Here, we examined the mismatch negativity (MMN) component of the event-related potential elicited automatically by auditory deviance in CHR and early illness schizophrenia (ESZ) patients. We also examined whether MMN predicted subsequent conversion to psychosis in CHR patients. METHODS Mismatch negativity to auditory deviants (duration, frequency, and duration + frequency double deviant) was assessed in 44 healthy control subjects, 19 ESZ, and 38 CHR patients. Within CHR patients, 15 converters to psychosis were compared with 16 nonconverters with at least 12 months of clinical follow-up. Hierarchical Cox regression examined the ability of MMN to predict time to psychosis onset in CHR patients. RESULTS Irrespective of deviant type, MMN was significantly reduced in ESZ and CHR patients relative to healthy control subjects and in CHR converters relative to nonconverters. Mismatch negativity did not significantly differentiate ESZ and CHR patients. The duration + frequency double deviant MMN, but not the single deviant MMNs, significantly predicted the time to psychosis onset in CHR patients. CONCLUSIONS Neurophysiological mechanisms underlying automatic processing of auditory deviance, as reflected by the duration + frequency double deviant MMN, are compromised before psychosis onset and can enhance the prediction of psychosis risk among CHR patients.
Collapse
Affiliation(s)
- Veronica B. Perez
- University of California, San Francisco,San Francisco Veterans Administration Medical Center
| | | | - Brian J. Roach
- University of California, San Francisco,San Francisco Veterans Administration Medical Center
| | - Judith M. Ford
- University of California, San Francisco,San Francisco Veterans Administration Medical Center
| | | | | | - Daniel H. Mathalon
- University of California, San Francisco,San Francisco Veterans Administration Medical Center
| |
Collapse
|
48
|
Hirose Y, Hara K, Miyajima M, Matsuda A, Maehara T, Hara M, Matsushima E, Ohta K, Matsuura M. Changes in the duration and frequency of deviant stimuli engender different mismatch negativity patterns in temporal lobe epilepsy. Epilepsy Behav 2014; 31:136-42. [PMID: 24412859 DOI: 10.1016/j.yebeh.2013.11.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/18/2013] [Accepted: 11/27/2013] [Indexed: 10/25/2022]
Abstract
Mismatch negativity (MMN) is an event-related potential (ERP) component that reflects preattentive sensory memory functions. Previous research revealed that MMN is generated by distinct sources in the frontal and temporal lobes. Event-related potential abnormalities have been shown in the vicinity of seizure foci in epilepsy. Additionally, no published study has investigated the MMN in response to variations in both frequency and duration deviants in patients with temporal lobe epilepsy (TLE). The aims of this study were to compare MMN changes between the frontocentral sites and the mastoid sites and to compare MMNs related to deviant stimuli with different durations and frequencies in patients with TLE. We recorded MMNs elicited by duration and frequency changes of deviant stimuli from 15 patients with TLE and 15 healthy control subjects. We found that mean MMN amplitudes related to duration deviants were lower in patients with TLE at the mastoid sites relative to controls, whereas the MMN amplitudes at the frontocentral sites did not differ between the two groups. There were no MMN differences related to frequency deviants between TLE subjects and controls at the frontocentral sites or the mastoid sites. Mismatch negativity parameters related to duration deviants did not correlate with those related to deviant frequencies in the group with TLE. The present findings suggest selective impairments among multiple mismatch generators in TLE and suggest that processing of temporal information of auditory stimuli is selectively disturbed in TLE. Changes in MMN amplitudes related to duration deviants at the mastoid sites may represent deficits in time-dependent processing in TLE.
Collapse
Affiliation(s)
- Yuka Hirose
- Department of Life Sciences and Bio-informatics, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Keiko Hara
- Department of Life Sciences and Bio-informatics, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Hara Clinic, Kanagawa, Japan
| | - Miho Miyajima
- Section of Liaison Psychiatry and Palliative Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ayasa Matsuda
- Section of Liaison Psychiatry and Palliative Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Taketoshi Maehara
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Eisuke Matsushima
- Section of Liaison Psychiatry and Palliative Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Katsuya Ohta
- Department of Life Sciences and Bio-informatics, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Section of Liaison Psychiatry and Palliative Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Onda-Daini Hospital, Chiba, Japan
| | - Masato Matsuura
- Department of Life Sciences and Bio-informatics, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
49
|
Onitsuka T, Oribe N, Nakamura I, Kanba S. Review of neurophysiological findings in patients with schizophrenia. Psychiatry Clin Neurosci 2013; 67:461-70. [PMID: 24102977 DOI: 10.1111/pcn.12090] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/19/2013] [Indexed: 12/25/2022]
Abstract
Schizophrenia has been conceptualized as a failure of cognitive integration, and abnormalities in neural circuitry have been proposed as a basis for this disorder. In this article, we focus on electroencephalography and magnetoencephalography findings in patients with schizophrenia. Auditory-P50, -N100, and -P300 findings, visual-P100, -N170, and -N400 findings, and neural oscillations in patients with schizophrenia are overviewed. Published results suggest that patients with schizophrenia have neurophysiological deficits from the very early phase of sensory processing (i.e., P50, P100, N100) to the relatively late phase (i.e., P300, N400) in both auditory and visual perception. Exploring the associations between neural substrates, including neurotransmitter systems, and neurophysiological findings, will lead to a more comprehensive understanding of the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Toshiaki Onitsuka
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | |
Collapse
|
50
|
Auditory mismatch negativity and P3a in response to duration and frequency changes in the early stages of psychosis. Schizophr Res 2013; 150:547-54. [PMID: 24012461 DOI: 10.1016/j.schres.2013.08.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/12/2013] [Accepted: 08/10/2013] [Indexed: 11/20/2022]
Abstract
BACKGROUND A shorter duration of untreated psychosis in patients with schizophrenia results in better symptomatic and functional outcomes. Therefore, identifying biological markers in the early stages of psychosis is an important step toward early detection and intervention. Mismatch negativity (MMN) and P3a are leading candidate biomarkers. MMN measures differ in their sensitivity to varying deviants. However, this has not been fully addressed in assessing the early stages of psychosis. In the current study, we examined MMN/P3a to duration deviant (dMMN/dP3a) and frequency deviant (fMMN/fP3a) in the early stages of psychosis. To our knowledge, this is the first study that examined both MMN/P3a to duration deviant (dMMN/dP3a) and frequency deviant (fMMN/fP3a) in the early stages of psychosis. METHODS Participants consisted of 20 patients with first episode schizophrenia (FES), 21 ultra-high risk (UHR) individuals, and 22 healthy controls (HC). We measured dMMN/dP3a and fMMN/fP3a ERP components by means of a 64 electrodes-cap for EEG recording, and we used two-tone auditory oddball paradigms with 2000 stimuli. RESULTS The amplitude of dMMN was significantly reduced in FES and UHR compared to HC. The amplitude of fMMN showed no significant difference among the three groups. The amplitudes of dP3a and fP3a were significantly reduced in FES and UHR compared to HC. CONCLUSION These findings suggest that dMMN may have higher sensitivity than fMMN whereas dP3a and fP3a may have similar sensitivity in the early stages of psychosis.
Collapse
|