1
|
Lindquist BE, Timbie C, Voskobiynyk Y, Paz JT. Thalamocortical circuits in generalized epilepsy: Pathophysiologic mechanisms and therapeutic targets. Neurobiol Dis 2023; 181:106094. [PMID: 36990364 PMCID: PMC10192143 DOI: 10.1016/j.nbd.2023.106094] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/02/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023] Open
Abstract
Generalized epilepsy affects 24 million people globally; at least 25% of cases remain medically refractory. The thalamus, with widespread connections throughout the brain, plays a critical role in generalized epilepsy. The intrinsic properties of thalamic neurons and the synaptic connections between populations of neurons in the nucleus reticularis thalami and thalamocortical relay nuclei help generate different firing patterns that influence brain states. In particular, transitions from tonic firing to highly synchronized burst firing mode in thalamic neurons can cause seizures that rapidly generalize and cause altered awareness and unconsciousness. Here, we review the most recent advances in our understanding of how thalamic activity is regulated and discuss the gaps in our understanding of the mechanisms of generalized epilepsy syndromes. Elucidating the role of the thalamus in generalized epilepsy syndromes may lead to new opportunities to better treat pharmaco-resistant generalized epilepsy by thalamic modulation and dietary therapy.
Collapse
Affiliation(s)
- Britta E Lindquist
- UCSF Department of Neurology, Division of Neurocritical Care, United States of America; UCSF Department of Neurology, Division of Pediatric Epilepsy, United States of America; UCSF Department of Neurology, United States of America
| | - Clare Timbie
- Gladstone Institute of Neurological Disease, United States of America; UCSF Department of Neurology, Division of Pediatric Epilepsy, United States of America; UCSF Department of Neurology, United States of America
| | - Yuliya Voskobiynyk
- Gladstone Institute of Neurological Disease, United States of America; UCSF Department of Neurology, United States of America
| | - Jeanne T Paz
- Gladstone Institute of Neurological Disease, United States of America; UCSF Department of Neurology, United States of America; Kavli Institute for Fundamental Neuroscience, UCSF, United States of America.
| |
Collapse
|
2
|
Dharan AL, Bowden SC, Peterson A, Lai A, Seneviratne U, Dabscheck G, Nurse E, Loughman A, Parsons N, D'Souza WJ. A cross-sectional investigation of cognition and epileptiform discharges in juvenile absence epilepsy. Epilepsia 2023; 64:742-753. [PMID: 36625418 DOI: 10.1111/epi.17505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/21/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Despite the prevalence of cognitive symptoms in the idiopathic generalized epilepsies (IGEs), cognitive dysfunction in juvenile absence epilepsy (JAE), a common yet understudied IGE subtype, remains poorly understood. This descriptive study provides a novel, comprehensive characterization of cognitive functioning in a JAE sample and examines the relationship between cognition and 24-h epileptiform discharge load. METHOD Forty-four individuals diagnosed with JAE underwent cognitive assessment using Woodcock Johnson III Test of Cognitive Abilities with concurrent 24-h ambulatory EEG monitoring. Generalized epileptiform discharges of any length, and prolonged generalized discharges ≥3 s were quantified across wakefulness and sleep. The relationship between standardized cognitive scores and epileptiform discharges was assessed through regression models. RESULTS Cognitive performances in overall intellectual ability, acquired comprehension-knowledge, processing speed, long-term memory storage and retrieval, and executive processes were 0.63-1.07 standard deviation (SD) units lower in the JAE group compared to the population reference mean, adjusted for educational attainment. Prolonged discharges (≥3 s) were recorded in 20 patients (47.6%) from 42 available electroencephalography (EEG) studies and were largely unreported. Duration and number of prolonged discharges were associated with reduced processing speed and long-term memory storage and retrieval. SIGNIFICANCE Cognitive dysfunction is seen in patients with JAE across various cognitive abilities, including those representing more stable processes like general intellect. During 24-h EEG, prolonged epileptiform discharges are common yet underreported in JAE despite treatment, and they show moderate effects on cognitive abilities. If epileptiform burden is a modifiable predictor of cognitive dysfunction, therapeutic interventions should consider quantitative 24-h EEG with routine neuropsychological screening. The growing recognition of the spectrum of neuropsychological comorbidities of IGE highlights the value of multidisciplinary approaches to explore the causes and consequences of cognitive deficits in epilepsy.
Collapse
Affiliation(s)
- Anita L Dharan
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen C Bowden
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Neuroscience, St. Vincent's Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Andre Peterson
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Alan Lai
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Udaya Seneviratne
- Department of Neuroscience, St. Vincent's Hospital, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Neuroscience, Monash Medical Centre Clayton, Melbourne, Victoria, Australia
| | - Gabriel Dabscheck
- Department of Neurology, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
- Neurosciences, Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | - Ewan Nurse
- Seer Medical Inc Research, Melbourne, Victoria, Australia
| | - Amy Loughman
- Food & Mood Centre, Institute of Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria, Australia
| | - Nicholas Parsons
- Deakin University, Cognitive Neuroscience Unit, School of Psychology, Melbourne, Victoria, Australia
| | - Wendyl J D'Souza
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| |
Collapse
|
3
|
Celli R, van Luijtelaar G. The Orexin System: A Potential Player in the Pathophysiology of Absence Epilepsy. Curr Neuropharmacol 2022; 20:1254-1260. [PMID: 34911428 PMCID: PMC9881075 DOI: 10.2174/1570159x19666211215122833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/28/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Absence epilepsy is characterized by the presence of spike-and-wave discharges (SWDs) at the EEG generated within the cortico-thalamo-cortical circuit. The molecular mechanisms involved in the pathophysiology of absence epilepsy are only partially known. WAG/Rij rats older than 2-3 months develop spontaneous SWDs, and they are sensitive to anti- absence medications. Hence, WAG/Rij rats are extensively used as a model for absence epilepsy with predictive validity. OBJECTIVE The aim of the study was to examine the possibility that the orexin system, which supports the wake status in experimental animals and humans, plays a role in the pathophysiology of absence seizures. METHODS The perspective grounds its method from recent literature along with measurements of orexin receptor type-1 (OX1) protein levels in the thalamus and somatosensory cortex of WAG/Rij rats and non-epileptic Wistar control rats at two ages (25 days and 6-7 months). OX1 protein levels were measured by immunoblotting. RESULTS The analysis of the current literature suggests that the orexin system might be involved in the pathophysiology of absence epilepsy and might be targeted by therapeutic intervention. Experimental data are in line with this hypothesis, showing that OX1 protein levels were reduced in the thalamus and somatosensory cortex of symptomatic WAG/Rij rats (6-7 months of age) with respect to non-epileptic controls, whereas these differences were not seen in pre-symptomatic, 25 days-old WAG/Rij rats. CONCLUSION This perspective might pave the way for future studies on the involvement of the orexinergic system in the pathophysiology of SWDs associated with absence epilepsy and its comorbidities.
Collapse
Affiliation(s)
- Roberta Celli
- I.R.C.C.S. Neuromed, Pozzilli, Italy; ,Address correspondence to these authors at the Neuromed, via Dell’Elettronica, 86077 Pozzilli (Is), Italy; Tel: +39 0865915211; E-mail: ; , Donders Centre for Cognition, Radboud University, P.O. Box 9104, 6500 HE Nijmegen, The Netherlands; Tel: +31.24.3615621; E-mail:
| | - Gilles van Luijtelaar
- Donders Centre for Cognition, Radboud University, Nijmegen, The Netherlands,Address correspondence to these authors at the Neuromed, via Dell’Elettronica, 86077 Pozzilli (Is), Italy; Tel: +39 0865915211; E-mail: ; , Donders Centre for Cognition, Radboud University, P.O. Box 9104, 6500 HE Nijmegen, The Netherlands; Tel: +31.24.3615621; E-mail:
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW To review the mutual interactions between sleep and epilepsy, including mechanisms of epileptogenesis, the relationship between sleep apnea and epilepsy, and potential strategies to treat seizures. RECENT FINDINGS Recent studies have highlighted the role of functional network systems underlying epileptiform activation in sleep in several epilepsy syndromes, including absence epilepsy, benign focal childhood epilepsy, and epileptic encephalopathy with spike-wave activation in sleep. Sleep disorders are common in epilepsy, and early recognition and treatment can improve seizure frequency and potentially reduce SUDEP risk. Additionally, epilepsy is associated with cyclical patterns, which has led to new treatment approaches including chronotherapy, seizure monitoring devices, and seizure forecasting. Adenosine kinase and orexin receptor antagonists are also promising new potential drug targets that could be used to treat seizures. Sleep and epilepsy have a bidirectional relationship that intersects with many aspects of clinical management. In this article, we identify new areas of research involving future therapeutic opportunities in the field of epilepsy.
Collapse
|
5
|
Kokkinos V, Koupparis AM, Koutroumanidis M, Kostopoulos GK. Editorial: Brain Mechanisms Linking Sleep and Epilepsy. Front Hum Neurosci 2022; 16:922372. [PMID: 35620153 PMCID: PMC9128402 DOI: 10.3389/fnhum.2022.922372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Vasileios Kokkinos
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | | | - Michalis Koutroumanidis
- Department of Clinical Neurophysiology and Epilepsies, Guy's and St. Thomas' NHS Foundation Trust, St. Thomas' Hospital, London, United Kingdom
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - George K. Kostopoulos
- Neurophysiology Unit, Department of Physiology, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
6
|
Gut microbiome effects on neuronal excitability & activity: Implications for epilepsy. Neurobiol Dis 2022; 165:105629. [PMID: 35033659 DOI: 10.1016/j.nbd.2022.105629] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/10/2022] [Indexed: 12/19/2022] Open
Abstract
It is now well established that the bacterial population of the gastrointestinal system, known as the gut microbiome, is capable of influencing the brain and its dependent functions. Links have been demonstrated between the microbiome and a variety of normal and pathological neural functions, including epilepsy. Many of these microbiome-brain links involve the direct or indirect modulation of the excitability and activity of individual neurons by the gut microbiome. Such links may be particularly significant when it comes to microbiome modulation of epilepsy, often considered a disorder of neuronal excitability. In this review we consider the current evidence of a relationship between the gut microbiome and the excitability or activity of neurons in the context of epilepsy. The review focuses particularly on evidence of direct, causal microbiome effects on neuronal excitability or activity, but also considers demonstrations of microbiome to host interactions that are likely to have an indirect influence. While we identify a few common themes, it is apparent that deriving general mechanistic principles of microbiome influence on these parameters in epilepsy will require considerable further study to tease out the many interacting factors, systems, and conditions.
Collapse
|
7
|
Merten JE, Villarrubia SA, Holly KS, Kemp AS, Kumler AC, Larson-Prior LJ, Murray TA. The use of rodent models to better characterize the relationship among epilepsy, sleep, and memory. Epilepsia 2022; 63:525-536. [PMID: 34985784 DOI: 10.1111/epi.17161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/28/2022]
Abstract
Epilepsy, a neurological disorder characterized by recurrent seizures, is known to be associated with impaired sleep and memory. Although the specific mechanisms underlying these impairments are uncertain, the known role of sleep in memory consolidation suggests a potential relationship may exist between seizure activity, disrupted sleep, and memory impairment. A possible mediator in this relationship is the sleep spindle, the characteristic electroencephalographic (EEG) feature of non-rapid-eye-movement (NREM) sleep in humans and other mammals. Growing evidence supports the idea that sleep spindles, having thalamic origin, may mediate the process of long-term memory storage and plasticity by generating neuronal conditions that favor these processes. To study this potential relationship, a single model in which memory, sleep, and epilepsy can be simultaneously observed is of necessity. Rodent models of epilepsy appear to fulfill this requirement. Not only do rodents express both sleep spindles and seizure-induced sleep disruptions, but they also allow researchers to invasively study neurobiological processes both pre- and post- epileptic onset via the artificial induction of epilepsy (a practice that cannot be carried out in human subjects). However, the degree to which sleep architecture differs between rodents and humans makes direct comparisons between the two challenging. This review addresses these challenges and concludes that rodent sleep studies are useful in observing the functional roles of sleep and how they are affected by epilepsy.
Collapse
Affiliation(s)
- John E Merten
- College of Medicine, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, USA
| | | | - Kevin S Holly
- Biomedical Engineering, Louisiana Tech University, Ruston, Louisina, USA
| | - Aaron S Kemp
- Departments of Psychiatry and Biomedical Informatics, UAMS, Little Rock, Arkansas, USA
| | - Allison C Kumler
- Biomedical Engineering, Louisiana Tech University, Ruston, Louisina, USA
| | - Linda J Larson-Prior
- Departments of Psychiatry and Biomedical Informatics, UAMS, Little Rock, Arkansas, USA.,Departments of Neurology, Neurobiology & Developmental Sciences, Pediatrics, UAMS, Little Rock, Arkansas, USA
| | - Teresa A Murray
- Biomedical Engineering, Louisiana Tech University, Ruston, Louisina, USA
| |
Collapse
|
8
|
Moraes MFD, de Castro Medeiros D, Mourao FAG, Cancado SAV, Cota VR. Epilepsy as a dynamical system, a most needed paradigm shift in epileptology. Epilepsy Behav 2021; 121:106838. [PMID: 31859231 DOI: 10.1016/j.yebeh.2019.106838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/22/2019] [Accepted: 12/01/2019] [Indexed: 01/08/2023]
Abstract
The idea of the epileptic brain being highly excitable and facilitated to synchronic activity has guided pharmacological treatment since the early twentieth century. Although tackling epilepsy's seizure-prone feature, by tonically modifying overall circuit excitability and/or connectivity, the last 50 years of drug development has not seen a substantial improvement in seizure suppression of refractory epilepsies. This review presents a new conceptual framework for epilepsy in which the temporal dynamics of the disease plays a more critical role in both its understanding and therapeutic strategies. The repetitive epileptiform pattern (characteristic during ictal activity) and other well-defined electrographic signatures (i.e., present during the interictal period) are discussed in terms of the sequential activation of the circuit motifs. Lessons learned from the physiological activation of neural circuitry are used to further corroborate the argument and explore the transition from proper function to a state of instability. Furthermore, the review explores how interfering in the temporally dependent abnormal connectivity between circuits may work as a therapeutic approach. We also review the use of probing stimulation to access network connectivity and evaluate its power to determine transitional states of the dynamical system as it moves towards regions of instability, especially when conventional electrographic monitoring is proven inefficient. Unorthodox cases, with little or no scalp electrographic correlate, in which ictogenic circuitry and/or seizure spread is temporally restricted to neurovegetative, cognitive, and motivational areas are shown as possible explanations for sudden death in epilepsy (SUDEP) and other psychiatric comorbidities. In short, this review presents a paradigm shift in the way that we address the disease and is aimed to encourage debate rather than narrow the rationale epilepsy is currently engaged in. This article is part of the Special Issue "NEWroscience 2018".
Collapse
Affiliation(s)
- Márcio Flávio Dutra Moraes
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Centro de Tecnologia e Pesquisa em Magneto Ressonância, Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Daniel de Castro Medeiros
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flávio Afonso Gonçalves Mourao
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Centro de Tecnologia e Pesquisa em Magneto Ressonância, Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Vinicius Rosa Cota
- Laboratório Interdisciplinar de Neuroengenharia e Neurociências, Departamento de Engenharia Elétrica, Universidade Federal de São João Del-Rei, São João Del-Rei, Brazil
| |
Collapse
|
9
|
Gobbo D, Scheller A, Kirchhoff F. From Physiology to Pathology of Cortico-Thalamo-Cortical Oscillations: Astroglia as a Target for Further Research. Front Neurol 2021; 12:661408. [PMID: 34177766 PMCID: PMC8219957 DOI: 10.3389/fneur.2021.661408] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
Abstract
The electrographic hallmark of childhood absence epilepsy (CAE) and other idiopathic forms of epilepsy are 2.5-4 Hz spike and wave discharges (SWDs) originating from abnormal electrical oscillations of the cortico-thalamo-cortical network. SWDs are generally associated with sudden and brief non-convulsive epileptic events mostly generating impairment of consciousness and correlating with attention and learning as well as cognitive deficits. To date, SWDs are known to arise from locally restricted imbalances of excitation and inhibition in the deep layers of the primary somatosensory cortex. SWDs propagate to the mostly GABAergic nucleus reticularis thalami (NRT) and the somatosensory thalamic nuclei that project back to the cortex, leading to the typical generalized spike and wave oscillations. Given their shared anatomical basis, SWDs have been originally considered the pathological transition of 11-16 Hz bursts of neural oscillatory activity (the so-called sleep spindles) occurring during Non-Rapid Eye Movement (NREM) sleep, but more recent research revealed fundamental functional differences between sleep spindles and SWDs, suggesting the latter could be more closely related to the slow (<1 Hz) oscillations alternating active (Up) and silent (Down) cortical activity and concomitantly occurring during NREM. Indeed, several lines of evidence support the fact that SWDs impair sleep architecture as well as sleep/wake cycles and sleep pressure, which, in turn, affect seizure circadian frequency and distribution. Given the accumulating evidence on the role of astroglia in the field of epilepsy in the modulation of excitation and inhibition in the brain as well as on the development of aberrant synchronous network activity, we aim at pointing at putative contributions of astrocytes to the physiology of slow-wave sleep and to the pathology of SWDs. Particularly, we will address the astroglial functions known to be involved in the control of network excitability and synchronicity and so far mainly addressed in the context of convulsive seizures, namely (i) interstitial fluid homeostasis, (ii) K+ clearance and neurotransmitter uptake from the extracellular space and the synaptic cleft, (iii) gap junction mechanical and functional coupling as well as hemichannel function, (iv) gliotransmission, (v) astroglial Ca2+ signaling and downstream effectors, (vi) reactive astrogliosis and cytokine release.
Collapse
Affiliation(s)
- Davide Gobbo
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| |
Collapse
|
10
|
Iotchev IB, Kubinyi E. Shared and unique features of mammalian sleep spindles - insights from new and old animal models. Biol Rev Camb Philos Soc 2021; 96:1021-1034. [PMID: 33533183 DOI: 10.1111/brv.12688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/29/2022]
Abstract
Sleep spindles are phasic events observed in mammalian non-rapid eye movement sleep. They are relevant today in the study of memory consolidation, sleep quality, mental health and ageing. We argue that our advanced understanding of their mechanisms has not exhausted the utility and need for animal model work. This is both because some topics, like cognitive ageing, have not yet been addressed sufficiently in comparative efforts and because the evolutionary history of this oscillation is still poorly understood. Comparisons across species often are either limited to referencing the classical cat and rodent models, or are over-inclusive, uncritically including reports of sleep spindles in rarely studied animals. In this review, we discuss the emergence of new (dog and sheep) models for sleep spindles and compare the strengths and shortcomings of new and old models based on the three validation criteria for animal models - face, predictive, and construct validity. We conclude that an emphasis on cognitive ageing might dictate the future of comparative sleep spindle studies, a development that is already becoming visible in studies on dogs. Moreover, reconstructing the evolutionary history of sleep spindles will require more stringent criteria for their identification, across more species. In particular, a stronger emphasis on construct and predictive validity can help verify if spindle-like events in other species are actual sleep spindles. Work in accordance with such stricter validation suggests that sleep spindles display more universally shared features, like defining frequency, than previously thought.
Collapse
Affiliation(s)
- Ivaylo Borislavov Iotchev
- Department of Ethology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Eniko Kubinyi
- Department of Ethology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| |
Collapse
|
11
|
Abstract
We aimed to explore the link between NREM sleep and epilepsy. Based on human and experimental data we propose that a sleep-related epileptic transformation of normal neurological networks underlies epileptogenesis. Major childhood epilepsies as medial temporal lobe epilepsy (MTLE), absence epilepsy (AE) and human perisylvian network (PN) epilepsies - made us good models to study. These conditions come from an epileptic transformation of the affected functional systems. This approach allows a system-based taxonomy instead of the outworn generalized-focal classification. MTLE links to the memory-system, where epileptic transformation results in a switch of normal sharp wave-ripples to epileptic spikes and pathological high frequency oscillations, compromising sleep-related memory consolidation. Absence epilepsy (AE) and juvenile myoclonic epilepsy (JME) belong to the corticothalamic system. The burst-firing mode of NREM sleep normally producing sleep-spindles turns to an epileptic working mode ejecting bilateral synchronous spike-waves. There seems to be a progressive transition from AE to JME. Shared absences and similar bilateral synchronous discharges show the belonging of the two conditions, while the continuous age windows - AE affecting schoolchildren, JME the adolescents - and the increased excitability in JME compared to AE supports the notion of progression. In perisylvian network epilepsies - idiopathic focal childhood epilepsies and electrical status epilepticus in sleep including Landau-Kleffner syndrome - centrotemporal spikes turn epileptic, with the potential to cause cognitive impairment. Postinjury epilepsies modeled by the isolated cortex model highlight the shared way of epileptogenesis suggesting the derailment of NREM sleep-related homeostatic plasticity as a common step. NREM sleep provides templates for plasticity derailing to epileptic variants under proper conditions. This sleep-origin explains epileptiform discharges' link and similarity with NREM sleep slow oscillations, spindles and ripples. Normal synaptic plasticity erroneously overgrowing homeostatic processes may derail toward an epileptic working-mode manifesting the involved system's features. The impact of NREM sleep is unclear in epileptogenesis occurring in adolescence and adulthood, when plasticity is lower. The epileptic process interferes with homeostatic synaptic plasticity and may cause cognitive impairment. Its type and degree depends on the affected network's function. We hypothesize a vicious circle between sleep end epilepsy. The epileptic derailment of normal plasticity interferes with sleep cognitive functions. Sleep and epilepsy interconnect by the pathology of plasticity.
Collapse
Affiliation(s)
- Péter Halász
- Szentágothai János School of Ph.D Studies, Clinical Neurosciences, Semmelweis University, Budapest, Hungary
| | - Anna Szűcs
- Institute of Behavioral Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
12
|
Andrade-Machado R. Benign epilepsy with centro temporal spikes: Is there a thalamocortical network dysfunction present? Adding supporting evidence from SPECT imaging. Seizure 2020; 80:143-144. [DOI: 10.1016/j.seizure.2020.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 06/13/2020] [Indexed: 11/17/2022] Open
|
13
|
Komoltsev IG, Frankevich SO, Shirobokova NI, Volkova AA, Levshina IP, Novikova MR, Manolova AO, Gulyaeva NV. Differential early effects of traumatic brain injury on spike-wave discharges in Sprague-Dawley rats. Neurosci Res 2020; 166:42-54. [PMID: 32461140 DOI: 10.1016/j.neures.2020.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 04/07/2020] [Accepted: 05/15/2020] [Indexed: 12/31/2022]
Abstract
Unprovoked seizures in the late period of traumatic brain injury (TBI) occur in almost 20% of humans and experimental animals, psychiatric comorbidities being common in both situations. The aim of the study was to evaluate epileptiform activity in the early period of TBI induced by lateral fluid percussion brain injury in adult male Srague-Dawley rats and to reveal potential behavioral and pathomorphological correlates of early electrophysiological alterations. One week after TBI the group of animals was remarkably heterogeneous regarding the incidence of bifrontal 7-Hz spikes and spike-wave discharges (SWDs). It consisted of 3 typical groups: a) rats with low baseline and high post-craniotomy SWD level; b)with constantly low both baseline and post-craniotomy SWD levels; c) constantly high both baseline and post-craniotomy SWD levels. Rats with augmented SWD occurrence after TBI demonstrated freezing episodes accompanying SWDs as well as increased anxiety-like behavior (difficulty of choosing). The discharges were definitely associated with sleep phases. The incidence of SWDs positively correlated with the area of glial activation in the neocortex but not in the hippocampus.The translational potential of the data is revealing new pathophysiological links between epileptiform activity appearance, direct cortical and distant hippocampal damage and anxiety-like behavior, putative early predictors of late posttraumatic pathology.
Collapse
Affiliation(s)
- Ilia G Komoltsev
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia; Moscow Research and Clinical Center for Neuropsychiatry of the Healthcare Department of Moscow, 43 Donskaya Str., 115419 Moscow, Russia.
| | - Stepan O Frankevich
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia.
| | - Natalia I Shirobokova
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia.
| | - Aleksandra A Volkova
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia.
| | - Irina P Levshina
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia.
| | - Margarita R Novikova
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia.
| | - Anna O Manolova
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia.
| | - Natalia V Gulyaeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia; Moscow Research and Clinical Center for Neuropsychiatry of the Healthcare Department of Moscow, 43 Donskaya Str., 115419 Moscow, Russia.
| |
Collapse
|
14
|
Şanlıdağ B, Köken ÖY, Temel EÜ, Arhan E, Aydın K, Serdaroğlu A. Benign epilepsy with centrotemporal spikes: Is there a thalamocortical network dysfunction present? Seizure 2020; 79:44-48. [PMID: 32416566 DOI: 10.1016/j.seizure.2020.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 10/24/2022] Open
Abstract
INTRODUCTION Benign epilepsy of childhood with centrotemporal spikes (BECTS) is one of the most frequently seen epileptic syndromes in childhood. It is characterized by centrotemporal spikes (CTS) on electroencephalography (EEG) that are typically activated by drowsiness and stage N2 sleep. The location, frequency, and amplitude of the spikes may vary in different EEG records of the same patient, supporting the presence of a global pathology rather than a focal one. Despite the well-known relation between BECTS and stage N2 sleep, the results of sleep studies have been diverse and have mainly focused on sleep cycles. The characteristics of sleep spindles in the interictal periods have not been studied well. METHODS A retrospective study involving patients with BECTS who were admitted to the Gazi University, Faculty of Medicine, Department of Pediatric Neurology from January 2017 to October 2018 was conducted herein. Patients with BECTS and age-matched controls who had stage N2 sleep records of 10 min were enrolled for spindle amplitude (peak-to-peak difference in spindle voltage), frequency (number of waveforms per second), and duration and density (number of spindle bursts/minute of stage N2 sleep). RESULTS A total of 30 children with BECTS and 20 age-matched healthy peers were enrolled in the study. There were no significant differences between the age and sex of the patients. Statistically significant lower mean values of the amplitude, and duration and density of the spindle activity were observed in patients with BECTS when compared to the controls (P: 0.034, P: 0.016, and 0.020, respectively). Additionally, the risk of epilepsy was found to increase by 1.9 %, by the decrease of the mean amplitude of the spindles by 1 mV when compared to control group. CONCLUSION The interictal records of stage N2 sleep differed in the patients with BECTS when compared to the controls. Findings related to the stage N2 sleep of the present study may suggest a network problem involving the thalamus and thalamocortical pathways in patients with BECTS.
Collapse
Affiliation(s)
- Burçin Şanlıdağ
- Department of Pediatric Neurology, Medical Faculty of Near East University, Nicosia, Cyprus.
| | - Özlem Yayıcı Köken
- Department of Pediatric Neurology, SBU, Dr. Sami Ulus Research and Training Hospital, Ankara, Turkey.
| | - Esra Ülgen Temel
- Department of Pediatric Neurology, Medical Faculty of Gazi University, Ankara, Turkey.
| | - Ebru Arhan
- Department of Pediatric Neurology, Medical Faculty of Gazi University, Ankara, Turkey.
| | - Kürşad Aydın
- Department of Pediatric Neurology, Medical Faculty of Medipol University, İstanbul, Turkey.
| | - Ayşe Serdaroğlu
- Department of Pediatric Neurology, Medical Faculty of Gazi University, Ankara, Turkey.
| |
Collapse
|
15
|
Szűcs A, Rosdy B, Kelemen A, Horváth A, Halász P. Reflex seizure triggering: Learning about seizure producing systems. Seizure 2019; 69:25-30. [PMID: 30959422 DOI: 10.1016/j.seizure.2019.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 10/27/2022] Open
Abstract
AIM We aim to study the mechanism of reflex seizure triggering in close link with the system-epilepsy concept. METHOD We use data and theories presented in the literature and scrutinize a few illustrative cases. CONCLUSIONS The prerequisite of seizure triggering is an epilepsy-prone brain network. When it is activated, it may produce seizures manifesting the function(s) of the same system. Beyond classical reflex seizures triggered by sensory-motor stimuli, we extend the reflex-epilepsy concept to seizures induced by the normal activation of epilepsy-prone systems e.g. praxis-induced seizures and those of sleep/wake system epilepsies elicited by falling asleep (absences) or arousals from NREM sleep (seizures of genetic frontal lobe epilepsy). We suggest that normal functioning of epilepsy-prone systems may trigger seizures in epilepsies in general.
Collapse
Affiliation(s)
- Anna Szűcs
- National Institute of Clinical Neurosciences, Budapest, Hungary; Semmelweis University Medical School, Heim Pál Children's Hospital, Budapest, Hungary.
| | | | - Anna Kelemen
- National Institute of Clinical Neurosciences, Budapest, Hungary
| | - András Horváth
- National Institute of Clinical Neurosciences, Budapest, Hungary; Semmelweis University Medical School, Heim Pál Children's Hospital, Budapest, Hungary
| | - Péter Halász
- National Institute of Clinical Neurosciences, Budapest, Hungary
| |
Collapse
|
16
|
Frauscher B, Gotman J. Sleep, oscillations, interictal discharges, and seizures in human focal epilepsy. Neurobiol Dis 2019; 127:545-553. [DOI: 10.1016/j.nbd.2019.04.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/01/2019] [Accepted: 04/10/2019] [Indexed: 12/20/2022] Open
|
17
|
Outgrowing seizures in Childhood Absence Epilepsy: time delays and bistability. J Comput Neurosci 2019; 46:197-209. [PMID: 30737596 DOI: 10.1007/s10827-019-00711-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/14/2018] [Accepted: 01/29/2019] [Indexed: 10/27/2022]
Abstract
We formulate a conductance-based model for a 3-neuron motif associated with Childhood Absence Epilepsy (CAE). The motif consists of neurons from the thalamic relay (TC) and reticular nuclei (RT) and the cortex (CT). We focus on a genetic defect common to the mouse homolog of CAE which is associated with loss of GABAA receptors on the TC neuron, and the fact that myelination of axons as children age can increase the conduction velocity between neurons. We show the combination of low GABAA mediated inhibition of TC neurons and the long corticothalamic loop delay gives rise to a variety of complex dynamics in the motif, including bistability. This bistability disappears as the corticothalamic conduction delay shortens even though GABAA activity remains impaired. Thus the combination of deficient GABAA activity and changing axonal myelination in the corticothalamic loop may be sufficient to account for the clinical course of CAE.
Collapse
|
18
|
Sakellariou DF, Koutroumanidis M, Richardson MP, Kostopoulos GK. Cross-subject network investigation of the EEG microstructure: A sleep spindles study. J Neurosci Methods 2019; 312:16-26. [PMID: 30408558 PMCID: PMC6327148 DOI: 10.1016/j.jneumeth.2018.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 12/01/2022]
Abstract
Grand averages across subjects can distort connectivity results for a group. Within-group network variance may hold information for the EEG event under investigation. The proposed method can serve as an observatory tool, complementary to the existing topography EEG techniques.
Background The microstructural EEG elements and their functional networks relate to many neurophysiological functions of the brain and can reveal abnormalities. Despite the blooming variety of methods for estimating connectivity in the EEG of a single subject, a common pitfall is seen in relevant studies; grand averaging is used for estimating the characteristic connectivity patterns of a group of subjects. This averaging may distort results and fail to account for the internal variability of connectivity results across the subjects of a group. New Method In this study, we propose a novel methodology for the cross-subject network investigation of EEG graphoelements. We used dimensionality reduction techniques in order to reveal internal connectivity properties and to examine how consistent these are across a number of subjects. In addition, graph theoretical measures were utilized to prioritize regions according to their network attributes. Results As proof of concept, we applied this method on fast sleep spindles across 10 healthy subjects. Neurophysiological findings revealed subnetworks of the spindle events across subjects, highlighting a predominance for occipito-parietal areas and their connectivity with frontal regions. Comparison with existing methods This is a new approach for the examination of within-group connectivities in EEG research. The results accounted for more than 85% of the overall data variance and the detected subnetworks were found to be meaningful down-projections of the grand average of the group, suggesting sufficient performance for the proposed methodology. Conclusion We conclude that the proposed methodology can serve as an observatory tool for the EEG connectivity patterns across subjects, providing a supplementary analysis of the existing topography techniques.
Collapse
Affiliation(s)
- Dimitris F Sakellariou
- Division of Neuroscience, Department of Basic and Clinical Neuroscience, King's College, London, UK; Neurophysiology Unit, Department of Physiology, School of Medicine, University of Patras, Rio, Greece; Department of Clinical Neurophysiology and Epilepsy, Guy's and St Thomas' NHS Foundation Trust, London, UK.
| | - Michalis Koutroumanidis
- Neurophysiology Unit, Department of Physiology, School of Medicine, University of Patras, Rio, Greece; Department of Clinical Neurophysiology and Epilepsy, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Mark P Richardson
- Division of Neuroscience, Department of Basic and Clinical Neuroscience, King's College, London, UK
| | - George K Kostopoulos
- Neurophysiology Unit, Department of Physiology, School of Medicine, University of Patras, Rio, Greece
| |
Collapse
|
19
|
Габова А, Саркисова К, Федосова Е, Шацкова АБ, Морозов А. ВОЗРАСТНЫЕ ИЗМЕНЕНИЯ ПИК-ВОЛНОВЫХ РАЗРЯДОВ У КРЫС ЛИНИИ WAG/Rij С ГЕНЕТИЧЕСКОЙ АБСАНСНОЙ ЭПИЛЕПСИЕЙ, "Российский физиологический журнал им. И.М. Сеченова". ACTA ACUST UNITED AC 2018. [DOI: 10.7868/s0869813918100052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Крысы линии WAG/Rij являются моделью генетической абсансной эпилепсии, характеризующейся наличием пик-волновых разрядов (ПВР) на ЭЭГ. Известно, что первые ПВР у крыс линии WAG/Rij возникают в возрасте 2-3 месяцев, а в дальнейшем их число и длительность увеличиваются. Однако эволюция ПВР в процессе прогрессивного развития абсансной эпилепсии у крыс линии WAG/Rij остается неисследованной. Цель настоящей работы - выяснить возрастные изменения частотно-временной динамики, частотного спектра и морфологических характеристик ПВР у крыс линии WAG/Rij. Для достижения этой цели у одних и тех же крыс в возрасте от 2 до 12 месяцев исследовали эволюцию ПВР. Установлено, что ПВР формируются в возрасте 2-4 месяцев, в дальнейшем наблюдают морфологические изменения ПВР. Показано, что в процессе прогрессивного развития абсансной эпилепсии ПВР проходят 3 стадии «созревания». Предполагается, что связанная с возрастом эволюция ПВР у крыс линии WAG/Rij является отражением прогрессивных электрофизиологических изменений в соматосенсорной коре - области мозга, с которой связывают генерацию и генерализацию ПВР.
Collapse
Affiliation(s)
- А.В. Габова
- Институт высшей нервной деятельности и нейрофизиологии РАН Российская Федерация, 117485, Москва, ул. Бутлерова, 5а
| | - К.Ю. Саркисова
- Институт высшей нервной деятельности и нейрофизиологии Российской Академии наук, Москва
| | - Е.А. Федосова
- Институт высшей нервной деятельности и нейрофизиологии РАН,
| | - А. Б. Шацкова
- Институт высшей нервной деятельности и нейрофизиологии РАН
| | | |
Collapse
|
20
|
Hall SP, Traub RD, Adams NE, Cunningham MO, Schofield I, Jenkins AJ, Whittington MA. Enhanced interlaminar excitation or reduced superficial layer inhibition in neocortex generates different spike-and-wave-like electrographic events in vitro. J Neurophysiol 2018; 119:49-61. [PMID: 28954894 PMCID: PMC5866469 DOI: 10.1152/jn.00516.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/19/2022] Open
Abstract
Acute in vitro models have revealed a great deal of information about mechanisms underlying many types of epileptiform activity. However, few examples exist that shed light on spike-and-wave (SpW) patterns of pathological activity. SpW are seen in many epilepsy syndromes, both generalized and focal, and manifest across the entire age spectrum. They are heterogeneous in terms of their severity, symptom burden, and apparent anatomical origin (thalamic, neocortical, or both), but any relationship between this heterogeneity and underlying pathology remains elusive. In this study we demonstrate that physiological delta-frequency rhythms act as an effective substrate to permit modeling of SpW of cortical origin and may help to address this issue. For a starting point of delta activity, multiple subtypes of SpW could be modeled computationally and experimentally by either enhancing the magnitude of excitatory synaptic events ascending from neocortical layer 5 to layers 2/3 or selectively modifying superficial layer GABAergic inhibition. The former generated SpW containing multiple field spikes with long interspike intervals, whereas the latter generated SpW with short-interval multiple field spikes. Both types had different laminar origins and each disrupted interlaminar cortical dynamics in a different manner. A small number of examples of human recordings from patients with different diagnoses revealed SpW subtypes with the same temporal signatures, suggesting that detailed quantification of the pattern of spikes in SpW discharges may be a useful indicator of disparate underlying epileptogenic pathologies. NEW & NOTEWORTHY Spike-and-wave-type discharges (SpW) are a common feature in many epilepsies. Their electrographic manifestation is highly varied, as are available genetic clues to associated underlying pathology. Using computational and in vitro models, we demonstrate that distinct subtypes of SpW are generated by lamina-selective disinhibition or enhanced interlaminar excitation. These subtypes could be detected in at least some noninvasive patient recordings, suggesting more detailed analysis of SpW may be useful in determining clinical pathology.
Collapse
Affiliation(s)
- Stephen P Hall
- Hull York Medical School, University of York , Heslington , United Kingdom
| | - Roger D Traub
- Department of Physical Sciences, IBM Thomas J. Watson Research Center , Yorktown Heights, New York
| | - Natalie E Adams
- Hull York Medical School, University of York , Heslington , United Kingdom
| | - Mark O Cunningham
- Institute of Neuroscience, Newcastle University , Newcastle upon Tyne , United Kingdom
| | - Ian Schofield
- Department of Clinical Neurophysiology, Royal Victoria Infirmary, Newcastle upon Tyne , United Kingdom
| | - Alistair J Jenkins
- Department of Clinical Neurophysiology, Royal Victoria Infirmary, Newcastle upon Tyne , United Kingdom
| | | |
Collapse
|
21
|
Fan D, Wang Q, Su J, Xi H. Stimulus-induced transitions between spike-wave discharges and spindles with the modulation of thalamic reticular nucleus. J Comput Neurosci 2017; 43:203-225. [PMID: 28939929 DOI: 10.1007/s10827-017-0658-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 08/11/2017] [Accepted: 09/04/2017] [Indexed: 12/19/2022]
Abstract
It is believed that thalamic reticular nucleus (TRN) controls spindles and spike-wave discharges (SWD) in seizure or sleeping processes. The dynamical mechanisms of spatiotemporal evolutions between these two types of activity, however, are not well understood. In light of this, we first use a single-compartment thalamocortical neural field model to investigate the effects of TRN on occurrence of SWD and its transition. Results show that the increasing inhibition from TRN to specific relay nuclei (SRN) can lead to the transition of system from SWD to slow-wave oscillation. Specially, it is shown that stimulations applied in the cortical neuronal populations can also initiate the SWD and slow-wave oscillation from the resting states under the typical inhibitory intensity from TRN to SRN. Then, we expand into a 3-compartment coupled thalamocortical model network in linear and circular structures, respectively, to explore the spatiotemporal evolutions of wave states in different compartments. The main results are: (i) for the open-ended model network, SWD induced by stimulus in the first compartment can be transformed into sleep-like slow UP-DOWN and spindle states as it propagates into the downstream compartments; (ii) for the close-ended model network, weak stimulations performed in the first compartment can result in the consistent experimentally observed spindle oscillations in all three compartments; in contrast, stronger periodic single-pulse stimulations applied in the first compartment can induce periodic transitions between SWD and spindle oscillations. Detailed investigations reveal that multi-attractor coexistence mechanism composed of SWD, spindles and background state underlies these state evolutions. What's more, in order to demonstrate the state evolution stability with respect to the topological structures of neural network, we further expand the 3-compartment coupled network into 10-compartment coupled one, with linear and circular structures, and nearest-neighbor (NN) coupled network as well as its realization of small-world (SW) topology via random rewiring, respectively. Interestingly, for the cases of linear and circular connetivities, qualitatively similar results were obtained in addition to the more irregularity of firings. However, SWD can be eventually transformed into the consistent low-amplitude oscillations for both NN and SW networks. In particular, SWD evolves into the slow spindling oscillations and background tonic oscillations within the NN and SW network, respectively. Our modeling and simulation studies highlight the effect of network topology in the evolutions of SWD and spindling oscillations, which provides new insights into the mechanisms of cortical seizures development.
Collapse
Affiliation(s)
- Denggui Fan
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, Beijing, 100191, China.
| | - Jianzhong Su
- Department of Mathematics, University of Texas at Arlington, Arlington, TX, 76019-0408, USA
| | - Hongguang Xi
- Department of Mathematics, University of Texas at Arlington, Arlington, TX, 76019-0408, USA
| |
Collapse
|
22
|
Bagshaw AP, Hale JR, Campos BM, Rollings DT, Wilson RS, Alvim MKM, Coan AC, Cendes F. Sleep onset uncovers thalamic abnormalities in patients with idiopathic generalised epilepsy. NEUROIMAGE-CLINICAL 2017; 16:52-57. [PMID: 28752060 PMCID: PMC5519226 DOI: 10.1016/j.nicl.2017.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 06/29/2017] [Accepted: 07/12/2017] [Indexed: 11/16/2022]
Abstract
The thalamus is crucial for sleep regulation and the pathophysiology of idiopathic generalised epilepsy (IGE), and may serve as the underlying basis for the links between the two. We investigated this using EEG-fMRI and a specific emphasis on the role and functional connectivity (FC) of the thalamus. We defined three types of thalamic FC: thalamocortical, inter-hemispheric thalamic, and intra-hemispheric thalamic. Patients and controls differed in all three measures, and during wakefulness and sleep, indicating disorder-dependent and state-dependent modification of thalamic FC. Inter-hemispheric thalamic FC differed between patients and controls in somatosensory regions during wakefulness, and occipital regions during sleep. Intra-hemispheric thalamic FC was significantly higher in patients than controls following sleep onset, and disorder-dependent alterations to FC were seen in several thalamic regions always involving somatomotor and occipital regions. As interactions between thalamic sub-regions are indirect and mediated by the inhibitory thalamic reticular nucleus (TRN), the results suggest abnormal TRN function in patients with IGE, with a regional distribution which could suggest a link with the thalamocortical networks involved in the generation of alpha rhythms. Intra-thalamic FC could be a more widely applicable marker beyond patients with IGE. Sleep onset modifies thalamic FC in generalised epilepsy differently to controls. Differences are regionally specific. Regions connected to somatomotor/occipital cortices are consistently affected. Intra-thalamic FC may be a surrogate marker of thalamic reticular nucleus function.
Collapse
Affiliation(s)
- Andrew P Bagshaw
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.,School of Psychology, University of Birmingham, Birmingham, UK
| | - Joanne R Hale
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.,School of Psychology, University of Birmingham, Birmingham, UK.,Clinical Physics and Bioengineering, University Hospital Coventry and Warwickshire, Coventry, UK
| | - Brunno M Campos
- Neuroimaging Laboratory, Department of Neurology, University of Campinas, Campinas, Brazil
| | - David T Rollings
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.,School of Psychology, University of Birmingham, Birmingham, UK.,Department of Neuroscience, Queen Elizabeth Hospital Birmingham, UK
| | - Rebecca S Wilson
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.,School of Psychology, University of Birmingham, Birmingham, UK
| | - Marina K M Alvim
- Neuroimaging Laboratory, Department of Neurology, University of Campinas, Campinas, Brazil
| | - Ana Carolina Coan
- Neuroimaging Laboratory, Department of Neurology, University of Campinas, Campinas, Brazil
| | - Fernando Cendes
- Neuroimaging Laboratory, Department of Neurology, University of Campinas, Campinas, Brazil
| |
Collapse
|
23
|
Fan D, Liao F, Wang Q. The pacemaker role of thalamic reticular nucleus in controlling spike-wave discharges and spindles. CHAOS (WOODBURY, N.Y.) 2017; 27:073103. [PMID: 28764392 DOI: 10.1063/1.4991869] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Absence epilepsy, characterized by 2-4 Hz spike-wave discharges (SWDs), can be caused by pathological interactions within the thalamocortical system. Cortical spindling oscillations are also demonstrated to involve the oscillatory thalamocortical rhythms generated by the synaptic circuitry of the thalamus and cortex. This implies that SWDs and spindling oscillations can share the common thalamocortical mechanism. Additionally, the thalamic reticular nucleus (RE) is hypothesized to regulate the onsets and propagations of both the epileptic SWDs and sleep spindles. Based on the proposed single-compartment thalamocortical neural field model, we firstly investigate the stimulation effect of RE on the initiations, terminations, and transitions of SWDs. It is shown that the activations and deactivations of RE triggered by single-pulse stimuli can drive the cortical subsystem to behave as the experimentally observed onsets and self-abatements of SWDs, as well as the transitions from 2-spike and wave discharges (2-SWDs) to SWDs. In particular, with increasing inhibition from RE to the specific relay nucleus (TC), rich transition behaviors in cortex can be obtained through the upstream projection path, RE→TC→Cortex. Although some of the complex dynamical patterns can be expected from the earlier single compartment thalamocortical model, the effect of brain network topology on the emergence of SWDs and spindles, as well as the transitions between them, has not been fully investigated. We thereby develop a spatially extended 3-compartment coupled network model with open-/closed-end connective configurations, to investigate the spatiotemporal effect of RE on the SWDs and spindles. Results show that the degrees of activations of RE1 can induce the rich spatiotemporal evolution properties including the propagations from SWDs to spindles within different compartments and the transitions between them, through the RE1→TC1→Cortex1 and Cortex1→Cortex2→Cortex3 projecting paths, respectively. Overall, those results imply that RE possesses the pacemaker function in controlling SWDs and spindling oscillations, which computationally provide causal support for the involvement of RE in absence seizures and sleep spindles.
Collapse
Affiliation(s)
- Denggui Fan
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Fucheng Liao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, Beijing 100191, People's Republic of China
| |
Collapse
|
24
|
Sorokin JM, Paz JT, Huguenard JR. Absence seizure susceptibility correlates with pre-ictal β oscillations. ACTA ACUST UNITED AC 2017; 110:372-381. [PMID: 28576554 DOI: 10.1016/j.jphysparis.2017.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/16/2017] [Accepted: 05/29/2017] [Indexed: 10/19/2022]
Abstract
Absence seizures are generalized, cortico-thalamo-cortical (CTC) high power electroencephalographic (EEG) or electrocorticographic (ECoG) events that initiate and terminate suddenly. ECoG recordings of absence seizures in animal models of genetic absence epilepsy show a sudden spike-wave-discharge (SWD) onset that rapidly emerges from normal ECoG activity. However, given that absence seizures occur most often during periods of drowsiness or quiet wakefulness, we wondered whether SWD onset correlates with pre-ictal changes in network activity. To address this, we analyzed ECoG recordings of both spontaneous and induced SWDs in rats with genetic absence epilepsy. We discovered that the duration and intensity of spontaneous SWDs positively correlate with pre-ictal 20-40Hz (β) spectral power and negatively correlate with 4-7Hz (Ø) power. In addition, the output of thalamocortical neurons decreases within the same pre-ictal window of time. In separate experiments we found that the propensity for SWD induction was correlated with pre-ictal β power. These results argue that CTC networks undergo a pre-seizure state transition, possibly due to a functional reorganization of cortical microcircuits, which leads to the generation of absence seizures.
Collapse
Affiliation(s)
- Jordan M Sorokin
- Stanford Neurosciences Graduate Training Program, United States; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Jeanne T Paz
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, United States; Gladstone Institutes, San Francisco, CA 94158, United States
| | - John R Huguenard
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States.
| |
Collapse
|
25
|
Moguilner S, García AM, Mikulan E, Del Carmen García M, Vaucheret E, Amarillo Y, Bekinschtein TA, Ibáñez A. An unaware agenda: interictal consciousness impairments in epileptic patients. Neurosci Conscious 2017; 2017:niw024. [PMID: 30042834 PMCID: PMC6007167 DOI: 10.1093/nc/niw024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/16/2016] [Accepted: 12/21/2016] [Indexed: 01/07/2023] Open
Abstract
Consciousness impairments have been described as a cornerstone of epilepsy. Generalized seizures are usually characterized by a complete loss of consciousness, whereas focal seizures have more variable degrees of responsiveness. In addition to these impairments that occur during ictal episodes, alterations of consciousness have also been repeatedly observed between seizures (i.e. during interictal periods). In this opinion article, we review evidence supporting the novel hypothesis that epilepsy produces consciousness impairments which remain present interictally. Then, we discuss therapies aimed to reduce seizure frequency, which may modulate consciousness between epileptic seizures. We conclude with a consideration of relevant pathophysiological mechanisms. In particular, the thalamocortical network seems to be involved in both seizure generation and interictal consciousness impairments, which could inaugurate a promising translational agenda for epilepsy studies.
Collapse
Affiliation(s)
- Sebastian Moguilner
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,Fundación Escuela de Medicina Nuclear (FUESMEN) and Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina.,Instituto Balseiro and Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - Adolfo M García
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Faculty of Elementary and Special Education (FEEyE), National University of Cuyo (UNCuyo), Mendoza, Argentina
| | - Ezequiel Mikulan
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Maria Del Carmen García
- Programa de Cirugía de Epilepsia, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Esteban Vaucheret
- Servicio de Neurologia Infantil del Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Yimy Amarillo
- Consejo Nacional de Investigaciones Científicas y Técnicas, Física Estadística e Interdisciplinaria, Centro Atómico Bariloche, San Carlos de Bariloche, Rio Negro, Argentina
| | | | - Agustín Ibáñez
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Universidad Autónoma del Caribe, Barranquilla, Colombia.,Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile.,Australian Research Council Centre of Excellence in Cognition and its Disorders, Sydney, Australia
| |
Collapse
|
26
|
Milton J, Wu J, Campbell SA, Bélair J. Outgrowing Neurological Diseases: Microcircuits, Conduction Delay and Childhood Absence Epilepsy. COMPUTATIONAL NEUROLOGY AND PSYCHIATRY 2017. [DOI: 10.1007/978-3-319-49959-8_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
27
|
Bidirectional Control of Generalized Epilepsy Networks via Rapid Real-Time Switching of Firing Mode. Neuron 2016; 93:194-210. [PMID: 27989462 DOI: 10.1016/j.neuron.2016.11.026] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/18/2016] [Accepted: 11/07/2016] [Indexed: 12/16/2022]
Abstract
Thalamic relay neurons have well-characterized dual firing modes: bursting and tonic spiking. Studies in brain slices have led to a model in which rhythmic synchronized spiking (phasic firing) in a population of relay neurons leads to hyper-synchronous oscillatory cortico-thalamo-cortical rhythms that result in absence seizures. This model suggests that blocking thalamocortical phasic firing would treat absence seizures. However, recent in vivo studies in anesthetized animals have questioned this simple model. Here we resolve this issue by developing a real-time, mode-switching approach to drive thalamocortical neurons into or out of a phasic firing mode in two freely behaving genetic rodent models of absence epilepsy. Toggling between phasic and tonic firing in thalamocortical neurons launched and aborted absence seizures, respectively. Thus, a synchronous thalamocortical phasic firing state is required for absence seizures, and switching to tonic firing rapidly halts absences. This approach should be useful for modulating other networks that have mode-dependent behaviors.
Collapse
|
28
|
Arakaki T, Mahon S, Charpier S, Leblois A, Hansel D. The Role of Striatal Feedforward Inhibition in the Maintenance of Absence Seizures. J Neurosci 2016; 36:9618-32. [PMID: 27629713 PMCID: PMC6601939 DOI: 10.1523/jneurosci.0208-16.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/24/2016] [Accepted: 07/25/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Absence seizures are characterized by brief interruptions of conscious experience accompanied by oscillations of activity synchronized across many brain areas. Although the dynamics of the thalamocortical circuits are traditionally thought to underlie absence seizures, converging experimental evidence supports the key involvement of the basal ganglia (BG). In this theoretical work, we argue that the BG are essential for the maintenance of absence seizures. To this end, we combine analytical calculations with numerical simulations to investigate a computational model of the BG-thalamo-cortical network. We demonstrate that abnormally strong striatal feedforward inhibition can promote synchronous oscillatory activity that persists in the network over several tens of seconds as observed during seizures. We show that these maintained oscillations result from an interplay between the negative feedback through the cortico-subthalamo-nigral pathway and the striatal feedforward inhibition. The negative feedback promotes epileptic oscillations whereas the striatal feedforward inhibition suppresses the positive feedback provided by the cortico-striato-nigral pathway. Our theory is consistent with experimental evidence regarding the influence of BG on seizures (e.g., with the fact that a pharmacological blockade of the subthalamo-nigral pathway suppresses seizures). It also accounts for the observed strong suppression of the striatal output during seizures. Our theory predicts that well-timed transient excitatory inputs to the cortex advance the termination of absence seizures. In contrast with the thalamocortical theory, it also predicts that reducing the synaptic transmission along the cortico-subthalamo-nigral pathway while keeping constant the average firing rate of substantia nigra pars reticulata reduces the incidence of seizures. SIGNIFICANCE STATEMENT Absence seizures are characterized by brief interruptions of consciousness accompanied by abnormal brain oscillations persisting tens of seconds. Thalamocortical circuits are traditionally thought to underlie absence seizures. However, recent experiments have highlighted the key role of the basal ganglia (BG). This work argues for a novel theory according to which the BG drive the oscillatory patterns of activity occurring during the seizures. It demonstrates that abnormally strong striatal feedforward inhibition promotes synchronous oscillatory activity in the BG-thalamo-cortical network and relate this property to the observed strong suppression of the striatal output during seizures. The theory is compatible with virtually all known experimental results, and it predicts that well-timed transient excitatory inputs to the cortex advance the termination of absence seizures.
Collapse
Affiliation(s)
- Takafumi Arakaki
- Center of Neurophysics, Physiology and Pathology, UMR 8119 CNRS, Paris Descartes University, 75270 Paris, France
| | - Séverine Mahon
- Sorbonne Universités, Université Paris 06, UPMC, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Hôpital Pitié-Salpêtrière, F-75013 Paris, France, and
| | - Stéphane Charpier
- Sorbonne Universités, Université Paris 06, UPMC, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Hôpital Pitié-Salpêtrière, F-75013 Paris, France, and UPMC Université Paris 06, F-75005 Paris, France
| | - Arthur Leblois
- Center of Neurophysics, Physiology and Pathology, UMR 8119 CNRS, Paris Descartes University, 75270 Paris, France
| | - David Hansel
- Center of Neurophysics, Physiology and Pathology, UMR 8119 CNRS, Paris Descartes University, 75270 Paris, France,
| |
Collapse
|
29
|
Sleep EEG and spindle characteristics after combination treatment with clozapine in drug-resistant schizophrenia: a pilot study. J Clin Neurophysiol 2016; 32:159-63. [PMID: 25350635 DOI: 10.1097/wnp.0000000000000145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Clozapine is an atypical neuroleptic agent, effective in treating drug-resistant schizophrenia. The aim of this work was to investigate overall sleep architecture and sleep spindle morphology characteristics, before and after combination treatment with clozapine, in patients with drug-resistant schizophrenia who underwent polysomnography. METHODS Standard polysomnographic techniques were used. To quantify the sleep spindle morphology, a modeling technique was used that quantifies time-varying patterns in both the spindle envelope and the intraspindle frequency. RESULTS After combination treatment with clozapine, the patients showed clinical improvement. In addition, their overall sleep architecture and, more importantly, parameters that quantify the time-varying sleep spindle morphology were affected. Specifically, the results showed increased stage 2 sleep, reduced slow-wave sleep, increased rapid eye movement sleep, increased total sleep time, decreased wake time after sleep onset, as well as effects on spindle amplitude and intraspindle frequency parameters. However, the above changes in overall sleep architecture were statistically nonsignificant trends. CONCLUSIONS The findings concerning statistically significant effects on spindle amplitude and intraspindle frequency parameters may imply changes in cortical sleep EEG generation mechanisms, as well as changes in thalamic pacing mechanisms or in thalamo-cortical network dynamics involved in sleep EEG generation, as a result of combination treatment with clozapine. SIGNIFICANCE Sleep spindle parameters may serve as metrics for the eventual development of effective EEG biomarkers to investigate treatment effects and pathophysiological mechanisms in schizophrenia.
Collapse
|
30
|
Koronovskii AA, Hramov AE, Grubov VV, Moskalenko OI, Sitnikova E, Pavlov AN. Coexistence of intermittencies in the neuronal network of the epileptic brain. Phys Rev E 2016; 93:032220. [PMID: 27078357 DOI: 10.1103/physreve.93.032220] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Indexed: 11/07/2022]
Abstract
Intermittent behavior occurs widely in nature. At present, several types of intermittencies are known and well-studied. However, consideration of intermittency has usually been limited to the analysis of cases when only one certain type of intermittency takes place. In this paper, we report on the temporal behavior of the complex neuronal network in the epileptic brain, when two types of intermittent behavior coexist and alternate with each other. We prove the presence of this phenomenon in physiological experiments with WAG/Rij rats being the model living system of absence epilepsy. In our paper, the deduced theoretical law for distributions of the lengths of laminar phases prescribing the power law with a degree of -2 agrees well with the experimental neurophysiological data.
Collapse
Affiliation(s)
- Alexey A Koronovskii
- Saratov State University, Astrakhanskaya 83, Saratov 410012, Russia.,Saratov State Technical University, Politehnicheskaja 77, Saratov 410056, Russia
| | - Alexander E Hramov
- Saratov State University, Astrakhanskaya 83, Saratov 410012, Russia.,Saratov State Technical University, Politehnicheskaja 77, Saratov 410056, Russia
| | - Vadim V Grubov
- Saratov State University, Astrakhanskaya 83, Saratov 410012, Russia.,Saratov State Technical University, Politehnicheskaja 77, Saratov 410056, Russia
| | - Olga I Moskalenko
- Saratov State University, Astrakhanskaya 83, Saratov 410012, Russia.,Saratov State Technical University, Politehnicheskaja 77, Saratov 410056, Russia
| | - Evgenia Sitnikova
- Saratov State University, Astrakhanskaya 83, Saratov 410012, Russia.,Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Science, Moscow, Russia
| | - Alexey N Pavlov
- Saratov State University, Astrakhanskaya 83, Saratov 410012, Russia.,Saratov State Technical University, Politehnicheskaja 77, Saratov 410056, Russia
| |
Collapse
|
31
|
Sitnikova E, Hramov AE, Grubov V, Koronovsky AA. Rhythmic activity in EEG and sleep in rats with absence epilepsy. Brain Res Bull 2016; 120:106-16. [DOI: 10.1016/j.brainresbull.2015.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/27/2015] [Accepted: 11/16/2015] [Indexed: 10/22/2022]
|
32
|
Frauscher B, Bernasconi N, Caldairou B, von Ellenrieder N, Bernasconi A, Gotman J, Dubeau F. Interictal Hippocampal Spiking Influences the Occurrence of Hippocampal Sleep Spindles. Sleep 2015; 38:1927-33. [PMID: 26194569 DOI: 10.5665/sleep.5242] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/20/2015] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES The significance of hippocampal sleep spindles and their relation to epileptic activity is still a matter of controversy. Hippocampal spindles have been considered a physiological phenomenon, an evoked response to afferent epileptic discharges, or even the expression of an epileptic manifestation. To address this question, we investigated the presence and rate of hippocampal spindles in focal pharmacoresistant epilepsy patients undergoing scalp-intracerebral electroencephalography (EEG). DESIGN Sleep recording with scalp-intracerebral EEG. SETTING Tertiary referral epilepsy center. PATIENTS Twenty-five epilepsy patients (extratemporal: n = 6, temporal: n = 15, and multifocal including the temporal lobe: n = 4). INTERVENTIONS N/A. MEASUREMENTS AND RESULTS We analyzed associations between hippocampal spindles and hippocampal electrophysiological findings (interictal spiking, seizure onset zone) and magnetic resonance imaging volumetry. Sixteen of 25 patients (64%) had hippocampal spindles (extratemporal epilepsy: 6/6; temporal epilepsy: 10/15; and multifocal epilepsy: 0/4; P = 0.005). Median spindle rate was 0.6 (range, 0.1-8.6)/min in nonrapid eye movement sleep. Highest spindle rates were found in hippocampi of patients with extratemporal epilepsy (P < 0.001). A negative association was found between hippocampal spiking activity and spindle rate (P = 0.003). We found no association between the presence (n = 21) or absence (n = 17) of hippocampal seizure onset zone and hippocampal spindle rate (P = 0.114), and between a normal (n = 30) or atrophic (n = 8) hippocampus and hippocampal spindle rate (P = 0.195). CONCLUSIONS Hippocampal spindles represent a physiological phenomenon, with an expression that is diminished in epilepsy affecting the temporal lobe. Hippocampal spiking lowered the rate of hippocampal spindles, suggesting that epileptic discharges may at least in part be a transformation of these physiological events, similar to the hypothesis considering generalized spike-and-waves a transformation of frontal spindles.
Collapse
Affiliation(s)
- Birgit Frauscher
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
| | - Neda Bernasconi
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
| | - Benoit Caldairou
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
| | | | - Andrea Bernasconi
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
| | - Jean Gotman
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
| | - François Dubeau
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
| |
Collapse
|
33
|
Unbalanced Peptidergic Inhibition in Superficial Neocortex Underlies Spike and Wave Seizure Activity. J Neurosci 2015; 35:9302-14. [PMID: 26109655 DOI: 10.1523/jneurosci.4245-14.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Slow spike and wave discharges (0.5-4 Hz) are a feature of many epilepsies. They are linked to pathology of the thalamocortical axis and a thalamic mechanism has been elegantly described. Here we present evidence for a separate generator in local circuits of associational areas of neocortex manifest from a background, sleep-associated delta rhythm in rat. Loss of tonic neuromodulatory excitation, mediated by nicotinic acetylcholine or serotonin (5HT3A) receptors, of 5HT3-immunopositive interneurons caused an increase in amplitude and slowing of the delta rhythm until each period became the "wave" component of the spike and wave discharge. As with the normal delta rhythm, the wave of a spike and wave discharge originated in cortical layer 5. In contrast, the "spike" component of the spike and wave discharge originated from a relative failure of fast inhibition in layers 2/3-switching pyramidal cell action potential outputs from single, sparse spiking during delta rhythms to brief, intense burst spiking, phase-locked to the field spike. The mechanisms underlying this loss of superficial layer fast inhibition, and a concomitant increase in slow inhibition, appeared to be precipitated by a loss of neuropeptide Y (NPY)-mediated local circuit inhibition and a subsequent increase in vasoactive intestinal peptide (VIP)-mediated disinhibition. Blockade of NPY Y1 receptors was sufficient to generate spike and wave discharges, whereas blockade of VIP receptors almost completely abolished this form of epileptiform activity. These data suggest that aberrant, activity-dependent neuropeptide corelease can have catastrophic effects on neocortical dynamics.
Collapse
|
34
|
Cortez MA, Kostopoulos GK, Snead OC. Acute and chronic pharmacological models of generalized absence seizures. J Neurosci Methods 2015; 260:175-84. [PMID: 26343323 DOI: 10.1016/j.jneumeth.2015.08.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/28/2015] [Accepted: 08/30/2015] [Indexed: 12/28/2022]
Abstract
This article reviews the contribution of pharmacologically induced acute and chronic animal models to our understanding of epilepsies featuring non-convulsive generalized seizures, the typical and atypical absence seizures. Typical absences comprise about 5% of all epilepsies regardless of age and the atypical ones are even more common. Although absence epilepsy was thought to be relatively benign, children with childhood epilepsy (CAE) turn out to have a high rate of pretreatment attention deficits that persist despite seizure freedom. The phenomenon of the absence seizure has long attracted research interest because of the clear temporal relationship of the conspicuous EEG rhythm of 3 Hz generalized spike and wave discharges (GSWD) and the parallel transient "loss of consciousness" characterizing these seizures which is time-locked with the GSWD. Indeed, clinical epileptologists, basic scientists and neurophysiologists have long recognized in GSWD a unique electrographic and behavioral marker of the genetic predisposition to most types of epilepsy. Interestingly, the subject is still controversial since it has recently been proposed that both classification terms of CAE currently in use: idiopathic and primary generalized, be abandoned - a point of debate. Both issues - underlying mechanisms and focal origin of absence seizures - may be further enlightened by observations in valid animal models.
Collapse
Affiliation(s)
- Miguel A Cortez
- Division of Neurology, Neuroscience and Mental Health Program, SickKids Research Institute, Hospital for Sick Children, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | | | - O Carter Snead
- Division of Neurology, Neuroscience and Mental Health Program, SickKids Research Institute, Hospital for Sick Children, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
35
|
Are Absence Epilepsy and Nocturnal Frontal Lobe Epilepsy System Epilepsies of the Sleep/Wake System? Behav Neurol 2015; 2015:231676. [PMID: 26175547 PMCID: PMC4484558 DOI: 10.1155/2015/231676] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/13/2015] [Accepted: 05/05/2015] [Indexed: 12/05/2022] Open
Abstract
System epilepsy is an emerging concept interpreting major nonlesional epilepsies as epileptic dysfunctions of physiological systems. I extend here the concept of reflex epilepsy to epilepsies linked to input dependent physiological systems. Experimental and clinical reseach data were collected to create a coherent explanation of underlying pathomechanism in AE and NFLE. We propose that AE should be interpreted as epilepsy linked to the corticothalamic burst-firing mode of NREM sleep, released by evoked vigilance level oscillations characterized by reactive slow wave response. In the genetic variation of NFLE the ascending cholinergic arousal system plays an essential role being in strong relationship with a gain mutation of the nicotinic acethylcholin receptors, rendering the arousal system hyperexcitable. I try to provide a more unitary interpretation for the variable seizure manifestation integrating them as different degree of pathological arosuals and alarm reactions. As a supporting hypothesis the similarity between arousal parasomnias and FNLE is shown, underpinned by overlaping pathomechanism and shared familiarity, but without epileptic features. Lastly we propose that both AE and NFLE are system epilepsies of the sleep-wake system representing epileptic disorders of the antagonistic sleep/arousal network. This interpretation may throw new light on the pathomechanism of AE and NFLE.
Collapse
|
36
|
Crunelli V, Carmignoto G, Steinhäuser C. Novel astrocyte targets: new avenues for the therapeutic treatment of epilepsy. Neuroscientist 2015; 21:62-83. [PMID: 24609207 PMCID: PMC4361461 DOI: 10.1177/1073858414523320] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
During the last 20 years, it has been well established that a finely tuned, continuous crosstalk between neurons and astrocytes not only critically modulates physiological brain functions but also underlies many neurological diseases. In particular, this novel way of interpreting brain activity is markedly influencing our current knowledge of epilepsy, prompting a re-evaluation of old findings and guiding novel experimentation. Here, we review recent studies that have unraveled novel and unique contributions of astrocytes to the generation and spread of convulsive and nonconvulsive seizures and epileptiform activity. The emerging scenario advocates an overall framework in which a dynamic and reciprocal interplay among astrocytic and neuronal ensembles is fundamental for a fuller understanding of epilepsy. In turn, this offers novel astrocytic targets for the development of those really novel chemical entities for the control of convulsive and nonconvulsive seizures that have been acknowledged as a key priority in the management of epilepsy.
Collapse
Affiliation(s)
- Vincenzo Crunelli
- Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK
| | - Giorgio Carmignoto
- Centro Nazionale della Ricerca, Neuroscience Institute and Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
37
|
McCormick DA, McGinley MJ, Salkoff DB. Brain state dependent activity in the cortex and thalamus. Curr Opin Neurobiol 2014; 31:133-40. [PMID: 25460069 DOI: 10.1016/j.conb.2014.10.003] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 10/04/2014] [Indexed: 01/19/2023]
Abstract
Cortical and thalamocortical activity is highly state dependent, varying between patterns that are conducive to accurate sensory-motor processing, to states in which the brain is largely off-line and generating internal rhythms irrespective of the outside world. The generation of rhythmic activity occurs through the interaction of stereotyped patterns of connectivity together with intrinsic membrane and synaptic properties. One common theme in the generation of rhythms is the interaction of a positive feedback loop (e.g., recurrent excitation) with negative feedback control (e.g., inhibition, adaptation, or synaptic depression). The operation of these state-dependent activities has wide ranging effects from enhancing or blocking sensory-motor processing to the generation of pathological rhythms associated with psychiatric or neurological disorders.
Collapse
Affiliation(s)
- David A McCormick
- Department of Neurobiology, Kavli Institute for Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, United States.
| | - Matthew J McGinley
- Department of Neurobiology, Kavli Institute for Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, United States
| | - David B Salkoff
- Department of Neurobiology, Kavli Institute for Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, United States
| |
Collapse
|
38
|
Carney PW, Jackson GD. Insights into the mechanisms of absence seizure generation provided by EEG with functional MRI. Front Neurol 2014; 5:162. [PMID: 25225491 PMCID: PMC4150362 DOI: 10.3389/fneur.2014.00162] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 08/14/2014] [Indexed: 11/20/2022] Open
Abstract
Absence seizures (AS) are brief epileptic events characterized by loss of awareness with subtle motor features. They may be very frequent, and impact on attention, learning, and memory. A number of pathophysiological models have been developed to explain the mechanism of absence seizure generation, which relies heavily on observations from animal studies. Studying the structural and functional relationships between large-scale brain networks in humans is only practical with non-invasive whole brain techniques. EEG with functional MRI (EEG-fMRI) is one such technique that provides an opportunity to explore the interactions between brain structures involved in AS generation. A number of fMRI techniques including event-related analysis, time-course analysis, and functional connectivity (FC) have identified a common network of structures involved in AS. This network comprises the thalamus, midline, and lateral parietal cortex [the default mode network (DMN)], caudate nuclei, and the reticular structures of the pons. The main component displaying an increase in blood oxygen level dependent (BOLD) signal relative to the resting state, in group studies, is the thalamus while the most consistent cortical change is reduced BOLD signal in the DMN. Time-course analysis shows that, rather than some structures being activated or inactivated during AS, there appears to be increase in activity across components of the network preceding or following the electro-clinical onset of the seizure. The earliest change in BOLD signal occurs in the DMN, prior to the onset of epileptiform events. This region also shows altered FC in patients with AS. Hence, it appears that engagement of this network is central to AS. In this review, we will explore the insights of EEG-fMRI studies into the mechanisms of AS and consider how the DMN is likely to be the major large-scale brain network central to both seizure generation and seizure manifestations.
Collapse
Affiliation(s)
- Patrick W Carney
- The Florey Institute for Neuroscience and Mental Health , Heidelberg, VIC , Australia ; The University of Melbourne , Parkville, VIC , Australia ; Austin Health , Heidelberg, VIC , Australia
| | - Graeme D Jackson
- The Florey Institute for Neuroscience and Mental Health , Heidelberg, VIC , Australia ; The University of Melbourne , Parkville, VIC , Australia ; Austin Health , Heidelberg, VIC , Australia
| |
Collapse
|
39
|
Barthó P, Slézia A, Mátyás F, Faradzs-Zade L, Ulbert I, Harris KD, Acsády L. Ongoing network state controls the length of sleep spindles via inhibitory activity. Neuron 2014; 82:1367-79. [PMID: 24945776 PMCID: PMC4064116 DOI: 10.1016/j.neuron.2014.04.046] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2014] [Indexed: 11/16/2022]
Abstract
Sleep spindles are major transient oscillations of the mammalian brain. Spindles are generated in the thalamus; however, what determines their duration is presently unclear. Here, we measured somatic activity of excitatory thalamocortical (TC) cells together with axonal activity of reciprocally coupled inhibitory reticular thalamic cells (nRTs) and quantified cycle-by-cycle alterations in their firing in vivo. We found that spindles with different durations were paralleled by distinct nRT activity, and nRT firing sharply dropped before the termination of all spindles. Both initial nRT and TC activity was correlated with spindle length, but nRT correlation was more robust. Analysis of spindles evoked by optogenetic activation of nRT showed that spindle probability, but not spindle length, was determined by the strength of the light stimulus. Our data indicate that during natural sleep a dynamically fluctuating thalamocortical network controls the duration of sleep spindles via the major inhibitory element of the circuits, the nRT. Coupled excitatory-inhibitory thalamic populations were recorded during spindles Spindle termination is preceded by a drop in nRT activity Spindles of different lengths have distinct nRT activity trajectories Spindle duration is strongly influenced by the initial network state
Collapse
Affiliation(s)
- Péter Barthó
- Laboratory of Thalamus Research, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083, Budapest, 43 Szigony utca, Hungary.
| | - Andrea Slézia
- Laboratory of Thalamus Research, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083, Budapest, 43 Szigony utca, Hungary
| | - Ferenc Mátyás
- Laboratory of Thalamus Research, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083, Budapest, 43 Szigony utca, Hungary
| | - Lejla Faradzs-Zade
- Laboratory of Thalamus Research, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083, Budapest, 43 Szigony utca, Hungary
| | - István Ulbert
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1083, Budapest, 1068, 83-85 Szondi utca, Hungary; Péter Pázmány Catholic University, Faculty of Information Technology and Bionics, 1083, Budapest, 50/A Práter utca, Hungary
| | - Kenneth D Harris
- UCL Institute of Neurology, UCL Department of Neuroscience, Physiology, and Pharmacology, 21 University Street, London WC1E 6DE, UK
| | - László Acsády
- Laboratory of Thalamus Research, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083, Budapest, 43 Szigony utca, Hungary.
| |
Collapse
|
40
|
Age-Dependent Increase of Absence Seizures and Intrinsic Frequency Dynamics of Sleep Spindles in Rats. NEUROSCIENCE JOURNAL 2014; 2014:370764. [PMID: 26317108 PMCID: PMC4437255 DOI: 10.1155/2014/370764] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/01/2014] [Accepted: 06/02/2014] [Indexed: 11/18/2022]
Abstract
The risk of neurological diseases increases with age. In WAG/Rij rat model of absence epilepsy, the incidence of epileptic spike-wave discharges is known to be elevated with age. Considering close relationship between epileptic spike-wave discharges and physiologic sleep spindles, it was assumed that age-dependent increase of epileptic activity may affect time-frequency characteristics of sleep spindles. In order to examine this hypothesis, electroencephalograms (EEG) were recorded in WAG/Rij rats successively at the ages 5, 7, and 9 months. Spike-wave discharges and sleep spindles were detected in frontal EEG channel. Sleep spindles were identified automatically using wavelet-based algorithm. Instantaneous (localized in time) frequency of sleep spindles was determined using continuous wavelet transform of EEG signal, and intraspindle frequency dynamics were further examined. It was found that in 5-months-old rats epileptic activity has not fully developed (preclinical stage) and sleep spindles demonstrated an increase of instantaneous frequency from beginning to the end. At the age of 7 and 9 months, when animals developed matured and longer epileptic discharges (symptomatic stage), their sleep spindles did not display changes of intrinsic frequency. The present data suggest that age-dependent increase of epileptic activity in WAG/Rij rats affects intrinsic dynamics of sleep spindle frequency.
Collapse
|
41
|
Seneviratne U, Cook M, D'Souza W. Focal abnormalities in idiopathic generalized epilepsy: A critical review of the literature. Epilepsia 2014; 55:1157-69. [PMID: 24938654 DOI: 10.1111/epi.12688] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Udaya Seneviratne
- Department of Medicine; St. Vincent's Hospital; University of Melbourne; Melbourne Victoria Australia
- Department of Neuroscience; Monash Medical Centre; Melbourne Victoria Australia
| | - Mark Cook
- Department of Medicine; St. Vincent's Hospital; University of Melbourne; Melbourne Victoria Australia
| | - Wendyl D'Souza
- Department of Medicine; St. Vincent's Hospital; University of Melbourne; Melbourne Victoria Australia
| |
Collapse
|
42
|
Sitnikova EY, Grubov VV, Khramov AE, Koronovskii AA. Developmental Changes in the Frequency-Time Structure of Sleep Spindles on the EEG in Rats with a Genetic Predisposition to Absence Epilepsy (WAG/Rij). ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11055-014-9910-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
van Luijtelaar G, Behr C, Avoli M. Is there such a thing as "generalized" epilepsy? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 813:81-91. [PMID: 25012369 DOI: 10.1007/978-94-017-8914-1_7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
The distinction between generalized and partial epilepsies is probably one, if not the most, pregnant assertions in modern epileptology. Both absence and generalized tonic-clonic seizures, the prototypic seizures found in generalized epilepsies, are classically seen as the result of a rapid, synchronous recruitment of neuronal networks resulting in impairment of consciousness and/or convulsive semiology. The term generalized also refers to electroencephalographic presentation, with bilateral, synchronous activity, such as the classical 3 Hz spike and wave discharges of typical absence epilepsy. However, findings obtained from electrophysiological and functional imaging studies over the last few years, contradict this view, showing a rather focal onset for most of the so-called generalized seizure types. Therefore, we ask here the question whether "generalized epilepsy" does indeed exist.
Collapse
Affiliation(s)
- Gilles van Luijtelaar
- Donders Centre for Cognition, Radboud University Nijmegen, Montessorilaan 3, 6525 HR, Nijmegen, The Netherlands
| | | | | |
Collapse
|
44
|
Bagshaw AP, Rollings DT, Khalsa S, Cavanna AE. Multimodal neuroimaging investigations of alterations to consciousness: the relationship between absence epilepsy and sleep. Epilepsy Behav 2014; 30:33-7. [PMID: 24139808 DOI: 10.1016/j.yebeh.2013.09.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 09/16/2013] [Indexed: 10/26/2022]
Abstract
The link between epilepsy and sleep is well established on many levels. The focus of the current review is on recent neuroimaging investigations into the alterations of consciousness that are observed during absence seizures and the descent into sleep. Functional neuroimaging provides simultaneous cortical and subcortical recording of activity throughout the brain, allowing a detailed definition and characterization of large-scale brain networks and the interactions between them. This has led to the identification of a set of regions which collectively form the consciousness system, which includes contributions from the default mode network (DMN), ascending arousal systems, and the thalamus. Electrophysiological and neuroimaging investigations have also clearly demonstrated the importance of thalamocortical and corticothalamic networks in the evolution of sleep and absence epilepsy, two phenomena in which the subject experiences an alteration to the conscious state and a disconnection from external input. However, the precise relationship between the consciousness system, thalamocortical networks, and consciousness itself remains to be clarified. One of the fundamental challenges is to understand how distributed brain networks coordinate their activity in order to maintain and implement complex behaviors such as consciousness and how modifications to this network activity lead to alterations in consciousness. By taking into account not only the level of activation of individual brain regions but also their connectivity within specific networks and the activity and connectivity of other relevant networks, a more specific quantification of brain states can be achieved. This, in turn, may provide a more fundamental understanding of the alterations to consciousness experienced in sleep and epilepsy.
Collapse
Affiliation(s)
- Andrew P Bagshaw
- School of Psychology and Birmingham University Imaging Centre, University of Birmingham, Edgbaston, Birmingham, UK.
| | | | | | | |
Collapse
|
45
|
Sitnikova E, Hramov AE, Grubov V, Koronovsky AA. Time-frequency characteristics and dynamics of sleep spindles in WAG/Rij rats with absence epilepsy. Brain Res 2013; 1543:290-9. [PMID: 24231550 DOI: 10.1016/j.brainres.2013.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/25/2013] [Accepted: 11/03/2013] [Indexed: 11/29/2022]
Abstract
In rat models of absence epilepsy, epileptic spike-wave discharges appeared in EEG spontaneously, and the incidence of epileptic activity increases with age. Spike-wave discharges and sleep spindles are known to share common thalamo-cortical mechanism, suggesting that absence seizures might affect some intrinsic properties of sleep spindles. This paper examines time-frequency EEG characteristics of anterior sleep spindles in non-epileptic Wistar and epileptic WAG/Rij rats at the age of 7 and 9 months. Considering non-stationary features of sleep spindles, EEG analysis was performed using Morlet-based continuous wavelet transform. It was found, first, that the average frequency of sleep spindles in non-epileptic Wistar rats was higher than in WAG/Rij (13.2 vs 11.2 Hz). Second, the instantaneous frequency ascended during a spindle event in Wistar rats, but it was constant in WAG/Rij. Third, in WAG/Rij rats, the number and duration of epileptic discharges increased in a period between 7 and 9 months of age, but duration and mean value of intra-spindle frequency did not change. In general, age-dependent aggravation of absence seizures in WAG/Rij rats did not affect EEG properties of sleep spindles; it was suggested that pro-epileptic changes in thalamo-cortical network in WAG/Rij rats might prevent dynamic changes of sleep spindles that were detected in Wistar.
Collapse
Affiliation(s)
- Evgenia Sitnikova
- Institute of the Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova str., 5A, Moscow 117485, Russia.
| | - Alexander E Hramov
- Faculty of Nonlinear Processes, Saratov State University, Saratov, Astrakhanskaya str., 83, Saratov 410012, Russia; Research-Educational Center 'Nonlinear Dynamics of Complex Systems', Saratov State Technical University, Saratov, Polytechnicheskaya str., 77, Saratov 410054, Russia.
| | - Vadim Grubov
- Faculty of Nonlinear Processes, Saratov State University, Saratov, Astrakhanskaya str., 83, Saratov 410012, Russia; Research-Educational Center 'Nonlinear Dynamics of Complex Systems', Saratov State Technical University, Saratov, Polytechnicheskaya str., 77, Saratov 410054, Russia.
| | - Alexey A Koronovsky
- Faculty of Nonlinear Processes, Saratov State University, Saratov, Astrakhanskaya str., 83, Saratov 410012, Russia; Research-Educational Center 'Nonlinear Dynamics of Complex Systems', Saratov State Technical University, Saratov, Polytechnicheskaya str., 77, Saratov 410054, Russia.
| |
Collapse
|
46
|
Sadighi M, Shahabi P, Oryan S, Pakdel FG, Asghari M, Pshapour A. Effect of low frequency electrical stimulation on spike and wave discharges of perioral somatosensory cortex in WAG/Rij rats. ACTA ACUST UNITED AC 2013; 20:171-6. [PMID: 24074524 DOI: 10.1016/j.pathophys.2013.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 08/19/2013] [Accepted: 08/29/2013] [Indexed: 11/16/2022]
Abstract
Low frequency electrical stimulation has been revealed that as a potential cure in patient with drug resistant to epilepsy. This study tries to evaluate the effect of low frequency electrical stimulation (LFS) on absence seizure of perioral region primary somatosensory cortex (S1po). Eighteen male WAG/Rij rats were received LFS (3Hz, square wave, monophasic, 200μs, and 400μA) for 25min into S1po for a period of five days. There is 6 animals per group .The stimulating electrodes were implanted according to stereotaxic landmarks and EEG recording was obtained 30min before and after LFS to analyse frequency, number and duration of spike-wave discharges (SWD). The results showed that in animals with unilateral stimulating electrodes (Exp1) in first and second days and also in animals with bilateral stimulating electrodes (Exp2) in days 3rd and 4th. LFS had significant decrease effects (p<0.05) on mean number of SWD between pre-LFS. In comparison pre-LFS to post-LFS, mean of duration in Exp2 decreased significantly. In continuous application of LFS (5 days) only the data of first day was differently significant (p<0.05) but data of other days had no difference. Comparison of data between Exp1, Exp2 and control groups showed that the mean number of Exp1 was significantly different (p<0.05) and mean pick frequency in Exp2 was significantly decreased in comparison with Exp1 group (p<0.05). The LFS of S1po produces significant antiepileptic effect on absence seizure but it was not persistent till the next day and shows a short time effect.
Collapse
Affiliation(s)
- Mina Sadighi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | | | | |
Collapse
|
47
|
Koupparis AM, Kokkinos V, Kostopoulos GK. Spindle power is not affected after spontaneous K-complexes during human NREM sleep. PLoS One 2013; 8:e54343. [PMID: 23326604 PMCID: PMC3542283 DOI: 10.1371/journal.pone.0054343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 12/12/2012] [Indexed: 11/19/2022] Open
Abstract
K-complexes and sleep spindles often grouped together characterize the second stage of NREM sleep and interest has been raised on a possible interaction of their underlying mechanisms. The reported inhibition of spindles power for about 15 seconds following evoked K-complexes has implications on their role in arousal. Our objective was to assess this inhibition following spontaneous K-complexes. We used time-frequency analysis of spontaneous K-complexes selected from whole-night EEG recordings of normal subjects. Our results show that spindles are most often observed at the positive phase following the peak of a spontaneous KC (70%). At latencies of 1-3 s following the peak of the K-complex, spindles almost disappear. Compared to long-term effects described for evoked KCs, sleep spindle power is not affected by spontaneous KCs for latencies of 5-15 s. Observation of the recurrence rate of sporadic spindles suggests that the reduction of power at 1-3 s most likely reflects a refractory period of spindles lasting for 1-2 s, rather than an effect of KCs. These results suggest that the mechanisms underlying spontaneous KCs do not affect spindle power as in the case of evoked KCs.
Collapse
Affiliation(s)
- Andreas M. Koupparis
- Neurophysiology Unit, Department of Physiology, Medical School, University of Patras, Rion, Greece
| | - Vasileios Kokkinos
- Neurophysiology Unit, Department of Physiology, Medical School, University of Patras, Rion, Greece
| | - George K. Kostopoulos
- Neurophysiology Unit, Department of Physiology, Medical School, University of Patras, Rion, Greece
- * E-mail:
| |
Collapse
|
48
|
|
49
|
Crunelli V, Carmignoto G. New vistas on astroglia in convulsive and non-convulsive epilepsy highlight novel astrocytic targets for treatment. J Physiol 2012; 591:775-85. [PMID: 23230232 DOI: 10.1113/jphysiol.2012.243378] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Our current knowledge of the role of astrocytes in health and disease states supports the view that many physiological brain functions and neurological diseases are finely tuned, and in certain cases fully determined, by the continuous cross-talk between astrocytes and neurons. This novel way of interpreting brain activity as a dynamic and reciprocal interplay between astrocytic and neuronal networks has also influenced our understanding of epilepsy, not only forcing a reinterpretation of old findings, but also being a catalyst for novel experimentation. In this review, we summarize some of the recent studies that highlight these novel distinct contributions of astrocytes to the expression of convulsive and non-convulsive epileptiform discharges and seizures. The emerging picture suggests a general framework based on bilateral signalling between astrocytes and neurons for a fuller understanding of epileptogenic and epileptic mechanisms in the brain network. Astrocytes potentially represent targets for the development of those novel chemical entities with improved efficacy for the treatment of convulsive and non-convulsive epilepsy that expert groups have recognized as one of the key priorities for the management of epilepsy.
Collapse
Affiliation(s)
- Vincenzo Crunelli
- Neuroscience Division, School of Bioscience, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK.
| | | |
Collapse
|
50
|
Abstract
This review summarizes the findings obtained over the past 70 years on the fundamental mechanisms underlying generalized spike-wave (SW) discharges associated with absence seizures. Thalamus and cerebral cortex are the brain areas that have attracted most of the attention from both clinical and experimental researchers. However, these studies have often favored either one or the other structure in playing a major role, thus leading to conflicting interpretations. Beginning with Jasper and Penfield's topistic view of absence seizures as the result of abnormal functions in the so-called centrencephalon, we witness the naissance of a broader concept that considered both thalamus and cortex as equal players in the process of SW discharge generation. Furthermore, we discuss how recent studies have identified fine changes in cortical and thalamic excitability that may account for the expression of absence seizures in naturally occurring genetic rodent models and knockout mice. The end of this fascinating tale is presumably far from being written. However, I can confidently conclude that in the unfolding of this "novel," we have discovered several molecular, cellular, and pharmacologic mechanisms that govern forebrain excitability, and thus consciousness, during the awake state and sleep.
Collapse
Affiliation(s)
- Massimo Avoli
- Montreal Neurological Institute and Departments of Neurology & Neurosurgery, and of Physiology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|